JP4974383B2 - Evaluation method for flavor improvers - Google Patents

Evaluation method for flavor improvers Download PDF

Info

Publication number
JP4974383B2
JP4974383B2 JP2008212086A JP2008212086A JP4974383B2 JP 4974383 B2 JP4974383 B2 JP 4974383B2 JP 2008212086 A JP2008212086 A JP 2008212086A JP 2008212086 A JP2008212086 A JP 2008212086A JP 4974383 B2 JP4974383 B2 JP 4974383B2
Authority
JP
Japan
Prior art keywords
taste
blood flow
concentration
cerebral blood
change
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008212086A
Other languages
Japanese (ja)
Other versions
JP2010046000A (en
Inventor
文乃 藤木
明朗 中村
知奈 辻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
T Hasegawa Co Ltd
Original Assignee
T Hasegawa Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by T Hasegawa Co Ltd filed Critical T Hasegawa Co Ltd
Priority to JP2008212086A priority Critical patent/JP4974383B2/en
Publication of JP2010046000A publication Critical patent/JP2010046000A/en
Application granted granted Critical
Publication of JP4974383B2 publication Critical patent/JP4974383B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Seasonings (AREA)

Description

本発明は、味覚物質の適正濃度および風味改良剤の評価方法に関する。さらに詳しくは、濃度の異なる味覚物質水溶液を複数調整し、被験者にそれぞれの試料を飲用させ、その時の脳血流量変化を測定し、脳血流量変化の応答強度により、味覚物質の適正濃度を評価する方法、および、前記の適正濃度を下回る、または、上回る濃度から選択される特定濃度の味覚物質水溶液に対し、さらに、風味改良剤を添加し、その際、風味改良剤濃度の異なる試料を複数調整し、被験者にそれぞれの水溶液を飲用させ、その時の脳血流量変化を測定し、脳血流量変化の応答強度により、風味改良剤の適正濃度を評価する方法に関する。   The present invention relates to a method for evaluating an appropriate concentration of a taste substance and a flavor improving agent. More specifically, multiple tasting substance aqueous solutions with different concentrations are prepared, each subject is allowed to drink each sample, the cerebral blood flow change at that time is measured, and the appropriate concentration of the gustatory substance is evaluated based on the response intensity of the cerebral blood flow change In addition, a flavor improving agent is further added to a taste substance aqueous solution having a specific concentration selected from a concentration lower than or higher than the appropriate concentration, and a plurality of samples having different flavor improving agent concentrations are added. The present invention relates to a method of adjusting, allowing a subject to drink each aqueous solution, measuring a change in cerebral blood flow at that time, and evaluating an appropriate concentration of the flavor improving agent based on a response intensity of the change in cerebral blood flow.

飲食物の風味の評価方法としては、もっぱらヒトの感覚にたよった官能評価が重用されている。官能評価は、総合的な評価には適しているが個人差、感覚疲労、体調変化などの主観的要素が影響する欠点がある。その主観的な評価に客観性を与えた手法としてQDA法(定量的記述分析法)があるが、共通用語の選定やパネルの訓練などに時間を要する。   As a method for evaluating the flavor of food and drink, sensory evaluation based solely on human senses is heavily used. Sensory evaluation is suitable for comprehensive evaluation, but has the disadvantage that subjective factors such as individual differences, sensory fatigue, and changes in physical condition are affected. The QDA method (quantitative description analysis method) is a method that gives objectivity to the subjective evaluation, but it takes time to select common terms and train the panel.

また、液体クロマトグラフをはじめとする種々のクロマトグラフや匂いセンサ、味センサなどの機器による評価が利用されている。液体クロマトグラフなどの機器による評価は客観的であるが、対象項目ごとの分析が必要であり総合的な評価を行うにはかなりの時間を要する。そして、ヒトの嗅覚、味覚を代用したセンサは、測定時間は短いが、安定性や再現性、被験者による官能評価との相関性に問題がある。   In addition, various chromatographs including liquid chromatographs, and evaluations by devices such as odor sensors and taste sensors are used. Although evaluation using an instrument such as a liquid chromatograph is objective, analysis for each target item is required, and it takes a considerable amount of time to perform a comprehensive evaluation. A sensor that substitutes human sense of smell and taste has a short measurement time, but has a problem in stability, reproducibility, and correlation with sensory evaluation by a subject.

そこで、ヒトによる主観評価を客観化するために、これらに加えて、生体内に生じている生理応答を観察・計測する精神生理学の手法を採用することが試みられている。精神生理学とは、瞳孔の大きさ、心拍数、血圧、脳波、脳磁波、脳血流、ストレスホルモン濃度など計測できる生体反応の指標を手がかりにして、心の状態や動きを研究する心理学の新しい領域である。ヒトは匂いを嗅ぐことによって感覚や情動が変化すると同時に、血圧の変動や心拍数、唾液中ストレス物質の変化といった生理応答を示す。これらの生理応答の観察・計測は、従来の機器分析や官能評価とは異なった角度から風味を評価する方法であり、新たな風味評価の一手法となる。   Therefore, in order to make the subjective evaluation by humans objective, it has been attempted to adopt a psychophysiological method for observing and measuring physiological responses occurring in the living body in addition to these. Psychophysiology is a psychological study that studies the state and movements of the heart using the indicators of biological responses that can be measured, such as pupil size, heart rate, blood pressure, brain waves, magnetoencephalogram, cerebral blood flow, and stress hormone concentrations. This is a new area. Humans show physiological responses such as changes in blood pressure, heart rate, and stress substances in saliva as well as changes in sensations and emotions by smelling. Observation and measurement of these physiological responses is a method for evaluating flavor from an angle different from conventional instrumental analysis and sensory evaluation, and is a new method for evaluating flavor.

ほとんどの感情情報を最終受容する場、演算処理の場、対応する出力を指示する場である大脳皮質には毛細血管が密に存在しており、血液中のヘモグロビンには近赤外線を吸収しやすいという性質がある。これを利用して近赤外線を頭皮上に照射して反射光を検出すれば、大脳皮質の血流量がわかり、ひいてはその活性の状態もわかることとなる。   Capillaries are densely present in the cerebral cortex, the place where most emotional information is finally received, the place of computation processing, and the place where the corresponding output is directed, and the hemoglobin in the blood tends to absorb near infrared rays It has the nature of If this is used to irradiate near-infrared rays onto the scalp to detect reflected light, the blood flow in the cerebral cortex can be determined, and in turn the state of its activity.

非特許文献1は、近赤外線を使用してヘモグロビン量を計測する装置(以下、光トポグラフィ装置という)を開示している。この計測装置は、特定の波長域にある近赤外線(NIR)を光ファイバーを用いて被験者頭部の一方の側から入射する。被験者の頭部内に入射された近赤外線は一部が頭部内の組織により吸収され、残の部分は大脳皮質を経由して頭皮上の検出器で検出される。検出された近赤外線の強度を測定して被験者頭部内の吸収率が測定される。光トポグラフィ装置は、陽電子放射断層撮影法(PET法)や機能的磁気共鳴画像法(fMRI法)のように大がかりで拘束性が強いものではないという利点がある。   Non-Patent Document 1 discloses an apparatus (hereinafter referred to as an optical topography apparatus) that measures the amount of hemoglobin using near infrared rays. In this measuring apparatus, near infrared rays (NIR) in a specific wavelength region are incident from one side of the subject's head using an optical fiber. Part of the near-infrared light incident on the subject's head is absorbed by the tissue in the head, and the remaining part is detected by a detector on the scalp via the cerebral cortex. The absorptance in the subject's head is measured by measuring the intensity of the detected near infrared ray. The optical topography apparatus has an advantage that it is not large and restrictive like positron emission tomography (PET method) and functional magnetic resonance imaging (fMRI method).

非特許文献2には、光トポグラフィ装置を用いて茶のフレーバーを官能評価する際の脳活動をモニタリングし、脳のどの部位が活動しているかを開示している。   Non-Patent Document 2 discloses which part of the brain is active by monitoring the brain activity when performing a sensory evaluation of the flavor of tea using an optical topography device.

電気学会誌,Vol.123,No.3,2003,160−163頁Journal of the Institute of Electrical Engineers of Japan, Vol. 123, no. 3, 2003, pages 160-163 Appetite,Vol.7,2006,220−232頁Appitete, Vol. 7, 2006, 220-232

本発明は、官能評価などに基づく欠点を解決し、上記した光トポグラフィ装置を使用し、濃度の異なる味覚物質水溶液を複数調整し、被験者にそれぞれの試料を飲用させ、その時の脳血流量変化を測定し、脳血流量変化の応答強度により、味覚物質の適正濃度を評価する方法、および、前記の適正濃度を下回る、または、上回る濃度から選択される特定濃度の味覚物質水溶液に対し、さらに、風味改良剤を添加し、その際、風味改良剤濃度の異なる試料を複数調整し、被験者にそれぞれの水溶液を飲用させ、その時の脳血流量変化を測定し、脳血流量変化の応答強度により、風味改良剤の適正濃度を評価する方法を提供することを目的とする。   The present invention solves the drawbacks based on sensory evaluation, etc., uses the optical topography device described above, adjusts multiple tastant aqueous solutions with different concentrations, allows the subject to drink each sample, and changes the cerebral blood flow at that time A method of measuring and evaluating an appropriate concentration of a gustatory substance according to a response intensity of a change in cerebral blood flow, and a tastant aqueous solution having a specific concentration selected from a concentration lower than or higher than the appropriate concentration, Add flavor improver, adjust multiple samples with different flavor improver concentration, make each subject drink each aqueous solution, measure cerebral blood flow change at that time, according to the response intensity of cerebral blood flow change, It aims at providing the method of evaluating the appropriate density | concentration of a flavor improving agent.

本発明者らは、先に、光トポグラフィ装置の有する上記特性に着目し、該光トポグラフィ装置を使用し、風味改良剤を添加した味覚物質または飲食物を飲食したときの脳血流の変化を測定し、同じ試料を連続して飲用するとその順応性により脳血流量の変化は小さくなる傾向があることを利用し、該測定結果に基づいて該風味改良剤の種類若しくは添加量を選択する味覚物質または飲食品の風味改良方法を開示した(特開2007−252350)。   The inventors of the present invention focused on the above characteristics of the optical topography device, and used the optical topography device to examine changes in cerebral blood flow when eating or drinking a taste substance or a food or drink containing a flavor improver. Measures and uses the fact that the change in cerebral blood flow tends to decrease due to its adaptability when drinking the same sample continuously, and based on the measurement results, the taste or taste of the flavor improver is selected. Disclosed is a method for improving the flavor of a substance or food and drink (Japanese Patent Laid-Open No. 2007-252350).

また、本発明者らは、香料を添加した飲食物を飲食または嗅いだときの脳血流の変化量が、ターゲットフレーバーに対してイミテーションフレーバーが適正であるかどうかをファミリア度(「違和感のない」、「安心感」、「自然」、「慣れ親しんでいる」、「馴染み」などの度合い)として評価できることを開示した(特願2007−227994)。   In addition, the present inventors have determined whether the amount of change in cerebral blood flow when eating or smelling a scented food or drink is appropriate for the imitation flavor relative to the target flavor (“no discomfort” ”,“ Reliability ”,“ Nature ”,“ Familiarity ”,“ Familiarity ”, etc.) (Japanese Patent Application No. 2007-227994).

しかしながら、特開2007−252350および特願2007−227994においては、味覚物質の濃度と脳血流量の応答強度の間、または味の強度と脳血流量の応答強度の間の詳細な対応関係や、味覚物質に風味改良剤を添加し、官能的に風味が修飾された時の、風味の強度と脳血流量の応答強度の間の詳細な対応関係についてまでは解明できなかった。   However, in Japanese Patent Application Laid-Open No. 2007-252350 and Japanese Patent Application No. 2007-227994, there is a detailed correspondence between the concentration of taste substances and the response intensity of cerebral blood flow, or between the intensity of taste and the response intensity of cerebral blood flow, It was not possible to elucidate the detailed correspondence between the intensity of the flavor and the response intensity of the cerebral blood flow when a flavor improver was added to the taste substance and the flavor was functionally modified.

本発明者らは、風味を左右するにおいまたは味における試料溶液の濃度の影響について、光トポグラフィ装置を用いて計測できないかと考え、鋭意検討した結果、今回、水飲用後の試料溶液飲用時の脳血流の変化量が、試料溶液の濃度に依存して異なり、においと味(以下、風味ということがある)における試料溶液濃度の適性を脳血流の変化量を測定することにより評価することができることを見出し、本発明を完成するに至った。   The present inventors thought that it would be possible to measure the effect of the concentration of the sample solution on the odor or taste that influences the flavor using an optical topography apparatus, and as a result of intensive studies, the brain at the time of drinking the sample solution after drinking this time The amount of change in blood flow varies depending on the concentration of the sample solution, and the suitability of the sample solution concentration in odor and taste (hereinafter sometimes referred to as flavor) is evaluated by measuring the amount of change in cerebral blood flow. As a result, the present invention has been completed.

すなわち、本発明は、濃度の異なる味覚物質水溶液を複数調整し、被験者にそれぞれの試料を飲用させ、その時の脳血流量変化を測定し、血流変化の応答強度により、味覚物質の適正濃度を評価する方法を提供するものである。   That is, the present invention adjusts a plurality of gustatory substance aqueous solutions having different concentrations, causes the subject to drink each sample, measures the change in cerebral blood flow, and determines the appropriate concentration of the gustatory substance based on the response intensity of the blood flow change. It provides a way to evaluate.

また、本発明は、前記の適正濃度を下回る、または、上回る濃度から選択される特定濃度の味覚物質水溶液に対し、さらに、風味改良剤を添加し、その際、風味改良剤濃度の異なる試料を複数調整し、被験者にそれぞれの水溶液を飲用させ、その時の脳血流量変化を測定し、脳血流量変化の応答強度により、風味改良剤の適正濃度を評価する方法を提供するものである。   In addition, the present invention further adds a flavor improver to a specific concentration of a taste substance aqueous solution selected from a concentration lower than or higher than the above-mentioned appropriate concentration, and samples having different flavor improver concentrations are added at that time. A method is provided in which a plurality of adjustments are made, a subject is allowed to drink each aqueous solution, a change in cerebral blood flow at that time is measured, and an appropriate concentration of the flavor improving agent is evaluated based on a response intensity of the change in cerebral blood flow.

さらに本発明は、脳血流が、大脳皮質の血流であることを特徴とする前記の味覚物質の適正濃度、または、特定濃度の味覚物質水溶液に対する風味改良剤の適正濃度を評価する方法を提供するものである。   Furthermore, the present invention provides a method for evaluating an appropriate concentration of the above-mentioned taste substance, or an appropriate concentration of a flavor improving agent for a specific concentration of an aqueous taste substance solution, wherein the cerebral blood flow is a blood flow of the cerebral cortex. It is to provide.

さらにまた本発明では、脳血流量変化が、血液中のヘモグロビン量の変化を近赤外分光法により測定することを特徴とする前記の味覚物質の適正濃度、または、特定濃度の味覚物質水溶液に対する風味改良剤の適正濃度を評価する方法が提供される。   Furthermore, in the present invention, the change in cerebral blood flow is measured by measuring the change in the amount of hemoglobin in the blood by near-infrared spectroscopy. A method is provided for evaluating the proper concentration of a flavor improver.

本発明では、さらに 脳血流量変化が大脳前頭外側部の脳血流量変化であることを特徴とする前記の味覚物質の適正濃度、または、特定濃度の味覚物質水溶液に対する風味改良剤の適正濃度を評価する方法を提供することができる。   In the present invention, the appropriate concentration of the tastant described above, wherein the cerebral blood flow change is a change in cerebral blood flow in the outer frontal region of the cerebrum, or the appropriate concentration of the flavor improving agent with respect to a specific concentration of the tastant aqueous solution, A method of evaluating can be provided.

本発明によれば、味覚物質の適正濃度や特定濃度の味覚物質水溶液に対する風味改良剤の適正濃度を効率的かつ客観的に評価することができる風味評価方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the flavor evaluation method which can evaluate efficiently and objectively the appropriate density | concentration of the flavor improving agent with respect to the appropriate density | concentration of a gustatory substance and the gustatory substance aqueous solution of a specific density | concentration can be provided.

本発明では被験者に、味覚物質水溶液または味覚物質水溶液に風味改良剤を添加した溶液を飲ませ、その際の脳血流量変化を測定することにより味覚物質の適正濃度、または、特定濃度の味覚物質水溶液に対する風味改良剤の適正濃度を評価する。味覚物質の適性濃度とは、官能的に望ましい強度を有する濃度である。また、風味改良剤の適性濃度とは、味覚物質の適性濃度を下回る、または、上回る濃度の味覚物質に添加することにより、味覚物質の適性濃度における官能的な風味の強度を感じさせる事ができる、風味改良剤の添加濃度である。その際の脳血流量変化の応答強度が大きいほど風味の強度が強く、低いほど風味の強度が弱いと評価する事が可能である。   In the present invention, a subject is allowed to drink a taste substance aqueous solution or a solution obtained by adding a taste improver to a taste substance aqueous solution, and the change in cerebral blood flow at that time is measured to obtain an appropriate concentration of the taste substance or a taste substance having a specific concentration. Evaluate the appropriate concentration of the flavor improver for the aqueous solution. The appropriate concentration of the tastant is a concentration having a desired sensory strength. In addition, the optimal concentration of the flavor improving agent can be sensed by the sensory flavor intensity at the optimal concentration of the taste substance by adding to the concentration of the taste substance below or above the optimal concentration of the taste substance. The concentration of the flavor improver. It can be evaluated that the strength of the flavor is stronger as the response strength of the change in cerebral blood flow is higher, and the strength of the flavor is weaker as the response strength is lower.

試料水溶液の飲用および脳血流量変化の測定は次のように行う。被験者を安静な状態にしておき、まず水を口に含み、水を口中全体に行き渡らせ、口に含んでから30秒後に飲み込み、その後60秒間安静にする。次に試料溶液を口に含み、試料溶液をじっくり口中で味わい、試料溶液を口に含んでから30秒後に飲み込み、その後、再び60秒間安静にする。次に、再び水を口に含み、水を口中全体に行き渡らせ、口に含んでから30秒後に飲み込み、その後60秒間安静にする。その後、先とは別の試料溶液を口に含み、その試料溶液をじっくり口中で味わい、その試料溶液を口に含んでから30秒後に飲み込み、その後、再び60秒間安静にする。このように、水の飲用と試料溶液の飲用を交互に繰り返す。試料は1回の実験で4〜5点程度行うことができる。あらかじめ選択した4〜5点の試料を前記手順にて順次評価する。これらの試料を評価している間、飲用や安静の時間もふくめ脳血流量を測定し、その変化を記録する。また、官能評価は試料を口に含んで、味わっている30秒間に行い、1連の4〜5点の評価が終了後、試料の風味の強度について最後にまとめて官能評価を記入する。   Drinking the sample aqueous solution and measuring changes in cerebral blood flow are performed as follows. The subject is kept in a resting state. First, water is put in the mouth, water is spread throughout the mouth, swallowed 30 seconds after being put in the mouth, and then rested for 60 seconds. Next, the sample solution is put in the mouth, the sample solution is thoroughly tasted in the mouth, swallowed 30 seconds after the sample solution is put in the mouth, and then rested again for 60 seconds. Next, water is again put into the mouth, water is spread throughout the mouth, swallowed 30 seconds after being put in the mouth, and then rested for 60 seconds. Then, another sample solution is put in the mouth, the sample solution is thoroughly tasted in the mouth, swallowed 30 seconds after the sample solution is put in the mouth, and then rested again for 60 seconds. Thus, drinking of water and drinking of the sample solution are repeated alternately. The sample can be performed about 4 to 5 points in one experiment. Pre-selected 4 to 5 samples are evaluated sequentially according to the above procedure. While evaluating these samples, measure cerebral blood flow, including drinking and resting times, and record the changes. The sensory evaluation is carried out for 30 seconds while the sample is contained in the mouth, and after the evaluation of a series of 4 to 5 points is completed, the sensory evaluation is entered at the end with respect to the strength of the flavor of the sample.

このような手順で試料溶液の飲用を行った場合、大脳前頭外側部において、口に含んでから徐々に脳血流量が上昇し、約5秒から約30秒程度の間に脳血流量が最大値を示す。その後、徐々に脳血流量は下降し、口に含んでから約60秒でほぼ元のレベルとなる。そこで、ある特定の脳の部位における口に含んでから約5秒から約30秒までの脳血流量の「最大値」から、口に含んだ瞬間から約15秒までの脳血流量の「最小値」を引いた値を脳血流量変化の応答強度とする。今回、この応答強度は特定の脳の部位においては官能的な味の強度と極めて良く一致することが見出された。したがって、複数の被検者を用い、得られた味の強度に対応する味覚物質水溶液の濃度を平均化することで、一般的なその特定の味覚物質水溶液の適正濃度を評価することができると考えられる。   When the sample solution is ingested in such a procedure, the cerebral blood flow gradually increases in the outer frontal portion of the cerebrum after being included in the mouth, and the cerebral blood flow reaches a maximum between about 5 seconds to about 30 seconds. Indicates the value. Thereafter, the cerebral blood flow gradually decreases, and returns to the original level in about 60 seconds after being put in the mouth. Therefore, from the “maximum value” of cerebral blood flow from about 5 seconds to about 30 seconds after inclusion in the mouth in a specific brain region, the “minimum” of cerebral blood flow from the moment of inclusion in the mouth to about 15 seconds. The value obtained by subtracting “value” is defined as the response intensity of cerebral blood flow change. This time, it has been found that this response intensity agrees very well with the intensity of sensual taste at specific brain sites. Therefore, by using a plurality of subjects and averaging the concentration of the gustatory substance aqueous solution corresponding to the obtained taste intensity, it is possible to evaluate the general appropriate concentration of the specific gustatory substance aqueous solution. Conceivable.

本発明における風味評価方法は、被験者が味覚物質水溶液を官能評価している際に、被験者に装着した光トポグラフィ装置を用いて脳血流量変化を測定することにより行うことができる。光トポグラフィ装置の各チャンネル(CH)の脳血流量のデータを統計処理することにより味覚物質水溶液の適正濃度を評価することができる。本発明で使用する光トポグラフィ装置としては、例えば、日立ETG−4000型光トポグラフィ装置((株)日立メディコ製:52チャンネル)を例示することができる。   The flavor evaluation method of the present invention can be performed by measuring a change in cerebral blood flow using an optical topography device attached to a subject when the subject is performing sensory evaluation of the aqueous taste substance solution. The appropriate concentration of the gustatory substance aqueous solution can be evaluated by statistically processing the cerebral blood flow data of each channel (CH) of the optical topography apparatus. Examples of the optical topography apparatus used in the present invention include a Hitachi ETG-4000 type optical topography apparatus (manufactured by Hitachi Medical Corporation: 52 channels).

脳血流量変化の応答強度を計測するための脳の部位は大脳前頭外側部を使用することができる。この部位においては、味の強度と応答強度の間に正の相関関係が見られる傾向がある。大脳前頭外側部の脳血流量変化の応答は、日立ETG−4000型光トポグラフィ装置を使用した場合、左脳ではチャンネル8,9,10,18,19,20,21,29,30,31,39,40,41,42,50,51,52を挙げることができ、また右脳ではチャンネル1,2,3,11,12,13,14,22,23,24,32,33,34,35,43,44,45を挙げることができる。またこれらのチャンネルのうち、チャンネル33,34,44,40,41,51が特に好ましい。   As the brain region for measuring the response intensity of the change in cerebral blood flow, the outer frontal portion of the cerebrum can be used. In this part, there is a tendency that a positive correlation is found between the taste intensity and the response intensity. When the Hitachi ETG-4000 optical topography device is used, the response to changes in cerebral blood flow in the outer frontal region of the cerebrum is channel 8, 9, 10, 18, 19, 20, 21, 29, 30, 31, 39 in the left brain. , 40, 41, 42, 50, 51, 52, and in the right brain, channels 1, 2, 3, 11, 12, 13, 14, 22, 23, 24, 32, 33, 34, 35, 43, 44, 45. Of these channels, the channels 33, 34, 44, 40, 41, and 51 are particularly preferable.

味覚物質水溶液の濃度と味の強度の一般的な関係としては、横軸に味覚物質の濃度を取り縦軸に官能的評点を取った場合、濃度が高まると共に官能的な評点も高くなる、いわゆる右肩上がりの傾向が見られる。   As a general relationship between the concentration of the taste substance aqueous solution and the strength of taste, when the concentration of the taste substance is taken on the horizontal axis and the sensory score is taken on the vertical axis, the concentration increases and the sensory score also increases. There is a tendency to rise to the right.

本発明では上記の測定条件下においては、脳血流量変化の応答強度が味の強度と正の相関関係があり、脳血流量変化の応答を測定し、血流変化の応答強度により、味覚物質の適正濃度を評価できることを見出した。   In the present invention, under the measurement conditions described above, the response intensity of cerebral blood flow change has a positive correlation with the intensity of taste, and the response of cerebral blood flow change is measured. It was found that the proper concentration of can be evaluated.

本発明において、味覚物質とは、特に制限されるものではなく、甘味、酸味、苦味、旨味、辛味などの味覚などが挙げられ、これらの味覚物質として具体的には、甘味物質としては、砂糖などの糖類、カンゾウ抽出物、ステビア抽出物、ラカンカ抽出物など、あるいはアスパルテーム、スクラロース、アセスルファムカリウムなどの人工甘味料などが挙げられる。酸味物質としては、レモンなどに含まれる有機酸などであり、苦味物質としては、ホップ抽出物(フムロン類)、カフェイン、キナ抽出物(キニン)、ナリンジン、テオブロミン、ニガキ抽出物、ニガヨモギ抽出物、ゲンチアナ抽出物などの食品に使用されるもの、オウレンのベルベリン、センブリのスエルティアマリン、ニガキのカシン、ゲンチアナのゲンチオピクロシド、キハダのオバクノンなどの生薬中の苦味物質、アルカロイドなどの医薬用途の物質、ポリフェノール類(カテキン、イソフラボン、クロロゲン酸)などの食品含有物質などが挙げられる。また、香料成分の中でもメントール、ハッカ油などは後味に苦味を感じるものもある。旨味物質としては、イノシン酸、グアニル酸などの核酸類、グルタミン酸、アラニン、グリシン、アルギニンなどのアミノ酸類などが挙げられ、辛味物質としては、唐辛子中のカプサイシン、胡椒中のピペリン、生姜中の6−ジンゲロールなどを挙げることができる。   In the present invention, the taste substance is not particularly limited, and examples include tastes such as sweet taste, sour taste, bitter taste, umami taste, and pungent taste. Specific examples of these taste substances include sugar. Saccharides such as licorice, licorice extract, stevia extract, rakanka extract and the like, or artificial sweeteners such as aspartame, sucralose, and acesulfame potassium. Examples of sour substances include organic acids contained in lemons, etc., and examples of bitter substances include hop extract (humulones), caffeine, quina extract (kinin), naringin, theobromine, nigaki extract, sagebrush extract , Use in foods such as gentian extract, medicinal bitter substances, alkaloids, etc. And food-containing substances such as polyphenols (catechin, isoflavone, chlorogenic acid). Among the fragrance ingredients, menthol, mint oil and the like have a bitter taste in the aftertaste. Examples of umami substances include nucleic acids such as inosinic acid and guanylic acid, and amino acids such as glutamic acid, alanine, glycine and arginine. Examples of pungent substances include capsaicin in chili pepper, piperine in pepper, 6 in ginger. -Gingerol etc. can be mentioned.

本発明ではまた、味覚物質水溶液の適正濃度を下回る、または、上回る濃度の水溶液に何らかの風味改良剤を添加することにより改善する方法を提供する。例えば、飲料の開発において、カロリー低減のため砂糖摂取量を下げる目的で砂糖濃度を風味的に最も好ましい濃度を下回る濃度に設定し、それをシュガーフレーバーで補う、また、スープにおいて塩分摂取量を低減させる目的で、風味的に最も好ましい濃度である食塩濃度より低い濃度に設定し、それを、塩味エンハンサーで補うなどである。   The present invention also provides a method for improvement by adding some flavor improver to an aqueous solution having a concentration lower than or higher than the appropriate concentration of the aqueous taste substance solution. For example, in the development of beverages, the sugar concentration is set lower than the most preferred flavor for the purpose of reducing the sugar intake in order to reduce calories and supplemented with sugar flavor, and the salt intake in the soup is reduced. For this purpose, it is set to a concentration lower than the salt concentration, which is the most preferable concentration in terms of flavor, and supplemented with a salty enhancer.

風味改良剤としては前記味覚物質に対して相乗効果を発揮する物質であれば特に制限されるものではなく、例えば香料による風味の改善効果、シュガーフレーバーなどの香料による光甘味度甘味料の呈味改善効果、アミノ酸と核酸系調味料の併用などによる旨味物質の相乗効果、香料による苦味のマスキング効果、甘味料による苦味や渋味のマスキング効果、光甘味度甘味料の併用によるそれぞれの光甘味度甘味料の欠点の解消効果、酸による塩味の増強効果、香料による塩味の増強効果などが例示できる。
例えば、適正濃度を下回る味覚物質水溶液に風味増強効果のある風味改良剤を添加していき、横軸に風味改良剤の濃度を、縦軸に官能的評点を取った場合、風味改良剤の濃度が高まると共に官能的な評点も高くなる、いわゆる右肩上がりの傾向が見られる。
The flavor improving agent is not particularly limited as long as it is a substance that exhibits a synergistic effect on the taste substance. For example, the flavor improving effect by the flavor, the taste of the light sweetness sweetener by the flavor such as sugar flavor. Improvement effect, synergistic effect of umami substances by combining amino acid and nucleic acid seasoning, masking effect of bitterness by flavor, masking effect of bitterness and astringency by sweetener, light sweetness level by combined use of light sweetness degree sweetener Examples include the effect of eliminating the disadvantages of sweeteners, the effect of enhancing the salty taste by acid, and the effect of enhancing the salty taste by flavoring.
For example, when a flavor improver having a flavor enhancing effect is added to an aqueous taste substance solution below the appropriate concentration, the concentration of the flavor improver is taken on the horizontal axis, and the sensory score is taken on the vertical axis, the concentration of the flavor improver There is a so-called upward trend that increases with increasing sensual scores.

本発明では前記の測定条件下においては、脳血流量変化の応答強度が官能評価における味の強度と正の相関関係があり、脳血流量変化を測定し、血流変化の応答強度により、風味改良剤の適正濃度を評価できることを見出した。
以下に実施例を挙げ、本発明を更に詳細に説明する。
In the present invention, under the measurement conditions described above, the response intensity of cerebral blood flow change has a positive correlation with the intensity of taste in sensory evaluation, and cerebral blood flow change is measured. It has been found that the appropriate concentration of the improver can be evaluated.
The following examples further illustrate the present invention.

(実施例1)基本味を呈する味覚物質水溶液の味の強度と脳活動に関する検討
本実施例では代表的な基本味である甘味および酸味を呈する味覚物質について濃度を変えたものを被験者に飲用させ、その際の脳血流量変化を測定し、大脳前頭外側部の脳血流がどのように変化するかを検討した。
試料、被験者、測定装置および測定方法を次に示す。
[試料]
試料1:砂糖水溶液:0%、2%、4%、6%、8%
試料2:アスパルテーム水溶液:0%、0.012、0.024%、0.036%、0.048%
試料3:クエン酸水溶液:0%、0.01%、0.05%、0.1%
[被験者]
任意に選択した被験者10名(20歳代から50歳代の男女)
[測定装置]
日立ETG−4000型光トポグラフィ装置((株)日立メディコ製:52チャンネル)
[測定方法]
光トポグラフィ装置に連結された多数のセンサを備えたプローブを被験者の頭部に装着した後、各試料を飲用させ測定を行った。図1に示すタイムスケジュールに従って安静後、最初に水を飲用させ、次に試料を飲用させ風味を積極的に評価するようにした。試料の飲用順は1種類の味覚物質水溶液について、低濃度側から高濃度側に行った。官能評価は図2に示す評価表に従って味の強度を0:無味、3:弱い、6:普通、9:強い、12:非常に強い、として評価した。
[結果]
図3には、最初に水を口に入れ飲んだ後、次に試料を口に入れ飲んだ時の、大脳前頭外側部の代表的な計測点であるチャンネル52における典型的な酸素化ヘモグロビンの経時的な変化量のグラフを示している。同図において、0〜90秒が水に対する応答、90〜180秒が試料に対する応答である。応答強度は「飲用開始の指示を0秒とした時、(5〜30秒の脳血流量の最高値)−(0〜15秒の脳血流量の最低値)」とした。
(Example 1) Examination of taste intensity and brain activity of a taste substance aqueous solution exhibiting a basic taste In this example, a subject is allowed to drink a representative basic taste sweet taste and sour taste taste substance having different concentrations. Then, we measured changes in cerebral blood flow at that time, and examined how the cerebral blood flow in the outer frontal region of the cerebrum changes.
A sample, a subject, a measuring device, and a measuring method are shown below.
[sample]
Sample 1: Aqueous sugar solution: 0%, 2%, 4%, 6%, 8%
Sample 2: Aspartame aqueous solution: 0%, 0.012, 0.024%, 0.036%, 0.048%
Sample 3: Aqueous citric acid solution: 0%, 0.01%, 0.05%, 0.1%
[subject]
10 randomly selected subjects (men and women in their 20s to 50s)
[measuring device]
Hitachi ETG-4000 optical topography system (manufactured by Hitachi Medical Corporation: 52 channels)
[Measuring method]
A probe equipped with a number of sensors connected to an optical topography apparatus was mounted on the subject's head, and each sample was swallowed for measurement. After resting according to the time schedule shown in FIG. 1, water was first drunk and then the sample was drunk to positively evaluate the flavor. The drinking order of the samples was performed from the low concentration side to the high concentration side for one type of taste substance aqueous solution. The sensory evaluation was performed according to the evaluation table shown in FIG. 2, with the taste strength being 0: tasteless, 3: weak, 6: normal, 9: strong, 12: very strong.
[result]
FIG. 3 shows typical oxygenated hemoglobin in channel 52, which is a representative measurement point of the outer frontal cerebrum, when water is first drunk and then the sample is drunk. A graph of the amount of change over time is shown. In the figure, 0 to 90 seconds are responses to water, and 90 to 180 seconds are responses to the sample. The response intensity was defined as “(maximum value of cerebral blood flow for 5 to 30 seconds) − (minimum value of cerebral blood flow for 0 to 15 seconds) when the instruction to start drinking is 0 second”.

(1)試料濃度と味の強度の官能評価
砂糖濃度0〜8%、アスパルテーム濃度0〜0.048%、クエン酸濃度0〜0.1%の官能評価における味の強度の項目において、いずれも高濃度側になるほど味が強くなるとの評価結果が得られた。また、試料濃度と味の強度の間には正の相関(R=相関係数)が見られ、試料濃度と味の強度の平均値の関係は良好な直線性を示した(R値:砂糖0.99、アスパルテーム0.96、クエン酸0.91)。
(1) Sensory Evaluation of Sample Concentration and Taste Strength Each of the taste strength items in the sensory evaluation of sugar concentration 0-8%, aspartame concentration 0-0.048%, citric acid concentration 0-0.1% The evaluation result that the taste became stronger as the concentration became higher was obtained. Further, a positive correlation (R = correlation coefficient) was observed between the sample concentration and the taste intensity, and the relationship between the average value of the sample concentration and the taste intensity showed good linearity (R 2 value: Sugar 0.99, aspartame 0.96, citric acid 0.91).

(2)試料濃度と応答強度の関係
試料濃度と応答強度の関係においては、砂糖濃度0〜8%、アスパルテーム濃度0〜0.048%の時およびクエン酸濃度0〜0.1%の時に左右の前頭外側部で、試料濃度がいずれも高濃度側になるほど応答強度が大きくなる傾向が見られた。また、試料濃度と応答強度の間には正の相関(R=相関係数)が見られ、試料濃度と大脳前頭外側部の代表的な計測点であるチャンネル41における脳血流量変化の平均値の関係は良好な直線性を示した(R値:砂糖0.99、アスパルテーム0.83、クエン酸0.90)。
これらの官能的な味の強度と大脳前頭外側部の代表的な計測点であるチャンネル41における脳血流量変化の応答強度との関係を図4に示す。味の強度と応答強度の間には正の相関(R=相関係数)が見られ、両者の平均値の関係は良好な直線性を示した(R値:砂糖0.97、アスパルテーム0.94、クエン酸0.99)。
(2) Relationship between sample concentration and response intensity In the relationship between sample concentration and response intensity, it was affected when the sugar concentration was 0-8%, the aspartame concentration was 0-0.048%, and the citric acid concentration was 0-0.1%. There was a tendency for the response intensity to increase as the sample concentration increased on the outer frontal side. In addition, a positive correlation (R = correlation coefficient) is observed between the sample concentration and the response intensity, and the average value of the change in cerebral blood flow in the channel 41, which is a representative measurement point in the outer frontal region of the cerebrum, is observed. This relationship showed good linearity (R 2 value: sugar 0.99, aspartame 0.83, citric acid 0.90).
FIG. 4 shows the relationship between the intensity of these sensual tastes and the response intensity of changes in cerebral blood flow in the channel 41, which is a representative measurement point in the outer frontal region of the cerebrum. A positive correlation (R = correlation coefficient) was found between the intensity of the taste and the response intensity, and the relationship between the average values of the two showed a good linearity (R 2 value: sugar 0.97, aspartame 0) .94, citric acid 0.99).

(3)大脳皮質領域における応答部位
前記のような傾向が検出される大脳皮質領域は大脳前頭外側部であり、左脳ではチャンネル8,9,10,18,19,20,21,29,30,31,39,40,41,42,50,51,52において、また、右脳ではチャンネル1,2,3,11,12,13,14,22,23,24,32,33,34,35,43,44,45において、試料の官能評価における味の強さと応答強度には正の相関が見られた。一例として、砂糖水溶液を試料とした時の、各チャンネルにおける、味の強さと応答強度の間の相関係数(R)を図5に示す。大脳前頭外側部に該当するチャンネル付近では味の強さと応答強度の間に相関が見られ、一般的に相関があると考えられる相関係数(R)>0.4のチャンネルはチャンネル19,20,21,29,30,31,39,40,41,42,51,52,12,23,33,34,35,43,44,45であり、大脳前頭外側部に該当する領域である。
以上より、被験者に濃度の異なる味覚物質水溶液を飲ませた時の脳血流量変化の応答強度は、その被験者の感じる味の強度と正の相関が強く見られ、味覚物質の適正濃度の評価に有効であるという結果が示されたものと考えられる。
(3) Response site in cerebral cortex region The cerebral cortex region where the above-mentioned tendency is detected is the outer frontal portion of the cerebrum, and in the left brain, channels 8, 9, 10, 18, 19, 20, 21, 29, 30, 31, 39, 40, 41, 42, 50, 51, 52 and in the right brain, channels 1, 2, 3, 11, 12, 13, 14, 22, 23, 24, 32, 33, 34, 35, In 43, 44, and 45, a positive correlation was found between the taste intensity and the response intensity in the sensory evaluation of the sample. As an example, the correlation coefficient (R) between the strength of the taste and the response intensity in each channel when using an aqueous sugar solution as a sample is shown in FIG. There is a correlation between taste intensity and response intensity in the vicinity of the channel corresponding to the outer frontal part of the cerebrum, and channels with correlation coefficient (R)> 0.4 that are generally considered to have a correlation are channels 19 and 20. , 21, 29, 30, 31, 39, 40, 41, 42, 51, 52, 12, 23, 33, 34, 35, 43, 44, 45, which corresponds to the outer frontal region of the cerebrum.
Based on the above, the response intensity of changes in cerebral blood flow when a subject was given a tasting substance aqueous solution with a different concentration showed a strong positive correlation with the intensity of the taste felt by the subject, and this was an evaluation of the appropriate concentration of the tasting substance. It is thought that the result of being effective was shown.

(実施例2)味覚物質水溶液に風味改良剤を賦香した試料溶液と脳活動に関する検討
本実施例では、実施例1において選択した適正濃度を下回る濃度から選択される特定濃度の味覚物質水溶液として2%砂糖水溶液を選択した。そこに、さらに風味改良剤として各種濃度のエチルマルトール(シュガーフレーバーの一つで、甘味増強作用があると考えられる)を添加し、被験者にそれぞれの水溶液を飲ませ、その際の脳血流量変化を測定し、脳血流量変化の応答強度により、風味改良剤の適正濃度を評価した。
[試料]
試料4:砂糖2%水溶液+エチルマルトール(0ppm、0.05ppm、10ppm、20ppm)
[被験者]
任意に選択した被験者10名(20歳代から50歳代の男女)
[測定装置]
日立ETG−4000型光トポグラフィ装置((株)日立メディコ製:52チャンネル)
[測定方法]
5点の試料を実施例1と同様に図1に示したタイムスケジュールに従い、エチルマルトールの添加量の少ないものから多いものへ順次官能評価を行い図2に示す官能評価表に記入した。
[結果]
図6には0〜8%濃度の砂糖水溶液における味の強度と応答強度の関係、および、2%砂糖水溶液にエチルマルトールを0.05〜20ppm濃度で添加したときの味の強度と応答強度の関係を示す。
(Example 2) Examination of a sample solution obtained by adding a flavor improving agent to a taste substance aqueous solution and brain activity In this example, as a taste substance aqueous solution having a specific concentration selected from a concentration lower than the appropriate concentration selected in Example 1 A 2% sugar aqueous solution was selected. Furthermore, various concentrations of ethyl maltol (a sugar flavor, which is thought to have a sweetening effect) were added as flavor improvers, and the subjects were allowed to drink their respective aqueous solutions. Was measured, and the appropriate concentration of the flavor improving agent was evaluated based on the response intensity of changes in cerebral blood flow.
[sample]
Sample 4: Sugar 2% aqueous solution + ethyl maltol (0 ppm, 0.05 ppm, 10 ppm, 20 ppm)
[subject]
10 randomly selected subjects (men and women in their 20s to 50s)
[measuring device]
Hitachi ETG-4000 optical topography system (manufactured by Hitachi Medical Corporation: 52 channels)
[Measuring method]
In the same manner as in Example 1, the five samples were subjected to sensory evaluation in order from the one with the smallest amount of ethyl maltol added according to the time schedule shown in FIG. 1, and entered in the sensory evaluation table shown in FIG.
[result]
FIG. 6 shows the relationship between the strength of the taste and the response intensity in a 0-8% aqueous sugar solution, and the intensity of the taste and the response intensity when ethyl maltol was added to a 2% aqueous sugar solution at a concentration of 0.05-20 ppm. Show the relationship.

(1)エチルマルトール濃度と味の強度の官能評価
砂糖2%の水溶液に対してエチルマルトールを0.05〜20ppmで添加濃度を増やしていくと、添加濃度が増えるにしたがい官能的な甘味強度が増加していく傾向が見られた。
(1) Sensory Evaluation of Ethylmaltol Concentration and Taste Strength When increasing the concentration of ethylmaltol from 0.05 to 20 ppm in an aqueous solution of 2% sugar, the sensory sweetness intensity increases as the concentration increases. There was a tendency to increase.

(2)エチルマルトール濃度と応答強度の関係
エチルマルトールの添加濃度の増加に伴い、左右の前頭外側部で、エチルマルトール濃度と応答強度が正の相関を示す事が確認された。すなわち、2%砂糖水溶液にエチルマルトールを賦香した試料は2%砂糖水溶液単独よりも大きく、味とにおいの統合による相乗効果が起こっている事を示唆する結果が得られた。
以上より、被験者に適正濃度を下回る濃度から選択される特定濃度の味覚物質水溶液に対し、さらに、濃度の異なる風味改良剤を添加し、被験者にそれぞれの水溶液を飲ませ、その際の脳血流量変化を測定した際の、脳血流量変化の応答強度が、風味改良剤の適正濃度の評価に有効であるという結果が示されたものと考えられる。
(2) Relationship between ethyl maltol concentration and response intensity It was confirmed that the ethyl maltol concentration and the response intensity showed a positive correlation in the left and right frontal lateral areas with increasing ethyl maltol concentration. That is, the sample in which ethyl maltol was added to a 2% sugar aqueous solution was larger than the 2% sugar aqueous solution alone, and a result suggesting that a synergistic effect due to the integration of taste and odor occurred.
As described above, the subject further adds a flavor improving agent having a different concentration to the tastant aqueous solution having a specific concentration selected from a concentration lower than the appropriate concentration, and causes the subject to drink each aqueous solution. It is considered that the response intensity of the change in cerebral blood flow when measuring the change was effective in evaluating the appropriate concentration of the flavor improving agent.

以上の結果より、大脳前頭外側部の脳活動は風味を構成する味やにおいによって左右されることがわかった。そして大脳前頭外側部の脳血流量は甘味や酸味の濃度に依存して増加することが確認でき、甘いにおいを賦香した砂糖溶液を飲用した時の脳血流量の変化は、砂糖単独による変化よりも大きく、着目した脳活動はにおいによっても確かに変化し、においによって味の応答が修飾されることを計測することができた。   From the above results, it was found that the brain activity in the outer frontal region of the cerebrum depends on the taste and smell that make up the flavor. It can be confirmed that the cerebral blood flow in the outer frontal region of the cerebrum increases depending on the concentration of sweetness and sourness, and the change in cerebral blood flow when a sugar solution with a sweet smell is ingested changes with sugar alone. Larger than that, it was possible to measure that the focused brain activity was also changed by the smell, and that the taste response was modified by the smell.

実験を実施した時のタイムスケジュールを示す説明図である。It is explanatory drawing which shows the time schedule when experiment is implemented. 実験を実施した時の官能評価シートである。It is a sensory evaluation sheet when an experiment was conducted. 大脳前頭外側部(チャンネル52)における、水の後で試料を飲んだ後の典型的な酸素化ヘモグロビンの経時的な変化量を示す図である。It is a figure which shows the time-dependent change amount of the typical oxygenated hemoglobin after drinking the sample after water in the cerebral front side lateral part (channel 52). 大脳前頭外側部(チャンネル41)における、0〜8%砂糖水溶液、0.006〜0.048%アスパルテーム水溶液および0〜0.4%クエン酸水溶液の官能的な味の強さと脳血流量変化の応答強度との関係を示す図である。Changes in cerebral blood flow and sensory strength of 0-8% sugar aqueous solution, 0.006-0.048% aspartame aqueous solution and 0-0.4% citric acid aqueous solution in the lateral frontal region of the cerebrum (channel 41) It is a figure which shows the relationship with a response strength. 52個のチャンネルのうち、大脳前頭外側部に該当するチャンネル19,20,21,29,30,31,39,40,41,42,51,52,12,23,33,34,35,43,44,45において、砂糖試料の味の強さと砂糖試料を飲用した時の応答強度の相関係数(R)>0.4であり、相関が見られることを示す図である。Of the 52 channels, channels 19, 20, 21, 29, 30, 31, 39, 40, 41, 42, 51, 52, 12, 23, 33, 34, 35, 43 corresponding to the outer frontal region of the cerebrum 44, 45, the correlation coefficient (R)> 0.4 between the strength of the taste of the sugar sample and the response intensity when the sugar sample is drunk, indicating that a correlation is observed. 大脳前頭外側部(チャンネル41)における、0〜8%濃度の砂糖水溶液の官能的な味の強度と脳血流量変化の応答強度の関係、および、2%砂糖水溶液にエチルマルトールを0.05〜20ppm濃度で添加したときの官能的な味の強度と脳血流量変化の応答強度の関係を示す図である。The relationship between the sensory taste intensity of 0-8% aqueous sugar solution and the response intensity of changes in cerebral blood flow in the lateral frontal region of the cerebrum (channel 41), and 0.05% ethyl maltol in 2% aqueous sugar solution It is a figure which shows the relationship between the intensity | strength of the sensory taste when added by a 20 ppm density | concentration, and the response intensity | strength of a cerebral blood flow change.

Claims (5)

(1)濃度の異なる味覚物質水溶液を複数調整する工程
(2)被験者にそれぞれの試料を飲用させ、その時の脳血流量変化を測定する工程
(3)官能評価による味の強度を測定する工程、
(4)官能評価による味の強度と、左脳チャンネル8,9,10,18,19,20,21,29,30,31,39,40,41,42,50,51,52、右脳チャンネル1,2,3,11,12,13,14,22,23,24,32,33,34,35,43,44および45から選ばれるいずれか1点における脳血流量変化の応答強度を関連づける工程、を含み、
(5)官能評価による味の強度が適正となる味覚物質の濃度を評価する方法。
(1) a step of adjusting a plurality of taste substance aqueous solutions having different concentrations;
(2) letting the subject drink each sample, and measuring the change in cerebral blood flow at that time;
(3) a step of measuring the strength of taste by sensory evaluation,
(4) Taste intensity by sensory evaluation , left brain channel 8, 9, 10, 18, 19, 20, 21, 29, 30, 31, 39, 40 , 41, 42, 50, 51, 52, right brain channel 1 , 2, 3, 11, 12, 13, 14, 22, 23, 24, 32, 33, 34, 35, 43, 44 and 45, the step of associating the response intensity of the change in cerebral blood flow at any one point selected from Including,
(5) a method of evaluating the concentration of taste substances strength of taste becomes proper by sensory evaluation.
(1)請求項1に記載の適正濃度を下回る、または、上回る濃度から選択される特定濃度の味覚物質水溶液に対し、さらに、風味改良剤を添加し、その際、風味改良剤濃度の異なる試料を複数調整し、
(2)被験者にそれぞれの水溶液を飲用させ、その時の脳血流量変化を測定する工程
(3)官能評価による味の強度を測定する工程、
(4)官能評価による味の強度と、左脳チャンネル8,9,10,18,19,20,21,29,30,31,39,40,41,42,50,51,52、右脳チャンネル1,2,3,11,12,13,14,22,23,24,32,33,34,35,43,44および45から選ばれるいずれか1点における脳血流量変化の応答強度を関連づける工程、を含み、
(5)官能評価による味の強度が適正となる風味改良剤の濃度を評価する方法。
(1) A sample having a different flavor-improving agent concentration is further added to a taste substance aqueous solution having a specific concentration selected from the concentration lower than or higher than the appropriate concentration according to claim 1. Multiple adjustments,
(2) A step of allowing a subject to drink each aqueous solution and measuring a change in cerebral blood flow at that time,
(3) a step of measuring the strength of taste by sensory evaluation,
(4) Taste intensity by sensory evaluation , left brain channel 8, 9, 10, 18, 19, 20, 21, 29, 30, 31, 39, 40 , 41, 42, 50, 51, 52, right brain channel 1 , 2, 3, 11, 12, 13, 14, 22, 23, 24, 32, 33, 34, 35, 43, 44 and 45, the step of associating the response intensity of the change in cerebral blood flow at any one point selected from Including,
(5) a method of evaluating the concentration of flavor improver strength of taste becomes proper by sensory evaluation.
脳血流が、大脳皮質の血流であることを特徴とする請求項1または請求項2に記載の方法。
Cerebral blood flow, method better according to claim 1 or 2, characterized in that a blood flow in the cerebral cortex.
脳血流量変化が、血液中のヘモグロビン量の変化を近赤外分光法により測定することを特徴とする請求項1〜3いずれか1項に記載の方法。
Cerebral blood flow change, method better according to any one of claims 1 to 3, the change in hemoglobin and measuring by near-infrared spectroscopy in blood.
脳血流量変化が大脳前頭外側部の脳血流量変化であることを特徴とする請求項1〜4のいずれか1項に記載の方法。


Method person according to any one of claims 1 to 4, wherein the cerebral blood flow rate change is cerebral blood flow changes in the cerebral frontal outer portion.


JP2008212086A 2008-08-20 2008-08-20 Evaluation method for flavor improvers Active JP4974383B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008212086A JP4974383B2 (en) 2008-08-20 2008-08-20 Evaluation method for flavor improvers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008212086A JP4974383B2 (en) 2008-08-20 2008-08-20 Evaluation method for flavor improvers

Publications (2)

Publication Number Publication Date
JP2010046000A JP2010046000A (en) 2010-03-04
JP4974383B2 true JP4974383B2 (en) 2012-07-11

Family

ID=42063666

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008212086A Active JP4974383B2 (en) 2008-08-20 2008-08-20 Evaluation method for flavor improvers

Country Status (1)

Country Link
JP (1) JP4974383B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150346176A1 (en) * 2012-09-10 2015-12-03 Mars, Incorporated Methods

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5757854B2 (en) 2011-12-16 2015-08-05 長谷川香料株式会社 Evaluation method for flavor improvers
JP6012081B2 (en) * 2013-08-30 2016-10-25 長谷川香料株式会社 Method for evaluating changes in eating motivation caused by spicy or bitter substances
CN109965226A (en) * 2018-02-08 2019-07-05 湖北小胡鸭食品有限责任公司 A kind of determination and its application of the peppery degree of sauced duck meat standard of articlesization
JP6619864B2 (en) * 2018-12-04 2019-12-11 サッポロホールディングス株式会社 A method to evaluate the effect of information accompanying food and drink on sensory characteristics
CN112858650B (en) * 2021-01-13 2023-08-18 上海应用技术大学 Analysis and research method for improving automobile leather smell based on sigma-tau strength method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4557917B2 (en) * 2006-03-27 2010-10-06 長谷川香料株式会社 Flavor improving method for taste substances or foods and drinks

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150346176A1 (en) * 2012-09-10 2015-12-03 Mars, Incorporated Methods
US9891201B2 (en) * 2012-09-10 2018-02-13 Mars, Incorporated Methods

Also Published As

Publication number Publication date
JP2010046000A (en) 2010-03-04

Similar Documents

Publication Publication Date Title
JP5757854B2 (en) Evaluation method for flavor improvers
JP4974383B2 (en) Evaluation method for flavor improvers
Small Flavor is in the brain
JP5339820B2 (en) How to evaluate the flavor of food and drink
Noble Application of time-intensity procedures for the evaluation of taste and mouthfeel
Nordin et al. Substance and tongue-region specific loss in basic taste-quality identification in elderly adults
Murphy et al. Age-related differences in the pleasantness of chemosensory stimuli.
JP5889779B2 (en) Evaluation method of harmony between taste and aroma
JP4673341B2 (en) Flavor evaluation method
Spector et al. Concentration-dependent licking of sucrose and sodium chloride in rats with parabrachial gustatory lesions
Koskinen et al. Perception of chemosensory stimuli and related responses to flavored yogurts in the young and elderly
JP4557917B2 (en) Flavor improving method for taste substances or foods and drinks
de Albuquerque Melo et al. Caffeine mouth rinse enhances performance, fatigue tolerance and reduces muscle activity during moderate-intensity cycling
JP4814152B2 (en) Flavor evaluation method
JP6012081B2 (en) Method for evaluating changes in eating motivation caused by spicy or bitter substances
DROBNA et al. Selection of an astringency reference standard for the sensory evaluation of black tea
Pickering et al. Food & Health
Kaneda et al. Novel psychological and neurophysiological significance of beer aromas. Part I: measurement of changes in human emotions during the smelling of hop and ester aromas using a measurement system for brainwaves
JP6767462B2 (en) How to evaluate the palatability of texture stimulation
JP6289158B2 (en) Method for evaluating scent arousal
Ogawa et al. Evaluation of taste solutions with or without aromas based on the relationship between individual resting and stimulated salivation
Kimura-Ueda et al. Influence of habitual mouth breathing on taste sensation
JP6448475B2 (en) A method to evaluate the effect of information accompanying food and drink on sensory characteristics
Ward Some like it hot! Sensory analysis of products containing chemesthetic compounds
JP6912855B2 (en) Perception evaluation method for food and drink

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100326

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110405

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110601

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120406

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120409

R150 Certificate of patent or registration of utility model

Ref document number: 4974383

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150420

Year of fee payment: 3