JP4973936B2 - Carbon dioxide underground storage method and underground storage system - Google Patents

Carbon dioxide underground storage method and underground storage system Download PDF

Info

Publication number
JP4973936B2
JP4973936B2 JP2007158771A JP2007158771A JP4973936B2 JP 4973936 B2 JP4973936 B2 JP 4973936B2 JP 2007158771 A JP2007158771 A JP 2007158771A JP 2007158771 A JP2007158771 A JP 2007158771A JP 4973936 B2 JP4973936 B2 JP 4973936B2
Authority
JP
Japan
Prior art keywords
carbon dioxide
injection
gas
water
injection well
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007158771A
Other languages
Japanese (ja)
Other versions
JP2008307483A (en
Inventor
出 仁 小
田 淳 二 篠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mizuho Information and Research Institute Inc
Original Assignee
Mizuho Information and Research Institute Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mizuho Information and Research Institute Inc filed Critical Mizuho Information and Research Institute Inc
Priority to JP2007158771A priority Critical patent/JP4973936B2/en
Publication of JP2008307483A publication Critical patent/JP2008307483A/en
Application granted granted Critical
Publication of JP4973936B2 publication Critical patent/JP4973936B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B41/00Equipment or details not covered by groups E21B15/00 - E21B40/00
    • E21B41/005Waste disposal systems
    • E21B41/0057Disposal of a fluid by injection into a subterranean formation
    • E21B41/0064Carbon dioxide sequestration
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Description

本発明は、発電所などのプラント施設から発生する排気ガス中の二酸化炭素の地中貯留に係り、より詳しくは、二酸化炭素の地中への浸透性や拡散性を向上させた二酸化炭素の地中貯留方法及びその地中貯留システムに関する。   The present invention relates to underground storage of carbon dioxide in exhaust gas generated from a plant facility such as a power plant. More specifically, the carbon dioxide ground having improved carbon dioxide penetration and diffusibility. The present invention relates to an intermediate storage method and an underground storage system thereof.

地球温暖化対策として、日本は2008年〜12年の温室ガスの平均排出量を1990年比で6%削減することが義務付けられている。この目標を達成することが急務であり、現行の温暖化対策を大幅に強化した「京都議定書目標達成計画」が策定され、部門別の温室効果ガス(二酸化炭素を主とする)の削減量が掲げられている。2010年度は90年度比で、発電所などのエネルギー転換部門は16.1%減、産業部門は8.6%減とし、一方、運輸部門は15.1%増、業務その他部門は15%増、家庭部門は6%増以下としている。しかし、日本では二酸化炭素削減効果が期待できる産業部門での省エネ化が進んでいるので、産業界での新たな削減方策として、排出された二酸化炭素の地中や海中の貯留が検討されている。   As a measure against global warming, Japan is obliged to reduce the average greenhouse gas emissions from 2008 to 2012 by 6% compared to 1990 levels. Achieving this goal is an urgent need, and the Kyoto Protocol Target Achievement Plan has been formulated, which significantly strengthens the current global warming countermeasures, and the reduction of greenhouse gases (mainly carbon dioxide) by sector has been reduced. It is listed. In 2010, the energy conversion sector such as power plants decreased 16.1% and the industrial sector decreased 8.6%, while the transportation sector increased 15.1% and the business and other sectors increased 15%. The household sector is expected to increase 6% or less. However, in Japan, energy saving is progressing in the industrial sector where a carbon dioxide reduction effect can be expected. Therefore, storage of discharged carbon dioxide in the ground or in the sea is being considered as a new reduction policy in the industry. .

温室効果ガスは、二酸化炭素、メタン、代替フロンなどがある。日本で排出される温室ガスは、9割以上が二酸化炭素である。米国、EUでは温室ガス削減の有力な手法として二酸化炭素の地中貯留に取り組んでいる。二酸化炭素をシール層やキャップロック層の下側に大量に封じ込めるものである。しかし、二酸化炭素を気体や超臨界流体のままで大量に連続して地下に注入すると、固まり状態(プリューム)になりやすく、浸透性や拡散性に問題がある。また、気体や超臨界流体の二酸化炭素は水より軽いから、シール層やキャップロック層に隙間があると、地上側に漏れ出してくる心配がある。隙間の無いシール層やキャップロック層を確実に備えるような貯留に適する地層が、プラント施設の近くにない場合もある。二酸化炭素を効率よく処理でき、地中での浸透性や拡散性がよく、完全無欠なシール層やキャップロック層を備えていない一般の地質環境でも地中で安全確実に固定される処理方法が望まれている。   Greenhouse gases include carbon dioxide, methane, and CFC substitutes. More than 90% of greenhouse gases emitted in Japan are carbon dioxide. The United States and the EU are working on geological storage of carbon dioxide as an effective method for reducing greenhouse gases. A large amount of carbon dioxide is contained under the seal layer and the cap lock layer. However, when carbon dioxide is injected into the basement continuously in large quantities with a gas or supercritical fluid, it tends to be in a solid state (plum), and there is a problem in permeability and diffusivity. In addition, since carbon dioxide, which is a gas or a supercritical fluid, is lighter than water, if there is a gap in the seal layer or cap-lock layer, there is a risk of leaking to the ground side. There may be no geological formation near the plant facility that is suitable for storage so as to be surely provided with a seal layer or cap lock layer without a gap. There is a treatment method that can efficiently treat carbon dioxide, has good permeability and diffusion in the ground, and is securely fixed in the ground even in general geological environments that do not have a perfect seal layer or cap lock layer. It is desired.

特許文献1の「製鉄所設備を用いた二酸化炭素分離回収システムの運用方法」には、製鉄所の副生ガスから二酸化炭素を分離回収するシステムが示されている。製鉄所で回収された二酸化炭素は、パイプなどの輸送手段で固定化設備へ供給され、固定化設備から地中帯水層への注入、枯渇ガス田への注入、または海洋貯留することによって固定化することが提案されている。特許文献2の「ガス液化沈降装置」は、高圧をかけて液化した二酸化炭素と海水を交互に圧送し深海に送り込むことが記載されている。
特開2004−237167号公報 特開2000−227085号公報
Patent Document 1 “Operation Method of Carbon Dioxide Separation and Recovery System Using Steel Works Equipment” shows a system for separating and collecting carbon dioxide from by-product gas of steel works. The carbon dioxide recovered at the steelworks is supplied to the fixed equipment by means of transportation such as pipes, and fixed by injecting the fixed equipment into the underground aquifer, injecting into the depleted gas field, or storing in the ocean. It has been proposed to The “gas liquefaction settling device” in Patent Document 2 describes that carbon dioxide and seawater liquefied by applying high pressure are alternately pumped into the deep sea.
JP 2004-237167 A JP 2000-227085 A

本発明の目的は、気泡による目詰まりを防止し地中での浸透性や拡散性を向上させ、二酸化炭素が地中の土粒子または岩石の隙間に安全確実に分散固定でき、二酸化炭素の気体を注入水に効率よく混合または溶解させることができる二酸化炭素の地中貯留方法及び地中貯留システムを提供することにある。   The object of the present invention is to prevent clogging caused by bubbles and improve the permeability and diffusibility in the ground. Carbon dioxide can be dispersed and fixed safely in the gaps between soil particles or rocks in the ground. An object of the present invention is to provide an underground storage method and an underground storage system for carbon dioxide that can be efficiently mixed or dissolved in water.

上記の目的を達成するため、本発明による請求項1に記載の二酸化炭素の地中貯留方法は、深部帯水層の地下水を揚水井から地上に汲み上げて注入水を作る段階と、前記注入水を前記深部帯水層にとどくように設けられた注入井に脈動発生装置のピストンの往復動により発生する周波数0.5〜30Hzの脈動圧を加えて圧入する段階と、前記注入井の上部の前記圧入された注入水に二酸化炭素を直径10〜50μmに微細気泡化して混合または溶解させることにより気液混合流体を作る段階と、を備えることを特徴とする。 In order to achieve the above object, the method for underground storage of carbon dioxide according to claim 1 according to the present invention includes the step of pumping the groundwater of a deep aquifer from the pumping well to make the injected water, To the injection well provided so as to reach the deep aquifer and press-fitting a pulsation pressure having a frequency of 0.5 to 30 Hz generated by the reciprocating motion of the piston of the pulsation generator; Forming a gas-liquid mixed fluid by making carbon dioxide into fine bubbles having a diameter of 10 to 50 μm and mixing or dissolving the injected injected water into a fine bubble.

請求項2は、請求項1記載の発明であって、前記気液混合流体に、注入井の底部に設置された起振装置によって振動エネルギーを加える段階がさらに設けられることを特徴とする。   A second aspect of the present invention is the invention according to the first aspect, further comprising the step of applying vibration energy to the gas-liquid mixed fluid by a vibration generator installed at a bottom of the injection well.

本発明による請求項3に記載の二酸化炭素の地中貯留システムは、深部帯水層の地下水を揚水井から汲み上げる汲上装置と、汲み上げた前記地下水を注入水として、注入井に送り込む注入水圧入装置と、前記注入水圧入装置と前記注入井の間に設けられ、前記注入水に脈動圧を加える周波数が0.5〜30Hzの低周波脈動発生装置と、二酸化炭素を貯蔵タンクから前記注入井に送り込む気体圧入装置と、前記深部帯水層にとどくように設けられた前記注入井の上部で、前記二酸化炭素を直径10〜50μmに微細気泡化し、前記注入水に混合または溶解して気液混合流体を生成する微細気泡化装置と、を備えることを特徴とする。 The underground storage system for carbon dioxide according to claim 3 according to the present invention includes a pumping device for pumping deep groundwater from a pumping well, and an injection water injection device for feeding the pumped groundwater into the injection well as injection water. And a low-frequency pulsation generator having a frequency of 0.5 to 30 Hz for applying pulsation pressure to the injected water, carbon dioxide from a storage tank to the injection well. At the upper part of the injection well provided so as to reach the deep aquifer and the gas injection device to be fed, the carbon dioxide is made into fine bubbles with a diameter of 10 to 50 μm and mixed or dissolved in the injection water for gas-liquid mixing And a microbubble device for generating a fluid.

請求項4は、請求項3記載の発明であって、前記微細気泡化装置は、前記二酸化炭素を斜め下方に噴射する噴射管を有し、回転する筒体で構成されることを特徴とする。   A fourth aspect of the present invention is the invention according to the third aspect, wherein the microbubble device has an injection pipe for injecting the carbon dioxide obliquely downward, and is constituted by a rotating cylinder. .

請求項5は、請求項3の発明であって、前記注入井の底部に、前記気液混合流体に振動エネルギーを加える起振装置がさらに備えられることを特徴とする。   A fifth aspect of the present invention is the invention according to the third aspect, further comprising a vibration generating device that applies vibration energy to the gas-liquid mixed fluid at a bottom portion of the injection well.

請求項1の二酸化炭素地中貯留の処理方法によれば、深部帯水層から汲み上げた地下水に二酸化炭素を微細気泡化して混合または溶解させ、気泡を多く含む気液混合流体を生成したので、深部帯水層の広い範囲に極めて早く拡散させることができる。二酸化炭素の気泡は、土粒子または岩石の隙間に入り込みやすいので、そこでトラップされ安定して固定化される。貯留する地層の上部にキャップ層などの遮蔽層を必要としない。注入水に低周波の脈動圧を加えたので、気液混合流体の流動性が向上し、静止圧だけで気液混合流体を深部帯水層に送り込むのに比較して、早く注入できる。脈動圧は微細気泡による目詰まりを防止する。注入井内の上部で微細気泡化を行うので、例えば、水圧が高い注入井底部で微細気泡化を行う場合に比較して、気泡の生成が容易で、二酸化炭素の気泡を多く含むボイド率(一定の体積に占める微細気泡の容積率)の高い気液混合流体を作ることができる。   According to the carbon dioxide underground storage processing method of claim 1, since carbon dioxide is microbubbled into the groundwater pumped up from the deep aquifer and mixed or dissolved, a gas-liquid mixed fluid containing a large amount of bubbles is generated. It can diffuse very quickly over a wide range of deep aquifers. Since carbon dioxide bubbles easily enter the gaps between soil particles or rocks, they are trapped and fixed stably there. There is no need for a shielding layer such as a cap layer above the reservoir. Since the low-frequency pulsation pressure is applied to the injected water, the fluidity of the gas-liquid mixed fluid is improved, and the gas-liquid mixed fluid can be injected faster than the case where the gas-liquid mixed fluid is sent to the deep aquifer only by the static pressure. The pulsating pressure prevents clogging due to fine bubbles. Since micro-bubble generation is performed at the top of the injection well, for example, compared to the case of micro-bubble generation at the bottom of the injection well where the water pressure is high, the generation of bubbles is easy and the void ratio containing a large amount of carbon dioxide bubbles (constant) A gas-liquid mixed fluid having a high volume ratio of fine bubbles occupying the volume of the gas can be produced.

請求項2によれば、注入井の底部に設置した起振装置によって気液混合流体に振動エネルギーが加えられる段階を設けたので、注入水に低周波の脈動圧と合わせて、気泡による目詰まりが防止され、気液混合流体を深部帯水層の広い範囲に拡散させることができる。   According to the second aspect of the present invention, the stage in which the vibration energy is applied to the gas-liquid mixed fluid by the vibration exciter installed at the bottom of the injection well is clogged by bubbles in combination with the low-frequency pulsation pressure in the injection water. Is prevented, and the gas-liquid mixed fluid can be diffused over a wide area of the deep aquifer.

請求項3の二酸化炭素の地中貯留システムによれば、深部帯水層から汲み上げた地下水に、二酸化炭素を微細気泡化して混合または溶解させるので、多量の二酸化炭素を処理できる。このような気泡を多く含む気液混合流体は、土粒子または岩石の隙間への浸透性も良く、土粒子または岩石の鉱物と反応して例えば炭酸塩鉱物に変化するから二酸化炭素を地中に固定できる。注入水圧入装置と注入井の間に低周波脈動発生装置を設けたので、気液混合流体の流動性が向上され、気液混合流体を効率よく深部帯水層に圧入できる。注入井内の上部に設けられた微細気泡化装置は、注入井底部の水圧に抗して気泡を生成する場合に比較し、気泡の発生が容易である。微細気泡は注入井上部から底部に進むにしたがって、漸増する水圧で形状が小さくなり、土粒子または岩石の隙間に入り込み易い。   According to the carbon dioxide underground storage system of claim 3, carbon dioxide is microbubbled and mixed or dissolved in the groundwater pumped from the deep aquifer, so that a large amount of carbon dioxide can be treated. Such a gas-liquid mixed fluid containing a lot of bubbles has good permeability to soil particles or rock crevice, and reacts with soil particles or rock minerals to change into carbonate minerals, for example, so carbon dioxide into the ground. Can be fixed. Since the low-frequency pulsation generator is provided between the injection water injection device and the injection well, the fluidity of the gas-liquid mixed fluid is improved and the gas-liquid mixed fluid can be efficiently injected into the deep aquifer. Compared with the case of generating bubbles against the water pressure at the bottom of the injection well, the microbubble device provided in the upper part of the injection well is easy to generate bubbles. As the fine bubbles progress from the top of the injection well to the bottom, the shape becomes smaller due to the gradually increasing water pressure, and they tend to enter the gap between the soil particles or rock.

請求項4によれば、微細気泡化装置は、回転する筒体で構成されるから、注入水に旋回流を与えることができる。すなわち深部帯水層への気液混合流体の流れに依存しないで気泡の発生ができる。二酸化炭素を斜め下方に噴射する噴射管は、筒体とケーシング管の間の注入水の流速の早い個所に設けられるので、注入水と二酸化炭素の圧力差を大きくするので、二酸化炭素の噴射が促進され、微細気泡が多く生成され、ボイド率の大きな気液混合流体を生成することができる。   According to the fourth aspect, since the microbubble device is composed of a rotating cylinder, it can give a swirling flow to the injected water. That is, bubbles can be generated without depending on the flow of the gas-liquid mixed fluid to the deep aquifer. Since the injection pipe for injecting carbon dioxide obliquely downward is provided at a place where the flow rate of the injected water between the cylinder and the casing pipe is high, the pressure difference between the injected water and the carbon dioxide is increased. It is promoted, and a lot of fine bubbles are generated, and a gas-liquid mixed fluid having a large void ratio can be generated.

請求項5によれば、注入井の底部に起振装置を設置したので、気液混合流体に加えられた振動エネルギーによって気泡の目詰まりが防止され、深部帯水層の広い範囲に気液混合流体を拡散させることができる。   According to claim 5, since the vibration generator is installed at the bottom of the injection well, the clogging of bubbles is prevented by the vibration energy applied to the gas-liquid mixed fluid, and the gas-liquid mixing is performed in a wide area of the deep aquifer. The fluid can be diffused.

以下、図面を参照して本発明による二酸化炭素の地中貯留方法及びその地中貯留システムを説明する。   The carbon dioxide underground storage method and its underground storage system according to the present invention will be described below with reference to the drawings.

図1は本発明による二酸化炭素の地中貯留システムの構成図である。二酸化炭素の貯留システム100は、深部帯水層50に達する揚水井20から地下水53を汲み上げる汲上装置1と、深部帯水層50に到る注入井21に、汲み上げた地下水53を注入水54として送り込む注入水圧入装置2と、注入水圧入装置2と注入井21の間に設けられ、注入水54に脈動圧を加える低周波脈動発生装置3と、外部のプラント施設30の排気ガスなどから分離回収した二酸化炭素55を注入井21に送り込む気体圧入装置4と、注入井21内の上部に設けられ、二酸化炭素55を微細気泡化し、注入水54に混合して気液混合流体56を生成する微細気泡化装置5と、を備える。プラント施設30は、具体的には火力発電所、ごみ焼却施設、石油精製施設、セメント施設などがある。   FIG. 1 is a configuration diagram of a carbon dioxide underground storage system according to the present invention. The carbon dioxide storage system 100 includes a pumping device 1 that pumps ground water 53 from a pumping well 20 that reaches the deep aquifer 50, and an injection well 21 that reaches the deep aquifer 50. Separated from the injection water injection device 2 to be fed, the low frequency pulsation generator 3 that is provided between the injection water injection device 2 and the injection well 21 and applies pulsation pressure to the injection water 54, and the exhaust gas of the external plant facility 30 A gas press-fitting device 4 for sending the recovered carbon dioxide 55 to the injection well 21 and an upper portion in the injection well 21, the carbon dioxide 55 is made into fine bubbles and mixed with the injection water 54 to generate a gas-liquid mixed fluid 56. And a microbubble device 5. Specifically, the plant facility 30 includes a thermal power plant, a waste incineration facility, an oil refining facility, a cement facility, and the like.

深部帯水層50は、細かい砂層などからなり水資源には向かない塩水で飽和された層のことで、500〜1200mの深度での二酸化炭素の注入利用が考えられる。二酸化炭素55は、注入井21内の上部で微細気泡化され一部は注入水54に溶け、一部は溶けずに気泡のまま気液混合流体56となり、深部帯水層50に圧入される。なお、地盤表面58から深部帯水層50に至るまでには多数の層があるが図示を省略している。   The deep aquifer 50 is a layer composed of a fine sand layer or the like and saturated with salt water that is not suitable for water resources, and it is considered that carbon dioxide is injected and used at a depth of 500 to 1200 m. The carbon dioxide 55 is made into fine bubbles in the upper part of the injection well 21, and part of it is dissolved in the injection water 54, and part of the carbon dioxide 55 is dissolved but becomes a gas-liquid mixed fluid 56 in the form of bubbles and is pressed into the deep aquifer 50. . Although there are many layers from the ground surface 58 to the deep aquifer 50, illustration is omitted.

二酸化炭素55は、微細気泡化して注入水54に混合または溶解させれば、深部帯水層に広く拡散させることができる。微細気泡34は、地下水53との接触面積が格段に大きいので、二酸化炭素の溶解速度は、気体や超臨界流体の固まりとして地中に存在している場合より数100〜数1000倍も早い。加えて、微細気泡34が土粒子または岩石の隙間に入り込むことで二酸化炭素が固定されるから、確実なシール層や不透水層が上方に存在しない一般の深部帯水層でも有効である。なお、1気圧、25℃の二酸化炭素の重さは、1.8kg/mであるから、例えば、二酸化炭素が水1mに50kg溶解することは、おおよそ1気圧25℃の気体約28mが1mの地下水で固定化されることである。 The carbon dioxide 55 can be diffused widely in the deep aquifer if it is microbubbled and mixed or dissolved in the injected water 54. Since the fine bubbles 34 have a remarkably large contact area with the groundwater 53, the dissolution rate of carbon dioxide is several hundred to several thousand times faster than the case where the carbon dioxide is present in the ground as a mass of gas or supercritical fluid. In addition, since the fine bubbles 34 enter the gaps between the soil particles or the rocks, the carbon dioxide is fixed. Therefore, it is effective even in a general deep aquifer where no reliable seal layer or impermeable layer exists above. Since the weight of carbon dioxide at 1 atm and 25 ° C. is 1.8 kg / m 3 , for example, 50 kg of carbon dioxide dissolved in 1 m 3 of water is approximately 28 m 3 of gas at 1 atm 25 ° C. There is to be immobilized in groundwater 1 m 3.

ここで二酸化炭素の固定は、つぎのようなプロセスでおきる。微細泡状で土粒子または岩石の微小な間隙に分散注入された二酸化炭素は、岩石鉱物の表面に吸着される場合や、毛細管効果により岩石中の残留ガスとしてトラップされるが、周囲の地下水に次第に溶解する。溶解した二酸化炭素は地下水中に豊富に含まれる各種イオンや周囲の鉱物と反応し、例えば、2CO+3HO+CaSiO→Ca2++2HCO +HSiO (1)式のようにイオン化して、地下水中でより安定化する。さらに、Ca2++2HCO →CaCO+CO+HO (2)式という反応が起こり、COの半分は(1)式に戻るが、CaCOは炭酸塩化合物であるから、二酸化炭素はほぼ永久的に固定化される。 Here, the fixation of carbon dioxide occurs in the following process. Carbon dioxide that is finely foamed and dispersed and injected into the minute gaps of soil particles or rocks is trapped as residual gas in the rocks when adsorbed on the surface of rock minerals or by the capillary effect, but in the surrounding groundwater It gradually dissolves. Dissolved carbon dioxide reacts with various ions and the surrounding mineral abundant in groundwater, for example, 2CO 2 + 3H 2 O + CaSiO 3 → Ca 2+ + 2HCO 3 - + H 4 SiO 4 (1) ionizes as formula Stabilize more in groundwater. Furthermore, a reaction of Ca 2+ + 2HCO 3 → CaCO 3 + CO 2 + H 2 O (2) occurs, and half of CO 2 returns to the formula (1), but since CaCO 3 is a carbonate compound, carbon dioxide is Almost permanently fixed.

汲上装置1は、内管6と外管7からなる二重管8の揚水井20、揚水ポンプ9、ジェット吸引部10、集水タンク11等からなる。地下水53を汲み上げるため、揚水ポンプ9で加圧水57を内管6に送り込み、ジェット吸引部10で地下水53を汲み上げ、注入水54として集水タンク11に蓄える。ジェット吸引部10は、加圧水57の流速を早めて負圧を作り出し、地下水53を吸い込む。揚水ポンプ9に投入する水は、集水タンク11に蓄えられた地下水を循環して再利用してもよい。   The pumping device 1 includes a pumping well 20 of a double pipe 8 composed of an inner pipe 6 and an outer pipe 7, a pumping pump 9, a jet suction unit 10, a water collection tank 11, and the like. In order to pump up the ground water 53, the pressurized water 57 is sent to the inner pipe 6 by the pumping pump 9, the ground water 53 is pumped up by the jet suction unit 10, and stored as the injected water 54 in the water collecting tank 11. The jet suction unit 10 creates a negative pressure by increasing the flow rate of the pressurized water 57 and sucks the groundwater 53. The water supplied to the pumping pump 9 may be reused by circulating the groundwater stored in the water collection tank 11.

注入水圧入装置2は、注入井21に注入水54を圧送するための圧入ポンプ12、圧力流量調整弁13などからなる。圧力流量調整弁13は、圧入ポンプ12の注入水54の圧入の抵抗が一定値を超えるような場合に、弁を開いて注入水54を集水タンク11に戻すものである。揚水井20と注入井21の間の距離は、通常500m〜1km離されるので、集水タンク11とは別にパイプラインで結んだ注水タンクを設け、注入水圧入装置2に組み入れてもよい。   The injected water press-fitting device 2 includes a press-in pump 12 for pressure-feeding the injected water 54 to the injection well 21, a pressure flow control valve 13, and the like. The pressure flow control valve 13 opens the valve to return the injected water 54 to the water collection tank 11 when the resistance of the injected water 54 of the injection pump 12 exceeds a certain value. Since the distance between the pumping well 20 and the injection well 21 is usually 500 m to 1 km apart, a water injection tank connected by a pipeline may be provided separately from the water collection tank 11 and incorporated into the injection water injection device 2.

深部帯水層から汲み上げた地下水は、かん水と呼ばれ、注入水として好ましい。かん水は、電解質イオンを多量に含むから、微細な気泡の消滅を抑制する作用がある。かん水は、海水の三分の一以上の塩分濃度があり、生活に利用できないので地域の理解を得やすい。かん水のある帯水層は、新生代の第三〜四紀の堆積盆の地層構造に広く分布している。かん水は、電解質イオンがその濃度に比例して気体の溶解度を低下させる(Salting out現象)から、微細気泡34の逸散を防止して微細気泡34を高密度に生成できる。   The groundwater pumped up from the deep aquifer is called brine and is preferred as injected water. Brine has a function of suppressing the disappearance of fine bubbles because it contains a large amount of electrolyte ions. Brine has a salinity of more than one-third that of seawater and cannot be used in daily life, so it is easy to obtain local understanding. Aquifers with brine are widely distributed in the Cretaceous Tertiary to Quaternary sedimentary basins. In the brine, electrolyte ions lower the gas solubility in proportion to their concentration (Salting out phenomenon), so that the fine bubbles 34 can be generated at a high density by preventing the fine bubbles 34 from escaping.

低周波脈動発生装置3は、コントローラ14、脈動発生器15からなる。コントローラ14は、脈動圧の周期、大きさを指定することができる。脈動圧は低周波で、具体的には0.5Hz〜30Hzである。脈動圧は低周波なので注入井21の底部まで伝わる。脈動圧は、気液混合流体56の流動性を高めるので、静的圧力だけで圧入するよりも効率がよい。   The low frequency pulsation generator 3 includes a controller 14 and a pulsation generator 15. The controller 14 can specify the period and magnitude of the pulsation pressure. The pulsation pressure is a low frequency, specifically 0.5 Hz to 30 Hz. Since the pulsation pressure is low frequency, it is transmitted to the bottom of the injection well 21. Since the pulsation pressure increases the fluidity of the gas-liquid mixed fluid 56, the pulsation pressure is more efficient than press-fitting only with a static pressure.

プラント施設30は、一例として燃焼炉16の排気ガスに含まれる二酸化炭素の分離回収装置17を含む。化学吸収法によれば、二酸化炭素の濃度を99%以上に濃縮することができるが、本微細気泡注入方式では二酸化炭素はもっと低くても注入に利用できる。回収した二酸化炭素を一時的に蓄えるタンクを設けてもよい。なお、大きな火力発電所では、年間200〜300万トンの二酸化炭素が排出される。   As an example, the plant facility 30 includes a separation and recovery device 17 for carbon dioxide contained in the exhaust gas of the combustion furnace 16. According to the chemical absorption method, the concentration of carbon dioxide can be concentrated to 99% or more. However, in this fine bubble injection method, carbon dioxide can be used for injection even if it is lower. You may provide the tank which stores the collect | recovered carbon dioxide temporarily. A large thermal power plant emits 2 to 3 million tons of carbon dioxide annually.

気体圧入装置4は、貯蔵タンク24及びコンプレッサ22などで構成される。なお、図示しないが、圧力調整弁、流量計、圧力計が取り付けられる。二酸化炭素55は、パイプラインあるいはタンクローリ18の輸送手段で貯蔵タンク24まで送られるが、プラント施設30と注入井21との輸送距離および年間の地中貯留量による経済性を勘案して選択する。タンクローリ18で二酸化炭素を運ぶ場合、二酸化炭素55は高圧がかけられ液化された状態で運搬される。この場合、二酸化炭素55は、液体から気体に戻されるので体積が数百倍に増える。   The gas injection device 4 includes a storage tank 24 and a compressor 22. Although not shown, a pressure regulating valve, a flow meter, and a pressure gauge are attached. The carbon dioxide 55 is sent to the storage tank 24 by the transportation means of the pipeline or the tank lorry 18, and is selected in consideration of the transportation distance between the plant facility 30 and the injection well 21 and the economic efficiency due to the annual underground storage amount. When carbon dioxide is transported by the tank truck 18, the carbon dioxide 55 is transported in a liquefied state under high pressure. In this case, since the carbon dioxide 55 is returned from the liquid to the gas, the volume increases several hundred times.

微細気泡化装置5は、注入井21内の上部に設けられ、二酸化炭素55を微細気泡化し、注入水54に混合して気液混合流体56を生成する。微細気泡化装置5は、挿入管26に連結され、地上側の高速回転する回転駆動装置31で回転される。ケーシング管25と挿入管26の間に注入水54が圧入され、挿入管26には二酸化炭素55が圧入される。微細気泡化装置5で微細気泡34が生成され、気液混合流体56となって、ケーシング管6の底部側面のスリット35から、深部帯水層50に送り込まれる。   The microbubble generator 5 is provided in the upper part of the injection well 21, converts the carbon dioxide 55 into microbubbles, mixes it with the injection water 54, and generates a gas-liquid mixed fluid 56. The microbubble device 5 is connected to the insertion tube 26 and is rotated by a rotary drive device 31 that rotates at high speed on the ground side. Injection water 54 is pressed between the casing tube 25 and the insertion tube 26, and carbon dioxide 55 is pressed into the insertion tube 26. Microbubbles 34 are generated by the microbubble generator 5 and become a gas-liquid mixed fluid 56, which is fed into the deep aquifer 50 from the slit 35 on the bottom side surface of the casing tube 6.

微細気泡34は、注入井21底部に向かって移動する間に、水圧が高くなっていくことにより気泡体積が漸減し、気泡生成時よりもさらに微細な気泡となる。より詳細には、微細気泡34は、注入井21の底部に移動する間に、圧力と温度の条件や二酸化炭素55のガス純度により、気泡、液滴、あるいは超臨界流体泡へと相変化する。本発明は、このような微細な気泡の相変化を含むものである。注入井21の位置や注入深度は、深部帯水層50のサイト条件(地質構造、地圧、地熱温度)を踏まえて、気泡の相変化も考慮して決めることができる。   While the fine bubbles 34 move toward the bottom of the injection well 21, the bubble volume gradually decreases as the water pressure increases, and the fine bubbles 34 become finer than when bubbles are generated. More specifically, the fine bubbles 34 change phase into bubbles, droplets, or supercritical fluid bubbles depending on the pressure and temperature conditions and the gas purity of the carbon dioxide 55 while moving to the bottom of the injection well 21. . The present invention includes such a fine bubble phase change. The position of the injection well 21 and the injection depth can be determined in consideration of the phase change of the bubbles based on the site conditions (geological structure, geothermal pressure, geothermal temperature) of the deep aquifer 50.

図2は、揚水井の二重管の断面図である。ジェット吸引部10は、内管6からの加圧水57の流速を早めるため逆漏斗型としている。逆漏斗型の内部は負圧となるので地下水53が吸い込まれる。吸い込まれた地下水53は、内管6と外管7の間を上昇する。   FIG. 2 is a sectional view of a double pipe of a pumping well. The jet suction unit 10 has a reverse funnel type in order to increase the flow rate of the pressurized water 57 from the inner tube 6. Since the inside of the reverse funnel has a negative pressure, the groundwater 53 is sucked in. The sucked groundwater 53 rises between the inner pipe 6 and the outer pipe 7.

図3は、詳細な微細気泡化装置の断面図である。微細気泡化装置5は、斜め下方に噴射する噴射管41を側面に有し、回転駆動装置31によって回転する挿入管26に連結された筒体40からなる。注入水54は、筒体40とケーシング管25の狭い流路を通過するので流速が速められる。流速が速ければ圧力がその分低くなるので、二酸化炭素55が微細気泡34として引出し易い。生成された気液混合流体56は、筒体40の高速回転(例として500〜3000rpm)に引きずられて回転され、噴射管41で細分化される。そのため微細気泡34の径は10μm〜50μmと小さく、水中で消滅せずに長い時間滞留する。   FIG. 3 is a cross-sectional view of a detailed microbubble device. The microbubble device 5 includes a cylindrical body 40 that has an injection tube 41 that injects obliquely downward on its side surface and is connected to an insertion tube 26 that is rotated by a rotation drive device 31. Since the injection water 54 passes through the narrow flow path between the cylinder 40 and the casing tube 25, the flow velocity is increased. The higher the flow rate, the lower the pressure, and the carbon dioxide 55 is easily extracted as the fine bubbles 34. The generated gas-liquid mixed fluid 56 is dragged and rotated by high-speed rotation (for example, 500 to 3000 rpm) of the cylindrical body 40, and is subdivided by the injection pipe 41. Therefore, the diameter of the fine bubbles 34 is as small as 10 μm to 50 μm and stays for a long time without disappearing in water.

気液混合流体56のボイド率は30〜50%程度にできる。例えば、年間10万トンの二酸化炭素を深部帯水層に微細気泡として地中貯留するには、約300トン/日の二酸化炭素を汲み上げた地下水に混入させることになる。1日当たりの地下水の汲み上げ水量は、対象とする堆積盆の地質構造などにもよるが、実績では、孔隙率が30〜40%の地質構造の深部帯水層から地下水を平均的に1100m/日汲み出せる。微細気泡内の二酸化炭素は高圧になるため密度が高くなり、また溶解も考慮すれば、圧力温度等の条件が良好であれば、1100mの水に二酸化炭素300トンを微細気泡の状態で混合注入できる。 The void ratio of the gas-liquid mixed fluid 56 can be about 30 to 50%. For example, in order to store 100,000 tons of carbon dioxide annually as fine bubbles in the deep aquifer, about 300 tons / day of carbon dioxide is mixed into the groundwater pumped up. The amount of groundwater pumped per day depends on the geological structure of the target sedimentary basin, but in actual results, groundwater from the deep aquifer of the geological structure with a porosity of 30 to 40% is averaged to 1100 m 3 / I can pump out the sun. Carbon dioxide in the microbubbles is high in pressure because of high pressure, and considering dissolution, if conditions such as pressure and temperature are good, 300 tons of carbon dioxide is mixed in 1100 m 3 of water in the form of microbubbles. Can be injected.

揚水井から汲み上げた1100m/日の地下水に、約300トン/日の二酸化炭素を微細気泡化して混入させれば、たとえば深度1000m程度の深部帯水層に年間10万トンの二酸化炭素を地中貯留することができる。世界の深部帯水層は、少なくとも2兆トンから3兆トンの二酸化炭素を地中貯留できると評価されるので、地球温暖化対策として十分な貯留ポテンシャルがある。 If about 300 tons / day of carbon dioxide is made into fine bubbles and mixed into 1100 m 3 / day of groundwater pumped from a pumping well, for example, 100,000 tons of carbon dioxide will be grounded in a deep aquifer at a depth of about 1000 m per year. Can be stored inside. The world's deep aquifers are estimated to be able to store at least 2 trillion to 3 trillion tons of carbon dioxide underground, so they have sufficient storage potential as a measure against global warming.

高いボイド率の気液混合流体56を地層の隙間に送り込む際に、微細気泡34による閉塞トラブルに陥りやすい。この対処法としては、地層の隙間空間を脈動させ、微細気泡34を規則的に縮小や移動をさせながら注入する脈動化注入が有効である。脈動化注入により円滑に注入処理するための必須条件は、気泡径を50μm(0.05mm)以下の微細気泡34を大量に生成することであり、ミリバブルが多いと、脈動化注入しても閉塞トラブルを回避できない。   When the gas-liquid mixed fluid 56 having a high void ratio is fed into the gap between the formations, it tends to cause a trouble of blockage due to the fine bubbles 34. As a countermeasure for this, pulsation injection is effective in which the gaps in the formation are pulsated and the fine bubbles 34 are injected while being regularly reduced or moved. An indispensable condition for smooth injection processing by pulsation injection is to generate a large amount of fine bubbles 34 having a bubble diameter of 50 μm (0.05 mm) or less. Trouble cannot be avoided.

図4は、低周波脈動発生装置3の構成図である。コントローラ14は、例としてモータ27と油圧シリンダ28で構成される。モータ27が回転すると油圧シリンダ28のピストンが動き、グラフG1に示すような一定周期の油圧がかかる。この油圧で脈動発生器15のゴム管29の径を伸縮させる。油圧の大きさは油圧シリンダ28の出口に電磁弁を設けて圧力を逃がすことで制御できる。モータ27の回転を1200rpmとすれば、周期は1秒間に20回(20Hz)となる。グラフG2に示すように、圧入ポンプ12を出た注入水54の圧力は、脈動圧が加えられて、注入水54はグラフG3に示すような圧力となる。なお、低周波脈動発生装置3の上流側に、高負荷状態で圧力が伝達されないように逆止弁が設けられてもよい。脈動圧の振幅は、例として、注入水54の水圧をPαとすると、脈動後の水圧Pαdは、振幅の係数を0.5とし、(Pα−0.5Pα)<Pαd<(Pα+0.5Pα)とすることができる。Pαは、約1〜3MPa(=約10〜30kg/cm以上が望ましい。 FIG. 4 is a configuration diagram of the low-frequency pulsation generator 3. The controller 14 includes a motor 27 and a hydraulic cylinder 28 as an example. When the motor 27 rotates, the piston of the hydraulic cylinder 28 moves, and a constant period of hydraulic pressure as shown in the graph G1 is applied. With this hydraulic pressure, the diameter of the rubber tube 29 of the pulsation generator 15 is expanded and contracted. The hydraulic pressure can be controlled by providing a solenoid valve at the outlet of the hydraulic cylinder 28 to release the pressure. If the rotation of the motor 27 is 1200 rpm, the cycle is 20 times per second (20 Hz). As shown in the graph G2, the pulsating pressure is applied to the pressure of the injected water 54 that has exited the press-fitting pump 12, and the injected water 54 has a pressure as shown in the graph G3. A check valve may be provided on the upstream side of the low-frequency pulsation generator 3 so that pressure is not transmitted in a high load state. The amplitude of the pulsation pressure is, for example, when the water pressure of the injected water 54 is Pα, and the water pressure Pαd after pulsation has an amplitude coefficient of 0.5, and (Pα−0.5Pα) <Pαd <(Pα + 0.5Pα) It can be. Pα is preferably about 1 to 3 MPa (= about 10 to 30 kg / cm 2 or more).

通常、脈動圧の周波数は0.5〜30Hzとされる。ここでは気液混合流体であることも考慮するなら0.5〜10Hzが望ましい。例えば、気泡径1mmの気泡の固有振動数fは約3kHzであり、気泡径が微細になるほど3kHzより高い周波数の固有振動数をもつ。気泡の固有周波数fより大きい高周波領域では、脈動圧の圧力波が気泡群を透過できずにその先まで伝わらない波のカットオフ現象が生じる。一方、周波数が10Hzを超えると気泡群を透過する圧力波のエネルギーが急激に低下する。従って、本システムでの脈動圧の周波数は、脈動波の透過力が強い10Hz以下とした。なお、圧力波が気泡に到達後、圧力波の伝搬速度が遅くなる現象は、圧力波の伝搬エネルギーが気泡の縮小化エネルギーに転化されることによる。 Usually, the frequency of the pulsation pressure is 0.5 to 30 Hz. Here, if considering that it is a gas-liquid mixed fluid, 0.5 to 10 Hz is desirable. For example, the natural frequency f 0 of a bubble with a bubble diameter of 1 mm is about 3 kHz, and the finer the bubble diameter, the higher the natural frequency with a frequency higher than 3 kHz. In a high-frequency region higher than the natural frequency f 0 of the bubble, a wave cutoff phenomenon occurs in which the pressure wave of the pulsation pressure cannot pass through the bubble group and does not propagate beyond the bubble group. On the other hand, when the frequency exceeds 10 Hz, the energy of the pressure wave that permeates the bubble group rapidly decreases. Therefore, the frequency of the pulsation pressure in this system is set to 10 Hz or less where the transmission power of the pulsation wave is strong. The phenomenon in which the propagation speed of the pressure wave becomes slow after the pressure wave reaches the bubble is due to the fact that the propagation energy of the pressure wave is converted into the energy for reducing the bubble.

図5は、注入井での注入水と気体である二酸化炭素の圧力関係図である。微細気泡化装置5の深度L1は、挿入管26と一体化して回転させても構造上問題のない深度とすべきであり、5〜50mが好ましい。深度L1での注入水54の水圧をP1とする。また、注入井21の底部のスリット35までの深度をL0とする。さらに、深度をL0での水圧をP0とする。気液混合流体56の場合、微細気泡34による水圧減少(Pβ)があるから、その分(Pβ)は、注入水54を加圧する。すなわち、注入水54の注入圧力がPαd+Pβとする必要がある。この圧力から圧入ポンプ12の吐出圧が決められる。Pβについては、静的な加圧状態での注入試験を現地で実施し、注入井21の底部スリット35付近の水圧測定を行い、微細気泡34の生成量の変化に伴う水圧減少のキャリブレーションにより把握する。静的加圧の場合でも、注入試験で求めたキャリブレーション値のPβには、微細気泡34の浮力の影響のほかに微細気泡34に吸収される静的な加圧エネルギーの減少分も含まれている。気体の二酸化炭素55は、L1での注入水54の圧力がP1+Pαd+Pβとなるので、これより大きな値となるようP1+Pαd+Pβ+Cとする。Cは、約1〜3Mpa(=約10〜30kg/cm2)とした。   FIG. 5 is a pressure relationship diagram of injected water in the injection well and carbon dioxide, which is a gas. The depth L1 of the microbubble device 5 should be a depth that does not cause structural problems even if it is integrally rotated with the insertion tube 26, and is preferably 5 to 50 m. Let P1 be the water pressure of the injected water 54 at the depth L1. The depth to the slit 35 at the bottom of the injection well 21 is L0. Furthermore, the water pressure at the depth L0 is P0. In the case of the gas-liquid mixed fluid 56, there is a decrease in water pressure (Pβ) due to the fine bubbles 34, so the injected water 54 is pressurized by that amount (Pβ). That is, the injection pressure of the injection water 54 needs to be Pαd + Pβ. From this pressure, the discharge pressure of the press-fit pump 12 is determined. As for Pβ, an injection test in a static pressurization state is performed on site, a water pressure is measured near the bottom slit 35 of the injection well 21, and a calibration of a decrease in water pressure accompanying a change in the generation amount of the fine bubbles 34 is performed. To grasp. Even in the case of static pressurization, the Pβ of the calibration value obtained in the injection test includes not only the influence of the buoyancy of the microbubbles 34 but also a static pressure energy decrease absorbed by the microbubbles 34. ing. Since the pressure of the injected water 54 at L1 becomes P1 + Pαd + Pβ, the gaseous carbon dioxide 55 is set to P1 + Pαd + Pβ + C so as to have a larger value. C was about 1 to 3 MPa (= about 10 to 30 kg / cm 2).

図6は、注入井21の底部に起振装置が設置された場合の構成図である。起振装置49は、収納箱52に収納された起振器51、コイル60、反力板62、磁石59からなる。起振装置49は、注入井21のケーシング管25の底部に固められた1m程度の高さのコンクリート48の上に、3本の吊り下げワイヤ47で降ろして設置する。吊り下げワイヤ47に固定された電源コード46によって電源が送られる。磁石59を磁化してコンクリート48の打設時に設けたアンカー付き埋め込みの鉄板61に結合させる。磁石59の磁力を遠隔制御で消すことにより、起振装置49を地上に回収できる。ケーシング管25には、水圧計42、温度計43、電気伝導率計44が、深度に応じて配置される。A−A断面、B−B断面におけるこれら計測器の配置例を図6右側に示す。   FIG. 6 is a configuration diagram when a vibration generator is installed at the bottom of the injection well 21. The vibration generating device 49 includes a vibration exciter 51, a coil 60, a reaction force plate 62, and a magnet 59 stored in a storage box 52. The vibration exciter 49 is installed on the concrete 48 having a height of about 1 m, which is solidified at the bottom of the casing tube 25 of the injection well 21, with three suspension wires 47. Power is sent by a power cord 46 fixed to the hanging wire 47. Magnet 59 is magnetized and coupled to anchored embedded iron plate 61 provided when concrete 48 is placed. By erasing the magnetic force of the magnet 59 by remote control, the vibration generator 49 can be recovered on the ground. In the casing tube 25, a water pressure gauge 42, a thermometer 43, and an electric conductivity meter 44 are arranged according to the depth. The example of arrangement | positioning of these measuring instruments in an AA cross section and a BB cross section is shown on the right side of FIG.

微細気泡34は完全には液滴に相変化しないから、脈動化注入は不可欠である。地上側の低周波脈動発生装置3のみでは脈動化注入の効果が得にくい場合、スリット35の近くの注入井21の底部に起振装置49を設置する。気液混合流体56に、運動エネルギーを起振装置49から与え、注入の際の微細気泡34の閉塞を防ぐ補助的設備として併用する。スリット35付近に設けた水圧計データによる脈動化水圧の挙動を確認しながら起振器51の起振力を調整する。起振器51は、比較的浅い地質構造を弾性波探査する際に使用される可変周波数型の電磁式バイブレーターでよく、高圧防水の収納箱52に内蔵される。収納箱52は複数本の耐腐食性のコイル60で支えられており、コイル60の下端側は電磁波の遮断性能が高い材質の反力板62に固定されており、反力板62と強力な磁力を発生させる磁石59とは一体化構造になっている。   Since the microbubbles 34 do not completely change into droplets, pulsating injection is essential. When it is difficult to obtain the effect of the pulsation injection only by the low frequency pulsation generator 3 on the ground side, the vibration generator 49 is installed at the bottom of the injection well 21 near the slit 35. Kinetic energy is applied to the gas-liquid mixed fluid 56 from the vibration exciter 49, and the gas-liquid mixed fluid 56 is used in combination as auxiliary equipment for preventing the clogging of the fine bubbles 34 during injection. While checking the behavior of the pulsating water pressure based on the water pressure gauge data provided in the vicinity of the slit 35, the vibration generating force of the vibration generator 51 is adjusted. The exciter 51 may be a variable frequency electromagnetic vibrator used for elastic wave exploration of a relatively shallow geological structure, and is built in a high-pressure waterproof storage box 52. The storage box 52 is supported by a plurality of corrosion-resistant coils 60, and the lower end side of the coil 60 is fixed to a reaction force plate 62 made of a material having high electromagnetic wave shielding performance. The magnet 59 for generating a magnetic force has an integrated structure.

注入井21内で二酸化炭素の微細気泡34が注入水に溶解した量の把握は、あらかじめ注入井21に注入する前の地下水について、新たに溶解する二酸化炭素重量と電気伝導率との関係をキャリブレーションにより求めておき、電気伝導率計44で測定した電気伝導率に対して、キャリブレーション結果を用いて二酸化炭素の溶解量を推定する。   The amount of carbon dioxide fine bubbles 34 dissolved in the injection water in the injection well 21 is determined by calibrating the relationship between the newly dissolved carbon dioxide weight and the electrical conductivity of the groundwater before being injected into the injection well 21 in advance. The amount of dissolved carbon dioxide is estimated using the calibration result for the electrical conductivity measured by the electrical conductivity meter 44.

図7は、二酸化炭素の地中貯留方法のフローチャートである。符号S70〜S74は各段階を示す。S70は深部帯水層から地下水を汲み上げる段階である。S71は注入水を深部帯水層にとどく注入井に脈動圧を加えて圧入する段階である。S72は、注入井の上部で、圧入された注入水に二酸化炭素を微細気泡化して混合し、気液混合流体を作る段階である。S73は、気泡による閉塞が発生するかを判定する段階である。S74は、S73で閉塞が発生している場合、注入井の底部に起振装置を設置して振動エネルギーを気液混合流体に与え、微細気泡の移動を活発化させる段階である。   FIG. 7 is a flowchart of a carbon dioxide underground storage method. Reference numerals S70 to S74 denote the respective stages. S70 is a stage in which groundwater is pumped from the deep aquifer. S71 is a stage where the injected water is injected into the deep aquifer by applying pulsating pressure to the injection well. S72 is a step of creating a gas-liquid mixed fluid by making carbon dioxide into fine bubbles and mixing the injected injected water at the upper part of the injection well. S73 is a step in which it is determined whether a blockage due to bubbles occurs. S74 is a stage in which when a blockage occurs in S73, a vibration generator is installed at the bottom of the injection well to give vibration energy to the gas-liquid mixed fluid, thereby activating the movement of fine bubbles.

本発明は、二酸化炭素の他の地球温暖化ガスの地中貯留に好適である。また、二酸化炭素を圧入して原油を取り出すEOR(原油増進回収法)にも適用できる。   The present invention is suitable for underground storage of other global warming gas of carbon dioxide. It can also be applied to EOR (crude oil enhanced recovery method) in which carbon dioxide is injected and crude oil is extracted.

二酸化炭素の地中貯留システムの構成図である。(実施例1)It is a block diagram of the underground storage system of a carbon dioxide. Example 1 揚水井の二重管の断面図である。(実施例1)It is sectional drawing of the double pipe of a pumping well. Example 1 微細気泡化装置の断面図である。(実施例1)It is sectional drawing of a microbubble generation apparatus. Example 1 低周波脈動発生装置の構成図である(実施例1)(Example 1) which is a block diagram of the low frequency pulsation generator. 注入井での注入水と二酸化炭素の圧力関係図である。(実施例1)It is a pressure related figure of the injection water and carbon dioxide in an injection well. Example 1 注入井に起振装置が設置された場合の構成図である。(実施例1)It is a block diagram at the time of installing a vibration generator in an injection well. Example 1 二酸化炭素の地中貯留方法のフローチャートである。(実施例1)It is a flowchart of the underground storage method of a carbon dioxide. Example 1

符号の説明Explanation of symbols

1 汲上装置
2 注入水圧入装置
3 注入水用の低周波脈動発生装置
4 気体圧入装置
5 微細気泡化装置
6 内管
7 外管
8 二重管
9 揚水ポンプ
10 ジェット吸引部
11 集水タンク
12 圧入ポンプ
13 圧力流量調整弁
14 コントローラ
15 脈動発生器
16 燃焼炉
17 分離回収装置
18 タンクローリ
20 揚水井
21 注入井
22 コンプレッサ
24 二酸化炭素の貯蔵タンク
25 ケーシング管
26 挿入管
27 モータ
28 油圧シリンダ
29 ゴム管
30 プラント施設
31 回転駆動装置
34 微細気泡
35 スリット
40 筒体
41 噴射管
42 水圧計
43 温度計
44 電気伝導率計
45 計測コード
46 電源コード
47 吊り下げワイヤ
48 コンクリート
49 起振装置
50 深部帯水層
51 起振器
52 収納箱
53 地下水
54 注入水
55 二酸化炭素
56 気液混合流体
57 加圧水
58 地盤表面
59 磁石
60 コイル
61 鉄板
62 反力板
S70〜S74 二酸化炭素の地中貯留方法の各段階
100 二酸化炭素貯留システム
DESCRIPTION OF SYMBOLS 1 Pumping apparatus 2 Injection water injection apparatus 3 Low frequency pulsation generator for injection water 4 Gas injection apparatus 5 Microbubble generation apparatus 6 Inner pipe 7 Outer pipe 8 Double pipe 9 Pumping pump 10 Jet suction part 11 Catchment tank 12 Press injection Pump 13 Pressure flow control valve 14 Controller 15 Pulsation generator 16 Combustion furnace 17 Separation and recovery device 18 Tank lorry 20 Pumping well 21 Injection well 22 Compressor 24 Carbon dioxide storage tank 25 Casing pipe 26 Insertion pipe 27 Motor 28 Hydraulic cylinder 29 Rubber pipe 30 Plant facility 31 Rotation drive device 34 Fine bubble 35 Slit 40 Tube 41 Injection tube 42 Water pressure meter 43 Thermometer 44 Electrical conductivity meter 45 Measurement code 46 Power cord 47 Suspension wire 48 Concrete 49 Excitation device 50 Deep aquifer 51 Vibrator 52 Storage box 53 Groundwater 4 injection water 55 CO 56 gas-liquid stages 100 carbon capture and storage system of the mixed fluid 57 pressurized water 58 Ground surface 59 magnet 60 coil 61 iron 62 reaction force plate S70~S74 sequestration method of carbon dioxide

Claims (5)

深部帯水層の地下水を揚水井から地上に汲み上げて注入水を作る段階と、
前記注入水を前記深部帯水層にとどくように設けられた注入井に脈動発生装置のピストンの往復動により発生する周波数0.5〜30Hzの脈動圧を加えて圧入する段階と、
前記注入井の上部の前記圧入された注入水に二酸化炭素を直径10〜50μmに微細気泡化して混合または溶解させることにより気液混合流体を作る段階と、を備えたことを特徴とする二酸化炭素の地中貯留方法。
Pumping groundwater from deep aquifers from the pumping well to the ground,
Adding a pulsation pressure of a frequency of 0.5 to 30 Hz generated by a reciprocating motion of a piston of a pulsation generator to an injection well provided so as to reach the deep aquifer;
And forming a gas-liquid mixed fluid by making carbon dioxide into fine bubbles having a diameter of 10 to 50 μm and mixing or dissolving in the injected water at the upper part of the injection well. Underground storage method.
前記気液混合流体に、注入井の底部に設置された起振装置によって振動エネルギーを加える段階がさらに設けられることを特徴とする請求項1に記載の二酸化炭素の地中貯留方法。
The method for underground storage of carbon dioxide according to claim 1, further comprising the step of applying vibration energy to the gas-liquid mixed fluid by a vibration generator installed at the bottom of an injection well.
深部帯水層の地下水を揚水井から汲み上げる汲上装置と、
汲み上げた前記地下水を注入水として、注入井に送り込む注入水圧入装置と、
前記注入水圧入装置と前記注入井の間に設けられ、前記注入水に脈動圧を加える周波数が0.5〜30Hzの低周波脈動発生装置と、
二酸化炭素を貯蔵タンクから前記注入井に送り込む気体圧入装置と、
前記深部帯水層にとどくように設けられた前記注入井の上部で、前記二酸化炭素を直径10〜50μmに微細気泡化し、前記注入水に混合または溶解して気液混合流体を生成する微細気泡化装置と、を備えることを特徴とする二酸化炭素の地中貯留システム。
A pumping device that pumps groundwater from the deep aquifer from the pumping well;
An injected water press-fitting device that feeds the pumped-up groundwater into the injection well as injection water,
A low-frequency pulsation generator having a frequency of 0.5 to 30 Hz, which is provided between the injection water injection device and the injection well and applies pulsation pressure to the injection water;
A gas injection device for sending carbon dioxide from a storage tank to the injection well;
Fine bubbles in which the carbon dioxide is microbubbled to a diameter of 10 to 50 μm at the upper part of the injection well provided to reach the deep aquifer and mixed or dissolved in the injected water to generate a gas-liquid mixed fluid An underground storage system for carbon dioxide, comprising:
前記微細気泡化装置は、前記二酸化炭素を斜め下方に噴射する噴射管を有し、回転する筒体で構成されることを特徴とする請求項3に記載の二酸化炭素の地中貯留システム。
4. The carbon dioxide underground storage system according to claim 3, wherein the microbubble generator has an injection pipe for injecting the carbon dioxide obliquely downward, and is constituted by a rotating cylinder.
前記注入井の底部に、前記気液混合流体に振動エネルギーを加える起振装置がさらに備えられることを特徴とする請求項3に記載の二酸化炭素の地中貯留システム。
The underground storage system for carbon dioxide according to claim 3, further comprising a vibration generating device that applies vibration energy to the gas-liquid mixed fluid at a bottom portion of the injection well.
JP2007158771A 2007-06-15 2007-06-15 Carbon dioxide underground storage method and underground storage system Active JP4973936B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007158771A JP4973936B2 (en) 2007-06-15 2007-06-15 Carbon dioxide underground storage method and underground storage system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007158771A JP4973936B2 (en) 2007-06-15 2007-06-15 Carbon dioxide underground storage method and underground storage system

Publications (2)

Publication Number Publication Date
JP2008307483A JP2008307483A (en) 2008-12-25
JP4973936B2 true JP4973936B2 (en) 2012-07-11

Family

ID=40235588

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007158771A Active JP4973936B2 (en) 2007-06-15 2007-06-15 Carbon dioxide underground storage method and underground storage system

Country Status (1)

Country Link
JP (1) JP4973936B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101996182B1 (en) * 2018-09-28 2019-07-03 서울대학교산학협력단 System and method for injecting carbon dioxide and multiple composite tracer

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010018844A1 (en) * 2008-08-14 2010-02-18 東京瓦斯株式会社 Storing device for stored substance and method for storing stored substance
JP2010201330A (en) * 2009-03-03 2010-09-16 Tokyo Electric Power Co Inc:The Underground storage system for carbon dioxide
JP2012519587A (en) * 2009-03-11 2012-08-30 モーリス・ビー・デュソウルト Method for isolating fluid in the formation
JP5360820B2 (en) * 2009-07-31 2013-12-04 独立行政法人産業技術総合研究所 Carbon dioxide storage method
JP5399436B2 (en) 2011-03-30 2014-01-29 公益財団法人地球環境産業技術研究機構 Storage substance storage device and storage method
US9586759B2 (en) 2011-06-30 2017-03-07 Statoil Petroleum As Method for storing carbon dioxide compositions in subterranean geological formations and an arrangement for use in such methods
CN105318339A (en) * 2015-05-28 2016-02-10 南京信息工程大学 Landfill gas collecting device and method for landfill
FR3087475B1 (en) * 2018-10-22 2021-05-07 Ifp Energies Now BASEMENT GAS INJECTION METHOD AND SYSTEM

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02243804A (en) * 1989-10-30 1990-09-27 Nippon Chikasui Kaihatsu Kk Non-sprinkling snow melting method
JP2548815B2 (en) * 1990-03-07 1996-10-30 三菱重工業株式会社 Carbon dioxide storage method
JP3391835B2 (en) * 1992-06-22 2003-03-31 冷化工業株式会社 Gas dissolving apparatus and reaction apparatus including the same
JPH06170215A (en) * 1992-12-07 1994-06-21 Mitsubishi Heavy Ind Ltd Method for injecting carbon dioxide into ground under pressure
JP2001058195A (en) * 1995-12-28 2001-03-06 Saburo Murakami Air charger
JP3767284B2 (en) * 1999-10-29 2006-04-19 株式会社大林組 Method and apparatus for purifying contaminated groundwater
JP2002079290A (en) * 2000-07-07 2002-03-19 Sumitomo Heavy Ind Ltd Underwater aeration device
JP2004050167A (en) * 2002-05-27 2004-02-19 Kenichi Suzuki Method and apparatus for isolating gaseous carbon dioxide
JP2006167175A (en) * 2004-12-16 2006-06-29 Fukushima Mitsuo Air bubble generator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101996182B1 (en) * 2018-09-28 2019-07-03 서울대학교산학협력단 System and method for injecting carbon dioxide and multiple composite tracer

Also Published As

Publication number Publication date
JP2008307483A (en) 2008-12-25

Similar Documents

Publication Publication Date Title
JP4973936B2 (en) Carbon dioxide underground storage method and underground storage system
JP5163996B2 (en) Liquefied carbon dioxide inflow method and underground infeed device
US8096934B2 (en) System for treating carbon dioxide, and method for storing such treated carbon dioxide underground
JP5523737B2 (en) Methane hydrate mining method using carbon dioxide
JP4871279B2 (en) Gas hydrate generation method, replacement method and mining method
AU2009280540B2 (en) Storing device for stored substance and method for storing stored substance
JP5380463B2 (en) Storage material storage device and storage material storage method
US11486232B2 (en) Method and device for exploiting natural gas hydrate from marine rock
JP2008019644A (en) Promoted recovery method of petroleum or natural gas and its promoted recovery system
JP5399436B2 (en) Storage substance storage device and storage method
US9586759B2 (en) Method for storing carbon dioxide compositions in subterranean geological formations and an arrangement for use in such methods
JP5360820B2 (en) Carbon dioxide storage method
JP2023024948A (en) System and method for permanently isolating carbon dioxide using renewable energy source
JP5748985B2 (en) Gas hydrate production promotion method and gas resource enhanced recovery method
JP5208862B2 (en) Emulsion production / injection apparatus and method, and methane hydrate mining method
RU2697798C2 (en) Method for creation of underground gas storage in water-bearing geological structure
JPWO2016104448A1 (en) Mining method for water-soluble natural gas
CN104895044A (en) A liquefied foundation treatment device increasing the gas content of underground water and a construction method
JP2023109144A (en) Nanobubble and gas-liquid mixture for enhanced carbon dioxide sequestration
Shinoda Koide et a
Li et al. Dynamic effects of high-pressure pulsed water jet in low-permeability coal seams

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100609

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110906

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111101

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111206

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120306

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120328

R150 Certificate of patent or registration of utility model

Ref document number: 4973936

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150420

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350