JP4973086B2 - Vehicle driving support apparatus and method - Google Patents
Vehicle driving support apparatus and method Download PDFInfo
- Publication number
- JP4973086B2 JP4973086B2 JP2006255407A JP2006255407A JP4973086B2 JP 4973086 B2 JP4973086 B2 JP 4973086B2 JP 2006255407 A JP2006255407 A JP 2006255407A JP 2006255407 A JP2006255407 A JP 2006255407A JP 4973086 B2 JP4973086 B2 JP 4973086B2
- Authority
- JP
- Japan
- Prior art keywords
- curve
- acceleration
- deceleration
- vehicle
- target
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
- Controls For Constant Speed Travelling (AREA)
- Traffic Control Systems (AREA)
Description
本発明は、カーブ走行時の運転を支援する車両用運転支援装置に関する。 The present invention relates to a vehicle driving support device that supports driving during curve driving.
車両前方に連続したカーブがある場合には、1番目のカーブを通過するための適正車速まで減速し、1番目のカーブの適正車速をそのまま維持して2番目以降のカーブを通過するようにした車両用運転支援装置が知られている(例えば、特許文献1参照)。
この車両用運転支援装置では、2番目のカーブが1番目のカーブより急な場合には、1番目のカーブ通過後に2番目のカーブを通過するための適正車速を再設定している。
When there is a continuous curve in front of the vehicle, the vehicle is decelerated to the appropriate vehicle speed for passing through the first curve, and the vehicle is passed through the second and subsequent curves while maintaining the appropriate vehicle speed for the first curve. A vehicle driving support device is known (for example, see Patent Document 1).
In this vehicle driving support device, when the second curve is steeper than the first curve, the appropriate vehicle speed for passing the second curve is reset after passing the first curve.
この出願の発明に関連する先行技術文献としては次のものがある。
しかしながら、上述した従来の車両用運転支援装置では、1番目のカーブが急で2番目以降のカーブが緩い場合に、1番目の急なカーブを通過するための低い車速で2番目以降のカーブを通過するので、2番目以降のカーブをそれらのカーブの適正車速よりも低い車速で通過することになり、ドライバーに違和感を与える。また、カーブとカーブの間も1番目のカーブを通過するための低い車速を維持して通過するので、ドライバーに違和感を与える。
さらに、1番目のカーブが緩く2番目のカーブが非常に急な場合には、1番目のカーブを通過した後に2番目の急なカーブに対する適正車速を再設定するので、急な減速を強いられたり、減速が間に合わずに適正車速よりも高い車速で2番目の急なカーブを通過することがあり、ドライバーに違和感を与える。
However, in the above-described conventional vehicle driving support device, when the first curve is steep and the second and subsequent curves are loose, the second and subsequent curves are displayed at a low vehicle speed for passing the first steep curve. Since the vehicle passes, it passes through the second and subsequent curves at a vehicle speed lower than the appropriate vehicle speed of those curves, which gives the driver a sense of incongruity. Further, the vehicle passes between the curves while maintaining a low vehicle speed for passing through the first curve, which makes the driver feel uncomfortable.
In addition, if the first curve is loose and the second curve is very steep, the appropriate vehicle speed for the second steep curve will be reset after passing the first curve, so you will be forced to decelerate suddenly. Or the vehicle may pass the second steep curve at a vehicle speed higher than the appropriate vehicle speed without slowing down, giving the driver a sense of incongruity.
本発明に係る車両用運転支援装置は、自車位置の前方にある2つ以上の各カーブまでの距離と、それら各カーブの旋回半径を検出するカーブ情報検出手段と、前記各カーブの旋回半径と予め設定したカーブ通過時の横加速度とに基づいて、前記各カーブの目標通過速度を演算する目標通過速度演算手段と、前記各カーブの目標通過速度と、自車速と、自車位置から前記各カーブまでの距離とに基づいて、自車位置から前記各カーブに至るまでの基準加減速度を演算する第1の演算手段と、自車位置から前記各カーブに到達するまでの到達時間に対応した加減速度補正値を予め記憶しておく記憶手段と、前記記憶手段から読み出した前記加減速度補正値を、前記第1の演算手段により演算された前記基準加減速度に加算することにより、前記各カーブの目標加減速度を演算する第2の演算手段と、前記各カーブの目標加減速度の最小値を選択する目標車速パターン演算手段と、前記目標車速パターン演算手段により選択された最小値に基づいて、自車の加減速度を制御する加減速制御手段とを備えている。
本発明に係る運転支援方法は、自車位置の前方にある2つ以上の各カーブまでの距離と、それら各カーブの旋回半径を検出するカーブ情報検出工程と、前記各カーブの旋回半径と予め設定したカーブ通過時の横加速度とに基づいて、前記各カーブの目標通過速度を演算する目標通過速度演算工程と、前記各カーブの目標通過速度と、自車速と、自車位置から前記各カーブまでの距離とに基づいて、自車位置から前記各カーブに至るまでの基準加減速度を演算する第1の演算工程と、自車位置から前記各カーブに到達するまでの到達時間に対応した加減速度補正値を予め記憶しておく記憶手段を用いて、前記記憶手段から読み出した前記加減速度補正値を、前記第1の演算手段により演算された前記基準加減速度に加算することにより、前記各カーブの目標加減速度を演算する第2の演算工程と、前記各カーブの目標加減速度の最小値を選択する目標車速パターン演算工程と、前記目標車速パターン演算工程により選択された最小値に基づいて、自車の加減速度を制御する加減速制御工程とを備えている。
The vehicle driving support apparatus according to the present invention includes a distance to two or more curves ahead of the vehicle position, curve information detecting means for detecting a turning radius of each curve, and a turning radius of each curve. And based on the preset lateral acceleration at the time of passing the curve, the target passing speed calculating means for calculating the target passing speed of each curve, the target passing speed of each curve, the own vehicle speed, and the own vehicle position Corresponding to the first calculation means for calculating the reference acceleration / deceleration from the vehicle position to each curve based on the distance to each curve and the arrival time from the vehicle position to the curve. The storage means for storing the acceleration / deceleration correction value in advance and the acceleration / deceleration correction value read from the storage means are added to the reference acceleration / deceleration calculated by the first calculating means. Based on the second calculation means for calculating the target acceleration / deceleration of the curve, the target vehicle speed pattern calculation means for selecting the minimum value of the target acceleration / deceleration of each curve, and the minimum value selected by the target vehicle speed pattern calculation means And an acceleration / deceleration control means for controlling the acceleration / deceleration of the host vehicle .
The driving support method according to the present invention includes a distance to two or more curves ahead of the vehicle position, a curve information detecting step for detecting a turning radius of each curve, a turning radius of each curve, Based on the set lateral acceleration at the time of passing the curve, a target passing speed calculating step for calculating the target passing speed of each curve, the target passing speed of each curve, the own vehicle speed, and the vehicle position from the own vehicle position. A first calculation step for calculating a reference acceleration / deceleration from the vehicle position to each curve based on the distance to the vehicle, and an adjustment corresponding to the arrival time from the vehicle position to the curve. By using a storage unit that stores a speed correction value in advance, the acceleration / deceleration correction value read from the storage unit is added to the reference acceleration / deceleration calculated by the first calculation unit, thereby Based on the second calculation step for calculating the target acceleration / deceleration of the probe, the target vehicle speed pattern calculation step for selecting the minimum value of the target acceleration / deceleration of each curve, and the minimum value selected by the target vehicle speed pattern calculation step And an acceleration / deceleration control process for controlling the acceleration / deceleration of the host vehicle.
本発明によれば、カーブおよびカーブ間において運転者が違和感を感じない最適な車速を実現することができる。 ADVANTAGE OF THE INVENTION According to this invention, the optimal vehicle speed which a driver does not feel uncomfortable between curves can be implement | achieved.
図1は一実施の形態の構成を示す図である。運転支援制御用コントローラー(以下、単にコントローラーという)1はマイクロコンピューターとメモリなどの周辺部品から構成され、自車前方のカーブに関する情報や自車の状態に基づいて加減速制御の目標値を演算し、エンジントルクとブレーキトルクを制御する。 FIG. 1 is a diagram showing a configuration of an embodiment. A controller for driving support control (hereinafter simply referred to as a controller) 1 is composed of peripheral components such as a microcomputer and a memory, and calculates a target value for acceleration / deceleration control based on information about the curve ahead of the vehicle and the state of the vehicle. Control engine torque and brake torque.
ナビゲーション装置2は、GPS受信機などにより自車位置を検出するとともに、道路地図データベースから自車前方に存在するカーブに関する情報を検索し、コントローラー1へ送る。この一実施の形態では、自車位置から前方所定範囲(例えば、500mまでの範囲)内に存在するカーブを検出し、カーブごとの旋回半径とカーブまでの距離をカーブ情報としてコントローラー1へ出力する。なお、自車位置から所定距離(例えば10m)ごとに旋回半径Rを演算し、カーブ情報としてコントローラー1へ出力してもよい。 The navigation device 2 detects the position of the host vehicle using a GPS receiver or the like, searches the road map database for information relating to a curve existing ahead of the host vehicle, and sends the information to the controller 1. In this embodiment, a curve existing within a predetermined range (for example, a range up to 500 m) from the vehicle position is detected, and the turning radius for each curve and the distance to the curve are output to the controller 1 as curve information. . Note that the turning radius R may be calculated every predetermined distance (for example, 10 m) from the vehicle position and output to the controller 1 as curve information.
車両センサー3は車両状態を検出する各種センサーであり、車速を検出する車速センサー、エンジン回転速度を検出するエンジン回転センサー、自動変速機のギア比を検出する変速比センサーなどを備えている。エンジンコントローラー4は、コントローラー1からの目標エンジントルクにしたがってスロットル開度などを調節し、エンジン(不図示)のトルクを制御する。ブレーキコントローラー5は、コントローラー1からの目標ブレーキ液圧にしたがってブレーキ装置の液圧を調節し、ブレーキトルクを制御する。 The vehicle sensor 3 is a variety of sensors that detect the vehicle state, and includes a vehicle speed sensor that detects the vehicle speed, an engine rotation sensor that detects the engine rotation speed, a gear ratio sensor that detects the gear ratio of the automatic transmission, and the like. The engine controller 4 adjusts the throttle opening and the like according to the target engine torque from the controller 1 to control the torque of the engine (not shown). The brake controller 5 controls the brake torque by adjusting the hydraulic pressure of the brake device in accordance with the target brake hydraulic pressure from the controller 1.
図2は、運転支援制御用コントローラー1の制御を説明するための制御ブロック図である。この図を参照して一実施の形態の動作を説明する。以下では、ナビゲーション装置2から自車前方の自車に最も近いものから順にn個のカーブ情報が提供されたものとし、それらのカーブに自車に最も近いものから順に番号i=1,2,・・,nを付して識別する。なお、カーブ情報は少なくとも2つ以上(n≧2)必要である。 FIG. 2 is a control block diagram for explaining the control of the controller 1 for driving support control. The operation of the embodiment will be described with reference to this figure. In the following, it is assumed that n pieces of curve information are provided from the navigation device 2 in order from the closest to the host vehicle ahead of the host vehicle, and the numbers i = 1, 2, ..Identify with n. Note that at least two pieces of curve information (n ≧ 2) are necessary.
《(1)各カーブの目標通過速度の演算》
各カーブの旋回半径をR_i(i=1,2,・・,n)とする。各カーブを走行するときに発生する横加速度ayが一定になるように、各カーブの目標通過速度v_iを次式により演算する。
v_i=sqrt(R_i・ay) ・・・(1)
<< (1) Calculation of target passing speed for each curve >>
The turning radius of each curve is R_i (i = 1, 2,..., N). The target passing speed v_i of each curve is calculated by the following equation so that the lateral acceleration ay generated when traveling on each curve is constant.
v_i = sqrt (R_i · ay) (1)
なお、この一実施の形態では各カーブ走行時の横加速度が一定になるような各カーブの目標通過速度v_iを設定する例を示すが、例えば、低速域では大きな横加速度を設定し、高速域では小さな横加速度を設定してもよい。また、カーブの先の見通しがよいほど、カーブの道路幅が広いほど、カーブのカントが大きいほど横加速度を大きくし、カーブの路面摩擦係数μが小さいほど横加速度を小さくしてもよい。 In this embodiment, an example is shown in which the target passing speed v_i of each curve is set so that the lateral acceleration at the time of traveling on each curve is constant. For example, a large lateral acceleration is set in the low speed range, and the high speed range is set. Then, a small lateral acceleration may be set. Further, the lateral acceleration may be increased as the road ahead of the curve is better, the road width of the curve is wider, the cant of the curve is larger, and the lateral acceleration coefficient μ is smaller as the curve friction coefficient μ of the curve is smaller.
《(2)各カーブまでの基準加減速度の演算》
ナビゲーション装置2から提供された自車位置から各カーブまでの距離をd_i(i=1,2,・・,n)とし、車両センサー3で検出された現在の自車速をvとする。基準加減速度acc_i(i=1,2,・・,n)は、自車位置から各カーブまで加減速度一定で走行した場合の加減速度で、次式(2)により演算する。
acc_i=(v_i2−v2)/2.0/d_i ・・・(2)
(2)式において、v_iは(1)式により求めた各カーブの目標通過速度である。
<< (2) Calculation of standard acceleration / deceleration up to each curve >>
The distance from the vehicle position provided by the navigation device 2 to each curve is d_i (i = 1, 2,..., N), and the current vehicle speed detected by the vehicle sensor 3 is v. Reference pressure deceleration acc_i (i = 1,2, ··, n) is the acceleration when the vehicle travels at a deceleration constant from the vehicle position to each curve is calculated by the following equation (2).
acc_i = (v_i 2 −v 2 ) /2.0/d_i (2)
In the equation (2), v_i is a target passing speed of each curve obtained by the equation (1).
《(3)各カーブに到達する時間の演算》
各カーブに到達する時間は、自車位置から各カーブまで一定の加減速度で走行したときの所要時間であり、次式(3)により演算する。
t_i=2・d_i/(v_i+v) ・・・(3)
(3)式において、v_iは(1)式により求めた各カーブの目標通過速度、d_iは自車位置から各カーブまでの距離、vは現在の自車速である。
<< (3) Calculation of time to reach each curve >>
The time to reach each curve is a required time when the vehicle travels from the vehicle position to each curve at a constant acceleration / deceleration, and is calculated by the following equation (3).
t_i = 2 · d_i / (v_i + v) (3)
In equation (3), v_i is the target passing speed of each curve obtained by equation (1), d_i is the distance from the vehicle position to each curve, and v is the current vehicle speed.
《(4)各カーブに対する目標加減速度の演算》
まず、(3)式で求めた各カーブに到達する時間t_iに基づいて、(2)式で求めた基準加減速度acc_iの補正値acc_h_i(i=1,2,・・,n)を求める。図3は各カーブへの到達時間t_iに対する補正値acc_h_iのマップであり、このマップはコントローラー1のメモリ(不図示)に予め記憶されている。図3に示すマップにおいて、基本的には到達時間t_iが長いほど、車速vが低いほど大きな補正値acc_h_iを設定している。
<< (4) Calculation of target acceleration / deceleration for each curve >>
First, (3) based on the time t_i reaching each curve calculated expression, obtaining the (2) the correction value of the reference pressure decrease rate acc_i determined by equation acc_h_i (i = 1,2, ··, n) . FIG. 3 is a map of the correction value acc_h_i for the arrival time t_i to each curve, and this map is stored in advance in a memory (not shown) of the controller 1. In the map shown in FIG. 3, basically, a larger correction value acc_h_i is set as the arrival time t_i is longer and the vehicle speed v is lower.
次に、各カーブの基準加速減度acc_iに補正値acc_h_iを加算し、各カーブに到達するまでの目標加減速度acc_t_i(i=1,2,・・,n)を求める。
acc_t_i=acc_i+acc_h_i ・・・(4)
Next, the correction value acc_h_i is added to the reference acceleration reduction acc_i of each curve, and a target acceleration / deceleration acc_t_i (i = 1, 2,..., N) until the curve is reached is obtained.
acc_t_i = acc_i + acc_h_i (4)
これにより、例えば、自車位置から次のカーブまでの距離が短い場合には、次のカーブへの到達時間t_iが短いので補正値acc_h_iが0になり、基準加減速度acc_iが目標加減速度acc_t_iとなって次のカーブまでの間では加減速度の変化が小さい。 Thereby, for example, when the distance from the vehicle position to the next curve is short, the arrival time t_i to the next curve is short, so the correction value acc_h_i becomes 0, and the reference acceleration / deceleration acc_i becomes the target acceleration / deceleration acc_t_i. The change in acceleration / deceleration is small until the next curve.
具体的な目標加減速度の演算例を示す。今、図4に示すように、目標通過速度v_1で
カーブ1を通過している場合に、カーブ2までの間の距離(d_2−d_1)が短く、カーブ1通過中の現在の車速v(=目標通過速度v_1)とカーブ2の目標通過速度v_2が等しい場合には、(2)式によりカーブ2までの基準加減速度acc_2=0と計算される。次に、(3)式により計算されるカーブ2までの到達時間t_2は短いので、図3に示すマップから補正値acc_h_2=0となる。したがって、(4)式によりカーブ2までの目標加減速度acc_t_2=0と計算され、カーブ1からカーブ2までの間では加減速を行わず一定車速で通過することになる。
A calculation example of a specific target acceleration / deceleration will be shown. As shown in FIG. 4, when the vehicle passes the curve 1 at the target passing speed v_1, the distance (d_2-d_1) to the curve 2 is short, and the current vehicle speed v (= If the target passing speed v_2 target passing speed v_1) and curve 2 are equal, it is calculated as a reference pressure decrease rate acc_2 = 0 to the curve 2 by (2). Next, since the arrival time t_2 to the curve 2 calculated by the equation (3) is short, the correction value acc_h_2 = 0 from the map shown in FIG. Accordingly, the target acceleration / deceleration acc_t_2 = 0 up to the curve 2 is calculated by the equation (4), and the vehicle passes through the vehicle from the curve 1 to the curve 2 at a constant vehicle speed without acceleration / deceleration.
一方、自車位置から次のカーブまでの距離が長い場合には、次のカーブへの到達時間t_iが長いので補正値acc_h_iが大きくなり、基準加減速度acc_iに補正値acc_h_iが加算されて大きな目標加減速度acc_t_iが算出され、いったん加速した後に減速して次のカーブへ進入することになる。 On the other hand, when the distance from the vehicle position to the next curve is long, the arrival time t_i to the next curve is long, so the correction value acc_h_i becomes large, and the correction value acc_h_i is added to the reference acceleration / deceleration acc_i, resulting in a large target The acceleration / deceleration acc_t_i is calculated, and after accelerating, the vehicle decelerates and enters the next curve.
この場合の具体的な計算例を示す。図5に示すように、目標通過速度v_1でカーブ1を通過している場合に、カーブ2までの間の距離(d_2−d_1)が長く、カーブ1通過中の現在の車速(=目標通過速度v_1)とカーブ2の目標通過速度v_2が等しい場合には、(2)式によりカーブ2までの基準加速度acc_2=0と計算される。次に、(3)式により計算されるカーブ2までの到達時間t_2は長いので、図3に示すマップから大きな補正値acc_h_2が検索される。したがって、(4)式により大きなカーブ2までの目標加減速度acc_t_2が算出され、カーブ1通過後にいったん加速し、カーブ2へ近づいたらカーブ2の目標通過速度v_2まで減速してカーブ2へ進入することになる。 A specific calculation example in this case is shown. As shown in FIG. 5, when the vehicle passes the curve 1 at the target passing speed v_1, the distance to the curve 2 (d_2-d_1) is long, and the current vehicle speed while passing through the curve 1 (= target passing speed). When v_1) and the target passing speed v_2 of curve 2 are equal, the reference acceleration acc_2 = 0 up to curve 2 is calculated by equation (2). Next, since the arrival time t_2 to the curve 2 calculated by the equation (3) is long, a large correction value acc_h_2 is retrieved from the map shown in FIG. Therefore, the target acceleration / deceleration acc_t_2 up to the large curve 2 is calculated by the equation (4), and after accelerating after passing through the curve 1, when approaching the curve 2, decelerate to the target passing speed v_2 of the curve 2 and enter the curve 2. become.
さらに、車速vが高いほど補正値acc_h_iを小さくするので、高速道路を走行しているような場合には補正値acc_h_iが小さくなって大きな基準加減速度補正が行われず、滑らかな走行になる。一方、車速vが低いときは補正値acc_h_iが大きくなって大きな基準加減速度補正が行われ、きびきびした走行になる。
Further, since the vehicle speed v is smaller higher correction value Acc_h_i, if such is traveling on an expressway is not performed a large reference acceleration speed correction becomes smaller the correction value Acc_h_i, a smooth travel. On the other hand, when the vehicle speed v is low correction value acc_h_i performed is large becomes to large reference acceleration speed correction, the running was crisp.
《(5)最小目標加減速度acc_tの検索》
各カーブの目標加減速度acc_t_i(i=1,2,・・,n)の中から最小値を検索し、目標加減速度acc_tとする。
acc_t=min(acc_t_1,acc_t_2,・・,acc_t_n) ・・・(5)
<< (5) Search for minimum target acceleration / deceleration acc_t >>
The minimum value is retrieved from the target acceleration / deceleration acc_t_i (i = 1, 2,..., N) of each curve and set as the target acceleration / deceleration acc_t.
acc_t = min (acc_t_1, acc_t_2, ..., acc_t_n) (5)
図6に示すように手前に緩いカーブ1があり、その次に非常に急なカーブ2がある場合には、次の急なカーブ2に対する目標加減速度acc_t_2が手前の緩いカーブ1に対する目標加減速度acc_t_1よりも小さくなるので、手前の緩いカーブ1に進入する前から次の急なカーブ2に対して減速を開始するような挙動となる。 As shown in FIG. 6, when there is a gentle curve 1 in front and a very steep curve 2 next, the target acceleration / deceleration acc_t_2 for the next steep curve 2 is the target acceleration / deceleration for the loose curve 1 in front. Since it becomes smaller than acc_t_1, it behaves like starting deceleration on the next steep curve 2 before entering the gentle curve 1 in front.
《(6)トルク配分の演算》
(5)式により求めた目標加減速度acc_tを所定の上下限値で制限処理した後の目標加減速度acc_limを用いて目標エンジントルクtrq_engと目標ブレーキ液圧Pbrkを演算する。まず、目標エンジントルクtrq_engを次式(6)により演算する。
trq_w=(acc_lim−acc_r)・r_tire/m,
trq_eng=trq_w/(n_at・n_def・n_trq) ・・・(6)
(6)式において、acc_rは走行抵抗(<0)、mは車両重量、r_tireはタイヤ半径、trq_wは目標ホイールトルク、n_atは自動変速機のギア比、n_defはデファレンシャルギアのギア比、n_trqはトルクコンバーターのトルク比である。
<< (6) Calculation of torque distribution >>
The target engine torque trq_eng and the target brake hydraulic pressure Pbrk are calculated using the target acceleration / deceleration acc_lim after the target acceleration / deceleration acc_t obtained by the equation (5) is limited with a predetermined upper and lower limit value. First, the target engine torque trq_eng is calculated by the following equation (6).
trq_w = (acc_lim−acc_r) · r_tire / m,
trq_eng = trq_w / (n_at, n_def, n_trq) (6)
In equation (6), acc_r is the running resistance (<0), m is the vehicle weight, r_tire is the tire radius, trq_w is the target wheel torque, n_at is the gear ratio of the automatic transmission, n_def is the gear ratio of the differential gear, and n_trq is Torque ratio of torque converter.
次に、次式(7)により目標ブレーキ液圧trq_w_estを演算する。まず、エンジンブレーキにより発生する駆動力を演算する。
trq_w_est=n_at・n_def・n_trq・trq_eng_est ・・・(7)
(7)式において、trq_eng_estはスロットル全閉時のエンジントルクである。そして、次式(8)により目標ブレーキ液圧Pbrkを演算する。
Pbrk=−Kbrk・(trq_w−trq_w_est) ・・・(8)
(8)式において、Kbrkは駆動力とブレーキ液圧の比である。
Next, the target brake fluid pressure trq_w_est is calculated by the following equation (7). First, the driving force generated by the engine brake is calculated.
trq_w_est = n_at, n_def, n_trq, trq_eng_est (7)
In equation (7), trq_eng_est is the engine torque when the throttle is fully closed. Then, the target brake fluid pressure Pbrk is calculated by the following equation (8).
Pbrk = -Kbrk (trq_w-trq_w_est) (8)
In the equation (8), Kbrk is a ratio between the driving force and the brake fluid pressure.
上述した一実施の形態では、目標加減速度に基づいてエンジンとブレーキのトルク配分を演算し、エンジンとブレーキを制御するようにしたが、目標加減速度を積分して目標車速パターンを演算し、目標車速に実車速をフィードバックする構成としても同様な効果が得られる。 In the embodiment described above, the engine and brake torque distribution is calculated based on the target acceleration / deceleration, and the engine and brake are controlled. However, the target vehicle speed pattern is calculated by integrating the target acceleration / deceleration, A similar effect can be obtained even when the actual vehicle speed is fed back to the vehicle speed.
以上説明したように、一実施の形態によれば、自車前方の自車に最も近い少なくとも2つ以上のカーブまでの距離とそれらのカーブの旋回半径を検出し、各カーブの旋回半径と予め設定したカーブ通過時の横加速度とに基づいて各カーブの目標通過速度を演算するとともに、各カーブの入口で目標通過速度となるような各カーブごとの目標車速パターンを演算し、それらの目標車速パターンの内の最小値を選択して自車の加減速度を制御するようにしたので、カーブおよびカーブ間において運転者が違和感を感じない最適な車速を実現することができる。 As described above, according to one embodiment, the distance to at least two or more curves closest to the host vehicle ahead of the host vehicle and the turning radius of those curves are detected, and the turning radius of each curve is determined in advance. Calculate the target passing speed of each curve based on the set lateral acceleration at the time of passing the curve, and calculate the target vehicle speed pattern for each curve so that the target passing speed is obtained at the entrance of each curve. Since the minimum value of the patterns is selected to control the acceleration / deceleration of the host vehicle, it is possible to realize an optimal vehicle speed that does not cause the driver to feel uncomfortable between the curves.
また、一実施の形態によれば、各カーブまでの距離、各カーブの目標通過速度および現在の車速とに基づいて、各カーブまでの基準加減速度と各カーブに到達する時間を演算し、各カーブまでの到達時間に基づいて基準加減速度を補正し、補正後の基準加減速度の内の最小値を目標加減速度として自車の加減速度を制御するようにしたので、カーブおよびカーブ間において運転者が違和感を感じない最適な車速を実現することができる。
Further, according to one embodiment, based on the distance to each curve, the target passing speed of each curve, and the current vehicle speed, the reference acceleration / deceleration up to each curve and the time to reach each curve are calculated, corrects the reference acceleration based on the arrival time to the curve, since the minimum value of the reference acceleration corrected and to control the acceleration and deceleration of the vehicle as a target acceleration, operating between curve and curve It is possible to achieve an optimal vehicle speed that does not give the user a sense of incongruity.
さらに、一実施の形態によれば、カーブまでの到達時間が長いほど、あるいは車速が低いほど基準加減速度が大きくなるように補正するようにしたので、1番目のカーブが急で2番目以降のカーブが緩い場合に、1番目の急なカーブに合わせて減速し、1番目のカーブ通過後には2番目のカーブに合わせて加速するので、1番目のカーブから2番目のカーブまでの間、および2番目のカーブを適正車速よりも低い車速で通過してドライバーに違和感を与えるようなことがない。 Furthermore, according to one embodiment, since the reference acceleration / deceleration is increased as the arrival time to the curve is longer or the vehicle speed is lower, the first curve is abrupt and the second and subsequent curves are increased. If the curve is loose, it will decelerate to the first steep curve and accelerate to the second curve after passing the first curve, so between the first curve and the second curve, and The driver will not feel uncomfortable by passing the second curve at a vehicle speed lower than the appropriate vehicle speed.
1 運転支援制御用コントローラー
2 ナビゲーション装置
3 車両センサー
4 エンジンコントローラー
5 ブレーキコントローラー
1 Controller for driving support control 2 Navigation device 3 Vehicle sensor 4 Engine controller 5 Brake controller
Claims (6)
前記各カーブの旋回半径と予め設定したカーブ通過時の横加速度とに基づいて、前記各カーブの目標通過速度を演算する目標通過速度演算手段と、
前記各カーブの目標通過速度と、自車速と、自車位置から前記各カーブまでの距離とに基づいて、自車位置から前記各カーブに至るまでの基準加減速度を演算する第1の演算手段と、
自車位置から前記各カーブに到達するまでの到達時間に対応した加減速度補正値を予め記憶しておく記憶手段と、
前記記憶手段から読み出した前記加減速度補正値を、前記第1の演算手段により演算された前記基準加減速度に加算することにより、前記各カーブの目標加減速度を演算する第2の演算手段と、
前記各カーブの目標加減速度の最小値を選択する目標車速パターン演算手段と、
前記目標車速パターン演算手段により選択された最小値に基づいて、自車の加減速度を制御する加減速制御手段とを備えることを特徴とする車両用運転支援装置。 And the distance to two or more of each curve in the front of the vehicle position, the curve information detecting means for detecting a turning radius of each of these curves,
On the basis of the lateral acceleration at the time of passing curves preset the turning radius of the curve, the target passing speed calculation means for calculating a target rate of passage of the respective curves,
First calculation means for calculating a reference acceleration / deceleration from the vehicle position to each curve based on the target passing speed of each curve, the vehicle speed, and the distance from the vehicle position to each curve. When,
Storage means for preliminarily storing acceleration / deceleration correction values corresponding to the arrival time from the vehicle position until the vehicle reaches each curve;
Second calculation means for calculating a target acceleration / deceleration of each curve by adding the acceleration / deceleration correction value read from the storage means to the reference acceleration / deceleration calculated by the first calculation means;
Target vehicle speed pattern calculating means for selecting the minimum value of the target acceleration / deceleration of each curve ;
A vehicle driving support apparatus comprising: acceleration / deceleration control means for controlling acceleration / deceleration of the host vehicle based on the minimum value selected by the target vehicle speed pattern calculating means .
前記記憶手段は、前記到達時間と自車速との組み合わせに対応した複数種の加減速度補正値を予め記憶しておくことを特徴とする車両用運転支援装置。 The vehicle driving support device according to claim 1,
The vehicular driving support apparatus , wherein the storage means stores in advance a plurality of types of acceleration / deceleration correction values corresponding to a combination of the arrival time and the host vehicle speed .
前記第1の演算手段により演算される前記基準加減速度は、自車位置から前記各カーブに至るまで加減速度一定で走行した場合に演算される加減速度であることを特徴とする車両用運転支援装置。 In the vehicle driving assistance device according to claim 1 or 2 ,
The reference acceleration / deceleration calculated by the first calculation means is an acceleration / deceleration calculated when the vehicle travels at a constant acceleration / deceleration from the vehicle position to each curve. apparatus.
前記記憶手段に記憶されている前記加減速度補正値は、自車速が低いほど大きな値を有することを特徴とする車両用運転支援装置。 In the vehicle driving assistance device according to any one of claims 1 to 3 ,
The acceleration / deceleration correction value stored in the storage means has a larger value as the host vehicle speed is lower.
前記自車位置から前記各カーブに到達するまでの到達時間は、前記各カーブの目標通過速度と、前記自車速と、自車位置から前記各カーブまでの距離とに基づいて演算されることを特徴とする車両用運転支援装置。 In the vehicle driving support device according to any one of claims 1 to 4,
The arrival time from the vehicle position to the curve is calculated based on the target passing speed of the curve, the vehicle speed, and the distance from the vehicle position to the curve. A vehicle driving support device characterized by the above.
前記各カーブの旋回半径と予め設定したカーブ通過時の横加速度とに基づいて、前記各カーブの目標通過速度を演算する目標通過速度演算工程と、A target passing speed calculating step of calculating a target passing speed of each curve based on a turning radius of each curve and a preset lateral acceleration when passing the curve;
前記各カーブの目標通過速度と、自車速と、自車位置から前記各カーブまでの距離とに基づいて、自車位置から前記各カーブに至るまでの基準加減速度を演算する第1の演算工程と、A first calculation step of calculating a reference acceleration / deceleration from the vehicle position to each curve based on the target passing speed of each curve, the vehicle speed, and the distance from the vehicle position to each curve. When,
自車位置から前記各カーブに到達するまでの到達時間に対応した加減速度補正値を予め記憶しておく記憶手段を用いて、前記記憶手段から読み出した前記加減速度補正値を、前記第1の演算手段により演算された前記基準加減速度に加算することにより、前記各カーブの目標加減速度を演算する第2の演算工程と、Using the storage means for storing in advance acceleration / deceleration correction values corresponding to the arrival time from the host vehicle position until reaching each curve, the acceleration / deceleration correction values read from the storage means are used as the first acceleration / deceleration correction values. A second calculation step of calculating a target acceleration / deceleration of each curve by adding to the reference acceleration / deceleration calculated by the calculation means;
前記各カーブの目標加減速度の最小値を選択する目標車速パターン演算工程と、A target vehicle speed pattern calculating step of selecting a minimum value of the target acceleration / deceleration of each curve;
前記目標車速パターン演算工程により選択された最小値に基づいて、自車の加減速度を制御する加減速制御工程とを備えることを特徴とする運転支援方法。A driving support method comprising: an acceleration / deceleration control step for controlling acceleration / deceleration of the host vehicle based on the minimum value selected in the target vehicle speed pattern calculation step.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006255407A JP4973086B2 (en) | 2006-09-21 | 2006-09-21 | Vehicle driving support apparatus and method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006255407A JP4973086B2 (en) | 2006-09-21 | 2006-09-21 | Vehicle driving support apparatus and method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2008074232A JP2008074232A (en) | 2008-04-03 |
JP4973086B2 true JP4973086B2 (en) | 2012-07-11 |
Family
ID=39346742
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006255407A Active JP4973086B2 (en) | 2006-09-21 | 2006-09-21 | Vehicle driving support apparatus and method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4973086B2 (en) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5163346B2 (en) * | 2008-07-31 | 2013-03-13 | 日産自動車株式会社 | Vehicle braking / driving control device and automatic driving control method |
JP4766152B2 (en) * | 2009-05-13 | 2011-09-07 | トヨタ自動車株式会社 | Vehicle travel control device |
US9067571B2 (en) | 2009-12-18 | 2015-06-30 | Toyota Jidosha Kabushiki Kaisha | Travel control device |
US20130018562A1 (en) * | 2010-03-29 | 2013-01-17 | Toyota Jidosha Kabushiki Kaisha | Vehicle control device |
KR20140059082A (en) * | 2012-11-07 | 2014-05-15 | 자동차부품연구원 | Warning method for a car driver |
JP2017047795A (en) * | 2015-09-02 | 2017-03-09 | トヨタ自動車株式会社 | Vehicular travel control apparatus |
JP6249422B2 (en) * | 2016-03-25 | 2017-12-20 | 三菱電機株式会社 | Vehicle speed control system |
JP6659513B2 (en) * | 2016-10-05 | 2020-03-04 | 本田技研工業株式会社 | Vehicle control device, vehicle control method, and vehicle control program |
CN106740868B (en) * | 2016-12-30 | 2019-03-29 | 东软集团股份有限公司 | A kind of method, apparatus and equipment of speed planning |
JP7208106B2 (en) * | 2019-05-30 | 2023-01-18 | 日産自動車株式会社 | Driving support method and driving support device |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3918739B2 (en) * | 2003-01-28 | 2007-05-23 | 日産自動車株式会社 | Deceleration control device |
-
2006
- 2006-09-21 JP JP2006255407A patent/JP4973086B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2008074232A (en) | 2008-04-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4973086B2 (en) | Vehicle driving support apparatus and method | |
JP5251216B2 (en) | Vehicle travel control device and vehicle travel control method | |
JP3838048B2 (en) | Vehicle travel control device | |
JP5061776B2 (en) | Vehicle travel control device and vehicle travel control method | |
US8160795B2 (en) | Drive power control apparatus and method for vehicle | |
US8712664B2 (en) | Vehicle control apparatus | |
US8612109B2 (en) | Vehicular running control apparatus and vehicular running control method | |
EP2712780B1 (en) | Method and apparatus for performing driving assistance | |
JP5157531B2 (en) | Vehicle travel control system | |
US20100198478A1 (en) | Method and apparatus for target vehicle following control for adaptive cruise control | |
US20080078600A1 (en) | Cruise control | |
US20100292904A1 (en) | Vehicle running control system | |
US8103424B2 (en) | Inter-vehicle distance control apparatus and method for controlling inter-vehicle distance | |
US20150321669A1 (en) | Driving support apparatus | |
CN101537833A (en) | Driving support device, driving support method, and driving support program | |
WO2010089848A1 (en) | Vehicle travel control device | |
US7191046B2 (en) | Motion control apparatus for vehicle | |
JP2007168788A (en) | Traveling controller for automobile | |
JP2009179247A (en) | Motion controller for vehicle | |
JP4172316B2 (en) | Automatic speed control device | |
JP2011093496A (en) | Vehicular behavior control device | |
JP4304258B2 (en) | VEHICLE DRIVE OPERATION ASSISTANCE DEVICE AND VEHICLE HAVING VEHICLE DRIVE OPERATION ASSISTANCE DEVICE | |
JP2004301833A (en) | Intervehicular distance controller | |
JP3793431B2 (en) | Auto cruise control device | |
KR20120035263A (en) | Apparatus and method for cruise control of vechicle using navigation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20090327 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110830 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110913 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20111111 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120313 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120326 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4973086 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150420 Year of fee payment: 3 |