JP4972745B2 - G protein-coupled receptor G2A agonist, and G2A activity modulator screening method - Google Patents

G protein-coupled receptor G2A agonist, and G2A activity modulator screening method Download PDF

Info

Publication number
JP4972745B2
JP4972745B2 JP2007522314A JP2007522314A JP4972745B2 JP 4972745 B2 JP4972745 B2 JP 4972745B2 JP 2007522314 A JP2007522314 A JP 2007522314A JP 2007522314 A JP2007522314 A JP 2007522314A JP 4972745 B2 JP4972745 B2 JP 4972745B2
Authority
JP
Japan
Prior art keywords
hode
acid
cells
protein
cho
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007522314A
Other languages
Japanese (ja)
Other versions
JPWO2006137435A1 (en
Inventor
孝志 和泉
英 大日方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gunma University NUC
Original Assignee
Gunma University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gunma University NUC filed Critical Gunma University NUC
Priority to JP2007522314A priority Critical patent/JP4972745B2/en
Publication of JPWO2006137435A1 publication Critical patent/JPWO2006137435A1/en
Application granted granted Critical
Publication of JP4972745B2 publication Critical patent/JP4972745B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • G01N33/5008Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • A23L33/115Fatty acids or derivatives thereof; Fats or oils
    • A23L33/12Fatty acids or derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/04Drugs for disorders of the alimentary tract or the digestive system for ulcers, gastritis or reflux esophagitis, e.g. antacids, inhibitors of acid secretion, mucosal protectants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/16Drugs for disorders of the alimentary tract or the digestive system for liver or gallbladder disorders, e.g. hepatoprotective agents, cholagogues, litholytics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/06Antipsoriatics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/16Emollients or protectives, e.g. against radiation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/02Drugs for skeletal disorders for joint disorders, e.g. arthritis, arthrosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/04Anorexiants; Antiobesity agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/02Antineoplastic agents specific for leukemia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/06Immunosuppressants, e.g. drugs for graft rejection
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • G01N33/5008Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
    • G01N33/5011Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics for testing antineoplastic activity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6872Intracellular protein regulatory factors and their receptors, e.g. including ion channels
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/435Assays involving biological materials from specific organisms or of a specific nature from animals; from humans
    • G01N2333/705Assays involving receptors, cell surface antigens or cell surface determinants
    • G01N2333/72Assays involving receptors, cell surface antigens or cell surface determinants for hormones
    • G01N2333/726G protein coupled receptor, e.g. TSHR-thyrotropin-receptor, LH/hCG receptor, FSH
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2500/00Screening for compounds of potential therapeutic value

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Veterinary Medicine (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Public Health (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Hematology (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Urology & Nephrology (AREA)
  • Cell Biology (AREA)
  • Food Science & Technology (AREA)
  • Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Diabetes (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Toxicology (AREA)
  • Obesity (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Rheumatology (AREA)
  • Dermatology (AREA)
  • Vascular Medicine (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Emergency Medicine (AREA)
  • Transplantation (AREA)

Description

本発明は、9-ヒドロキシオクタデカジエン酸(9-HODE)などの酸化脂肪酸を含有するG2A作動薬に関する。本発明は、また、9-HODEなどの酸化脂肪酸を用いたG2A活性調節薬(作動薬、拮抗薬および逆作動薬)のスクリーニング方法に関する。   The present invention relates to G2A agonists containing oxidized fatty acids such as 9-hydroxyoctadecadienoic acid (9-HODE). The present invention also relates to a screening method for G2A activity modulators (agonists, antagonists and inverse agonists) using oxidized fatty acids such as 9-HODE.

1998年に、リンパ球に発現しているGタンパク質共役型受容体(GPCR)の1つが報告され、各種DNA損傷刺激によって誘導され、細胞周期がG2期で停止するという性格からG2A (G2 accumulation)と名付けられた。この時点では、G2Aはリガンドが不明なオーファン受容体(孤児受容体)であった(非特許文献1)。その後、そのリガンドがリゾリン脂質(リゾホスファチジルコリン(LPC)およびスフィンゴシルホスホリルコリン(SPC))であるとの報告がなされ、炎症、免疫疾患、動脈硬化との関連が指摘された(非特許文献2)。しかしながら、放射リガンドの結合実験が再現できないことから、その後、この論文は取り下げられたため(非特許文献3)、依然としてリガンドは不明な状況にあった。   In 1998, one of the G protein-coupled receptors (GPCRs) expressed in lymphocytes was reported, induced by various DNA damage stimuli, and the nature of G2A (G2 accumulation) It was named. At this point, G2A was an orphan receptor (orphan receptor) whose ligand was unknown (Non-patent Document 1). Thereafter, it was reported that the ligands were lysophospholipids (lysophosphatidylcholine (LPC) and sphingosylphosphorylcholine (SPC)), and the relationship with inflammation, immune disease, and arteriosclerosis was pointed out (Non-patent Document 2). However, since the binding experiment of the radioligand could not be reproduced, this paper was subsequently withdrawn (Non-patent Document 3), and the ligand was still unknown.

G2Aの機能に関しては、欠損(ノックアウト)マウスが自己免疫疾患を発病したことから(非特許文献4;特許文献1)、免疫機能への関与が示唆されている。また、動脈硬化巣で多く発現していることから(非特許文献5)、動脈硬化への関与も示唆されている。その他、プロトンセンサー(pHセンサー)として働くとの報告(非特許文献6)もなされた。
さらに、G2Aは造血細胞に発現しており、造血細胞の増殖を制御するという報告(特許文献2)、G2Aはリンパ球に発現しており、増殖刺激や遺伝子傷害性の刺激によって発現誘導され、細胞骨格に影響を及ぼすことによって様々な細胞シグナルを伝えるという報告(特許文献3)、G2Aが前立腺癌、卵巣癌、肺癌、乳腺癌、大腸癌などのヒト悪性腫瘍に多く発現しているという報告などがある(特許文献4)。
米国特許公開第 2002/0051980号明細書 国際公開第 99/25830号パンフレット 国際公開第 01/81918号パンフレット 国際公開第 02/090925号パンフレット Proc.Natl.Acad.Sci.USA,vol95:p12334-9, 1998 Science, vol293:p702-5, 2001 Science, vol307:p206, 2005 Immunity, vol14:p561-71, 2001 Arterioscler Thromb Vasc Biol, vol22:p2049-53, 2002 J Biol Chem, vol279: p42484-91, 2004
Regarding the function of G2A, since a deficient (knockout) mouse developed autoimmune disease (Non-patent Document 4; Patent Document 1), involvement in immune function is suggested. In addition, since it is expressed abundantly in arteriosclerotic lesions (Non-patent Document 5), it is suggested that it is involved in arteriosclerosis. In addition, a report (Non-patent Document 6) that it works as a proton sensor (pH sensor) was also made.
Furthermore, G2A is expressed in hematopoietic cells and reports that hematopoietic cell proliferation is controlled (Patent Document 2), G2A is expressed in lymphocytes and is induced to induce expression by growth stimulation or genotoxic stimulation, Reports that various cellular signals are transmitted by affecting the cytoskeleton (Patent Document 3), reports that G2A is highly expressed in human malignant tumors such as prostate cancer, ovarian cancer, lung cancer, breast cancer, and colon cancer (Patent Document 4).
US Patent Publication No. 2002/0051980 WO99 / 25830 pamphlet WO 01/81918 pamphlet International Publication No. 02/090925 Pamphlet Proc. Natl. Acad. Sci. USA, vol 95: p12334-9, 1998 Science, vol293: p702-5, 2001 Science, vol307: p206, 2005 Immunity, vol14: p561-71, 2001 Arterioscler Thromb Vasc Biol, vol22: p2049-53, 2002 J Biol Chem, vol279: p42484-91, 2004

Gタンパク質共役型受容体(GPCR)は細胞膜に存在する受容体で、外界のシグナルを細胞内に伝える役割を持っている。GPCRの活性調節薬(作動薬、拮抗薬および逆作動薬)は治療薬として幅広く使用されており、現在全世界で使われている薬の売上高トップ20のうち8個がGPCRをターゲットとしているとの報告がある。代表的なものに、感冒薬、胃薬、制吐剤、向精神薬などがある。このように、GPCRは創薬の標的分子として重要である。ゲノムの解析がほぼ終了し、リガンド不明の多くのオーファンGPCRが見つかり、リガンド探しが行われている。このような状況の中で、著明な生物活性を持つGPCRであるG2Aのリガンドを同定し、その生物学的意義を解析することは、新たな診断法、治療法、治療薬の開発に結びつく可能性がある。すなわち、本発明は新規G2A作動薬、並びにG2A活性調節薬の新規スクリーニング方法を提供することを課題とする。   G protein-coupled receptor (GPCR) is a receptor that exists in the cell membrane and has the role of transmitting external signals into the cell. GPCR activity modulators (agonists, antagonists and inverse agonists) are widely used as therapeutics, and 8 of the top 20 sales of drugs currently used worldwide target GPCRs There is a report. Typical examples include cold medicine, stomach medicine, antiemetics, and psychotropic drugs. Thus, GPCR is important as a target molecule for drug discovery. Genome analysis is almost complete, and many orphan GPCRs with unknown ligands have been found and ligands are being searched for. Under such circumstances, identifying a ligand for G2A, a GPCR with remarkable biological activity, and analyzing its biological significance leads to the development of new diagnostics, therapeutics, and therapeutics. there is a possibility. That is, an object of the present invention is to provide a novel screening method for a novel G2A agonist and a G2A activity modulator.

本発明者は上記課題を解決すべく鋭意検討を行った。その結果、9-HODEなどの酸化脂肪酸がG2Aのリガンドであり、G2A作動薬として働くこと、及びこれらの酸化脂肪酸を用いることにより、新規なG2A活性調節薬をスクリーニングできることを見出して本発明を完成するに至った。   The present inventor has intensively studied to solve the above problems. As a result, the inventors discovered that oxidized fatty acids such as 9-HODE are ligands of G2A and act as G2A agonists, and that these oxidized fatty acids can be used to screen for novel G2A activity regulators, thereby completing the present invention. It came to do.

すなわち、本発明は以下の通りである。
(1)9−ヒドロキシオクタデカジエン酸、9−ヒドロペルオキシオクタデカジエン酸、13−ヒドロキシオクタデカジエン酸、ヒドロキシエイコサテトラエン酸及びリシノール酸から選ばれる1種又は2種以上を含む、G2A作動薬。
(2)(1)のG2A作動薬を含む、医薬。
(3)(1)のG2A作動薬を含む、食品。
(4)9−ヒドロキシオクタデカジエン酸、9−ヒドロペルオキシオクタデカジエン酸、13−ヒドロキシオクタデカジエン酸、ヒドロキシエイコサテトラエン酸及びリシノール酸から選ばれる1種以上の化合物を用いて被検化合物のG2A結合能を評価することを特徴とする、G2A活性調節薬のスクリーニング方法。
(5)被検化合物がG2A結合能を有するかどうかを評価する方法であって、9−ヒドロキシオクタデカジエン酸、9−ヒドロペルオキシオクタデカジエン酸、13−ヒドロキシオクタデカジエン酸、ヒドロキシエイコサテトラエン酸及びリシノール酸から選ばれる1種以上の化合物を対照化合物として用いて、被検化合物のG2A結合能を評価することを特徴とする方法。
(6)9−ヒドロキシオクタデカジエン酸、9−ヒドロペルオキシオクタデカジエン酸、13−ヒドロキシオクタデカジエン酸、ヒドロキシエイコサテトラエン酸及びリシノール酸から選ばれる1種以上の化合物を対照化合物として用いて、被検化合物のG2A活性化能、またはG2A活性化阻害能を評価することを特徴とする、G2A活性調節薬のスクリーニング方法。
(7)被検化合物がG2A活性化能を有するか、またはG2A活性化阻害能を有するかどうかを評価する方法であって、9−ヒドロキシオクタデカジエン酸、9−ヒドロペルオキシオクタデカジエン酸、13−ヒドロキシオクタデカジエン酸、ヒドロキシエイコサテトラエン酸及びリシノール酸から選ばれる1種以上の化合物を対照化合物として用いて、被検化合物のG2A活性化能またはG2A活性化阻害能を評価することを特徴とする方法。
That is, the present invention is as follows.
(1) G2A containing one or more selected from 9-hydroxyoctadecadienoic acid, 9-hydroperoxyoctadecadienoic acid, 13-hydroxyoctadecadienoic acid, hydroxyeicosatetraenoic acid and ricinoleic acid Agonist.
(2) A medicament comprising the G2A agonist of (1).
(3) A food containing the G2A agonist of (1).
(4) Test using one or more compounds selected from 9-hydroxyoctadecadienoic acid, 9-hydroperoxyoctadecadienoic acid, 13-hydroxyoctadecadienoic acid, hydroxyeicosatetraenoic acid and ricinoleic acid A method for screening for a G2A activity modulator, comprising evaluating the G2A binding ability of a compound.
(5) A method for evaluating whether or not a test compound has G2A binding ability, comprising 9-hydroxyoctadecadienoic acid, 9-hydroperoxyoctadecadienoic acid, 13-hydroxyoctadecadienoic acid, hydroxyeicosa A method comprising evaluating one or more compounds selected from tetraenoic acid and ricinoleic acid as a control compound to evaluate the G2A binding ability of a test compound.
(6) One or more compounds selected from 9-hydroxyoctadecadienoic acid, 9-hydroperoxyoctadecadienoic acid, 13-hydroxyoctadecadienoic acid, hydroxyeicosatetraenoic acid and ricinoleic acid are used as control compounds. A method for screening a G2A activity modulator, comprising evaluating a test compound's G2A activation ability or G2A activation inhibition ability.
(7) A method for evaluating whether a test compound has G2A activation ability or G2A activation inhibition ability, comprising 9-hydroxyoctadecadienoic acid, 9-hydroperoxyoctadecadienoic acid, To evaluate G2A activation ability or G2A activation inhibition ability of a test compound using at least one compound selected from 13-hydroxyoctadecadienoic acid, hydroxyeicosatetraenoic acid and ricinoleic acid as a control compound A method characterized by.

9(S)-HODEを添加したときの細胞内カルシウム濃度の増加を示す図。 CHO-G2A細胞(◆), CHO-G2A-Gqi(●)、CHO-Gqi(□)に Fura-2を添加し、さらに、9(S)-HODEを加えて細胞内カルシウム濃度をFLEXstationを用いて測定した。データは4回の独立した実験の平均値 ± 標準偏差 を示した。親株のCHO-K1 細胞(○) についても測定した。The figure which shows the increase in intracellular calcium concentration when 9 (S) -HODE is added. Add Fura-2 to CHO-G2A cells (◆), CHO-G2A-Gqi (●), and CHO-Gqi (□), and then add 9 (S) -HODE, and adjust the intracellular calcium concentration using FLEXstation. Measured. Data represent the mean ± standard deviation of 4 independent experiments. Measurements were also made on parental CHO-K1 cells (◯). G2Aのリガンド特異性を示す図。(A) CHO-Gqi (□) 及び CHO-G2A-Gqi (■) に、リノール酸又はアラキドン酸の酸化誘導体各1μMを添加し、 細胞内カルシウム濃度の増加をFLEXstationを用いて測定した。データは4回の独立した実験の平均値 ± 標準偏差 を示した。カッコ内に9-HODE と11-HETEの構造を示す。* はCHO-Gqi と比較して、p < 0.01 (Student’s t test)であったことを示す。(B) CHO-G2A-Gqi 細胞を9(S)-HODE (●) 及び 9(R)-HODE (○) HODEで処理し、 細胞内カルシウム濃度の増加をFLEXstationを用いて測定した。データは4回の独立した実験の平均値 ± 標準偏差 を示した。* は9(R)-HODE と比較してp < 0.01 (Student’s t test) であったことを示す。The figure which shows the ligand specificity of G2A. (A) 1 μM each of oxidized derivatives of linoleic acid or arachidonic acid was added to CHO-Gqi (□) and CHO-G2A-Gqi (■), and the increase in intracellular calcium concentration was measured using a FLEXstation. Data represent the mean ± standard deviation of 4 independent experiments. The structures of 9-HODE and 11-HETE are shown in parentheses. * Indicates p <0.01 (Student ’s t test) compared to CHO-Gqi. (B) CHO-G2A-Gqi cells were treated with 9 (S) -HODE (●) and 9 (R) -HODE (◯) HODE, and the increase in intracellular calcium concentration was measured using a FLEXstation. Data represent the mean ± standard deviation of 4 independent experiments. * Indicates p <0.01 (Student ’s t test) compared to 9 (R) -HODE. G2A発現細胞の膜画分への9(S)-HODE依存性の[35S]GTPγSの結合を示す図。CHO-K1細胞及びCHO-G2A安定発現細胞(A), あるいはG2A 及び/又は Giを一過性に発現させたHEK293 細胞 (B)から膜画分を調製し、結合バッファー中、20 μM の非ラベルGTPγSの存在下(非特異的結合)又は非存在下(総結合)、20 μgの膜画分を0.5 nMの [35S]GTPγS 及び9(S)-HODE と 30℃で30 分インキュベートした。特異的結合量は前記総結合量から非特異的結合量を減ずることで算出した。データは4回の独立した実験の平均値 ± 標準偏差 を示した。The figure which shows the binding of [ 35 S] GTPγS dependent on 9 (S) -HODE to the membrane fraction of G2A-expressing cells. Membrane fractions were prepared from CHO-K1 cells and CHO-G2A stably expressing cells (A), or HEK293 cells (B) transiently expressing G2A and / or Gi, and 20 μM of non-binding buffer in binding buffer. 20 μg membrane fraction was incubated with 0.5 nM [ 35 S] GTPγS and 9 (S) -HODE for 30 minutes at 30 ° C in the presence (non-specific binding) or absence (total binding) of labeled GTPγS . The specific binding amount was calculated by subtracting the non-specific binding amount from the total binding amount. Data represent the mean ± standard deviation of 4 independent experiments. G2A を発現させたCHO-K1細胞における、リノール酸添加の影響を示す図。CHO-K1 (○) 及びCHO-G2A (●) 細胞にFura-2を添加し, さらに1μM 9(S)-HODE, 10 μM リシノール酸, 又は 100 μM ATPを加えて、細胞内カルシウム濃度をFLEXstation によって測定した。The figure which shows the influence of linoleic acid addition in the CHO-K1 cell in which G2A was expressed. Add Fura-2 to CHO-K1 (○) and CHO-G2A (●) cells, add 1 μM 9 (S) -HODE, 10 μM ricinoleic acid, or 100 μM ATP, and adjust the intracellular calcium concentration to FLEXstation. Measured by. J774細胞におけるG2A過剰発現又はG2A発現抑制の泡沫化への影響を示す図(写真)。マウスマクロファージ由来J774細胞を24 well プレートに5X10 で撒き、一晩培養した。細胞にpLenti6−mG2Aを含むレンチウイルス上清またはpBlock-iT-mG2A を添加した。48時間インキュベートした後、10 μMの9(S)-HODEの存在下または非存在下で、5% ウシ胎児血清を含む培地中で、細胞を50 μg/mlのLDL 又は酸化LDL(OxLDL)で24時間処理した。ついで、PBS(-)中、細胞を4% ホルムアルデヒドで固定化し、細胞内に蓄積した脂肪滴をOil-Red Oで染色した。The figure (photograph) which shows the influence on foaming of G2A overexpression in J774 cell or G2A expression suppression. Mouse macrophage-derived J774 cells were seeded on a 24 well plate at 5 × 10 4 and cultured overnight. Lentiviral supernatant containing pLenti6-mG2A or pBlock-iT-mG2A was added to the cells. After 48 hours of incubation, cells were incubated with 50 μg / ml LDL or oxidized LDL (OxLDL) in medium containing 5% fetal calf serum in the presence or absence of 10 μM 9 (S) -HODE. Treated for 24 hours. Subsequently, the cells were fixed with 4% formaldehyde in PBS (−), and lipid droplets accumulated in the cells were stained with Oil-Red O. ヒト皮膚におけるG2Aの発現を示す図(写真)。(A) 抗G2A抗体を用いた蛍光染色の結果を示す。肩の皮膚由来の切片をコントロールのウサギIgGまたは抗G2A抗体とインキュベートし、次いで、蛍光標識抗ウサギIgGとインキュベートし、蛍光顕微鏡で観察した。倍率は400倍でバーは20μmを示す。(B) ヒト培養ケラチノサイトNHEKにおけるmRNAの検出結果を示す。G2AのmRNAをRT有りまたは無しのPCRで検出した。pCXN2.1-G2Aベクターをポジティブコントロールとして用いた。The figure which shows the expression of G2A in human skin (photograph). (A) shows the result of fluorescent staining using anti-G2A antibody. Sections from shoulder skin were incubated with control rabbit IgG or anti-G2A antibody, then incubated with fluorescently labeled anti-rabbit IgG and observed with a fluorescence microscope. The magnification is 400 times and the bar represents 20 μm. (B) shows the detection results of mRNA in human cultured keratinocytes NHEK. G2A mRNA was detected by PCR with or without RT. The pCXN2.1-G2A vector was used as a positive control. NHEK細胞における、9(S)-HODEによって惹起される細胞内カルシウム動員を示す。細胞にFura-2/AM を添加し、9(S)-HODEで刺激し、RF5300PC スペクトロフルオロメーターを用いて解析した。Figure 5 shows intracellular calcium mobilization triggered by 9 (S) -HODE in NHEK cells. Fura-2 / AM was added to the cells, stimulated with 9 (S) -HODE, and analyzed using an RF5300PC spectrofluorometer. NHEK細胞における、9(S)-HODEによって惹起されるサイトカインの分泌を示す図。NHEK細胞を9(S)-HODEで0〜24時間インキュベートした後、培養上清を回収し、サイトカインの濃度をBio-Plex ELISA systemを用いて測定した。(A) IL-6; (B) IL-8; (C) GM-CSF。データは平均値± SD (n = 3)であり、* は、コントロールに対してp < 0.05 (Student’s t-test)であることを示す。The figure which shows the secretion of the cytokine induced by 9 (S) -HODE in NHEK cells. After incubating NHEK cells with 9 (S) -HODE for 0-24 hours, the culture supernatant was collected, and the concentration of cytokine was measured using Bio-Plex ELISA system. (A) IL-6; (B) IL-8; (C) GM-CSF. Data are mean ± SD (n = 3), * indicates p <0.05 (Student ’s t-test) relative to control.

以下に本発明を詳しく説明する。
本発明において、G2Aとは、リンパ球やマクロファージなどに主に発現しているGタンパク質共役型受容体(GPCR)であり、各種DNA損傷刺激によって誘導され、細胞周期をG2期で停止させると報告された受容体である。ヒト及びマウスのG2Aのアミノ酸配列をそれぞれ配列番号2,4に、それらをコードする遺伝子の塩基配列をそれぞれ配列番号1,3に示す。なお、G2Aのアミノ酸配列は種の違いなどによって異なるため、本発明のG2A作動薬の評価や、本発明のスクリーニング法に用いるG2Aは、上記配列のものには限定されず、9-HODE、13-HODE、HETE、リシノール酸などのリガンドに応答して細胞内カルシウム濃度を上昇させる性質を有するものである限り、上記配列において1または数個のアミノ酸が置換、欠失、挿入または付加されたアミノ酸配列を有するタンパク質であってもよい。ここで、数個とは、好ましくは2〜50個、より好ましくは、2〜20個、特に好ましくは2〜10個である。
G2A活性調節薬は、G2A作動薬、G2A拮抗薬およびG2A逆作動薬を含む。なお、逆作動薬とは内因性リガンドや薬物の影響を受けない構成的受容体活性を減弱させる物質をいう。例えば、G2Aの突然変異により内因性リガンドの刺激がなくとも常に受容体シグナルが活性化され、生体機能異常を引き起こすような場合,変異受容体の活性を抑える逆作動薬は,これらの病気に有益な効果が期待できる。
The present invention is described in detail below.
In the present invention, G2A is a G protein-coupled receptor (GPCR) that is mainly expressed in lymphocytes and macrophages, and is reported to be induced by various DNA damage stimuli and stop the cell cycle in the G2 phase. Receptor. The amino acid sequences of human and mouse G2A are shown in SEQ ID NOs: 2 and 4, respectively, and the nucleotide sequences of the genes encoding them are shown in SEQ ID NOs: 1 and 3, respectively. Since the amino acid sequence of G2A varies depending on the species and the like, G2A used in the evaluation of the G2A agonist of the present invention and the screening method of the present invention is not limited to the above sequence, and 9-HODE, 13 As long as it has the property of increasing intracellular calcium concentration in response to ligands such as HODE, HETE, and ricinoleic acid, an amino acid in which one or several amino acids are substituted, deleted, inserted or added in the above sequence It may be a protein having a sequence. Here, the number is preferably 2 to 50, more preferably 2 to 20, and particularly preferably 2 to 10.
G2A activity modulators include G2A agonists, G2A antagonists and G2A inverse agonists. An inverse agonist refers to a substance that attenuates constitutive receptor activity that is not affected by endogenous ligands or drugs. For example, if a G2A mutation always activates the receptor signal without stimulating the endogenous ligand, causing abnormal biological function, an inverse agonist that suppresses the activity of the mutant receptor is beneficial for these diseases. Can be expected.

本発明のG2A作動薬は、9−ヒドロキシオクタデカジエン酸(9-HODE)、9−ヒドロペルオキシオクタデカジエン酸(9-HPODE)、13−ヒドロキシオクタデカジエン酸(13-HODE)、ヒドロキシエイコサテトラエン酸(HETE)(特に5、8、9、11、12,15位のいずれかに水酸基を有するHETE)、及びリシノール酸からなる群より選ばれる1または2以上の酸化脂肪酸を含む。なお、これらの酸化脂肪酸をG2Aリガンドと呼ぶこともある。
9-HODEは、9位の炭素が水酸化されたオクタデカジエン酸であり(図2に構造を示した)、13-HODEは、13位の炭素が水酸化されたオクタデカジエン酸である。また、9-HOODEは、9位の炭素が過酸化水酸化されたオクタデカジエン酸である。
HETEは、5、8、9、11、12,15位などの炭素が水酸化されたエイコサテトラエン酸である。11-HETEの構造を図2に示した。
リシノール酸は、下記式(I)の構造を有する酸化脂肪酸であり、植物由来のヒマシ油に多く含まれ、動物においては種々のリパーゼによってヒマシ油のグリセロール骨格から遊離してくる。
なお、上記9-HODE、13-HODE、HETEなどの酸化脂肪酸には、(S)体と(R)体の光学異性体が存在するが、本発明のG2A作動薬に含まれる酸化脂肪酸は(S)体であってもよいし、(R)体であってもよいし、両者の混合物でもよい。
The G2A agonist of the present invention includes 9-hydroxyoctadecadienoic acid (9-HODE), 9-hydroperoxyoctadecadienoic acid (9-HPODE), 13-hydroxyoctadecadienoic acid (13-HODE), hydroxyeico. It contains 1 or 2 or more oxidized fatty acids selected from the group consisting of satetraenoic acid (HETE) (particularly, HETE having a hydroxyl group at any of positions 5, 8, 9, 11, 12, 15), and ricinoleic acid. These oxidized fatty acids are sometimes called G2A ligands.
9-HODE is octadecadienoic acid in which the 9th carbon is hydroxylated (structure shown in FIG. 2), and 13-HODE is octadecadienoic acid in which the 13th carbon is hydroxylated. . 9-HOODE is octadecadienoic acid in which the 9-position carbon is peroxidized and hydroxylated.
HETE is eicosatetraenoic acid in which carbons such as positions 5, 8, 9, 11, 12, 15 are hydroxylated. The structure of 11-HETE is shown in FIG.
Ricinoleic acid is an oxidized fatty acid having the structure of the following formula (I), is contained in a large amount in plant-derived castor oil, and is released from the glycerol skeleton of castor oil by various lipases in animals.
The oxidized fatty acids such as 9-HODE, 13-HODE and HETE have optical isomers of (S) and (R), but the oxidized fatty acid contained in the G2A agonist of the present invention is ( S) body, (R) body, or a mixture of both.

上記の9-HODEなどの酸化脂肪酸はG2Aに結合し、G2Aを活性化して細胞内カルシウム濃度の上昇などのシグナルを伝達する。その結果、様々な薬効を発揮する。
例えば、以下のような薬効が挙げられる。
G2Aは各種増殖刺激やDNA損傷刺激によって誘導され、細胞周期をG2期で停止させることが知られている。また、G2Aは造血細胞に発現しており、造血細胞の増殖を制御するという報告(WO 99/25830)、リンパ球に発現しており、増殖刺激や遺伝子傷害性の刺激によって発現誘導され、細胞骨格に影響を及ぼすことによって様々な細胞シグナルを伝えるという報告(WO 01/81918)、前立腺癌、卵巣癌、肺癌、乳腺癌、大腸癌、皮膚癌などのヒト悪性腫瘍に多く発現しているという報告などがある(WO 02/090925)。これらのことから、本発明のG2A作動薬はリンパ腫、白血病など様々な癌に対する抗癌剤として使用することができる。
Oxidized fatty acids such as 9-HODE bind to G2A and activate G2A to transmit signals such as an increase in intracellular calcium concentration. As a result, it exhibits various medicinal effects.
For example, the following medicinal effects are mentioned.
G2A is induced by various growth stimuli and DNA damage stimuli, and is known to stop the cell cycle at the G2 phase. In addition, G2A is expressed in hematopoietic cells and reported to regulate the growth of hematopoietic cells (WO 99/25830). It is expressed in lymphocytes and is induced by proliferation and genotoxic stimuli. Report that various cell signals are transmitted by affecting the skeleton (WO 01/81918), it is expressed abundantly in human malignant tumors such as prostate cancer, ovarian cancer, lung cancer, breast cancer, colon cancer, skin cancer There are reports (WO 02/090925). From these facts, the G2A agonist of the present invention can be used as an anticancer agent for various cancers such as lymphoma and leukemia.

また、G2A欠損(ノックアウト)マウスが自己免疫疾患を発病したことから(Immunity, 14:561-71, 2001;US 2002/0051980)、G2Aの免疫機能への関与が強く示唆されている。さらに、本願の実施例に示すようにG2Aリガンドが皮膚などの末梢組織において炎症性サイトカインの産生を誘導することが明らかになった。これらのことからG2A活性調節薬が免疫疾患治療薬及び炎症性疾患治療薬として用いられることが容易に理解できる。免疫性疾患としては関節リュウマチやその他の自己免疫疾患、炎症性疾患としては乾癬や日光皮膚炎(日焼け)、炎症性腸疾患、肝炎などが挙げられる。肝臓は脂質代謝の中心臓器であるため、食事中からの酸化脂肪の摂取、ウィルス性肝炎、脂肪肝、薬物代謝障害、高脂血症などの状態で酸化脂肪によるストレスに曝される。従って、G2A活性調節薬はウィルス性肝炎、薬物性肝炎、アルコール性肝炎、脂肪肝、肝硬変などの肝疾患治療薬として用いられる。また、本発明のG2A作動薬は骨髄移植時などに用いられる免疫抑制剤としても有用に用いられる。   In addition, G2A-deficient (knockout) mice developed autoimmune disease (Immunity, 14: 561-71, 2001; US 2002/0051980), which strongly suggests that G2A is involved in immune functions. Furthermore, as shown in the Examples of the present application, it was revealed that G2A ligand induces the production of inflammatory cytokines in peripheral tissues such as skin. From these facts, it can be easily understood that G2A activity modulators are used as therapeutic agents for immune diseases and inflammatory diseases. Examples of immune diseases include rheumatoid arthritis and other autoimmune diseases, and examples of inflammatory diseases include psoriasis, sun dermatitis (sunburn), inflammatory bowel disease, and hepatitis. Since the liver is a central organ of lipid metabolism, it is exposed to stress caused by oxidized fat in the state of intake of oxidized fat from the diet, viral hepatitis, fatty liver, drug metabolism disorder, hyperlipidemia and the like. Therefore, G2A activity modulators are used as therapeutic agents for liver diseases such as viral hepatitis, drug-induced hepatitis, alcoholic hepatitis, fatty liver, cirrhosis. In addition, the G2A agonist of the present invention is also useful as an immunosuppressant used for bone marrow transplantation.

また、G2Aは動脈硬化巣で多く発現していることから(Arterioscler Thromb Vasc Biol, 22:2049-53, 2002)、G2Aの動脈硬化への関与も強く示唆される。実際に、後述の実施例に示すように、マクロファージ細胞であるJ774細胞にG2A遺伝子を強制発現させると、脂肪蓄積効果がさらに増大したことからも、G2A活性調節薬が、動脈硬化治療薬、抗肥満薬、糖尿病治療薬などの成人病(メタボリックシンドローム)の治療薬として有用であると考えられる。   In addition, G2A is highly expressed in arteriosclerotic lesions (Arterioscler Thromb Vasc Biol, 22: 2049-53, 2002), which strongly suggests that G2A is involved in arteriosclerosis. Actually, as shown in the examples below, when the G2A gene was forcibly expressed in J774 cells, which are macrophage cells, the effect of accumulating G2A activity was further increased. It is considered useful as a therapeutic agent for adult diseases (metabolic syndrome) such as obesity drugs and antidiabetic drugs.

9-HODEなどの酸化脂肪酸を含むG2A作動薬、及び後述のスクリーニング法によって得られるG2A活性調節薬(以下、まとめてG2A活性調節薬と呼ぶこともある)は、そのまま、若しくは製剤学的に許容される製剤担体と組み合わせて、上記のような疾患を治療または予防するための医薬とすることができる。尚、上記9-HODEなどの酸化脂肪酸は医薬に許容される塩にすることもできる。医薬に許容可能な塩として、ナトリウム、カリウム等の金属の塩が例示される。   G2A agonists containing oxidized fatty acids such as 9-HODE, and G2A activity modulators obtained by screening methods described below (hereinafter sometimes collectively referred to as G2A activity modulators) are acceptable as is or pharmaceutically. In combination with such a pharmaceutical carrier, it can be used as a medicament for treating or preventing the above-mentioned diseases. The oxidized fatty acid such as 9-HODE can be converted into a pharmaceutically acceptable salt. Examples of pharmaceutically acceptable salts include salts of metals such as sodium and potassium.

本発明の医薬の製剤形態は特に限定されず、治療目的に応じて適宜選択でき、具体的には、錠剤、丸剤、散剤、液剤、懸濁剤、乳剤、顆粒剤、カプセル剤、シロップ剤、坐剤、注射剤、軟膏剤、貼付剤、点眼剤、点鼻剤等を例示できる。製剤化にあたっては製剤担体として通常の医薬に汎用される賦形剤、結合剤、崩壊剤、滑沢剤、安定剤、矯味矯臭剤、希釈剤、界面活性剤、注射剤用溶剤等の添加剤を使用できる。また、G2A活性調節薬と、他の医薬とを併用してもよい。   The pharmaceutical preparation form of the pharmaceutical of the present invention is not particularly limited and can be appropriately selected depending on the purpose of treatment. Specifically, tablets, pills, powders, solutions, suspensions, emulsions, granules, capsules, syrups Suppositories, injections, ointments, patches, eye drops, nasal drops and the like. Additives such as excipients, binders, disintegrants, lubricants, stabilizers, flavoring agents, diluents, surfactants, solvents for injections, etc. that are commonly used in ordinary pharmaceuticals as pharmaceutical carriers Can be used. Moreover, you may use together a G2A activity regulator and another pharmaceutical.

本発明のG2A活性調節薬は、食品に含有させることもできる。食品の具体的形態は特に制限されないが、食用油、調味料、加工食品などが例示される。食品は、G2A活性調節薬を、通常食品に用いられる原料と混合することによって製造することができる。
本発明の食品中に含まれるG2A作動薬の量は、特に限定されず適宜選択すればよいが、例えば、G2A活性調節薬の量として、食品中に0.1〜50質量%、好ましくは1〜10質量%とするのがよい。
また、本発明の食品は、上記のような疾患に対する予防または治療効果を有する健康食品や特定保健用食品などとすることもできる。本発明の食品は、例えば「抗癌作用、抗炎症作用、免疫抑制作用、抗動脈硬化、肝臓保護作用などの効果を有する成分を含有する食品」等の表示を付して販売するもできる。
The G2A activity regulator of the present invention can also be contained in food. Although the specific form of a foodstuff is not restrict | limited in particular, Edible oil, a seasoning, processed food, etc. are illustrated. The food can be produced by mixing a G2A activity regulator with a raw material usually used for food.
The amount of the G2A agonist contained in the food of the present invention is not particularly limited and may be appropriately selected. For example, the amount of the G2A activity regulator is 0.1 to 50% by mass, preferably 1 in the food. It is good to set it as -10 mass%.
In addition, the food of the present invention can be a health food or a food for specified health that has a preventive or therapeutic effect on the above-mentioned diseases. The food of the present invention can be sold with a label such as “a food containing an ingredient having an effect such as an anti-cancer action, an anti-inflammatory action, an immunosuppressive action, an anti-arteriosclerosis, or a liver protecting action”.

<2>スクリーニング方法
本発明のスクリーニング方法は、9−ヒドロキシオクタデカジエン酸、9−ヒドロペルオキシオクタデカジエン酸、13−ヒドロキシオクタデカジエン酸、ヒドロキシエイコサテトラエン酸及びリシノール酸から選ばれる1種又は2種以上を用いることを特徴とする、G2A活性調節薬のスクリーニング方法である。
<2> Screening Method The screening method of the present invention is 1 selected from 9-hydroxyoctadecadienoic acid, 9-hydroperoxyoctadecadienoic acid, 13-hydroxyoctadecadienoic acid, hydroxyeicosatetraenoic acid and ricinoleic acid. It is a screening method for a G2A activity modulator, characterized by using species or two or more species.

G2Aを用いるスクリーニング系としては、例えば、G2Aに結合する化合物をスクリーニングする系及びG2Aの活性化を促進又は阻害する化合物をスクリーニングする系が挙げられる。前者としては、G2Aタンパク質に結合することのできる9-HODEなどを対照化合物として放射性同位体などでラベルし、ラベルされた対照化合物とG2Aタンパク質をあらかじめ混合しておき、そこに被検化合物を添加し、被検化合物の中から、対照化合物と競合してG2Aタンパク質に結合することのできる化合物を選択する方法が挙げられる。この方法では、例えば、G2Aタンパク質とそれに結合した標識対照化合物を含む溶液に被検化合物を添加して反応させ、解離した対照化合物及び遊離の被検物質を洗浄により除去した後、G2Aタンパク質に残存する放射線量などを測定することによって、被検物質がG2Aタンパク質に結合するかどうかを判定することができる。すなわち、被検物質との競合により標識対照化合物がG2Aタンパク質から解離して放射線量が減少すると、被検化合物がG2Aタンパク質に結合すると判定できる。対照化合物として、本発明においてG2Aタンパク質に結合することが明らかとなった9-HODE、13-HODE、リシノール酸やHETEなどを用いる。
スクリーニングによって得られたG2Aに結合する化合物には、G2Aの作動薬、拮抗薬、さらには逆作動薬が含まれると考えられるため、後述のように細胞内カルシウム濃度を増加させるか否かを調べることによってこれらのいずれに該当するかを決定することができる。
Examples of screening systems using G2A include systems for screening for compounds that bind to G2A and systems for screening for compounds that promote or inhibit G2A activation. For the former, 9-HODE, which can bind to G2A protein, is labeled with a radioisotope as a control compound, and the labeled control compound and G2A protein are mixed in advance, and a test compound is added thereto. A method of selecting a compound that can bind to the G2A protein by competing with the control compound from the test compounds can be mentioned. In this method, for example, a test compound is added to and reacted with a solution containing a G2A protein and a labeled control compound bound thereto, and the dissociated control compound and free test substance are removed by washing, and then remain in the G2A protein. Whether or not the test substance binds to the G2A protein can be determined by measuring the radiation dose to be measured. That is, when the labeled control compound dissociates from the G2A protein due to competition with the test substance and the radiation dose decreases, it can be determined that the test compound binds to the G2A protein. As a control compound, 9-HODE, 13-HODE, ricinoleic acid, HETE, and the like, which have been shown to bind to the G2A protein in the present invention, are used.
The compounds that bind to G2A obtained by screening are thought to include agonists, antagonists, and even inverse agonists of G2A, so investigate whether to increase intracellular calcium concentration as described below It is possible to determine which of these is true.

なお、このスクリーニング系で用いるG2Aタンパク質は遺伝子組換えによって生産されたタンパク質であってもよいし、細胞などから精製されたものであってもよい。また、化学合成されたものであってもよい。さらに、G2Aタンパク質のリガンド結合部位を含む部分タンパク質でもよい。これらのタンパク質を遺伝子組換えによって生産する場合は、例えば、配列番号1または3の塩基配列を有するDNAを適当なベクターに連結し、これを大腸菌や動物細胞などの宿主に導入してタンパク質を発現させ、常法に従って精製することによって得ることができる。なお、この場合に用いるDNAは、9-HODEなどのリガンドに応答して細胞内のカルシウム濃度を上昇させることができるタンパク質をコードする限り、配列番号1または3の塩基配列を有するDNAとストリンジェントな条件下でハイブリダイズするDNAであってもよい。ここでストリンジェントな条件としては、例えば、60℃、1×SSC,0.1%SDS、好ましくは、0.1×SSC、0.1%SDSに相当する塩濃度で、1回より好ましくは2〜3回洗浄する条件が挙げられる。なお、大腸菌で遺伝子組み換えを行うためのベクターとしてはpETベクター(Novagen社)やpGEXベクター(Amersham Pharmacia社)などが挙げられ、動物細胞で遺伝子組み換えを行うためのベクターとしては、pcDNAベクター(Invitrogen社)などが挙げられる。   The G2A protein used in this screening system may be a protein produced by gene recombination or may be purified from cells or the like. Further, it may be chemically synthesized. Further, it may be a partial protein containing a ligand binding site of G2A protein. When these proteins are produced by gene recombination, for example, DNA having the nucleotide sequence of SEQ ID NO: 1 or 3 is linked to an appropriate vector and introduced into a host such as E. coli or animal cells to express the protein. And purifying according to a conventional method. The DNA used in this case is stringent with the DNA having the nucleotide sequence of SEQ ID NO: 1 or 3 as long as it encodes a protein capable of increasing intracellular calcium concentration in response to a ligand such as 9-HODE. DNA that hybridizes under various conditions may be used. Here, as stringent conditions, for example, at a salt concentration corresponding to 60 ° C., 1 × SSC, 0.1% SDS, preferably 0.1 × SSC, 0.1% SDS, more preferably once. Conditions for washing 2 to 3 times are mentioned. Examples of vectors for genetic recombination in E. coli include pET vectors (Novagen) and pGEX vectors (Amersham Pharmacia). Vectors for genetic recombination in animal cells include pcDNA vectors (Invitrogen). ) And the like.

また、細胞系でG2Aを活性化する化合物又はG2Aの活性化を阻害する化合物をスクリーニングしてもよい。G2Aの活性化とは、G2Aの生体内での機能、例えば、リガンドに応答して細胞内カルシウム濃度を上昇させたりすることなどをいう。また、細胞内cAMP濃度を指標にしてもよい。例えば、CHOやHEK293などの細胞にG2Aをコードする遺伝子を導入してG2Aタンパク質を発現させ、当該細胞に被検物質を添加したときの細胞内カルシウム濃度の変化を測定することによって調べることができる。上記9-HODEなどのG2Aリガンドを陽性対照に用い、これらのリガンドと同程度以上にG2Aを活性化させる物質(G2A作動薬)をスクリーニングしてもよいし、上記G2Aリガンドと被検物質を同時に加えて、G2AリガンドによるG2A活性化を阻害する物質(G2A拮抗薬)をスクリーニングしてもよい。
カルシウム濃度は常法によって測定することができ、例えば、Fura-2(同仁化学)などを用いて測定することができる。また、cAMP濃度は、例えば、AlphaScreen cAMP assay kit(PerkinElmer)を用いて測定することができる。
In addition, a compound that activates G2A or a compound that inhibits activation of G2A in a cell line may be screened. Activation of G2A refers to the function of G2A in vivo, such as increasing intracellular calcium concentration in response to a ligand. Further, the intracellular cAMP concentration may be used as an index. For example, G2A protein can be expressed in cells such as CHO and HEK293 by introducing a gene encoding G2A, and the change in intracellular calcium concentration when a test substance is added to the cells can be examined. . Using a G2A ligand such as 9-HODE as a positive control, screening for a substance (G2A agonist) that activates G2A to the same extent or higher than these ligands may be performed, or the G2A ligand and the test substance may be screened simultaneously. In addition, a substance that inhibits G2A activation by a G2A ligand (G2A antagonist) may be screened.
The calcium concentration can be measured by a conventional method, and can be measured using, for example, Fura-2 (Dojindo). Moreover, cAMP density | concentration can be measured using AlphaScreen cAMP assay kit (PerkinElmer), for example.

本発明のスクリーニング方法において、スクリーニングの対象とする化合物としては特に制限はなく、例えば、低分子合成化合物であってもよいし、天然物に含まれる化合物であってもよい。また、ペプチドであってもよい。スクリーニングには個々の被検物質を用いてもよいが、これらの物質を含む化合物ライブラリーを用いてもよい。
なお、上記方法は、複数の化合物からG2A作動薬または拮抗薬を探索するスクリーニングだけではなく、個々の化合物のG2A結合能、G2A活性化能、G2A活性化阻害能を評価するためにも用いることができる。
In the screening method of the present invention, the compound to be screened is not particularly limited, and may be, for example, a low-molecular synthetic compound or a compound contained in a natural product. Moreover, a peptide may be sufficient. Although individual test substances may be used for screening, a compound library containing these substances may be used.
The above method should be used not only for screening for G2A agonists or antagonists from multiple compounds, but also for evaluating the G2A binding ability, G2A activation ability, and G2A activation inhibition ability of individual compounds. Can do.

本発明のスクリーニング方法によって得られるG2A作動薬は、上述したような癌、免疫性疾患、炎症性疾患、動脈硬化症、肝疾患などの治療薬または予防薬として用いることができる。
一方、本発明のスクリーニング方法によって得られるG2A拮抗薬は、酸化ストレスを伴う多くの疾患や病態の治療薬はまたは予防薬として用いることができる。すなわち、皮膚の上皮細胞はG2Aを発現しているが、9-HODEなどの酸化脂肪酸に反応して細胞増殖が止まり、様々なサイトカイン類を放出する。皮膚は、外気と接しており、常に一定の酸化ストレスに曝されている。特に、日焼け(紫外線曝露)によってその酸化ストレスは増大する。この時に酸化脂肪酸が皮膚で産生されているものと考えられる。
したがって、G2A拮抗薬は、各種炎症、腫瘍、動脈硬化、喫煙、自己免疫疾患、糖尿病、肝疾患などの酸化ストレスを伴う疾患の治療薬として有用であると考えられる。さらに、火傷治療薬、日焼け止めクリームなどへの応用も考えられる。
さらに、G2Aは放射線によって誘導されることが報告されている(国際公開第 01/81918号パンフレット)などから、G2A活性調節薬はUV照射、放射線照射、粒子線照射の治療薬、放射線治療や重粒子線治療の作用増強剤、健常組織保護剤などとしても有用であると考えられる。
The G2A agonist obtained by the screening method of the present invention can be used as a therapeutic or prophylactic agent for cancer, immune disease, inflammatory disease, arteriosclerosis, liver disease and the like as described above.
On the other hand, the G2A antagonist obtained by the screening method of the present invention can be used as a therapeutic agent or a prophylactic agent for many diseases and conditions associated with oxidative stress. That is, skin epithelial cells express G2A, but in response to oxidized fatty acids such as 9-HODE, cell growth stops and various cytokines are released. The skin is in contact with the outside air and is constantly exposed to constant oxidative stress. In particular, the oxidative stress is increased by sunburn (exposure to ultraviolet rays). At this time, it is considered that oxidized fatty acids are produced in the skin.
Therefore, G2A antagonists are considered useful as therapeutic agents for diseases associated with oxidative stress such as various inflammations, tumors, arteriosclerosis, smoking, autoimmune diseases, diabetes, and liver diseases. In addition, it can be applied to burn medicines, sun creams and the like.
Furthermore, it has been reported that G2A is induced by radiation (WO 01/81918 pamphlet). Therefore, G2A activity modulators are UV radiation, radiation, particle radiation treatment, radiation therapy and It is also considered useful as an action enhancer for particle beam therapy, a healthy tissue protective agent, and the like.

以下に実施例を示し、本発明をさらに具体的に説明する。もっとも、本発明は下記実施例に限定されるものではない。   The following examples illustrate the present invention more specifically. However, the present invention is not limited to the following examples.

各種HODE, HPODE, HETE及びcholesteryl-9-HODEは、Cayman Chemical社から購入した。リノール酸, アラキドン酸, 1-パルミトイルリゾフォスファチジルコリン, 及び1-パルミトイル-2-リノレオイルフォスファチジルコリンはSigma社から購入した。[35S]GTPγS はPerkin Elmer社から購入した。Various HODE, HPODE, HETE and cholesteryl-9-HODE were purchased from Cayman Chemical. Linoleic acid, arachidonic acid, 1-palmitoyl lysophosphatidylcholine, and 1-palmitoyl-2-linoleoylphosphatidylcholine were purchased from Sigma. [ 35 S] GTPγS was purchased from Perkin Elmer.

9(S)-HODEの合成
5-リポキシゲナーゼをProc Natl Acad Sci U S A 81, 689-693(1984)に記載の方法に従ってイモの塊茎から精製した。5-リポキシゲナーゼを用いて反応バッファー(20 mM Tris-HCl, pH 7.4, 0.1 mM diethylenetriaminepentaacetic acid)中で,リノール酸を酸化し、次いで、NaBH4で還元した。生成物をシリカカラムクロマトグラフィーによって未反応基質と分離した。LC-MS分析により、生成物が95%以上の9(S)-HODEを含むことが確認できた。
Synthesis of 9 (S) -HODE
5-lipoxygenase was purified from tubers of potato according to the method described in Proc Natl Acad Sci USA 81, 689-693 (1984). Linoleic acid was oxidized with 5-lipoxygenase in reaction buffer (20 mM Tris-HCl, pH 7.4, 0.1 mM diethylenetriaminepentaacetic acid) and then reduced with NaBH 4 . The product was separated from unreacted substrate by silica column chromatography. LC-MS analysis confirmed that the product contained more than 95% 9 (S) -HODE.

プラスミド構築
FLAGエピトープをN末端に付加したヒトG2Aをコードする遺伝子を、配列番号5及び6のプライマーを用い、Pyrobest (Takaraバイオ社)により増幅した。PCR産物をBamHI及びEoRIで消化し、哺乳類細胞発現ベクターpCXN2.1(Gene, vol108: p193-200, 1991)に挿入した。得られたプラスミドをpCXN2.1-G2Aと名づけた。
Gqi(マウスGqタンパク質のC末端9ペプチドをマウスGiタンパク質の対応ペプチドと置換した)の全ORFを含むプラスミドをpcDNA3.1/Zeo vector (Invitrogen社)にサブクローン化し、pcDNA3.1/ Gqiと名づけた。Gタンパク質のC末端領域はGタンパク共役型受容体との相互作用を決定する重要な部位であり、C末端領域をGiタンパクの対応領域で置き換えられたこのGqiキメラタンパク質はGiタンパクと共役する受容体と相互作用し、Gq様のシグナルを伝達できることが報告されている(Nature vol363: p274-6, 1993)。したがって、Giと共役する受容体のシグナルをGqによって伝達されるカルシウムシグナルとして観察するための有用なツールとなりうる。
Plasmid construction
A gene encoding human G2A with a FLAG epitope added to the N-terminus was amplified by Pyrobest (Takara Bio) using the primers of SEQ ID NOs: 5 and 6. The PCR product was digested with BamHI and EoRI and inserted into the mammalian cell expression vector pCXN2.1 (Gene, vol108: p193-200, 1991). The resulting plasmid was named pCXN2.1-G2A.
A plasmid containing the entire ORF of Gqi (in which the C-terminal 9 peptide of mouse Gq protein was replaced with the corresponding peptide of mouse Gi protein) was subcloned into pcDNA3.1 / Zeo vector (Invitrogen) and named pcDNA3.1 / Gqi It was. The C-terminal region of the G protein is an important site for determining the interaction with the G protein-coupled receptor, and this Gqi chimeric protein in which the C-terminal region is replaced with the corresponding region of the Gi protein is a receptor that couples to the Gi protein. It has been reported that it can interact with the body and transmit Gq-like signals (Nature vol363: p274-6, 1993). Therefore, it can be a useful tool for observing a receptor signal coupled to Gi as a calcium signal transmitted by Gq.

細胞培養、遺伝遺伝子導入、フローサイトメトリー
チャイニーズハムスター卵巣細胞(CHO細胞)及びヒト胚腎細胞293細胞(HEK293細胞)は、それぞれ、10%ウシ胎児血清を含有する、Ham’s F-12 培地(Sigma)、Dulbecco’s modified Eagle’s 培地 (Sigma社)中、37℃、加湿した5% CO2インキュベーター内で維持した。細胞に Lipofectamine 2000 reagent (Invitrogen社) を用いて各プラスミドDNAのトランスフェクションを行った。
FLAGタグ結合G2Aタンパク質の膜発現を観察するために、1% BSAを含むPBS (-)中、細胞を透過性にすることなく、10μg/ml M5 抗FLAG 抗体(Sigma社)を加えて室温で1時間インキュベートした。FITC結合抗マウスIgGを加えて室温で30分インキュベートし、EPICS XL flow cytometer system (Beckman Coulter社)を用いて検出した。
Cell culture, genetic gene transfer, flow cytometry Chinese hamster ovary cells (CHO cells) and human embryonic kidney cells 293 cells (HEK293 cells) are each Ham's F-12 medium (Sigma) containing 10% fetal bovine serum. And maintained in a humidified 5% CO 2 incubator at 37 ° C. in Dulbecco's modified Eagle's medium (Sigma). Each plasmid DNA was transfected into the cells using Lipofectamine 2000 reagent (Invitrogen).
To observe membrane expression of FLAG-tagged G2A protein, add 10 μg / ml M5 anti-FLAG antibody (Sigma) at room temperature in PBS (-) containing 1% BSA without permeabilizing the cells. Incubated for 1 hour. FITC-conjugated anti-mouse IgG was added, incubated at room temperature for 30 minutes, and detected using an EPICS XL flow cytometer system (Beckman Coulter).

CHO細胞でのG2A遺伝子の安定発現
Lipofectamine 2000を用いてpCXN2.1-G2A をCHO細胞にトランスフェクションした。1 mg/ml Geneticin (Invitrogen社)に耐性のクローンを選択し、G2A遺伝子の発現レベルをRT-PCRとフローサイトメトリーによって確認した。
G2A高発現クローン(CHO-G2A細胞)をさらにpcDNA3.1/Gqiでトランスフェクションし、1 mg/ml Zeocin (Invitrogen社)に耐性を有する安定クローンを選択した。Gqiの発現をRT-PCRで確認し、CHO-G2A-Gqi細胞を得た。また、Gqiを安定に発現するCHO 細胞も取得した(CHO-Gqi cells)。
Stable expression of G2A gene in CHO cells
PCXN2.1-G2A was transfected into CHO cells using Lipofectamine 2000. Clones resistant to 1 mg / ml Geneticin (Invitrogen) were selected, and the expression level of G2A gene was confirmed by RT-PCR and flow cytometry.
G2A high expression clones (CHO-G2A cells) were further transfected with pcDNA3.1 / Gqi, and stable clones resistant to 1 mg / ml Zeocin (Invitrogen) were selected. The expression of Gqi was confirmed by RT-PCR, and CHO-G2A-Gqi cells were obtained. In addition, CHO cells that stably express Gqi were obtained (CHO-Gqi cells).

細胞内カルシウム濃度の測定
1.25 mM プロベネシド 及び 0.02% pluronic F127(BASF社)を含むHepes-Tyrode’s-BSA バッファー(25 mM Hepes-NaOH, pH 7.4, 140 mM NaCl, 2.7 mM KCl, 1.0 mM CaCl2, 12 mM NaHCO3, 5.6 mM D-glucose, 0.37 mM NaH2PO4, 0.49 mM MgCl2, 0.01% 脱脂 BSA)中で、 CHO細胞に5μM Fura-2 AM (Dojin社)を添加し、37℃、1時間インキュベートした。 細胞をHepes-Tyrode’s−BSA bufferで洗浄した後, リガンド刺激し、scanning fluorometer system (FLEXstation, Molecular Devices社) 又は RF5300PC spectrofluorometer (Shimazu社)を用いて細胞内カルシウム濃度の変化を測定した。
Measurement of intracellular calcium concentration
Hepes-Tyrode's-BSA buffer containing 1.25 mM probenecid and 0.02% pluronic F127 (BASF) (25 mM Hepes-NaOH, pH 7.4, 140 mM NaCl, 2.7 mM KCl, 1.0 mM CaCl 2 , 12 mM NaHCO 3 , 5.6 mM 5 μM Fura-2 AM (Dojin) was added to CHO cells in D-glucose, 0.37 mM NaH 2 PO 4 , 0.49 mM MgCl 2 , 0.01% defatted BSA) and incubated at 37 ° C. for 1 hour. The cells were washed with Hepes-Tyrode's-BSA buffer, stimulated with the ligand, and changes in intracellular calcium concentration were measured using a scanning fluorometer system (FLEXstation, Molecular Devices) or RF5300PC spectrofluorometer (Shimazu).

GTPγS結合アッセイ
CHO細胞をホモジナイズバッファー(20 mM Tris-HCl, pH 7.4, 0.25 M sucrose, 10 mM MgCl2, 1 mM EDTA, 及びComplete protease inhibitor cocktail(Roche社))中で超音波破砕した。破砕物を12,000×gで10分間遠心し、上清を100,000×gで1時間遠心した。沈殿物(膜画分)をホモジナイズバッファー中で再懸濁し、タンパク質濃度を、BSAを標準とし、BCA Protein Assay Reagent (Pierce)によって決定した。200 μl の結合バッファー(20 mM Tris-HCl, pH 7.5, 5 mM MgCl2, 100 mM NaCl, 1 mM EDTA, 1 mM DTT, 5 μM GDP, 及び0.1% BSA)中、20 μM 非標識GTPγSの存在下又は非存在下で、膜タンパク質(20μg)を0.5 nM [35S]GTPγS及び各濃度の9(S)-HODEとともに30℃で30分間インキュベートした。
GF/C glass-fiber filters (Whatman社)を用いてろ過することにより反応を終結させた。フィルターをPBS(-)で入念に洗浄し、50℃で乾燥させ、Aquasol II scintillation cocktail (Packard社)に浸した。フィルターの放射能をLS6500 scintillation system (Beckman社)を用いて測定した。
GTPγS binding assay
CHO cells were sonicated in a homogenization buffer (20 mM Tris-HCl, pH 7.4, 0.25 M sucrose, 10 mM MgCl 2 , 1 mM EDTA, and Complete protease inhibitor cocktail (Roche)). The crushed material was centrifuged at 12,000 × g for 10 minutes, and the supernatant was centrifuged at 100,000 × g for 1 hour. The precipitate (membrane fraction) was resuspended in homogenization buffer and the protein concentration was determined by BCA Protein Assay Reagent (Pierce) with BSA as standard. Presence of 20 μM unlabeled GTPγS in 200 μl binding buffer (20 mM Tris-HCl, pH 7.5, 5 mM MgCl 2 , 100 mM NaCl, 1 mM EDTA, 1 mM DTT, 5 μM GDP, and 0.1% BSA) In the absence or absence, membrane protein (20 μg) was incubated with 0.5 nM [ 35 S] GTPγS and each concentration of 9 (S) -HODE at 30 ° C. for 30 minutes.
The reaction was terminated by filtration using GF / C glass-fiber filters (Whatman). The filter was carefully washed with PBS (−), dried at 50 ° C., and immersed in Aquasol II scintillation cocktail (Packard). The radioactivity of the filter was measured using LS6500 scintillation system (Beckman).

細胞培養
NHEK細胞(Kurabo)はgrowth supplements (Kurabo, growth medium)を添加したHuMedia-KB2 (Kurabo, basal medium)を用いて培養した。
Cell culture
NHEK cells (Kurabo) were cultured using HuMedia-KB2 (Kurabo, basal medium) supplemented with growth supplements (Kurabo, growth medium).

免疫組織染色
ヒト皮膚の凍結切片 (厚さ6μm)を10% BSAを用いて室温で30分ブロッキングし、1% BSA/PBSで1.7 μg/mlに希釈した1次抗体を用いて4°Cで一晩インキュベートした。1次抗体は、抗ヒトG2A抗体(Lifespan)またはウサギIgG (Santa-cruz)を用いた。次いで、1% BSA/PBSで2 μg/mlに希釈した2次抗体(Alexa Fluor 488(Molecular Probes)と結合したヤギ抗ウサギIgG)を用いて室温で1時間インキュベートし、蛍光顕微鏡(Axioskop; Zeiss)を用いて観察を行った。
Immunohistochemical staining Frozen sections of human skin (thickness 6 μm) were blocked with 10% BSA for 30 minutes at room temperature, and diluted with primary antibody diluted to 1.7 μg / ml with 1% BSA / PBS at 4 ° C. Incubate overnight. As the primary antibody, anti-human G2A antibody (Lifespan) or rabbit IgG (Santa-cruz) was used. Subsequently, it was incubated for 1 hour at room temperature using a secondary antibody (goat anti-rabbit IgG conjugated with Alexa Fluor 488 (Molecular Probes)) diluted to 2 μg / ml with 1% BSA / PBS, and fluorescence microscope (Axioskop; Zeiss ) Was used for observation.

RT-PCR
トータルRNAを、DNase(Qiagen)で処理したNHEK細胞からRNeasy Mini kit (Qiagen)を用いて抽出した。RT-PCRはQIAquick one step RT-PCR kit (Qiagen)とセンスプライマー(5’-GGCTTTGCCATCCCTCTC-3’:配列番号7)及びアンチセンスプライマー(5’-GACAGGCACAGAAACACC-3’:配列番号8)を用いて行った。
RT-PCR
Total RNA was extracted from NHEK cells treated with DNase (Qiagen) using RNeasy Mini kit (Qiagen). RT-PCR uses QIAquick one step RT-PCR kit (Qiagen), sense primer (5'-GGCTTTGCCATCCCTCTC-3 ': SEQ ID NO: 7) and antisense primer (5'-GACAGGCACAGAAACACC-3': SEQ ID NO: 8) went.

NHEK細胞における9(S)-HODEによる細胞内カルシウム動員
0.02% pluronic F127を含むHepes-Tyrode’s-BSAバッファー(25 mM Hepes-NaOH, pH 7.4; 140 mM NaCl; 2.7 mM KCl; 1.0 mM CaCl2; 12 mM NaHCO3; 5.6 mM D-glucose; 0.37 mM NaH2PO4; 0.49 mM MgCl2; および 0.01% fatty acid-free BSA)中で、NHEK細胞に2.5 μMFura-2/AM (Dojin)を加えて37℃で1時間インキュベートした。細胞をHepes-Tyrode’s-BSA バッファーで洗浄し、9(S)-HODE で刺激したときの細胞内カルシウム濃度の変化をRF5300PC spectrofluorometer (Shimazu)を用いて測定した。
Intracellular calcium mobilization by 9 (S) -HODE in NHEK cells
Hepes-Tyrode's-BSA buffer containing 0.02% pluronic F127 (25 mM Hepes-NaOH, pH 7.4; 140 mM NaCl; 2.7 mM KCl; 1.0 mM CaCl 2 ; 12 mM NaHCO 3 ; 5.6 mM D-glucose; 0.37 mM NaH 2 In PO 4 ; 0.49 mM MgCl 2 ; and 0.01% fatty acid-free BSA), 2.5 μMFura-2 / AM (Dojin) was added to NHEK cells and incubated at 37 ° C. for 1 hour. The cells were washed with Hepes-Tyrode's-BSA buffer, and the change in intracellular calcium concentration when stimulated with 9 (S) -HODE was measured using RF5300PC spectrofluorometer (Shimazu).

サイトカイン濃度の測定
NHEK細胞を9(S)-HODEで刺激した後、培養上清を回収しサイトカイン濃度をBio-Plex ELISA system (Bio-Rad)を用いて測定した。
Measurement of cytokine concentration
After NHEK cells were stimulated with 9 (S) -HODE, the culture supernatant was collected and the cytokine concentration was measured using Bio-Plex ELISA system (Bio-Rad).

[結果]G2A を発現するCHO細胞において9(S)-HODEによって惹起される細胞内カルシウム動員
図1に示されるように, CHO-G2A細胞において、9(S)-HODEは濃度依存的に細胞内カルシウム動員を惹起した。1/2極大活性をもたらす9(S)-HODE濃度は約2 μMであった。一方, 親株CHO-K1 細胞は9(S)-HODEに全く反応しなかった。
G2AはGタンパク質共役受容体であると考えられた。そこで、マウスGqタンパク質のC末端9ペプチドをマウスGiタンパク質の対応ペプチドと置換したGqi キメラタンパク質をG2Aと共発現させた細胞を用いて評価した。図1に示されるように, G2AとGqiの両方を発現するクローン(CHO-G2A-Gqi)は9(S)-HODEに対して高い反応性を示した。一方、Gqiのみを発現する CHO 細胞(CHO-Gqi)は 9(S)-HODEに反応しなかった。
[Results] Intracellular calcium mobilization induced by 9 (S) -HODE in CHO cells expressing G2A As shown in Fig. 1, in CHO-G2A cells, 9 (S) -HODE is a concentration-dependent cell. Intrinsic calcium mobilization. The concentration of 9 (S) -HODE that gave half-maximal activity was about 2 μM. On the other hand, parental CHO-K1 cells did not react at all with 9 (S) -HODE.
G2A was thought to be a G protein coupled receptor. Therefore, evaluation was performed using cells in which the Gqi chimeric protein in which the C-terminal 9 peptide of the mouse Gq protein was replaced with the corresponding peptide of the mouse Gi protein was coexpressed with G2A. As shown in FIG. 1, a clone expressing both G2A and Gqi (CHO-G2A-Gqi) showed high reactivity to 9 (S) -HODE. On the other hand, CHO cells expressing only Gqi (CHO-Gqi) did not react with 9 (S) -HODE.

G2Aのリガンド特異性
リノール酸、アラキドン酸の様々な酸化誘導体をそれぞれ1μM添加し、細胞内カルシウム濃度を測定した(図2A)。
その結果、これらの中では、9(S)-HODE 及び 11-HETE がCHO-G2A-Gqi細胞において最も強い細胞内カルシウム動員活性を示した。この2種類の脂質の構造を図2Aのカッコ内に示した。9(S)-ヒドロペルオキシオクタデカジエン酸(9(S)-HPODE) は9(S)-HODEと同等の活性を示したが,13(S)-HODE 及び13(S)-HPODE の活性は弱かった。これらの結果は ω位からの炭素鎖の長さと水酸基又はヒドロペルオキシ基の位置がG2Aのリガンド認識に重要であることを示唆している。一方, 9(S)-HODEのコレステロールエステル及び1-パルミトイルリゾフォスファチジルコリンは10 μMでもほとんど活性を示さなかった。また、以前リガンドと報告されたリゾフォスファチジルコリンには反応しなかった。
次に、リガンドの光学特異性について調べた(図2B)。その結果、9(S)-HODEの光学異性体である9(R)-HODE (Cayman Chemical社)も、9(S)-HODEほどではないものの、カルシウム動員活性を示した。このことから、9(R)-HODEもリガンドであることがわかった。
Ligand specificity of G2A 1 μM of various oxidized derivatives of linoleic acid and arachidonic acid were added, and the intracellular calcium concentration was measured (FIG. 2A).
As a result, among these, 9 (S) -HODE and 11-HETE showed the strongest intracellular calcium mobilization activity in CHO-G2A-Gqi cells. The structures of these two types of lipids are shown in parentheses in FIG. 2A. 9 (S) -Hydroperoxyoctadecadienoic acid (9 (S) -HPODE) showed activity similar to 9 (S) -HODE, but the activities of 13 (S) -HODE and 13 (S) -HPODE Was weak. These results suggest that the length of the carbon chain from the ω position and the position of the hydroxyl or hydroperoxy group are important for ligand recognition of G2A. On the other hand, 9 (S) -HODE cholesterol ester and 1-palmitoyl lysophosphatidylcholine showed little activity even at 10 μM. Also, it did not react with lysophosphatidylcholine, which was previously reported as a ligand.
Next, the optical specificity of the ligand was examined (FIG. 2B). As a result, 9 (R) -HODE (Cayman Chemical), which is an optical isomer of 9 (S) -HODE, also showed calcium mobilization activity, although not as much as 9 (S) -HODE. From this, it was found that 9 (R) -HODE is also a ligand.

9(S)-HODEによるGTPγS結合の誘導
9(S)-HODEがGαタンパク質のGDP-GTP 交換を促進するかどうかについてG2A安定発現細胞の膜画分を用いて調べた。図3Aに示されるように, G2A安定発現細胞の膜画分は9(S)-HODE依存性の[35S]GTPγS結合を示した。
さらに、HEK293細胞に、コントロールベクター又はpCXN2.1-G2Aと、pcDNA3.1/Giを一過性に発現させて調べた。トランスフェクションの24時間後、膜画分を調製し、GTPγS結合の結合を調べた。9(S)-HODE依存性の[35S]GTPγSの結合はG2Aのみをトランスフェクトした細胞の膜画分では観察されなかった(データは示さない)。図3Bに示すように、GiをG2Aと共発現させたときに9(S)-HODE依存性のGTPγS結合が見られた。一方、Gi のみをトランスフェクションしたときは9(S)-HODE依存性の[35S]GTPγS結合は観察されなかった。
これらの結果より、9(S)-HODEはG2Aを介してGαタンパク質を活性化することが示唆された。
Induction of GTPγS binding by 9 (S) -HODE
Whether 9 (S) -HODE promotes GDP-GTP exchange of Gα protein was examined using the membrane fraction of cells stably expressing G2A. As shown in FIG. 3A, the membrane fraction of G2A stably expressing cells showed 9 (S) -HODE-dependent [ 35 S] GTPγS binding.
Furthermore, control vectors or pCXN2.1-G2A and pcDNA3.1 / Gi were transiently expressed in HEK293 cells and examined. 24 hours after transfection, membrane fractions were prepared and examined for binding of GTPγS binding. 9 (S) -HODE-dependent [ 35 S] GTPγS binding was not observed in the membrane fraction of cells transfected with G2A alone (data not shown). As shown in FIG. 3B, 9 (S) -HODE-dependent GTPγS binding was observed when Gi was co-expressed with G2A. On the other hand, 9 (S) -HODE-dependent [ 35 S] GTPγS binding was not observed when only Gi was transfected.
These results suggest that 9 (S) -HODE activates Gα protein via G2A.

データは示さないが、G2A発現細胞における9(S)-HODE依存性のカルシウム濃度上昇反応反応や、cAMP増加抑制反応は、Giタンパク質阻害剤である百日咳毒素(PTX)により阻害されたことから、G2A受容体がGiタンパク質に共役していることが考えられた。また、G2Aを安定的に発現したCHO細胞では、9-HODE刺激によってMAPキナーゼ系のうち、JNKが活性化されることがわかった。   Although data are not shown, 9 (S) -HODE-dependent calcium concentration increase reaction and cAMP increase suppression reaction in G2A expressing cells were inhibited by pertussis toxin (PTX), a Gi protein inhibitor, It was considered that the G2A receptor is coupled to the Gi protein. In addition, in CHO cells stably expressing G2A, it was found that JNK was activated in the MAP kinase system by 9-HODE stimulation.

リシノール酸によるG2Aの活性化
リシノール酸をCHO-G2A細胞に添加し、細胞内カルシウム濃度を調べた(図4)。その結果、リシノール酸は9(S)-HODEと同程度にG2Aを発現した細胞において細胞内カルシウム動員を引き起こすことがわかった。一方、親細胞であるCHO-K1細胞は、9(S)-HODE(1 μM)やリシノール酸(10 μM)に反応しなかった。なお、ATPは多くの細胞に細胞内カルシウム動員を引き起こす陽性対照である。
Activation of G2A by ricinoleic acid Ricinoleic acid was added to CHO-G2A cells, and the intracellular calcium concentration was examined (FIG. 4). As a result, ricinoleic acid was found to cause intracellular calcium mobilization in cells expressing G2A to the same extent as 9 (S) -HODE. On the other hand, parental CHO-K1 cells did not react with 9 (S) -HODE (1 μM) or ricinoleic acid (10 μM). ATP is a positive control that causes intracellular calcium mobilization in many cells.

マクロファージ細胞におけるG2Aの役割の解析
マウスのマクロファージ系の細胞であるJ774細胞において、マウスG2A遺伝子を強制発現もしくは、RNA干渉(RNAi)により発現抑制した。強制発現はレンチウイルス発現ベクターpLenti6(Invitrogen社)を用いて行った。一方、発現抑制はRNAi用ベクターpBlock-iT(Invitrogen社)を用いて行った。RT-PCRでG2AmRNAの発現量を確認すると、G2A発現ベクター(pLenti6-mG2A)によって約4倍に増加しており、RNAi (pBlock-iT-mG2A)によって約5分の1以下に減少していた(データ略)。
Analysis of the role of G2A in macrophage cells The mouse G2A gene was forcibly expressed or inhibited by RNA interference (RNAi) in J774 cells, which are mouse macrophage cells. Forced expression was performed using a lentiviral expression vector pLenti6 (Invitrogen). On the other hand, expression suppression was performed using the RNAi vector pBlock-iT (Invitrogen). When the expression level of G2AmRNA was confirmed by RT-PCR, it was increased about 4 times by G2A expression vector (pLenti6-mG2A) and decreased to about 1/5 or less by RNAi (pBlock-iT-mG2A). (Data omitted).

J774細胞にLDLを添加すると細胞の泡沫化(脂肪滴貯留)が起こり(図5a)、酸化LDL(銅イオン処理により酸化させたLDL)を添加すると細胞の泡沫化はさらに進行する(図5d)。J774細胞の泡沫化は、動脈硬化における血管壁の脂肪蓄積のモデルとしてよく使われ実験系である。なお、J774細胞はG2A受容体を通常でも発現している。これに9-HODEを作用させておくとLDLの泡沫化は顕著になる(図5g)。9-HODEの処理により酸化LDLの作用はさらに顕著になる(図5j)。これに対し、G2Aを強制発現させると、LDLや酸化LDLの効果が顕著になる(図5b、e)。また、G2Aを強制発現させると、LDLや酸化LDLの泡沫化効果に及ぼす9-HODEの効果がさらに顕著になる(図5h、k)。
RNAiによってG2Aの発現を抑制すると、いずれの条件下でも、非常に激しい泡沫化が観察された(図5c、f、i、l)。特に、酸化LDLの効果が顕著となった(図5f、l)。
これらの現象の分子機構は不明であるが、G2Aおよびそのリガンドである9-HODEが、動脈硬化の病態形成に深く関与している可能性を示している。さらに、G2A活性調節薬が、動脈硬化治療薬として有用である可能性を示している。
また、G2Aの発現や9-HODEなど酸化脂肪酸の産生をモニターすることは、動脈硬化の診断や治療効果の判定に有用と考えられる。
When LDL is added to J774 cells, cell foaming (fat droplet storage) occurs (FIG. 5a), and when oxidized LDL (LDL oxidized by copper ion treatment) is added, cell foaming further proceeds (FIG. 5d). . J774 cell foaming is an experimental system often used as a model of vascular wall fat accumulation in arteriosclerosis. J774 cells normally express the G2A receptor. When 9-HODE is allowed to act on this, foaming of LDL becomes remarkable (FIG. 5g). The action of oxidized LDL becomes more prominent by treatment with 9-HODE (FIG. 5j). In contrast, when G2A is forcibly expressed, the effects of LDL and oxidized LDL become significant (FIGS. 5b and 5e). Moreover, when G2A is forcibly expressed, the effect of 9-HODE on the foaming effect of LDL or oxidized LDL becomes more prominent (FIGS. 5h and k).
When expression of G2A was suppressed by RNAi, very intense foaming was observed under any condition (FIGS. 5c, f, i, l). In particular, the effect of oxidized LDL became remarkable (FIGS. 5f and 1).
Although the molecular mechanism of these phenomena is unclear, G2A and its ligand 9-HODE may be deeply involved in the pathogenesis of arteriosclerosis. Furthermore, G2A activity modulators have the potential to be useful as therapeutic agents for arteriosclerosis.
In addition, monitoring the expression of G2A and the production of oxidized fatty acids such as 9-HODE is considered useful for diagnosis of arteriosclerosis and determination of therapeutic effects.

ヒト皮膚におけるG2Aの発現
ヒト皮膚におけるG2Aの発現を免疫組織染色により調べた(図6A)。G2Aは上皮、特に、扁平上皮細胞及び顆粒層に多く、基底層では少なかった。また、培養ヒトケラチノサイトNHEK細胞におけるG2Aの発現をRT-PCRにより調べた(図6B)。それによると、NHEK細胞においてもG2Aの発現が認められた。
Expression of G2A in human skin The expression of G2A in human skin was examined by immunohistochemical staining (FIG. 6A). G2A was abundant in the epithelium, especially squamous cells and granule layers, but less in the basal layer. In addition, the expression of G2A in cultured human keratinocyte NHEK cells was examined by RT-PCR (FIG. 6B). According to this, G2A expression was also observed in NHEK cells.

NHEK細胞における9(S)-HODEによる細胞内カルシウム動員
図7に示されるように、9(S)-HODEは内因性のG2Aを発現するNHEK細胞においても細胞内カルシウム動員を惹起した。3 μM 9(S)-HODEによる反応は弱かったが、10 μM 9(S)-HODEの添加により反応は顕著になった。一方、連続して15 μM 9(S)-HODEを添加しても反応は惹起されなかった。これは、ATPとは依然細胞が反応したことから、おそらく受容体の脱感作によるものと考えられた。
Intracellular calcium mobilization by 9 (S) -HODE in NHEK cells As shown in FIG. 7, 9 (S) -HODE also induced intracellular calcium mobilization in NHEK cells expressing endogenous G2A. The reaction with 3 μM 9 (S) -HODE was weak, but the reaction became significant by the addition of 10 μM 9 (S) -HODE. On the other hand, no reaction was induced even when 15 μM 9 (S) -HODE was added continuously. This was probably due to receptor desensitization, since cells still reacted with ATP.

NHEK細胞における9(S)-HODE添加によるサイトカインの誘導
9(S)-HODEで処理されたNHEK細胞の上清におけるサイトカインの濃度をBio-Plex ELISA systemを用いて調べた。その結果、9(S)-HODEはIL-6 (図8A), IL-8 (図8B), およびGM-CSF (図8C)を濃度依存的に誘導した。IL-6とIL-8の誘導は9(S)-HODE添加後4時間で有意に増加し、GM-CSFの増加は9(S)-HODE添加後16時間で有意に増加した。
Induction of cytokines by addition of 9 (S) -HODE in NHEK cells
The concentration of cytokine in the supernatant of NHEK cells treated with 9 (S) -HODE was examined using Bio-Plex ELISA system. As a result, 9 (S) -HODE induced IL-6 (FIG. 8A), IL-8 (FIG. 8B), and GM-CSF (FIG. 8C) in a concentration-dependent manner. The induction of IL-6 and IL-8 was significantly increased 4 hours after addition of 9 (S) -HODE, and the increase of GM-CSF was significantly increased 16 hours after addition of 9 (S) -HODE.

本発明のG2A作動薬は、癌、免疫性疾患、炎症性疾患、動脈硬化症、肝疾患などの疾患に対する治療効果や予防効果を有する医薬または食品の有効成分として用いることができる。また、本発明のスクリーニング方法によれば、新規なG2A活性調節薬を得ることができる。
The G2A agonist of the present invention can be used as an active ingredient of a medicine or food having a therapeutic effect or a preventive effect on diseases such as cancer, immune diseases, inflammatory diseases, arteriosclerosis, and liver diseases. Moreover, according to the screening method of the present invention, a novel G2A activity modulator can be obtained.

Claims (3)

被検化合物がG2A結合能を有するかどうかを評価する方法であって、9−ヒドロキシオクタデカジエン酸、9−ヒドロペルオキシオクタデカジエン酸、13−ヒドロキシオクタデカジエン酸、ヒドロキシエイコサテトラエン酸及びリシノール酸から選ばれる1種以上の化合物を対照化合物として用いて、被検化合物のG2A結合能を評価することを特徴とする方法。A method for evaluating whether a test compound has G2A binding ability, comprising 9-hydroxyoctadecadienoic acid, 9-hydroperoxyoctadecadienoic acid, 13-hydroxyoctadecadienoic acid, hydroxyeicosatetraenoic acid And one or more compounds selected from ricinoleic acid as a control compound to evaluate the G2A binding ability of the test compound. 9−ヒドロキシオクタデカジエン酸、9−ヒドロペルオキシオクタデカジエン酸、13−ヒドロキシオクタデカジエン酸、ヒドロキシエイコサテトラエン酸及びリシノール酸から選ばれる1種以上の化合物を対照化合物として用いて、被検化合物のG2A活性化能、またはG2A活性化阻害能を評価することを特徴とする、G2A活性調節薬のスクリーニング方法。Using at least one compound selected from 9-hydroxyoctadecadienoic acid, 9-hydroperoxyoctadecadienoic acid, 13-hydroxyoctadecadienoic acid, hydroxyeicosatetraenoic acid and ricinoleic acid as a control compound, A screening method for a G2A activity modulator, characterized by evaluating the test compound's G2A activation ability or G2A activation inhibition ability. 被検化合物がG2A活性化能を有するか、またはG2A活性化阻害能を有するかどうかを評価する方法であって、9−ヒドロキシオクタデカジエン酸、9−ヒドロペルオキシオクタデカジエン酸、13−ヒドロキシオクタデカジエン酸、ヒドロキシエイコサテトラエン酸及びリシノール酸から選ばれる1種以上の化合物を対照化合物として用いて、被検化合物のG2A活性化能またはG2A活性化阻害能を評価することを特徴とする方法。A method for evaluating whether a test compound has G2A activation ability or G2A activation inhibition ability, comprising 9-hydroxyoctadecadienoic acid, 9-hydroperoxyoctadecadienoic acid, 13-hydroxy It is characterized by evaluating the G2A activation ability or G2A activation inhibition ability of a test compound using at least one compound selected from octadecadienoic acid, hydroxyeicosatetraenoic acid and ricinoleic acid as a control compound. how to.
JP2007522314A 2005-06-22 2006-06-21 G protein-coupled receptor G2A agonist, and G2A activity modulator screening method Active JP4972745B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007522314A JP4972745B2 (en) 2005-06-22 2006-06-21 G protein-coupled receptor G2A agonist, and G2A activity modulator screening method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005182051 2005-06-22
JP2005182051 2005-06-22
JP2007522314A JP4972745B2 (en) 2005-06-22 2006-06-21 G protein-coupled receptor G2A agonist, and G2A activity modulator screening method
PCT/JP2006/312405 WO2006137435A1 (en) 2005-06-22 2006-06-21 Agonist to g protein-coupled receptor g2a and method of screening g2a activity controller

Publications (2)

Publication Number Publication Date
JPWO2006137435A1 JPWO2006137435A1 (en) 2009-01-22
JP4972745B2 true JP4972745B2 (en) 2012-07-11

Family

ID=37570463

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007522314A Active JP4972745B2 (en) 2005-06-22 2006-06-21 G protein-coupled receptor G2A agonist, and G2A activity modulator screening method

Country Status (2)

Country Link
JP (1) JP4972745B2 (en)
WO (1) WO2006137435A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0907601D0 (en) * 2009-05-01 2009-06-10 Equateq Ltd Novel methods

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04316516A (en) * 1990-08-21 1992-11-06 Kanoldt Arzneimittel Gmbh Medicine for treating estrogen-dependent disease
JPH06247850A (en) * 1993-02-24 1994-09-06 Suntory Ltd 12-lipoxygenase inhibitor
JPH07291862A (en) * 1994-04-28 1995-11-07 Tamanoisu Kk Antitumor agent and its production
WO1997044024A1 (en) * 1996-05-22 1997-11-27 University Of Vermont Novel arachidonic acid metabolite, 16-hete
JP2000505435A (en) * 1996-02-15 2000-05-09 ヴァイアロセル・インコーポレーテッド Use of leukotriene B (4) or an analog thereof as an antiviral and antitumor agent
WO2001076568A2 (en) * 2000-04-07 2001-10-18 1411198 Ontario Limited Use of 13-hode as a regulator of vascular biocompatibility and an inhibitor of cell hyperplasia
JP2002535479A (en) * 1999-01-29 2002-10-22 ラボラトワール アルコファルマ Method for obtaining an oil rich in hydroxyoctadecadienic fatty acid (HODE) or an ester thereof from a mixture containing linoleic acid or an ester thereof
WO2004064822A1 (en) * 2002-06-07 2004-08-05 Kieran Francis Scott Method of inhibiting prostate cancer cell proliferation

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6207412B1 (en) * 1997-11-13 2001-03-27 The Regents Of The University Of California Identification of a G protein-coupled receptor transcriptionally regulated by protein tyrosine kinase signaling in hematopoietic cells
JP2003225088A (en) * 1999-09-10 2003-08-12 Meiji Seika Kaisha Ltd Second human leukotriene b4 receptor and dna coding for the same
AU2003220913A1 (en) * 2002-03-19 2003-09-29 Tanabe Seiyaku Co., Ltd. Novel g protein-coupled recepotrs and genes thereof
JP2004049004A (en) * 2002-05-31 2004-02-19 Japan Science & Technology Corp 5-oxo-ete receptor protein and its gene

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04316516A (en) * 1990-08-21 1992-11-06 Kanoldt Arzneimittel Gmbh Medicine for treating estrogen-dependent disease
JPH06247850A (en) * 1993-02-24 1994-09-06 Suntory Ltd 12-lipoxygenase inhibitor
JPH07291862A (en) * 1994-04-28 1995-11-07 Tamanoisu Kk Antitumor agent and its production
JP2000505435A (en) * 1996-02-15 2000-05-09 ヴァイアロセル・インコーポレーテッド Use of leukotriene B (4) or an analog thereof as an antiviral and antitumor agent
WO1997044024A1 (en) * 1996-05-22 1997-11-27 University Of Vermont Novel arachidonic acid metabolite, 16-hete
JP2002535479A (en) * 1999-01-29 2002-10-22 ラボラトワール アルコファルマ Method for obtaining an oil rich in hydroxyoctadecadienic fatty acid (HODE) or an ester thereof from a mixture containing linoleic acid or an ester thereof
WO2001076568A2 (en) * 2000-04-07 2001-10-18 1411198 Ontario Limited Use of 13-hode as a regulator of vascular biocompatibility and an inhibitor of cell hyperplasia
WO2004064822A1 (en) * 2002-06-07 2004-08-05 Kieran Francis Scott Method of inhibiting prostate cancer cell proliferation

Also Published As

Publication number Publication date
JPWO2006137435A1 (en) 2009-01-22
WO2006137435A1 (en) 2006-12-28

Similar Documents

Publication Publication Date Title
Duthey et al. A single subunit (GB2) is required for G-protein activation by the heterodimeric GABAB receptor
Takayama et al. Expression and location of Hsp70/Hsc-binding anti-apoptotic protein BAG-1 and its variants in normal tissues and tumor cell lines
Ceci et al. Release of eIF6 (p27BBP) from the 60S subunit allows 80S ribosome assembly
Balamatsias et al. Identification of P-Rex1 as a novel Rac1-guanine nucleotide exchange factor (GEF) that promotes actin remodeling and GLUT4 protein trafficking in adipocytes
Pereira et al. IMPACT, a protein preferentially expressed in the mouse brain, binds GCN1 and inhibits GCN2 activation
Ali et al. Prolactin receptor regulates Stat5 tyrosine phosphorylation and nuclear translocation by two separate pathways
Gupta et al. Peroxisome proliferator-activated receptor γ and transforming growth factor-β pathways inhibit intestinal epithelial cell growth by regulating levels of TSC-22
Chiang et al. Identification of chemotype agonists for human resolvin D1 receptor DRV1 with pro-resolving functions
KR20070084498A (en) Torc polynucleotides and polypeptides, and methods of use
Schoeder et al. Discovery of tricyclic xanthines as agonists of the cannabinoid-activated orphan G-protein-coupled receptor GPR18
Yu et al. Cytosolic Gαs acts as an intracellular messenger to increase microtubule dynamics and promote neurite outgrowth
Liu et al. Extra-long Gαs variant XLαs protein escapes activation-induced subcellular redistribution and is able to provide sustained signaling
TW200538109A (en) Furosemide modulators of HM74
US7919260B2 (en) Screening methods using GPR52
Huang et al. Differential roles of extracellular histidine residues of GPR68 for proton-sensing and allosteric modulation by divalent metal ions
Kawaai et al. 80K-H interacts with inositol 1, 4, 5-trisphosphate (IP3) receptors and regulates IP3-induced calcium release activity
Bennett et al. Receptor-operated osteoclast calcium sensing
Christophe et al. Human Complement 5a (C5a) Anaphylatoxin Receptor (CD88) Phosphorylation Sites and Their Specific Role in Receptor Phosphorylation and Attenuation of G Protein-mediated Responses: DESENSITIZATION OF C5a RECEPTOR CONTROLS SUPEROXIDE PRODUCTION BUT NOT RECEPTOR SEQUESTRATION IN HL-60 CELLS
Schick et al. TEL/ETV6 is a signal transducer and activator of transcription 3 (Stat3)-induced repressor of Stat3 activity
Nabokina et al. Tspan-1 interacts with the thiamine transporter-1 in human intestinal epithelial cells and modulates its stability
Li et al. 14-3-3ζ Protein regulates anterograde transport of the human κ-opioid receptor (hKOPR)
JP4972745B2 (en) G protein-coupled receptor G2A agonist, and G2A activity modulator screening method
KR20060127982A (en) Oxydecahydronaphthalene modulators of hm74
Liu et al. Dynamic analysis of GH receptor conformational changes by split luciferase complementation
US20210106661A1 (en) Methods for identification, assessment, prevention, and treatment of metabolic disorders using pm20d1 and n-lipidated amino acids

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120313

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150