JP4971803B2 - Hot water system - Google Patents

Hot water system Download PDF

Info

Publication number
JP4971803B2
JP4971803B2 JP2007004219A JP2007004219A JP4971803B2 JP 4971803 B2 JP4971803 B2 JP 4971803B2 JP 2007004219 A JP2007004219 A JP 2007004219A JP 2007004219 A JP2007004219 A JP 2007004219A JP 4971803 B2 JP4971803 B2 JP 4971803B2
Authority
JP
Japan
Prior art keywords
hot water
steam
temperature
cylinder
stirrer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007004219A
Other languages
Japanese (ja)
Other versions
JP2008170085A (en
Inventor
正和 丸岡
Original Assignee
株式会社ミヤワキ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ミヤワキ filed Critical 株式会社ミヤワキ
Priority to JP2007004219A priority Critical patent/JP4971803B2/en
Publication of JP2008170085A publication Critical patent/JP2008170085A/en
Application granted granted Critical
Publication of JP4971803B2 publication Critical patent/JP4971803B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Instantaneous Water Boilers, Portable Hot-Water Supply Apparatuses, And Control Of Portable Hot-Water Supply Apparatuses (AREA)
  • Domestic Hot-Water Supply Systems And Details Of Heating Systems (AREA)

Description

本発明は、蒸気で冷水を加熱することにより熱水を生成し、この熱水と冷水を混合して所定温度の温水を得るようにした給湯システムに関する。   The present invention relates to a hot water supply system that generates hot water by heating cold water with steam and mixes the hot water and cold water to obtain hot water at a predetermined temperature.

従来、冷水と熱交換器で生成された熱水とを湯水混合弁で混合して温水を生成する給湯システムが知られている。この給湯システムは、冷水の一部と蒸気を前記熱交換器に導き、この熱交換器で生成された熱水と冷水の他の一部とを湯水混合弁により混合して温水を生成している。また、前記熱交換器から熱水を導出する熱水配管内に、サーモワックスのような感熱素子を有する温度センサを設けるとともに、熱交換器へ蒸気を供給する蒸気通路に蒸気調節弁を設け、熱水の温度に応じて蒸気調節弁の開度を調節することにより、所定の熱水温度となるようにフィードバック制御している(例えば特許文献1参照)。
特開2000―241023号公報
2. Description of the Related Art Conventionally, there is known a hot water supply system that generates hot water by mixing cold water and hot water generated by a heat exchanger with a hot water mixing valve. In this hot water supply system, a part of cold water and steam are guided to the heat exchanger, and hot water generated by the heat exchanger and another part of the cold water are mixed by a hot water mixing valve to generate hot water. Yes. In addition, in the hot water piping for deriving hot water from the heat exchanger, a temperature sensor having a thermal element such as a thermo wax is provided, and a steam control valve is provided in a steam passage for supplying steam to the heat exchanger, Feedback control is performed so as to obtain a predetermined hot water temperature by adjusting the opening of the steam control valve in accordance with the temperature of the hot water (see, for example, Patent Document 1).
JP 2000-241023 A

上記構造の給湯システムでは、主として湯水混合弁の制御遅れに起因して、設定温度以上の温水が給湯口弁(カラン)から排出されるオーバーシュートを起こす場合がある。すなわち、給湯システムの運転開始前の熱水・冷水停止状態においては、配管系全体が雰囲気温度と同等の温度(温水設定温度よりも低い)になっている。運転開始のため、熱水と冷水を供給すると、給湯口弁が閉じられた状態では、湯水混合弁も雰囲気温度と同等の低温のままなので、湯水混合弁の弁体は、温水導出通路に設けた感温駆動部の動作により、熱水側が全開で冷水側が全閉となる位置に保持されている。   In the hot water supply system having the above-described structure, an overshoot in which hot water of a set temperature or higher is discharged from the hot water supply valve (curan) mainly due to a control delay of the hot water / water mixing valve may occur. That is, in the hot water / cold water stop state before the operation of the hot water supply system is started, the entire piping system is at a temperature equivalent to the ambient temperature (lower than the hot water set temperature). When hot water and cold water are supplied to start operation, the hot water mixing valve remains at a low temperature equivalent to the ambient temperature when the hot water supply valve is closed, so the valve body of the hot water mixing valve is provided in the hot water outlet passage. By the operation of the temperature-sensitive drive unit, the hot water side is held in a fully open position and the cold water side is fully closed.

この状態で給湯口弁を開くと、湯水混合弁の熱水側の流路からのみ流入し、湯水混合弁内の上流部に存在していた冷水が排出されたのち、熱水が湯水混合弁を通過する。このとき、熱水が湯水混合弁の感温部に到達するとはじめて、サーモワックスのような感温素子が反応して弁体を移動させ、熱水側を絞り、冷水側を開き、設定温度になるようにフィードバックがかかる。しかしながら、通気初期においては、短時間ではあるが、熱水が必ず混合弁を通過してしまい、いくらかの温度低下をしながら給湯口弁に達する。給湯口弁を通過する際の温度は初めの熱水の温度や生成量、給湯口弁の弁開度や配管状況により変わるが、通過する熱量は湯水混合弁の制御遅れの時間に通過する熱水のもつ熱量である。   When the hot water supply valve is opened in this state, it flows only from the hot water flow path of the hot water mixing valve, and after the cold water existing in the upstream portion of the hot water mixing valve is discharged, the hot water becomes hot water mixing valve Pass through. At this time, only when hot water reaches the temperature sensing part of the hot water mixing valve, a temperature sensing element such as a thermo wax reacts to move the valve body, squeeze the hot water side, open the cold water side, and bring it to the set temperature. Feedback will be taken. However, in the initial stage of aeration, although it is a short time, hot water always passes through the mixing valve, and reaches the hot water supply valve with some temperature drop. The temperature when passing through the hot water supply valve varies depending on the initial temperature and amount of hot water, the valve opening of the hot water supply valve, and the piping status, but the amount of heat that passes through is the heat that passes during the delay of the control of the hot water mixing valve. The amount of heat that water has.

また、蒸気を熱源とする熱交換器により熱水を生成している給湯システムでは、温水少流量時のハンチングによってもオーバーシュートが発生する。温水使用中に熱水温度は80℃〜供給蒸気圧の飽和温度近くの範囲で変動しながら推移する。温水消費量が比較的多いとき、熱交換器への蒸気供給を調節する蒸気調節弁はON(開)状態を保持するが、温水消費量が比較的少ないとき、蒸気調節弁はON−OFF動作を繰り返し、それにつれて熱水の温度も変動する。さらに温水消費量が少ないときには、熱水の消費も少なくなるので、熱水の温度は、熱水大消費時のような大きな低下が発生せず、緩やかに低下する。熱水消費量が少なくなると、熱交換器内での過熱が起こり、熱水の温度が上昇するのに対し、蒸気調節弁の温度センサは熱水配管内に配置されているから、温度センサへの熱水流量の減少に伴い、熱交換器内の熱水温度上昇が主として熱水の自然対流で温度センサに伝達されることとなる結果、温度センサの温度上昇が遅れる。そのために、蒸気調節弁の閉動作が遅れて、熱水の最高温度が蒸気飽和温度近くまで達し、熱水の圧力もその飽和圧になる。給湯システムへの供給蒸気圧力>供給冷水圧力である場合、上の状態では、熱水が流入する温水混合弁において熱水圧力>冷水圧力の状態が発生する。   Moreover, in the hot water supply system which produces | generates hot water with the heat exchanger which uses steam as a heat source, overshoot generate | occur | produces also by the hunting at the time of a warm water small flow volume. During the use of hot water, the hot water temperature changes while fluctuating in the range from 80 ° C. to the saturation temperature of the supply steam pressure. When the hot water consumption is relatively high, the steam control valve that controls the supply of steam to the heat exchanger remains ON (open), but when the hot water consumption is relatively low, the steam control valve is turned on and off. And the temperature of the hot water fluctuates accordingly. Further, when the amount of hot water consumption is small, the consumption of hot water is also reduced, so the temperature of the hot water does not drop as much as when hot water is consumed and gradually decreases. When the consumption of hot water is reduced, overheating occurs in the heat exchanger and the temperature of the hot water rises, whereas the temperature sensor for the steam control valve is located in the hot water piping. As the hot water flow rate decreases, the temperature rise of the temperature sensor is delayed as a result of the increase in temperature of the hot water in the heat exchanger being transmitted to the temperature sensor mainly by natural convection of hot water. Therefore, the closing operation of the steam control valve is delayed, the maximum temperature of the hot water reaches near the steam saturation temperature, and the pressure of the hot water also becomes the saturation pressure. When the supply steam pressure to the hot water supply system> the supply cold water pressure, in the above state, the hot water pressure> cold water pressure state occurs in the hot water mixing valve into which the hot water flows.

40℃設定で少流量(3L/min 程度)の温水を使用しているとき、前述のとおり、熱水は緩やかに温度低下していくが、80℃付近で蒸気調節弁が開いて熱交換器へ蒸気が供給されるので、熱水は急激に温度上昇し、飽和蒸気温度近くまで昇温して蒸気調節弁が閉じ、また緩やかに温度低下するという動作を繰り返す。温水混合弁では、熱水の温度低下に伴う温水の温度低下が生じるために、この温度低下を感知する感温駆動部の動作によって弁体の高温側の弁開度が増大している。ここに冷水圧以上の圧力の熱水が流入してくるため、一時的に冷水は混合室への流入を阻止され、熱水が温度低下できない状態となり、混合室の温度が目標温度を越えて上昇(オーバーシュート)する。これを感温駆動部が感知して弁体を閉方向へ駆動することで熱水の流入を抑え、混合室の圧力を低下させて冷水の流入を許し、温度を下げる。ところが、過度の熱水の絞込みにより、アンダーシュートとなり、数回のオーバーシュートとアンダーシュートを繰り返すハンチングが生じる。このとき、熱水側の圧力が高いので温水吐出圧の変動も伴う。   When using hot water at a low flow rate (about 3L / min) at 40 ° C setting, as mentioned above, the temperature of the hot water gradually decreases, but the steam control valve opens at around 80 ° C and the heat exchanger Since the steam is supplied to the hot water, the temperature of the hot water rapidly increases, the temperature is raised to near the saturated steam temperature, the steam control valve is closed, and the temperature gradually decreases. In the hot water mixing valve, since the temperature of the hot water is lowered due to the temperature drop of the hot water, the valve opening on the high temperature side of the valve body is increased by the operation of the temperature sensing drive unit that senses this temperature drop. Since hot water with a pressure equal to or higher than the cold water pressure flows in here, the cold water is temporarily prevented from flowing into the mixing chamber, the temperature of the hot water cannot be lowered, and the temperature of the mixing chamber exceeds the target temperature. Rise (overshoot). The temperature sensing drive senses this and drives the valve body in the closing direction, thereby suppressing the inflow of hot water, lowering the pressure in the mixing chamber, allowing the inflow of cold water, and lowering the temperature. However, excessive squeezing of hot water results in undershoot, and hunting that repeats overshoot and undershoot several times occurs. At this time, since the pressure on the hot water side is high, the hot water discharge pressure also varies.

そこで、本発明は、温水温度のオーバーシュートおよび温水少流量時の温水温度のハンチングを抑制して、過度に高温の温水が供給されるのを防止できる給湯システムを提供することを目的とする。   Therefore, an object of the present invention is to provide a hot water supply system that can suppress overshooting of hot water temperature and hunting of hot water temperature at the time of a small flow of hot water to prevent excessively hot water from being supplied.

上記した目的を達成するために、本発明の給湯システムは、熱水と冷水とを混合して温水を生成する湯水混合弁と、蒸気と前記冷水との熱交換により前記熱水を生成する熱交換器と、前記熱交換器に流入する蒸気量を調節する蒸気調節弁とを備え、前記湯水混合弁は、前記熱水の導入通路および前記冷水の導入通路を開閉する単一の混合弁体と、前記生成された温水の温度に応じて前記弁体を駆動する混合弁駆動部とを有し、前記蒸気調節弁は、蒸気通路を開閉する蒸気弁体と、前記生成された熱水の温度に応じて作動し、熱水の熱エネルギを機械的変位に変換することにより前記蒸気弁体を駆動する蒸気弁駆動部とを有し、さらに、前記湯水混合弁から温水を導出する導出通路に、この導出通路の通路面積を急激に増大させたのち減少させることにより温水の撹拌を促進する撹拌器が設けられている。 In order to achieve the above object, a hot water supply system of the present invention includes a hot water mixing valve that mixes hot water and cold water to generate hot water, and heat that generates the hot water by heat exchange between steam and the cold water. A single mixing valve body that includes an exchanger and a steam control valve that adjusts the amount of steam flowing into the heat exchanger, and the hot and cold water mixing valve opens and closes the hot water introduction passage and the cold water introduction passage. And a mixing valve drive unit that drives the valve body in accordance with the temperature of the generated hot water, and the steam control valve includes a steam valve body that opens and closes a steam passage, and the generated hot water And a steam valve drive unit that operates according to temperature and drives the steam valve body by converting thermal energy of hot water into mechanical displacement, and further leads out the hot water from the hot and cold mixing valve In addition, the passage area of the lead-out passage is suddenly increased and then decreased. Agitator for promoting the agitation of the hot water is provided by.

この構成によれば、湯水混合弁の制御遅れで、設定温度を大きく上回る熱水が湯水混合弁を通過するような場合であっても、前記熱水は、温水導出通路に設けられた撹拌器内で先行する温水または冷水と十分撹拌されるので、温水の温度が効果的に下げられる。したがって、高いピーク温度を持つ熱水がそのまま温水導出通路の給湯口弁から出ることはなく、給湯初期に発生する温水温度のオーバーシュート現象や温水少流量時の温水温度のハンチング現象におけるピーク温度を低下させることができ、これによって、過度に高温の温水が供給されるのを防止できる。   According to this configuration, even if hot water greatly exceeding the set temperature passes through the hot water mixing valve due to a delay in the control of the hot water mixing valve, the hot water is provided in the hot water outlet passage. Since the water is sufficiently stirred with the preceding hot water or cold water, the temperature of the hot water is effectively lowered. Therefore, hot water having a high peak temperature does not directly come out of the hot water outlet valve of the hot water outlet passage, and the peak temperature in the hot water temperature overshoot phenomenon that occurs in the initial stage of hot water supply or the hot water temperature hunting phenomenon at a small flow rate of hot water. This can reduce the temperature, thereby preventing excessively hot water from being supplied.

また、好ましくは、前記撹拌器が、内径の大きい筒体と、前記筒体の一端部および他端部にそれぞれ設けられた内径の小さい流入口および流出口とを備えている。これにより、流入口から撹拌器内に流れ込む温水は、内径の大きい筒体内での大きな流速の変化により乱流が発生し、この乱流によって撹拌が促進されて温度が低下する。   Preferably, the stirrer includes a cylinder having a large inner diameter, and an inlet and an outlet having a small inner diameter provided at one end and the other end of the cylinder, respectively. Thereby, the hot water flowing into the stirrer from the inflow port generates a turbulent flow due to a large change in the flow velocity in the cylindrical body having a large inner diameter, and the stirring is promoted by the turbulent flow to lower the temperature.

好ましくは、前記撹拌器は、内径の大きい筒体と、前記筒体の一端部および他端部にそれぞれ設けられた内径の小さい流入口および流出口と、前記流入口に連通し前記筒体の内方に配置された小径の放散体とを備え、前記放散体は、下流端の底壁と周壁とを有する筒状であり、前記周壁に前記流入口からの温水を前記放散体の内方から外方に放散する複数の放散孔が形成されている。   Preferably, the stirrer includes a cylinder having a large inner diameter, an inlet and an outlet having a small inner diameter provided at one end and the other end of the cylinder, and the cylinder connected to the inlet. A diffuser having a small diameter disposed inward, and the diffuser has a cylindrical shape having a bottom wall and a peripheral wall at a downstream end, and hot water from the inflow port is supplied to the peripheral wall on the inner side of the diffuser. A plurality of diffusion holes are formed to diffuse outward from the outside.

この構成によれば、温水は、複数の放散孔から筒体の内部に噴出されることで、先行して筒体の内部に存在する温水との接触面積が増大する。これにより温水の撹拌が効率的に行われる。   According to this configuration, the hot water is ejected from the plurality of diffusion holes to the inside of the cylindrical body, so that the contact area with the hot water existing in the cylindrical body in advance is increased. Thereby, stirring of warm water is performed efficiently.

さらに好ましくは、前記撹拌器は、内径の大きい筒体と、前記導出通路内の温水を前記筒体の一端から変向させながら筒体内に導入する変向部とを備え、前記変向部は、流入口、流出口およびその間を仕切る仕切り板を有し、前記流入口から流入した熱水を前記仕切り板により変向し、仕切り板の一側を通過して筒体内に導き、筒体内から前記仕切り板の他側を通過して前記流出口から流出させるようになっている。   More preferably, the stirrer includes a cylindrical body having a large inner diameter, and a deflecting portion that introduces the hot water in the outlet passage from the one end of the cylindrical body into the cylindrical body, An inlet, an outlet, and a partition plate for partitioning between them, the hot water flowing in from the inlet is redirected by the partition plate, passes through one side of the partition plate, is guided into the cylinder, and from the cylinder It passes through the other side of the partition plate and flows out from the outlet.

この構成によれば、導出通路内の温水は、前記流入口から前記変向部の仕切り板に衝突してその流れ方向が急激に変向され、仕切り板の一側を通過して筒体内に導かれるので、温水の乱流が一層促進されて撹拌が効率的に行われる。   According to this configuration, the hot water in the outlet passage collides with the partition plate of the turning portion from the inflow port, and its flow direction is suddenly changed, and passes through one side of the partition plate to enter the cylinder. As a result, the turbulent flow of hot water is further promoted and the stirring is performed efficiently.

さらに好ましくは、前記撹拌器は、内径の大きい筒体と、前記筒体の一端部および他端部にそれぞれ設けられた内径の小さい流入口および流出口と、前記筒体内に配置され前記流入口から流入する温水と衝突して温水を筒体内に拡散させる衝突部材とを備えている。   More preferably, the stirrer is a cylinder having a large inner diameter, an inlet and an outlet having a small inner diameter provided at one end and the other end of the cylinder, and the inlet disposed in the cylinder. And a collision member that collides with the hot water flowing in and diffuses the hot water into the cylinder.

この構成によっても、導出通路内の温水は、前記流入口から前記衝突部材に衝突し、その流れ方向が急激に変向され、衝突部材の一側を通過して筒体内に導かれるので、温水の乱流が一層促進されて撹拌が効率的に行われる。   Also with this configuration, the hot water in the outlet passage collides with the collision member from the inflow port, the flow direction thereof is suddenly changed, and passes through one side of the collision member to be guided into the cylinder. Turbulence is further promoted, and stirring is efficiently performed.

本発明に係る給湯システムによれば、混合弁体と混合弁駆動部とを有する湯水混合弁の制御遅れで、設定温度を大きく上回る熱水が湯水混合弁を通過するような場合であっても、前記熱水は、通路面積を急激に増大させたのち減少させた撹拌器内で、先行する温水または冷水と十分撹拌されるので、温水の温度が効果的に下げられ、高いピーク温度を持つ熱水がそのまま給湯口弁から出ることがなくなる。したがって、給湯初期に発生する温水温度のオーバーシュート現象や温水少流量時の温水温度のハンチング現象におけるピーク温度を低下させることができる。   According to the hot water supply system according to the present invention, even when hot water greatly exceeding the set temperature passes through the hot water mixing valve due to a delay in control of the hot water mixing valve having the mixing valve body and the mixing valve drive unit. The hot water is sufficiently agitated with the preceding hot water or cold water in the stirrer that has been reduced and then rapidly increased in passage area, so the temperature of the hot water is effectively lowered and has a high peak temperature. Hot water will no longer come out of the hot water outlet valve. Therefore, the peak temperature in the overshoot phenomenon of the hot water temperature occurring at the initial stage of hot water supply or the hunting phenomenon of the hot water temperature at the time of a small flow of hot water can be reduced.

以下、本発明の好ましい実施形態について図面を参照しながら説明する。図1は、本発明に係る給湯システムの系統図である。同図に示す給湯システム10は、蒸気Sの熱で冷水C1を加熱することにより熱水Hを生成するプレート型熱交換器11を備えている。プレート型熱交換器11は複数のプレートを重ねて、その間に蒸気Sの通路と冷水C1の通路とをプレートを介して交互に配置したもので、コンパクトで熱交換容量が大きい。   Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a system diagram of a hot water supply system according to the present invention. A hot water supply system 10 shown in the figure includes a plate heat exchanger 11 that generates hot water H by heating cold water C1 with the heat of steam S. The plate-type heat exchanger 11 is formed by stacking a plurality of plates, and alternately arranging the passages of the steam S and the passages of the cold water C1 through the plates, and is compact and has a large heat exchange capacity.

前記給湯システム10にはさらに、給水源WAから一定の水圧で供給される冷水Cの一部を熱水生成用の冷水C1として逆止弁33を介して前記熱交換器11に導く冷水通路12と、前記熱交換器11で生成された熱水Hを導出する熱水通路13と、熱水通路13の途中に配設された湯水混合弁14と、前記冷水通路12の分岐点Aに接続されて前記冷水Cの他の一部を混合用の冷水C2として湯水混合弁14に導く冷水混合用通路15と、蒸気供給源VAから供給される蒸気Sを前記熱交換器11に導く蒸気通路16と、前記熱交換器11に供給された蒸気Sのドレン(凝縮水)を排出する排出通路17とを備えている。前記湯水混合弁14では、前記冷水C2を前記熱交換器11からの熱水Hに混合して温水Mが生成される。   The hot water supply system 10 further includes a cold water passage 12 that leads a part of the cold water C supplied from the water supply source WA at a constant water pressure to the heat exchanger 11 through the check valve 33 as cold water C1 for generating hot water. A hot water passage 13 for deriving the hot water H generated by the heat exchanger 11, a hot water mixing valve 14 disposed in the middle of the hot water passage 13, and a branch point A of the cold water passage 12. And a cold water mixing passage 15 that guides another part of the cold water C to the hot water mixing valve 14 as mixing cold water C2 and a steam passage that leads the steam S supplied from the steam supply source VA to the heat exchanger 11. 16 and a discharge passage 17 for discharging the drain (condensate) of the steam S supplied to the heat exchanger 11. In the hot water / water mixing valve 14, the cold water C <b> 2 is mixed with the hot water H from the heat exchanger 11 to generate hot water M.

前記蒸気通路16には、熱交換器11での蒸気Sとの熱交換によって加熱された後の冷水C1の温度、つまり熱水Hの温度に応じて蒸気Sの流量を調節する蒸気調節弁18が配設されている。この蒸気調節弁18は、蒸気通路16を開閉して蒸気Sの流量を調節する蒸気弁体18aと、熱水Hの温度に応じて前記蒸気弁体18aを駆動する蒸気弁駆動部18bとを備えている。   In the steam passage 16, a steam control valve 18 that adjusts the flow rate of the steam S according to the temperature of the cold water C 1 after being heated by heat exchange with the steam S in the heat exchanger 11, that is, the temperature of the hot water H. Is arranged. The steam control valve 18 includes a steam valve body 18a that opens and closes the steam passage 16 to adjust the flow rate of the steam S, and a steam valve drive unit 18b that drives the steam valve body 18a according to the temperature of the hot water H. I have.

前記排出通路17にはスチームトラップ19が配設されており、熱交換器11から排出される蒸気Sとその凝縮水の混合流体が蒸気をトラップし、凝縮水のみを排出通路17から外部にドレンDとして排出するようになっている。   A steam trap 19 is disposed in the discharge passage 17, and the mixed fluid of the steam S discharged from the heat exchanger 11 and its condensed water traps the steam, and only the condensed water is drained from the discharge passage 17 to the outside. D is discharged.

前記湯水混合弁14の出口には、この湯水混合弁14で生成された温水Mを温水吐出口となる給湯口弁(カラン)22に導く温水導出通路21が接続され、この温水導出通路21の途中に、前記湯水混合弁14からの温水Mの撹拌を促進する撹拌器1が設けられ、前記撹拌器1の下流側の温水導出通路21に温度センサ25が配設されている。この温度センサ25により、湯水混合弁14を介して給湯口弁22に導かれる温水Mの温度が検出され、このとき検出した温度データは前記温度センサ25に接続された温度表示部26に表示され、外部から確認できるようになっている。   A hot water outlet passage 21 is connected to the outlet of the hot water mixing valve 14 to guide the hot water M generated by the hot water mixing valve 14 to a hot water outlet valve (curan) 22 serving as a hot water discharge port. In the middle, a stirrer 1 that promotes stirring of the hot water M from the hot water / water mixing valve 14 is provided, and a temperature sensor 25 is disposed in the hot water outlet passage 21 on the downstream side of the stirrer 1. The temperature sensor 25 detects the temperature of the hot water M guided to the hot water inlet valve 22 via the hot water / water mixing valve 14, and the detected temperature data is displayed on the temperature display unit 26 connected to the temperature sensor 25. Can be confirmed from the outside.

前記給水源WAには手動バルブ28を備えた冷水Cの供給口27が接続され、その下流側に冷水Cに混在するゴミを取り除く給水用Y型ストレーナ29が配設されている。同様に、前記蒸気供給源VAには手動バルブ31を備えた蒸気Sの供給口30が接続され、その下流側に蒸気用Y型ストレーナ32が配設されている。   A cold water C supply port 27 having a manual valve 28 is connected to the water supply source WA, and a water supply Y-strainer 29 for removing dust mixed in the cold water C is disposed downstream thereof. Similarly, a steam S supply port 30 having a manual valve 31 is connected to the steam supply source VA, and a steam Y-type strainer 32 is disposed downstream thereof.

前記蒸気調節弁18は、図2に示すように、円筒状のケーシング40を有し、蒸気通路16を開閉して蒸気Sの流量を調節する蒸気弁体18aが下ケース41内に、熱水Hの温度に応じて前記蒸気弁体18aを駆動する蒸気弁駆動部18bが上ケース42内に、それぞれ収納されている。蒸気弁駆動部18bは、熱水通路13と、この熱水通路13内に位置する感熱素子(例えばサーモワックス)を内蔵し、熱水Hの熱エネルギを機械的変位に変換する感温部60と、この変位を蒸気弁体18aに伝達する部材61とを有している。この蒸気調節弁18により、熱水通路13内を流れる熱水Hの温度を感温部60で感知し、この熱水Hの温度に応じて蒸気弁駆動部18bにより前記蒸気弁体18aを駆動し、熱水Hの温度が高ければ蒸気調節弁18により、熱交換器11への蒸気Sの供給量を減少させて熱水Hの温度を下げ、熱水Hの温度が低ければ蒸気調節弁18により、熱交換器1への蒸気Sの供給量を増加して熱水Hの温度を上昇させる。   As shown in FIG. 2, the steam control valve 18 has a cylindrical casing 40, and a steam valve body 18 a that opens and closes the steam passage 16 to adjust the flow rate of the steam S is provided in the lower case 41. Steam valve driving portions 18b for driving the steam valve bodies 18a according to the temperature of H are accommodated in the upper case 42, respectively. The steam valve drive unit 18b includes a hot water passage 13 and a thermal element (for example, thermo wax) located in the hot water passage 13, and converts the thermal energy of the hot water H into a mechanical displacement. And a member 61 that transmits this displacement to the steam valve body 18a. The temperature of the hot water H flowing in the hot water passage 13 is detected by the temperature sensing unit 60 by the steam control valve 18, and the steam valve body 18a is driven by the steam valve driving unit 18b according to the temperature of the hot water H. If the temperature of the hot water H is high, the steam control valve 18 reduces the supply amount of the steam S to the heat exchanger 11 to lower the temperature of the hot water H, and if the temperature of the hot water H is low, the steam control valve. 18, the supply amount of the steam S to the heat exchanger 1 is increased, and the temperature of the hot water H is increased.

つぎに、湯水混合弁14の構造について図3を参照しながら説明する。同図において、湯水混合弁14は、ボデイ40内に、熱水通路13に接続する熱水Hの導入口41、混合用冷水通路15に接続する冷水C2の導入口42と、熱水Hと冷水C2を混合して温水Mを生成する混合室43と、熱水導入口41および冷水導入口42を開閉する円盤状の単一の混合弁体44と、生成された温水Mの温度に応じて混合弁体44を駆動する混合弁駆動部45とを備えている。この混合弁駆動部45は、サーモワックスなどの感熱素子を有する感温部46と、感温部46の熱変位を混合弁体44に伝達する弁棒47とを有している。この湯水混合弁14により、熱水Hと冷水C2とを混合して温水導出口37から温水Mとして導出通路21に導出する。   Next, the structure of the hot and cold water mixing valve 14 will be described with reference to FIG. In the figure, a hot water / mixing valve 14 is provided in a body 40 with an inlet 41 for hot water H connected to the hot water passage 13, an inlet 42 for cold water C 2 connected to the cold water passage 15 for mixing, According to the temperature of the mixing chamber 43 which mixes cold water C2 and produces | generates warm water M, the disk-shaped single mixing valve body 44 which opens and closes the hot water inlet 41 and the cold water inlet 42, and the produced | generated warm water M And a mixing valve drive unit 45 for driving the mixing valve body 44. The mixing valve drive unit 45 includes a temperature sensing unit 46 having a thermosensitive element such as a thermo wax, and a valve rod 47 that transmits the thermal displacement of the temperature sensing unit 46 to the mixing valve body 44. The hot water / water mixing valve 14 mixes the hot water H and the cold water C2 and guides the hot water H and the cold water C2 from the hot water outlet 37 to the outlet passage 21 as hot water M.

前記混合弁体44は弁47が挿入されるボス部44aと外周のリング部44bとを放射状のリブ44cで連結したもので、混合弁体44を混合弁駆動部45によって軸方向(図3の上下方向)に移動させることにより、リング部44bの下端の熱水弁口48と上端の冷水弁口49の開度を調節するようになっている。つまり、単一の混合弁体44によって熱水Hと冷水C2の両方の通路を開閉する。ボデイ40の上部には、感温部46の変位量を調整して温水Mの設定温度を調節するキャップ50が装着されている。   The mixing valve body 44 is formed by connecting a boss portion 44a into which a valve 47 is inserted and an outer ring portion 44b with radial ribs 44c. The mixing valve body 44 is axially moved by a mixing valve driving portion 45 (see FIG. 3). The opening degree of the hot water valve port 48 at the lower end and the cold water valve port 49 at the upper end of the ring portion 44b is adjusted by moving in the vertical direction. That is, the passage of both the hot water H and the cold water C2 is opened and closed by the single mixing valve body 44. A cap 50 that adjusts the set temperature of the hot water M by adjusting the amount of displacement of the temperature sensing unit 46 is attached to the upper portion of the body 40.

前記撹拌器1は、図4に示すように、内径D1の大きい金属製の筒体2と、筒体2の一端部および他端部にそれぞれ筒体2と同心状に設けられた内径D2,D3の小さい流入口3および流出口4とを備えている。この場合、流入口3および流出口4の内径D2,D3は同一であり、攪拌効果を高めるためには、これら内径D2,D3に対して、筒体2の内径、すなわち筒体2により形成された攪拌室1Mの直径D1は、約2倍以上〜5倍以下(D1=2〜5D2)で、攪拌室1Mの軸方向長さLは、約5倍以上〜10倍以下(L=5〜10D2)であるのが望ましい。このように、温水導出通路21の通路面積を筒体2内で急激に増大させたのち、流出口4で減少させることにより、導出通路21内から撹拌器1に流れ込む温水Mは、流速の変化などにより強い乱流が発生し、撹拌が促進されるようになっている。   As shown in FIG. 4, the stirrer 1 includes a metal cylinder 2 having a large inner diameter D1, and inner diameters D2 provided concentrically with the cylinder 2 at one end and the other end of the cylinder 2, respectively. An inlet 3 and an outlet 4 having a small D3 are provided. In this case, the inner diameters D2 and D3 of the inlet 3 and the outlet 4 are the same, and in order to enhance the stirring effect, the inner diameter of the cylindrical body 2, that is, the cylindrical body 2 is formed with respect to the inner diameters D2 and D3. The diameter D1 of the stirring chamber 1M is about 2 times to 5 times (D1 = 2 to 5D2), and the axial length L of the stirring chamber 1M is about 5 times to 10 times (L = 5 to 5 times). 10D2). As described above, the hot water M flowing into the stirrer 1 from the outlet passage 21 is changed in the flow velocity by rapidly increasing the passage area of the hot water outlet passage 21 in the cylindrical body 2 and then decreasing it at the outlet 4. As a result, strong turbulence is generated and stirring is promoted.

次に、前記構成の給湯システムの動作について説明する。まず、図1において、蒸気用手動バルブ31を開くと、蒸気供給源VAからの蒸気Sが供給口30から蒸気通路16を介して蒸気調節弁18経由で熱交換器11に導入される。同様に、冷水用手動バルブ28を開くと、給湯源WAからの冷水Cの一部が熱水生成用の冷水C1として供給口27から冷水通路12を経て熱交換器11に導入される。この熱交換器11内で前記冷水C1と蒸気Sとが熱交換され、加熱された熱水H(例えば90〜100℃)は熱水通路13を介して蒸気調節弁18の駆動部18bに導かれた後、湯水混合弁14に導かれる。他方、冷水Cの一部が混合用の冷水C2として冷水混合用通路15を経て湯水混合弁14に導かれ、冷水C2と熱水Hが所定の混合割合で混合されて温水M(例えば30〜70℃)となる。この温水Mは給湯口弁22を開くことで導出通路21を経て、所定温度の温水Mとして給湯に使用される。   Next, the operation of the hot water supply system having the above configuration will be described. First, in FIG. 1, when the steam manual valve 31 is opened, the steam S from the steam supply source VA is introduced from the supply port 30 into the heat exchanger 11 via the steam passage 16 and the steam control valve 18. Similarly, when the cold water manual valve 28 is opened, a part of the cold water C from the hot water supply source WA is introduced into the heat exchanger 11 through the cold water passage 12 from the supply port 27 as cold water C1 for generating hot water. In the heat exchanger 11, the cold water C 1 and the steam S are heat-exchanged, and the heated hot water H (for example, 90 to 100 ° C.) is guided to the drive unit 18 b of the steam control valve 18 through the hot water passage 13. Then, it is guided to the hot and cold mixing valve 14. On the other hand, a part of the cold water C is led to the hot water mixing valve 14 through the cold water mixing passage 15 as the cold water C2 for mixing, and the cold water C2 and the hot water H are mixed at a predetermined mixing ratio to warm water M (for example 30 to 30). 70 ° C.). The hot water M is used for hot water supply as hot water M having a predetermined temperature through the outlet passage 21 by opening the hot water supply valve 22.

前記動作において、給湯システムの停止状態、すなわち、蒸気・給水の停止状態からの運転開始時には、前述のとおり、図3の湯水混合弁14の熱水弁口48が全開であるため、湯水混合弁14の制御遅れが発生し、湯水混合弁14の感温部46が反応して熱水弁口48を絞るまでの時間に、少量の熱水Hが湯水混合弁14を通過して導出通路21に流れ込む。このとき、導出通路21には図4の撹拌器1を設けているので、流れ込んだ熱水Hは、この熱水Hに先行して導出通路21に存在している冷水C2または温水Mと撹拌器1内で撹拌される。つまり、撹拌器1において、熱水Hは内径D2の小さい流入口3から流れ込み、続いて急激に内径D1の大きい筒体2内(攪拌室1M)に入り込み、さらに内径D3の小さい流出口4で絞り込まれるので、その際に生じる流速の変化等により強い乱流が発生し、熱水Hは筒体2内の冷水C2または温水Mと十分撹拌される。   In the above operation, when the hot water supply system is stopped, that is, when the operation is started from the steam / water supply stop state, as described above, the hot water valve port 48 of the hot water mixing valve 14 of FIG. 14, a small amount of hot water H passes through the hot water mixing valve 14 and passes through the outlet passage 21 until the temperature sensing portion 46 of the hot water mixing valve 14 reacts and the hot water valve port 48 is throttled. Flow into. At this time, since the agitator 1 of FIG. 4 is provided in the outlet passage 21, the hot water H that has flowed in is agitated with the cold water C2 or hot water M existing in the outlet passage 21 prior to the hot water H. Stir in vessel 1. That is, in the stirrer 1, the hot water H flows from the inlet 3 with the small inner diameter D2 and then suddenly enters the cylindrical body 2 with the large inner diameter D1 (stirring chamber 1M), and further at the outlet 4 with the small inner diameter D3. Since the water is squeezed, a strong turbulent flow is generated due to a change in flow velocity generated at that time, and the hot water H is sufficiently agitated with the cold water C2 or the hot water M in the cylindrical body 2.

これにより、図1の攪拌器1の下流の温水センサ25で検出される温水Mの温度が低下し、図16(A)に示すような従来例の大きなオーバーシュート10aが解消され、図16(B)に示すように、オーバーシュート10bのピーク温度が大幅に低下した。また、同様に、撹拌器1内での撹拌効果により、図17(A)に示すような、給湯システムへの供給蒸気圧力が供給冷水圧力よりも大きい場合に発生する温水少流量時の温水温度のハンチング11aも抑制でき、図17(B)に示すように、温水温度のハンチング11bのピーク温度が低下した。   Thereby, the temperature of the hot water M detected by the hot water sensor 25 downstream of the stirrer 1 in FIG. 1 is reduced, and the large overshoot 10a of the conventional example as shown in FIG. 16A is eliminated, and FIG. As shown in B), the peak temperature of the overshoot 10b was significantly reduced. Similarly, due to the stirring effect in the stirrer 1, as shown in FIG. 17A, the hot water temperature at the time of a small flow of hot water generated when the supply steam pressure to the hot water supply system is larger than the supply cold water pressure. Hunting 11a can also be suppressed, and as shown in FIG. 17 (B), the peak temperature of the hot water temperature hunting 11b is lowered.

図5は第2実施形態の撹拌器1を示す。この第2実施形態は、第1実施形態の筒体2の内方に小径の筒状の放散体5を追加したものである。この放散体5は、筒体2と同心状であって、流入口3に連通し、流入口3と同一の内径D2を有しており、下流端の底壁5aと周壁5bと備え、前記周壁5bに温水Mを前記放散体5の内方から外方に放散する放散孔6が複数個形成されている。この放散孔6は、放散体5の軸心CCと直交する方向に開口するように形成されている。この第2実施形態によれば、運転開始時に流入口3から熱水Hが流入した場合でも、この熱水Hが複数の放散孔6から分散して筒体2内に噴出されるので、先行して筒体2の内部に存在する冷水C2または温水Mとの接触面積が増大し、熱水Hと冷水C2または温水Mとの撹拌が効果的に行われる。撹拌の効果を高めるために、流入口3および放散体5の内径D2に対し、筒体2の内径(攪拌室1Mの直径)D1を2.5倍以上〜5倍以下(D1=2.5〜5.0D2)とし、攪拌室1Mの長さLを5倍以上〜10倍以下(L=5〜10D2)するのが望ましい。   FIG. 5 shows the agitator 1 of the second embodiment. This 2nd Embodiment adds the small-diameter cylindrical diffuser 5 inside the cylinder 2 of 1st Embodiment. The diffuser 5 is concentric with the cylindrical body 2, communicates with the inlet 3, has the same inner diameter D 2 as the inlet 3, and includes a bottom wall 5 a and a peripheral wall 5 b at the downstream end, A plurality of diffusion holes 6 are formed in the peripheral wall 5b to diffuse the hot water M from the inside of the diffuser 5 to the outside. The diffusion hole 6 is formed so as to open in a direction orthogonal to the axial center CC of the diffusion body 5. According to the second embodiment, even when hot water H flows from the inlet 3 at the start of operation, the hot water H is dispersed from the plurality of diffusion holes 6 and ejected into the cylindrical body 2. Thus, the contact area between the cold water C2 or the hot water M existing inside the cylinder 2 is increased, and the hot water H and the cold water C2 or the hot water M are effectively stirred. In order to enhance the stirring effect, the inner diameter D1 of the cylindrical body 2 (the diameter of the stirring chamber 1M) D1 is 2.5 to 5 times (D1 = 2.5) with respect to the inner diameter D2 of the inlet 3 and the diffuser 5. To 5.0D2), and the length L of the stirring chamber 1M is desirably 5 times to 10 times (L = 5 to 10D2).

図6は第3実施形態の撹拌器を示す。同図に示すように、この第3実施形態では、放散体5の軸心CCの方向に並ぶ放散孔6を、軸心CCと直交する径方向に対して交互に15°ずつ逆方向に向かって開口するように傾斜させている。この第3実施形態によれば、流入口3から流入した熱水Hが筒体2内に一層効果的に分散されて放出されるので、熱水Hと冷水C2または温水Mとの接触面積の増大による撹拌効果が大きくなる。   FIG. 6 shows a stirrer according to the third embodiment. As shown in the figure, in the third embodiment, the diffusion holes 6 arranged in the direction of the axial center CC of the diffusion body 5 are alternately directed in the opposite direction by 15 ° with respect to the radial direction orthogonal to the axial center CC. It is inclined to open. According to the third embodiment, since the hot water H flowing in from the inlet 3 is more effectively dispersed and discharged into the cylindrical body 2, the contact area between the hot water H and the cold water C2 or the hot water M is reduced. The stirring effect due to the increase is increased.

図7は第4実施形態の撹拌器の要部を示し、(A)は放散孔6の配置状態を示す放散体5の縦断面図、(B)は(A)のVII-VII 線断面図を示している。この第4実施形態では、図7(B)に示すように、放散体5の周壁5bにおける軸心CC方向の同一位置に4つの放散孔6が周方向に等間隔(90°)で配置されており、図7(A)に示すように、軸心CC方向に隣接する放散孔6,6同士が周方向に45°ずれている。この第4実施形態によれば、やはり、放散孔6からの熱水Hの分散が促進されるので、撹拌効果が大きくなる。   FIG. 7: shows the principal part of the stirrer of 4th Embodiment, (A) is a longitudinal cross-sectional view of the diffuser 5 which shows the arrangement | positioning state of the diffuser hole 6, (B) is a VII-VII sectional view taken on the line VII-VII. Is shown. In the fourth embodiment, as shown in FIG. 7B, four diffusion holes 6 are arranged at equal intervals (90 °) in the circumferential direction at the same position in the axial center CC direction on the peripheral wall 5b of the diffusion body 5. As shown in FIG. 7A, the diffusion holes 6 and 6 adjacent to each other in the axial CC direction are shifted by 45 ° in the circumferential direction. According to this 4th Embodiment, since the dispersion | distribution of the hot water H from the diffusion hole 6 is promoted again, the stirring effect becomes large.

図8は第5実施形態の撹拌器を示す。同図に示すように、この第5実施形態では、放散体5の周壁5bに複数の放散孔6を軸心CC周りに螺旋状に配置している。この放散孔6の開口方向は、放散体5の径方向と合致する筒体2の径方向に対し、軸心CC方向出口(流出口)4側に向かって約15°傾斜しており、かつ図9(A)のIX−IX線断面図である図9(B)に示すように、放散体5の放射方向Rに対して約15°傾斜している。この螺旋状の列における隣接する放散孔6同士は周方向に等ピッチ(例えば45°)ずらして螺旋状に配置されている。この第5実施形態によれば、図8の放散孔6から熱水Hが渦巻き状の流れを形成するように斜め方向に噴出される。これにより、放散孔6から噴出した熱水Hが、筒体2内に先行して存在する冷水C2または温水Mと渦を巻きながらより長い時間接触するので、効率よく撹拌が行われる。   FIG. 8 shows a stirrer according to the fifth embodiment. As shown in the figure, in the fifth embodiment, a plurality of diffusion holes 6 are spirally arranged around the axial center CC in the peripheral wall 5b of the diffusion body 5. The opening direction of the diffusion hole 6 is inclined by about 15 ° toward the axial CC direction outlet (outlet) 4 side with respect to the radial direction of the cylindrical body 2 that matches the radial direction of the diffuser 5, and As shown in FIG. 9B, which is a cross-sectional view taken along the line IX-IX in FIG. 9A, the radiator 5 is inclined by about 15 ° with respect to the radiation direction R. Adjacent diffusion holes 6 in this spiral row are arranged in a spiral manner with a constant pitch (for example, 45 °) in the circumferential direction. According to the fifth embodiment, the hot water H is jetted in an oblique direction so as to form a spiral flow from the diffusion hole 6 of FIG. Thereby, since the hot water H ejected from the diffusion hole 6 is in contact with the cold water C2 or the hot water M existing in advance in the cylindrical body 2 while swirling, the stirring is efficiently performed.

前記第2ないし第5実施形態において、流入口3,流出口4,放散体5および筒体2の内径、並びに攪拌室1Mの長さの好ましい関係は、図5の第2実施形態の場合と同一である。   In the second to fifth embodiments, the preferable relationship between the inlet 3, the outlet 4, the inner diameter of the diffuser 5 and the cylinder 2, and the length of the stirring chamber 1M is the same as that of the second embodiment of FIG. Are the same.

図10は第6実施形態の撹拌器を示す。同図に示すように、この撹拌器1は、内径D1(図10の左端)の大きい筒体2Aと、導出通路21内の温水Mまたは熱水Hを変向させて筒体2Aの一端から筒体2A内に導入する変向部7とを備えている。この変向部7は、流入口3、流出口4およびその間を仕切る仕切り板8を備えている。流入口3と流出口4は一直線上に位置し、仕切り板8は流入口3および流出口4の開口方向に対して直交しており、その先端の一部が筒体2A内に進入している。変向部7は、仕切り板8と平行に延びる筒状の接続部9を有し、この接続部9を介して筒体2Aに接続されている。   FIG. 10 shows a stirrer according to the sixth embodiment. As shown in the figure, the stirrer 1 is configured to change the direction of the cylindrical body 2A having a large inner diameter D1 (left end in FIG. 10) and the hot water M or hot water H in the outlet passage 21 from one end of the cylindrical body 2A. And a turning portion 7 to be introduced into the cylindrical body 2A. This turning portion 7 includes an inflow port 3, an outflow port 4, and a partition plate 8 for partitioning between them. The inflow port 3 and the outflow port 4 are positioned on a straight line, the partition plate 8 is orthogonal to the opening direction of the inflow port 3 and the outflow port 4, and a part of the tip thereof enters the cylindrical body 2 </ b> A. Yes. The turning portion 7 has a cylindrical connection portion 9 extending in parallel with the partition plate 8, and is connected to the cylinder body 2 </ b> A via the connection portion 9.

この第6実施形態によれば、運転開始時に流入口2から流入した熱水Hは、仕切り板8に衝突してその流れが変向され、仕切り板8の一側(図10の上側)を通過して筒体内2Aに導かれ、筒体2A内で反転して仕切り板8の他側(図10の下側)を通過して流出口3に導かれる。その際、熱水Hの流れの急激な変向により強い渦や乱流が発生し、先行して前記筒体2A内に残留する冷水C2または温水Mと筒体2A内で効率よく撹拌される。撹拌を促進するために、流入口3および流出口4の内径D2,D3(D2=D3)に対し、接続部9の内径D4は1.5倍以上〜2.5倍以下(D4=1.5〜2.5D2)が好ましく、筒体2Aの内径D1は3倍以上〜5倍以下(D1=3〜5D2)で、軸方向の長さLは5倍以上〜10倍以下(L=5〜10D2)が好ましい。   According to the sixth embodiment, the hot water H that has flowed in from the inlet 2 at the start of operation collides with the partition plate 8 and its flow is changed, and one side of the partition plate 8 (the upper side in FIG. 10) It passes through and is guided to the cylindrical body 2 </ b> A, reverses within the cylindrical body 2 </ b> A, passes through the other side of the partition plate 8 (lower side in FIG. 10), and is guided to the outlet 3. At that time, a strong vortex or turbulent flow is generated due to a sudden change in the flow of the hot water H, and the cold water C2 or hot water M remaining in the cylindrical body 2A in advance is efficiently stirred in the cylindrical body 2A. . In order to promote stirring, the inner diameter D4 of the connecting portion 9 is 1.5 times or more and 2.5 times or less (D4 = 1.D) with respect to the inner diameters D2 and D3 (D2 = D3) of the inlet 3 and the outlet 4. 5 to 2.5D2), the inner diameter D1 of the cylindrical body 2A is 3 to 5 times (D1 = 3 to 5D2), and the axial length L is 5 to 10 times (L = 5). To 10D2).

図11および図12は第7実施形態の撹拌器を示す。図11に示すように、この撹拌器1は、内径D1の大きい筒体2と、筒体2の一端部および他端部にそれぞれ筒体2と偏心状に設けられた内径D2,D3の小さい流入口3および流出口4とを備えている。流入口3と流出口4同心である。これら流入口3および流出口4は、筒体2に接続されたパイプ53,54の先端開口により形成されている。筒体2の内部には、流入口3から流入する温水Mと衝突して温水Mを筒体2内に拡散させる衝突部材55が配置されている。この衝突部材55は板材からなり、筒体2の周壁の内面に例えば溶接により固定されて、衝突面55aが流入口3の開口方向に対して直交している。衝突面55aの位置は、筒体2の軸方向の中間付近が好ましい。   11 and 12 show a stirrer according to a seventh embodiment. As shown in FIG. 11, this stirrer 1 has a cylindrical body 2 having a large inner diameter D1, and small inner diameters D2 and D3 provided eccentrically with the cylindrical body 2 at one end and the other end of the cylindrical body 2, respectively. An inlet 3 and an outlet 4 are provided. The inlet 3 and the outlet 4 are concentric. The inflow port 3 and the outflow port 4 are formed by opening ends of pipes 53 and 54 connected to the cylindrical body 2. A collision member 55 that collides with the hot water M flowing from the inlet 3 and diffuses the hot water M into the cylindrical body 2 is disposed inside the cylindrical body 2. The collision member 55 is made of a plate material, and is fixed to the inner surface of the peripheral wall of the cylindrical body 2 by welding, for example, so that the collision surface 55 a is orthogonal to the opening direction of the inflow port 3. The position of the collision surface 55a is preferably near the middle in the axial direction of the cylindrical body 2.

前記衝突部材55は、平面図である図12に示すように、筒体2の内面に沿った半月状であり、流入口3への温水流入方向から見て、流入口3と完全に重なるように対向している。ただし、衝突部材55の大きさ、つまり衝突面55aの大きさは、流入口3に完全に重ならなくても、流入口3の半分以上に重なるように、小さな半月状に設定してもよい。   As shown in FIG. 12, which is a plan view, the collision member 55 has a half-moon shape along the inner surface of the cylindrical body 2, and completely overlaps the inlet 3 when viewed from the hot water inflow direction to the inlet 3. Opposite to. However, the size of the collision member 55, that is, the size of the collision surface 55a may be set to a small half-moon shape so that it does not completely overlap the inflow port 3 but overlaps more than half of the inflow port 3. .

図11の撹拌器1において、運転開始時に流入口2から流入した熱水Hは、衝突部材55の衝突面55aと衝突してほぼ90°変向し、筒体2の内部で強い渦を発生する。同時に、内径D2の小さい流入口3から流入した熱水Hは、内径D1の大きい筒体2内(攪拌室1M)に入り込むことで通路面積を筒体2内で急激に増大させたのち、流出口4で減少させることにより、導出通路21内から撹拌器1に流れ込む熱水Hは、流速の変化により,渦を含む強い乱流が発生し、撹拌が促進される。このように変向と流速変化による乱流によって、熱水Hは筒体2内の冷水C2または温水Mと十分撹拌される。   In the stirrer 1 of FIG. 11, the hot water H that has flowed in from the inlet 2 at the start of operation collides with the collision surface 55 a of the collision member 55 and is turned by approximately 90 °, generating a strong vortex inside the cylinder 2. To do. At the same time, the hot water H flowing in from the inlet 3 having a small inner diameter D2 enters the cylinder 2 (stirring chamber 1M) having a large inner diameter D1 to rapidly increase the passage area in the cylinder 2 and then flow. By reducing at the outlet 4, the hot water H flowing into the stirrer 1 from the inside of the outlet passage 21 generates a strong turbulent flow including a vortex due to a change in the flow velocity, thereby promoting stirring. Thus, the hot water H is sufficiently agitated with the cold water C2 or the hot water M in the cylindrical body 2 by the turbulent flow due to the direction change and the flow velocity change.

また、流入口3および流出口4が筒体2に対して偏心しているから、筒体2の周壁における偏心した流入口3に近い部位に衝突部材55を支持させることにより、小さな衝突部材55によって流入口3の全体に対向させて強い変向を付与できる利点がある。さらに、導出通路21の周囲の一方側にのみスペースがある場合が多く、その場合、スペースのある側に、偏心した筒体2の膨出部分(図11の右側部分)を向けることにより、攪拌器1の配置が容易になる。   In addition, since the inlet 3 and the outlet 4 are eccentric with respect to the cylinder 2, the collision member 55 is supported by a portion close to the eccentric inlet 3 on the peripheral wall of the cylinder 2, so that the small collision member 55 There is an advantage that a strong direction can be imparted to the entire inflow port 3. Further, in many cases, there is a space only on one side around the lead-out passage 21, and in this case, the bulging portion (right side portion in FIG. 11) of the eccentric cylindrical body 2 is directed to the side having the space, thereby stirring. The arrangement of the vessel 1 is facilitated.

この第7実施形態の場合、図11の流入口3および流出口4の内径D2,D3は同一であり、攪拌効果を高めるためには、これら内径D2,D3に対して、筒体2の内径、すなわち筒体2により形成された攪拌室1Mの直径D1は、約2倍以上〜5倍以下(D1=2〜5D2)で、攪拌室1Mの軸方向長さLは、約2倍以上〜10倍以下(L=2〜10D2)、より好ましくは2.5〜5倍(L=2.5〜5D2)であるのが望ましい。   In the case of the seventh embodiment, the inner diameters D2 and D3 of the inlet 3 and the outlet 4 in FIG. 11 are the same, and in order to enhance the stirring effect, the inner diameter of the cylindrical body 2 with respect to these inner diameters D2 and D3. That is, the diameter D1 of the stirring chamber 1M formed by the cylindrical body 2 is about 2 times to 5 times (D1 = 2 to 5D2), and the axial length L of the stirring chamber 1M is about 2 times or more to It is desirable that it is 10 times or less (L = 2 to 10D2), more preferably 2.5 to 5 times (L = 2.5 to 5D2).

図13および図14は第8実施形態の撹拌器を示す。筒体2と流入口3および流出口4との偏心関係は図11および図12に示した第7実施形態と同一である。衝突部材55は、図14に示すように、筒体2の膨出側(図13の右側)から見てU字状である。この衝突部材55は板材からなり、左右1対の脚部55b,55bと、その上端部に連なる頂壁部55cとを有し、頂壁部55cの上面が、流入口3の開口方向に対して直交する衝突面55aとなっている。前記脚部55bが、筒体2の底壁の内面に例えば溶接により固定されて筒体2に支持されている。衝突面55aの位置は、筒体2の軸方向の中間付近よりも流入口3に近い位置が、強い変向を付与するために好ましい。   13 and 14 show an agitator according to an eighth embodiment. The eccentric relationship between the cylindrical body 2, the inlet 3 and the outlet 4 is the same as that of the seventh embodiment shown in FIGS. As shown in FIG. 14, the collision member 55 has a U shape when viewed from the bulging side of the cylindrical body 2 (the right side in FIG. 13). The collision member 55 is made of a plate material, and has a pair of left and right leg portions 55b and 55b and a top wall portion 55c connected to the upper end portion thereof, and the top surface of the top wall portion 55c is in the opening direction of the inflow port 3. Thus, the collision surface 55a is orthogonal. The leg portion 55 b is fixed to the inner surface of the bottom wall of the cylindrical body 2 by, for example, welding and supported by the cylindrical body 2. The position of the collision surface 55a is preferably a position closer to the inflow port 3 than near the middle in the axial direction of the cylindrical body 2 in order to give a strong turning.

前記衝突面55aは、図15に示すように、長方形であり、流入口3への温水流入方向から見て、流入口3とほぼ完全に重なるように対向している。ただし、衝突面55aの大きさは、流入口3に完全に重ならなくても、流入口3の半分以上に重なるように、小さな形状に設定してもよい。   As shown in FIG. 15, the collision surface 55 a has a rectangular shape and faces the inflow port 3 so as to almost completely overlap the inflow port 3 when viewed from the hot water inflow direction. However, the size of the collision surface 55a may be set to a small shape so that it does not completely overlap the inflow port 3 but overlaps more than half of the inflow port 3.

図13の撹拌器1において、運転開始時に流入口2から流入した熱水Hは、衝突部材55の衝突面55aと衝突してほぼ90°変向し、さらに頂壁部55cの下側に回り込むことにより、筒体2の内部で強い渦を発生する。同時に、内径D2の小さい流入口3から流入した熱水Hは、内径D1の大きい筒体2内(攪拌室1M)に入り込み、前記変向および周り込みを行いながら、内径D3の小さい流出口4で絞り込まれるので、その際に生じる流速の変化等により渦を含む乱流が発生する。このように変向と流速変化による乱流によって、熱水Hは筒体2内の冷水C2または温水Mと十分撹拌される。また、流入口3および流出口4が筒体2に対して偏心しているから、導出通路21の周囲の一方側にのみスペースがある場合に、スペースのある側に、偏心した筒体2の膨出部分(図13の右側部分)を向けることにより、攪拌器1の配置が容易になる。   In the stirrer 1 of FIG. 13, the hot water H that has flowed in from the inlet 2 at the start of operation collides with the collision surface 55a of the collision member 55 and is turned by approximately 90 °, and further wraps around below the top wall portion 55c. As a result, a strong vortex is generated inside the cylindrical body 2. At the same time, the hot water H flowing in from the inlet 3 having a small inner diameter D2 enters the cylindrical body 2 (stirring chamber 1M) having a large inner diameter D1, and the outlet 4 having a small inner diameter D3 while performing the turning and turning. Therefore, a turbulent flow including a vortex is generated due to a change in flow velocity generated at that time. Thus, the hot water H is sufficiently agitated with the cold water C2 or the hot water M in the cylindrical body 2 by the turbulent flow due to the direction change and the flow velocity change. Further, since the inflow port 3 and the outflow port 4 are eccentric with respect to the cylinder 2, when there is a space only on one side around the lead-out passage 21, the expansion of the eccentric cylinder 2 on the side where the space is present. By directing the protruding portion (the right portion in FIG. 13), the arrangement of the stirrer 1 is facilitated.

この第8実施形態の場合、図11の流入口3および流出口4の内径D2,D3は同一であり、攪拌効果を高めるためには、これら内径D2,D3に対して、筒体2の内径、すなわち筒体2により形成された攪拌室1Mの直径D1は、約2倍以上〜5倍以下(D1=2〜5D2)で、攪拌室1Mの軸方向長さLは、約2倍以上〜10倍以下(L=2〜10D2)、より好ましくは2.5〜5倍(L=2.5〜5D2)であるのが望ましい。   In the case of the eighth embodiment, the inner diameters D2 and D3 of the inlet 3 and the outlet 4 in FIG. 11 are the same, and in order to enhance the stirring effect, the inner diameter of the cylindrical body 2 with respect to these inner diameters D2 and D3. That is, the diameter D1 of the stirring chamber 1M formed by the cylindrical body 2 is about 2 times to 5 times (D1 = 2 to 5D2), and the axial length L of the stirring chamber 1M is about 2 times or more to It is desirable that it is 10 times or less (L = 2 to 10D2), more preferably 2.5 to 5 times (L = 2.5 to 5D2).

なお、前記第2実施形態から第8実施形態において、筒体2は円筒状であるが、例えば四角形状や三角形状または異形の横断面形状でもよい。その場合、筒体2の内径D1は、横断面積の平方根である有効内径となる。また、放射体5の放散孔6の横断面形状は円形としたが、例えばスリット状でもよく、四角形状や三角形状等であってもよい。   In addition, in the said 2nd Embodiment to 8th Embodiment, although the cylinder 2 is cylindrical shape, for example, a square shape, a triangular shape, or an irregular cross-sectional shape may be sufficient. In this case, the inner diameter D1 of the cylinder 2 is an effective inner diameter that is the square root of the cross-sectional area. Moreover, although the cross-sectional shape of the radiation hole 6 of the radiator 5 is circular, it may be, for example, a slit shape, a square shape, a triangular shape, or the like.

本発明に係る給湯システムの系統図である。It is a systematic diagram of the hot water supply system which concerns on this invention. 同給湯システムで用いる蒸気調節弁の縦断面図である。It is a longitudinal cross-sectional view of the steam control valve used with the hot water supply system. 同給湯システムで用いる湯水混合弁の縦断面図である。It is a longitudinal cross-sectional view of the hot and cold water mixing valve used in the hot water supply system. 第1実施形態の撹拌器を示す縦断面図である。It is a longitudinal cross-sectional view which shows the stirrer of 1st Embodiment. 第2実施形態の撹拌器を示す縦断面図である。It is a longitudinal cross-sectional view which shows the stirrer of 2nd Embodiment. 第3実施形態の撹拌器を示す縦断面図である。It is a longitudinal cross-sectional view which shows the stirrer of 3rd Embodiment. (A)は第4実施形態の放散体を示す縦断面図、(B)は(A)のVII-VII 線断面図である。(A) is the longitudinal cross-sectional view which shows the diffuser of 4th Embodiment, (B) is the VII-VII sectional view taken on the line of (A). 第5実施形態の撹拌器を示す縦断面図である。It is a longitudinal cross-sectional view which shows the stirrer of 5th Embodiment. (A)は第5実施形態の放散体を示す縦断面図、(B)は(A)のIX-IX 線断面図である。(A) is the longitudinal cross-sectional view which shows the diffuser of 5th Embodiment, (B) is the IX-IX sectional view taken on the line of (A). 第6実施形態の撹拌器を示す縦断面図である。It is a longitudinal cross-sectional view which shows the stirrer of 6th Embodiment. 第7実施形態の撹拌器を示す縦断面図である。It is a longitudinal cross-sectional view which shows the stirrer of 7th Embodiment. 第7実施形態の撹拌器を示す平面図である。It is a top view which shows the stirrer of 7th Embodiment. 第8実施形態の撹拌器を示す縦断側面図である。It is a vertical side view which shows the stirrer of 8th Embodiment. 第8実施形態の撹拌器を示す縦断正面図である。It is a vertical front view which shows the stirrer of 8th Embodiment. 第8実施形態の撹拌器を示す平面図である。It is a top view which shows the stirrer of 8th Embodiment. 通気初期の温水温度を示す特性図であり、(A)は従来例、(B)は本発明の場合をそれぞれ示す。It is a characteristic view which shows the warm water temperature of the ventilation | gas_flowing initial stage, (A) shows a prior art example, (B) shows the case of this invention, respectively. 温水少流量時の温水温度を示す特性図であり、(A)は従来例、(B)は本発明の場合をそれぞれ示す。It is a characteristic view which shows the warm water temperature at the time of a small flow of warm water, (A) shows a prior art example, (B) shows the case of this invention, respectively.

符号の説明Explanation of symbols

1 撹拌器
2,2A 筒体
3 流入口
4 流出口
5 放散体
6 放散孔
7 変向部
8 仕切り板
10 給湯システム
11 熱交換器
14 湯水混合弁
18 蒸気調節弁
18a 蒸気弁体
18b 蒸気弁駆動部
21 導出通路
55 衝突部材
C(C1,C2) 冷水
H 熱水
M 温水
S 蒸気
DESCRIPTION OF SYMBOLS 1 Stirrer 2, 2A Cylindrical body 3 Inlet 4 Outlet 5 Radiator 6 Radiator 6 Radiation hole 7 Turning part 8 Partition plate 10 Hot water supply system 11 Heat exchanger 14 Hot water mixing valve 18 Steam control valve 18a Steam valve body 18b Steam valve drive Part 21 Lead-out passage 55 Collision member C (C1, C2) Cold water H Hot water M Hot water S Steam

Claims (5)

熱水と冷水とを混合して温水を生成する湯水混合弁と、蒸気と前記冷水との熱交換により前記熱水を生成する熱交換器と、前記熱交換器に流入する蒸気量を調節する蒸気調節弁とを備え、
前記湯水混合弁は、前記熱水の導入通路および前記冷水の導入通路を開閉する単一の混合弁体と、前記生成された温水の温度に応じて前記弁体を駆動する混合弁駆動部とを有し、
前記蒸気調節弁は、蒸気通路を開閉する蒸気弁体と、前記生成された熱水の温度に応じて作動し、熱水の熱エネルギを機械的変位に変換することにより前記蒸気弁体を駆動する蒸気弁駆動部とを有し、
さらに、前記湯水混合弁から温水を導出する導出通路に、この導出通路の通路面積を急激に増大させたのち減少させることにより温水の撹拌を促進する撹拌器が設けられた給湯システム。
A hot and cold water mixing valve that generates hot water by mixing hot water and cold water, a heat exchanger that generates the hot water by exchanging heat between steam and the cold water, and an amount of steam that flows into the heat exchanger are adjusted. A steam control valve ,
The hot and cold water mixing valve includes a single mixing valve body that opens and closes the hot water introduction passage and the cold water introduction passage, and a mixing valve drive section that drives the valve body in accordance with the temperature of the generated hot water. Have
The steam control valve operates according to the temperature of the steam valve body that opens and closes the steam passage and the temperature of the generated hot water, and drives the steam valve body by converting the thermal energy of the hot water into a mechanical displacement. A steam valve drive unit that
Furthermore, the hot water supply system provided with the stirrer which accelerates | stimulates stirring of warm water by making the passage area which guide | leads out warm water from the said hot-water mixing valve increase the passage area of this extraction passage rapidly, and then reducing it.
請求項1において、前記撹拌器は、内径の大きい筒体と、前記筒体の一端部および他端部にそれぞれ設けられた内径の小さい流入口および流出口とを備えている給湯システム。 The hot water supply system according to claim 1 , wherein the stirrer includes a cylindrical body having a large inner diameter, and an inlet and an outlet having a small inner diameter provided at one end and the other end of the cylindrical body, respectively. 請求項1において、前記撹拌器は、内径の大きい筒体と、前記筒体の一端部および他端部にそれぞれ設けられた内径の小さい流入口および流出口と、前記流入口に連通し前記筒体の内方に配置された小径の放散体とを備え、
前記放散体は、下流端の底壁と周壁とを有する筒状であり、前記周壁に前記流入口からの温水を前記放散体の内方から外方に放散する複数の放散孔が形成されている給湯システム。
2. The stirrer according to claim 1 , wherein the stirrer is a cylinder having a large inner diameter, an inlet and an outlet having a small inner diameter provided at one end and the other end of the cylinder, and the cylinder communicating with the inlet. A small-diameter diffuser disposed inside the body,
The diffuser has a cylindrical shape having a bottom wall and a peripheral wall at a downstream end, and a plurality of diffusion holes are formed in the peripheral wall to diffuse hot water from the inflow port from the inside of the diffuser to the outside. There is a hot water system.
請求項1において、前記撹拌器は、内径の大きい筒体と、前記導出通路内の温水を前記筒体の一端から変向させながら前記筒体内に導入する変向部とを備え、
前記変向部は、流入口、流出口およびその間を仕切る仕切り板を有し、前記流入口から流入した温水を前記仕切り板により変向し、仕切り板の一側を通過して筒体内に導き、筒体内から前記仕切り板の他側を通過して前記流出口から流出させる給湯システム。
In Claim 1 , the stirrer includes a cylindrical body having a large inner diameter, and a deflecting portion that introduces warm water in the outlet passage from the one end of the cylindrical body into the cylindrical body,
The turning section has an inflow port, an outflow port, and a partition plate that partitions between the inflow port, the hot water flowing in from the inflow port is redirected by the partition plate, passes through one side of the partition plate, and is guided into the cylinder. A hot water supply system that passes the other side of the partition plate from the cylinder and flows out from the outlet.
請求項1において、前記撹拌器は、内径の大きい筒体と、前記筒体の一端部および他端部にそれぞれ設けられた内径の小さい流入口および流出口と、前記筒体内に配置され前記流入口から流入する温水と衝突して温水を筒体内に拡散させる衝突部材とを備えている給湯システム。 2. The stirrer according to claim 1 , wherein the stirrer is disposed in the cylinder, the cylinder having a large inner diameter, the inlet and the outlet having a small inner diameter provided at one end and the other end of the cylinder, respectively. A hot water supply system comprising a collision member that collides with hot water flowing from an inlet and diffuses the hot water into a cylinder.
JP2007004219A 2007-01-12 2007-01-12 Hot water system Active JP4971803B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007004219A JP4971803B2 (en) 2007-01-12 2007-01-12 Hot water system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007004219A JP4971803B2 (en) 2007-01-12 2007-01-12 Hot water system

Publications (2)

Publication Number Publication Date
JP2008170085A JP2008170085A (en) 2008-07-24
JP4971803B2 true JP4971803B2 (en) 2012-07-11

Family

ID=39698348

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007004219A Active JP4971803B2 (en) 2007-01-12 2007-01-12 Hot water system

Country Status (1)

Country Link
JP (1) JP4971803B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5452136B2 (en) * 2009-08-31 2014-03-26 株式会社ミヤワキ Hot water system
JP5463115B2 (en) * 2009-10-05 2014-04-09 株式会社ミヤワキ Hot water system
JP6086215B2 (en) * 2013-02-01 2017-03-01 Toto株式会社 Hot water storage type electric water heater
KR101475154B1 (en) * 2013-09-16 2014-12-22 최진민 Warm water system
CN110388740B (en) * 2018-04-16 2023-12-26 芜湖美的厨卫电器制造有限公司 water heater

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04151452A (en) * 1990-10-12 1992-05-25 Takagi Ind Co Ltd Controlling method of hot water supply of hot-cold water combination type tap-controlled water heater
JP2006112719A (en) * 2004-10-15 2006-04-27 Miyawaki Inc Steam hot water supply system

Also Published As

Publication number Publication date
JP2008170085A (en) 2008-07-24

Similar Documents

Publication Publication Date Title
JP4971803B2 (en) Hot water system
US8042495B2 (en) Device for preventing initial hot water supplying in concentric tube type heat exchanger and its control method
CA2982502C (en) Burner with flow distribution member
EP3273174B1 (en) Liquid heating device
WO2013048269A2 (en) Heat exchanger for the condensing boiler
KR20150121817A (en) Heat exchanger having circulating guide
JP5452136B2 (en) Hot water system
CN104110868A (en) Heat exchanger for gas water heater and gas water heater with same
EP2252837B1 (en) Improved hot air unit heater
US4278069A (en) Water heater
KR100531517B1 (en) Electric hot air heater of high pressure
JP4350697B2 (en) Small heat exchanger
US6126082A (en) Pin hole heating of a flowing liquid
KR20080059969A (en) Flow channel structure of heat exchanger of boiler
JP2006112718A (en) Steam control valve and heat exchanger device and steam hot water supply system provided therewith
EP3943831A1 (en) Bi-functional boiler
US114902A (en) Valerius d
JP5950955B2 (en) Distribution valve for water heater
CN220119939U (en) Heat exchange tube and heat exchanger and water heater comprising same
US20220163235A1 (en) Heat exchanger having circulation guide
FI111186B (en) Furnace
JP3311798B2 (en) Steam and water mixer
US8113153B2 (en) Return temperature stabilizer assembly
KR200345039Y1 (en) Dual exchanger of boiler
EP3368824B1 (en) Fired heat exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120321

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120406

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150413

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4971803

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250