JP4971398B2 - Resistance welding monitoring device and monitoring method - Google Patents

Resistance welding monitoring device and monitoring method Download PDF

Info

Publication number
JP4971398B2
JP4971398B2 JP2009215783A JP2009215783A JP4971398B2 JP 4971398 B2 JP4971398 B2 JP 4971398B2 JP 2009215783 A JP2009215783 A JP 2009215783A JP 2009215783 A JP2009215783 A JP 2009215783A JP 4971398 B2 JP4971398 B2 JP 4971398B2
Authority
JP
Japan
Prior art keywords
welding
current
limit level
resistance welding
product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009215783A
Other languages
Japanese (ja)
Other versions
JP2011062730A (en
Inventor
毅 福澤
政信 三野
隆 船元
政己 桑原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba IT and Control Systems Corp
Original Assignee
Toshiba IT and Control Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba IT and Control Systems Corp filed Critical Toshiba IT and Control Systems Corp
Priority to JP2009215783A priority Critical patent/JP4971398B2/en
Publication of JP2011062730A publication Critical patent/JP2011062730A/en
Application granted granted Critical
Publication of JP4971398B2 publication Critical patent/JP4971398B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、対となる電極で挟まれたワーク(被溶接物)を加圧し、電極からワークに電流を流しワークに抵抗発熱を生じさせて溶接を行う抵抗溶接において、溶接の状態、即ち対となる電極で挟持されたワークの状態の監視及び判定を行う抵抗溶接の監視装置及び監視方法に関する。 In the resistance welding in which welding is performed by pressurizing a workpiece (workpiece to be welded) sandwiched between a pair of electrodes and causing a current to flow from the electrode to the workpiece to cause resistance heat generation in the workpiece, The present invention relates to a resistance welding monitoring device and a monitoring method for monitoring and determining the state of a workpiece sandwiched between electrodes.

抵抗溶接のシステムは、例えば、特許文献1、2に示すように、商用交流電源を整流して直流にし、インバータを用いて所定周波数の交流に変換する溶接電源制御装置、変換された交流の電圧を変える溶接トランス、溶接トランスの二次側に接続された対となる電極を有し、更に必要に応じて、溶接対象となるワークの搬送装置、及び所定位置にワークを拘束するワークの拘束装置、及び対となる電極を有する溶接ガンの位置や姿勢を制御する溶接ロボットを有している。 For example, as shown in Patent Documents 1 and 2, a resistance welding system rectifies a commercial AC power source into a DC and converts it into an AC of a predetermined frequency using an inverter, a converted AC voltage A welding transformer for changing the shape, a pair of electrodes connected to the secondary side of the welding transformer, and, if necessary, a workpiece conveying device to be welded and a workpiece restraining device for restraining the workpiece at a predetermined position , And a welding robot that controls the position and posture of a welding gun having a pair of electrodes.

そして、自動化された溶接システムにおいては、以上の装置や機器のトラブル又は故障によって、ワークの搬送間違い、溶接位置のずれ等が生じるので、これらを見逃して溶接を継続すると、欠陥のある製品を生産することになる。そこで、これら欠陥のある製品が発生するのを防止するため、1)機械的又はレーザー光を用いてワークの搬入の有無を監視する方法A、2)電極間の電圧を検出して溶接不良を検出する方法Bが一般に行われている(例えば、特許文献3、特許文献4)。 And in the automated welding system, because of troubles and failures of the above equipment and equipment, workpiece transfer errors, welding position shifts, etc. will occur, and if these are overlooked and welding is continued, defective products will be produced. Will do. Therefore, in order to prevent the occurrence of these defective products, 1) Method A for monitoring the presence or absence of workpiece loading using mechanical or laser light, and 2) Detecting the voltage between the electrodes to detect defective welding. The detection method B is generally performed (for example, Patent Document 3 and Patent Document 4).

特開2004−90027号公報Japanese Patent Laid-Open No. 2004-90027 特開2006−187791号公報JP 2006-188771 A 特開平06−106363号公報Japanese Patent Laid-Open No. 06-106363 特許第3421387号公報Japanese Patent No. 3421387

しかしながら、前記した方法Aにおいては、1)専用の装置となってワークの種類が変わると装置も変更する必要がある、2)全体的に高価となる、3)鋼板(ワーク)が薄い場合、例えば一枚のワークの板厚が0.7mm以下になると加圧時にワークが反る又は歪む等して正確にワークの重ね枚数を検知できない等の問題がある。 However, in the above-described method A, 1) it is necessary to change the device when the type of the workpiece changes as a dedicated device, 2) it becomes expensive overall, 3) when the steel plate (work) is thin, For example, when the thickness of one workpiece becomes 0.7 mm or less, there is a problem that the workpiece is warped or distorted during pressurization and the number of workpieces cannot be accurately detected.

また、前記した方法Bは、電極間電圧は抵抗溶接現象を反映しているので、電極間電圧を検出して監視することは、抵抗溶接の品質管理に有効であると認められ、実験室や試験的に使用されているが、生産現場では以下のような問題があるので、実用及び運用が困難な場合が多い。即ち、1)電極間の電圧を検出するためにリード線が必要となるが、溶接部から飛散する散り(高温の金属粒)によりリード線が損傷し、断線し易い。2)溶接時に、ワークを加圧するための溶接ガンは可動するので、これに伴いリード線も動き、繰り返し応力によって疲労し断線する恐れがある。 In the method B described above, since the voltage between the electrodes reflects the resistance welding phenomenon, it is recognized that the detection and monitoring of the voltage between the electrodes is effective for the quality control of the resistance welding. Although it is used on a trial basis, it is often difficult to put into practical use and operation because of the following problems at production sites. That is, 1) A lead wire is required to detect the voltage between the electrodes, but the lead wire is easily damaged by scattering (high-temperature metal particles) scattered from the welded portion. 2) Since the welding gun for pressurizing the workpiece moves during welding, the lead wire also moves along with this, and there is a risk of fatigue and disconnection due to repeated stress.

本発明はかかる事情に鑑みてなされたもので、電極間電圧を直接測定するリード線等は使用せず、安価に装置構成が可能で、かつ溶接の状態、即ち、対となる電極で挟持されたワークの状態の監視が正確にできる抵抗溶接の監視装置及び監視方法を提供することを目的とする。 The present invention has been made in view of such circumstances, and does not use a lead wire or the like that directly measures the voltage between electrodes, can be configured at low cost, and is held in a welded state, that is, sandwiched between a pair of electrodes. It is an object of the present invention to provide a resistance welding monitoring device and a monitoring method capable of accurately monitoring the state of a workpiece.

前記目的に沿う第1の発明に係る抵抗溶接の監視装置は、商用交流電源を整流回路を介して直流とし、PWM制御を行うスイッチング素子を用いて前記直流を、負荷電流の定電流制御を行うインバータ回路によって交流とし、該交流を溶接トランスに印加して、該溶接トランスの二次側から溶接電流を得る抵抗溶接の監視装置であって、
溶接時の前記溶接トランスの一次側又は二次側電圧に対応する前記PWM制御のスイッチング素子のゲート信号のオン時間(ゲートオン時間)の比率Tkと、前記整流回路の出力電圧V2との積(Tk・V2)を求め、この積(Tk・V2)が予め設定した上限レベルVHと下限レベルVLの範囲外である場合に、警告を発する。
The resistance welding monitoring apparatus according to the first invention in accordance with the above-mentioned object performs a constant current control of a load current using a switching element that performs a PWM control using a commercial AC power supply as a direct current through a rectifier circuit. A resistance welding monitoring device that obtains a welding current from the secondary side of the welding transformer by applying an alternating current to the welding transformer by an inverter circuit,
The product (Tk) of the ratio Tk of the gate signal ON time (gate ON time) of the PWM control switching element corresponding to the primary or secondary voltage of the welding transformer during welding and the output voltage V2 of the rectifier circuit V2) is obtained, and a warning is issued when the product (Tk · V2) is outside the range between the upper limit level VH and the lower limit level VL set in advance.

ここで、PWM制御のスイッチング素子のゲートオン時間の比率Tk[=オン時間/(オン時間+オフ時間)]及び整流回路の出力電圧V2はアナログ処理で行う場合の他、比率Tk及び整流回路の出力電圧V2を一旦A/D変換して、デジタル処理で行う場合も本発明は適用される(以下の方法発明も同様)。 Here, the gate on time ratio Tk [= on time / (on time + off time)] of the PWM control switching element and the output voltage V2 of the rectifier circuit are not limited to analog processing, but the ratio Tk and the output of the rectifier circuit. The present invention is also applied to a case where the voltage V2 is temporarily A / D converted and digitally processed (the same applies to the following method inventions).

なお、第1の発明に係る抵抗溶接の監視装置において、前記上限レベルVHと前記下限レベルVLは、外部から独立に設定可能であるのが好ましい。これによって、溶接状態を監視して適正位置に上限レベルVHと下限レベルVLを設定できる。 In the resistance welding monitoring apparatus according to the first aspect of the invention, it is preferable that the upper limit level VH and the lower limit level VL can be set independently from the outside. Thereby, the welding state can be monitored and the upper limit level VH and the lower limit level VL can be set at appropriate positions.

また、第1の発明に係る抵抗溶接の監視装置において、各溶接時において、前記積(Tk・V2)をモニター表示するのがよい。これによって、溶接状態を監視して適正位置に上限レベルVHと下限レベルVLの設定を行うのに役立てることができる。 In the resistance welding monitoring apparatus according to the first aspect of the present invention, the product (Tk · V2) may be displayed on a monitor during each welding. This can be used to monitor the welding state and set the upper limit level VH and the lower limit level VL at appropriate positions.

第1の発明に係る抵抗溶接の監視装置において、前記比率Tk、前記出力電圧V2及び前記積(Tk・V2)のいずれか1又は2以上を周辺機器に通信で伝送する手段を備えるのが好ましい。これによって、各抵抗溶接の状態を外部から監視できる。
第1の発明に係る抵抗溶接の監視装置において、前記インバータ回路によって変換された交流は、例えば100〜20000Hzの間にある。これによって、溶接トランスの鉄心量を減らすことができる。
In the resistance welding monitoring device according to the first aspect of the present invention, it is preferable that the resistance welding monitoring device further includes means for transmitting any one or more of the ratio Tk, the output voltage V2, and the product (Tk · V2) to peripheral devices. . Thereby, the state of each resistance welding can be monitored from the outside.
In the resistance welding monitoring apparatus according to the first invention, the alternating current converted by the inverter circuit is, for example, between 100 and 20000 Hz. Thereby, the iron core amount of the welding transformer can be reduced.

前記目的に沿う第2の発明に係る抵抗溶接の監視方法は、商用交流電源を整流回路を介して直流とし、PWM制御を行うスイッチング素子を用いて前記直流を負荷電流の定電流制御を行うインバータ回路によってより周波数の高い交流とし、該交流を溶接トランスに印加して、該溶接トランスの二次側から溶接電流を得る抵抗溶接の監視方法において、
溶接時の前記溶接トランスの一次側又は二次側電圧に対応する前記PWM制御のスイッチング素子のゲート信号のオン時間(ゲートオン時間)の比率Tkと、前記整流回路の出力電圧V2との積(Tk・V2)を求め、この積(Tk・V2)が予め設定した上限レベルVHと下限レベルVLの範囲外である場合に、警告を発する。
A resistance welding monitoring method according to a second aspect of the present invention that meets the above-described object is an inverter that performs constant current control of a load current using a switching element that performs a PWM control using a commercial AC power supply as a direct current through a rectifier circuit. In the resistance welding monitoring method for obtaining a welding current from the secondary side of the welding transformer by applying an alternating current with a higher frequency by a circuit and applying the alternating current to the welding transformer,
The product (Tk) of the ratio Tk of the gate signal ON time (gate ON time) of the PWM control switching element corresponding to the primary or secondary voltage of the welding transformer during welding and the output voltage V2 of the rectifier circuit V2) is obtained, and a warning is issued when the product (Tk · V2) is outside the range between the upper limit level VH and the lower limit level VL set in advance.

本発明に係る抵抗溶接の監視装置及び監視方法においては、PWM制御のスイッチング素子のゲートオン時間の比率Tkと、整流回路の出力電圧V2との積(Tk・V2)を求めているが、この積が溶接トランスの二次側電圧に比例する。そして、二次側電圧は溶接トランスの二次側に接続された対となる電極で挟持されたワークの状態(即ち、ワークの重ね枚数の増加又は不足、溶接の位置ずれ、及び電極の消耗状況)によって変化するので、この積(Tk・V2)が予め設定した上限レベルVHと下限レベルVLの範囲内であることを溶接中に常時確認することによって、溶接状態を把握できる。 In the resistance welding monitoring apparatus and monitoring method according to the present invention, the product (Tk · V2) of the gate-on time ratio Tk of the PWM-controlled switching element and the output voltage V2 of the rectifier circuit is obtained. Is proportional to the secondary voltage of the welding transformer. The secondary side voltage is the state of the workpiece sandwiched between the pair of electrodes connected to the secondary side of the welding transformer (that is, the number of workpieces stacked or increased, welding misalignment, and electrode wear status) ), The welding state can be grasped by constantly checking during welding that the product (Tk · V2) is within the range between the upper limit level VH and the lower limit level VL set in advance.

ここで、溶接電源制御装置の出力電圧又は溶接トランスの一次側の電圧を直接測定し、その値を上限レベルと下限レベルで監視する方法もあるが、インバータ回路で溶接トランスの一次側に供給する一次電流I1をPWM制御でオン又はオフした時に溶接電源制御装置の出力側又は溶接トランスの一次側にノイズを発生し、ノイズ除去対策が必要である。一方、PWM制御のスイッチング素子のゲートオン時間の比率Tkと、整流回路の出力電圧V2においてはノイズがなく、積(Tk・V2)は二次電圧に対応するので、信頼性が高い。 Here, there is a method of directly measuring the output voltage of the welding power source control device or the primary voltage of the welding transformer and monitoring the value at the upper limit level and the lower limit level. However, the inverter circuit supplies the primary voltage to the primary side of the welding transformer. When the primary current I1 is turned on or off by PWM control, noise is generated on the output side of the welding power source control device or the primary side of the welding transformer, and countermeasures for noise removal are necessary. On the other hand, there is no noise in the ratio Tk of the gate-on time of the switching element under PWM control and the output voltage V2 of the rectifier circuit, and the product (Tk · V2) corresponds to the secondary voltage, so the reliability is high.

本発明の一実施の形態に係る抵抗溶接の監視装置を適用した抵抗溶接装置のブロック回路図である。1 is a block circuit diagram of a resistance welding apparatus to which a resistance welding monitoring apparatus according to an embodiment of the present invention is applied. 同抵抗溶接の監視装置の各部の動作説明図である。It is operation | movement explanatory drawing of each part of the monitoring apparatus of the resistance welding. 同抵抗溶接の監視装置のフロー図である。It is a flowchart of the monitoring apparatus of the resistance welding. 本発明に係る抵抗溶接の監視方法を適用した実施例1の説明図である。It is explanatory drawing of Example 1 which applied the monitoring method of resistance welding which concerns on this invention. 実施例1において、ワークの重ね枚数による出力演算電圧の実測値と監視判定値の設定例を示すグラフである。In Example 1, it is a graph which shows the example of a setting of the actual value of the output calculation voltage by the number of sheets of a workpiece | work, and the monitoring determination value. (A)、(B)、(C)は実施例2の説明図である。(A), (B), (C) is explanatory drawing of Example 2. FIG.

続いて、添付した図面を参照し、本発明を具体化した実施の形態について説明し、本発明の理解に供する。
まず、図1を参照しながら、本発明の一実施の形態に係る抵抗溶接の監視装置を適用した抵抗溶接装置10について説明する。
Next, with reference to the attached drawings, an embodiment of the present invention will be described for understanding of the present invention.
First, a resistance welding apparatus 10 to which a resistance welding monitoring apparatus according to an embodiment of the present invention is applied will be described with reference to FIG.

抵抗溶接装置10は、三相(又は単相)の商用交流電源に接続される整流回路11と、整流回路11の出力側に接続される平滑用コンデンサ12と、所定のゲート信号を受けて、整流回路11によって変換された直流を交流に変換するインバータ回路13と、インバータ回路13の負荷となる溶接トランス14と、溶接トランス14の二次側に接続される整流器15と、整流器15に二次導体16、17を介して接続される対となる電極18、19を有している。以下、これらについて詳しく説明する。 The resistance welding apparatus 10 receives a predetermined gate signal, a rectifier circuit 11 connected to a three-phase (or single-phase) commercial AC power supply, a smoothing capacitor 12 connected to the output side of the rectifier circuit 11, and An inverter circuit 13 that converts direct current converted by the rectifier circuit 11 into alternating current, a welding transformer 14 that becomes a load of the inverter circuit 13, a rectifier 15 that is connected to the secondary side of the welding transformer 14, and a secondary to the rectifier 15 A pair of electrodes 18 and 19 are connected via conductors 16 and 17. These will be described in detail below.

整流回路11は三相のブリッジ回路からなって、平滑用のコンデンサ12が並列に接続されて略電圧一定の直流になっている。インバータ回路13はスイッチング素子の一例であるパワートランジスタQ1〜Q4を有し、パワートランジスタQ1、Q4とパワートランジスタQ2、Q3をゲート信号1、2(図2のb、c参照)によって交互にオン、オフして、PWM制御を行い、溶接トランス14の一次側に交流電圧(例えば、100〜20000Hz)を印加している。 The rectifier circuit 11 is composed of a three-phase bridge circuit, and a smoothing capacitor 12 is connected in parallel to form a direct current having a substantially constant voltage. The inverter circuit 13 includes power transistors Q1 to Q4 which are examples of switching elements. The power transistors Q1 and Q4 and the power transistors Q2 and Q3 are alternately turned on by gate signals 1 and 2 (see b and c in FIG. 2). It is turned off, PWM control is performed, and an AC voltage (for example, 100 to 20000 Hz) is applied to the primary side of the welding transformer 14.

溶接トランス14の一次側には、CT(電流変成器)20が設けられ、溶接トランス14の一次電流を検出し、A/D変換回路21を通じて測定電流Isがマイクロコンピュータ22に入力されている。マイクロコンピュータ22では、予め外部から決められた基準電流に対応する値Iwが入力され、測定電流Isと基準電流Iwとを比較し、溶接中はその差が常時小さくなるように、PWM制御部23を介してゲート信号1、2が制御されている。 A CT (current transformer) 20 is provided on the primary side of the welding transformer 14, detects the primary current of the welding transformer 14, and the measurement current Is is input to the microcomputer 22 through the A / D conversion circuit 21. The microcomputer 22 receives a value Iw corresponding to a reference current determined from the outside in advance, compares the measured current Is with the reference current Iw, and the PWM control unit 23 so that the difference is always reduced during welding. The gate signals 1 and 2 are controlled via.

なお、このパワートランジスタQ1〜Q4のゲート信号でのPWM制御は周知であり、溶接の負荷、即ち電極で挟持されたワークの状態、商用電源電圧の変動にも影響されず、溶接中は常時一定の電流(I1)を溶接トランス14の一次側に流すように制御している。
溶接トランス14では二次側に整流器15を通して溶接電流が二次導体16、17を介して電極18、19間に流れている。なお、この溶接電流I2wは溶接トランス14の一次電流I1に比例して、溶接中は常時一定である。
The PWM control using the gate signals of the power transistors Q1 to Q4 is well known, and is not affected by the welding load, that is, the state of the workpiece sandwiched between the electrodes and the fluctuation of the commercial power supply voltage, and is always constant during welding. The current (I1) is controlled to flow to the primary side of the welding transformer 14.
In the welding transformer 14, a welding current flows between the electrodes 18 and 19 through the secondary conductors 16 and 17 through the rectifier 15 on the secondary side. The welding current I2w is proportional to the primary current I1 of the welding transformer 14 and is always constant during welding.

整流回路11の出力電圧V2は、出力電圧測定回路25及びA/D変換回路27を介してマイクロコンピュータ22に入力されている。このマイクロコンピュータ22には、内部にCPU、RAM、ROMを有し、前記した溶接トランス14の一次電流を一定にするプログラムの他に、図3に示すフローを実現化するプログラムが組み込まれている。 The output voltage V2 of the rectifier circuit 11 is input to the microcomputer 22 via the output voltage measurement circuit 25 and the A / D conversion circuit 27. The microcomputer 22 has a CPU, RAM, and ROM therein, and incorporates a program for realizing the flow shown in FIG. 3 in addition to the program for making the primary current of the welding transformer 14 constant. .

マイクロコンピュータ22からの信号を受けて作動するPWM制御部23からパワートランジスタQ1〜Q4に送られるゲート信号1、2は、ゲートON/OFF時間測定部28に出力される。ゲート信号1、2のオン時間は、パワートランジスタQ1〜Q4のオンしている時間となるので、これを測定し、出力電圧演算部29で半サイクル(又は1サイクル又は複数サイクル)の平均化処理を行う。パワートランジスタQ1〜Q4のオン時間をTon、オフ時間をToffとし、ゲートオン時間の比率Tk=[Ton/(Ton+Toff)]となる。この比率TkはパワートランジスタQ1〜Q4のオン時間の平均値に対応する。 Gate signals 1 and 2 sent to the power transistors Q1 to Q4 from the PWM control unit 23 that operates in response to a signal from the microcomputer 22 are output to the gate ON / OFF time measuring unit 28. Since the ON times of the gate signals 1 and 2 are the ON times of the power transistors Q1 to Q4, this is measured, and the output voltage calculation unit 29 averages the half cycle (or one cycle or a plurality of cycles). I do. The on-time of the power transistors Q1 to Q4 is Ton, the off-time is Toff, and the gate on-time ratio Tk = [Ton / (Ton + Toff)]. This ratio Tk corresponds to the average value of the ON times of the power transistors Q1 to Q4.

出力電圧測定回路25、A/D変換回路27、及びマイクロコンピュータ22を介して得られた整流回路11の出力電圧V2と、出力電圧演算部29で演算された比率Tkとの積(Tk・V2)に対応する信号を、出力電圧演算部29から比較回路30に出力している。なお、整流回路11の出力電圧V2も一定の周期(即ち、比率Tkを測定している時間)に対応する半サイクル又は1サイクル単位で平均化処理を行って求める。この積(Tk・V2)からなる出力電圧演算平均値Vwは、表示器31にモニター表示される。 The product (Tk · V2) of the output voltage V2 of the rectifier circuit 11 obtained via the output voltage measurement circuit 25, the A / D conversion circuit 27, and the microcomputer 22 and the ratio Tk calculated by the output voltage calculation unit 29 ) Is output from the output voltage calculation unit 29 to the comparison circuit 30. Note that the output voltage V2 of the rectifier circuit 11 is also obtained by performing an averaging process in units of half cycles or one cycle corresponding to a certain period (that is, the time during which the ratio Tk is measured). The output voltage calculation average value Vw consisting of this product (Tk · V2) is displayed on the display 31 as a monitor.

比較回路30では監視電圧の上限レベルVHと監視電圧の下限レベルVLが入力され、出力電圧演算平均値Vwの値が上限レベルVHより大きい場合、警報回路32に信号出力して、警報出力が発せられる。また、出力電圧演算平均値Vwの値が下限レベルVLより小さい場合には、警報回路32から警報が出力される。なお、上限レベルVH及び下限レベルVLは、監視電圧上限設定部33及び監視電圧下限設定部34のスイッチ手段(又はボリューム)を用いて外部から任意に設定できる。 In the comparison circuit 30, the upper limit level VH of the monitoring voltage and the lower limit level VL of the monitoring voltage are input, and when the output voltage calculation average value Vw is larger than the upper limit level VH, a signal is output to the alarm circuit 32 and an alarm output is generated. It is done. When the output voltage calculation average value Vw is smaller than the lower limit level VL, an alarm is output from the alarm circuit 32. The upper limit level VH and the lower limit level VL can be arbitrarily set from the outside using the switch means (or volume) of the monitoring voltage upper limit setting unit 33 and the monitoring voltage lower limit setting unit 34.

この場合、上限レベルVH及び下限レベルVLの設定は、通電開始後、任意の時間を任意回数設定できる(例えば、4サイクル目と8サイクル目)。
マイクロコンピュータ22には、別に入出力回路35が接続されて、ゲートオン時間の比率Tk、出力電圧V2及び積(Tk・V2)のいずれか1又は2以上を周辺機器(例えば、パソコン36)に通信で伝送する。
In this case, the upper limit level VH and the lower limit level VL can be set to an arbitrary number of times after the start of energization (for example, the fourth and eighth cycles).
A separate input / output circuit 35 is connected to the microcomputer 22 to communicate one or more of the gate on time ratio Tk, the output voltage V2, and the product (Tk · V2) to a peripheral device (for example, a personal computer 36). Transmit with.

続いて、図2、図3を参照しながら、本発明の一実施の形態に係る抵抗溶接の監視装置及び抵抗溶接の監視方法について更に詳細に説明する。
抵抗溶接装置10は、溶接中は、常に溶接トランス14の一次電流I1が一定となるように、パワートランジスタQ1〜Q4のゲート信号1、2を周知の技術で制御している。
図2のa)には、パワートランジスタQ1〜Q4のゲートオンオフ時間を、b)にはゲート信号1及びこれによるパワートランジスタQ1、Q4のスイッチ動作、c)にはゲート信号2及びパワートランジスタQ2、Q3のスイッチ動作をそれぞれ示す。これによるインバータ回路13の出力電圧Vo(即ち、図1に破線で示す溶接電源制御装置10aの出力電圧Vo)を図2のd)に示す。なお、Tcはインバータのサイクルタイムである。
Subsequently, the resistance welding monitoring device and the resistance welding monitoring method according to the embodiment of the present invention will be described in more detail with reference to FIGS. 2 and 3.
The resistance welding apparatus 10 controls the gate signals 1 and 2 of the power transistors Q1 to Q4 by a well-known technique so that the primary current I1 of the welding transformer 14 is always constant during welding.
In FIG. 2, a) shows the gate on / off times of the power transistors Q1 to Q4, b) the gate signal 1 and the switching operation of the power transistors Q1 and Q4, and c) the gate signal 2 and the power transistor Q2, The switch operation of Q3 is shown respectively. The output voltage Vo of the inverter circuit 13 (that is, the output voltage Vo of the welding power source control device 10a indicated by the broken line in FIG. 1) is shown in FIG. Tc is the cycle time of the inverter.

図2のd)から明らかなように、出力電圧VoはパワートランジスタQ1〜Q4のオン時間、即ちゲート信号1、2の「オン時間/(オン時間+オフ時間)」に比例することになる。従って、ゲートON/OFF時間測定部28でオン時間とオフ時間を測定し、出力電圧演算部29でゲート信号1、2のオン時間の比率Tk[=オン時間/(オン時間+オフ時間)]を算出する(以上、ステップS1)。 As is apparent from d) of FIG. 2, the output voltage Vo is proportional to the ON time of the power transistors Q1 to Q4, that is, the “ON time / (ON time + OFF time)” of the gate signals 1 and 2. Accordingly, the gate ON / OFF time measuring unit 28 measures the on time and the off time, and the output voltage calculating unit 29 measures the on time ratio Tk [= on time / (on time + off time)] of the gate signals 1 and 2. Is calculated (step S1).

一方、溶接電源制御装置10aのパワートランジスタQ1〜Q4がオンしている時間の出力電圧Voの波高値は図2のe)に示すように、整流回路11の出力電圧V2に比例することは明らかであるので、整流回路11の出力電圧の平均値の演算を行う(ステップS2)。そして、ゲートのオン時間の比率Tkと出力電圧V2の積が溶接電源制御装置10a(溶接トランス14の一次側)に対応する出力電圧Voになり、図2のf)に示すように、この積(Tk・V2)の演算電圧Vwが表示器31に表示される(ステップS3)。 On the other hand, the peak value of the output voltage Vo when the power transistors Q1 to Q4 of the welding power source control device 10a are on is clearly proportional to the output voltage V2 of the rectifier circuit 11 as shown in e) of FIG. Therefore, the average value of the output voltage of the rectifier circuit 11 is calculated (step S2). The product of the gate on-time ratio Tk and the output voltage V2 becomes the output voltage Vo corresponding to the welding power source control device 10a (primary side of the welding transformer 14). As shown in FIG. The calculated voltage Vw of (Tk · V2) is displayed on the display 31 (step S3).

一方、抵抗溶接装置10は定電流制御をしているので、電極18、19の間に挟持されるワーク(被溶接物)37の状態によって、溶接トランス14の一次側の電圧Voは変わる。そして、電圧Vo∝(Tk・V2)=Vwの関係が成立するので、Vwの値を監視すれば、溶接状態を把握できる。即ち、溶接トランス14及び二次導体16、17、整流器15の抵抗(インピーダンス)は、同一であるので、固定した溶接状態で複数回溶接を行っても、一次側の電圧Voは変化がなく一定であるが、例えば、電極18、19間のワーク37の抵抗が小さくなる場合には、一次側の電圧Voは下がることになり、電極18、19間のワーク37の抵抗が大きくなる場合には、一次側の電圧Voは上がることになる。 On the other hand, since the resistance welding apparatus 10 performs constant current control, the voltage Vo on the primary side of the welding transformer 14 varies depending on the state of the workpiece (workpiece to be welded) 37 sandwiched between the electrodes 18 and 19. And since the relationship of voltage Vo (Tk * V2) = Vw is materialized, if the value of Vw is monitored, a welding state can be grasped | ascertained. That is, since the resistance (impedance) of the welding transformer 14, the secondary conductors 16 and 17, and the rectifier 15 are the same, the primary-side voltage Vo remains constant even when welding is performed a plurality of times in a fixed welding state. However, for example, when the resistance of the work 37 between the electrodes 18 and 19 decreases, the primary voltage Vo decreases, and when the resistance of the work 37 between the electrodes 18 and 19 increases. The primary-side voltage Vo increases.

この一次側の電圧VoはVwの値に比例するので、出力電圧演算平均値Vwを監視することになり、出力電圧演算平均値Vwが上限レベル(監視上限設定値)VHより高い場合は(ステップS4)、警報回路32から警報出力を発する(ステップS6)。そして、出力電圧演算平均値Vwが下限レベル(監視下限設定値)VLより低い場合は(ステップS5)は、警報回路32から警報出力を発する(ステップS6)。 Since the voltage Vo on the primary side is proportional to the value of Vw, the output voltage calculation average value Vw is monitored. When the output voltage calculation average value Vw is higher than the upper limit level (monitoring upper limit set value) VH (step) S4), an alarm output is issued from the alarm circuit 32 (step S6). When the output voltage calculation average value Vw is lower than the lower limit level (monitoring lower limit set value) VL (step S5), an alarm output is issued from the alarm circuit 32 (step S6).

続いて、図4、図5を参照しながら、本発明の実施例1について説明する。
図4に示すように、電極18、19の間に、1)ワークを挿入しない場合、2)ワークの挿入1枚の場合、3)目標のワーク重ね2枚の場合、4)ワーク重ね3枚の場合の溶接実験を行った。この場合、ワークは0.8mmの軟鋼板、溶接電流7kA、通電時間10サイクル、加圧力は2.45kNであった。
Next, Embodiment 1 of the present invention will be described with reference to FIGS.
As shown in FIG. 4, 1) when no workpiece is inserted between the electrodes 18 and 19, 2) when one workpiece is inserted, 3) when two target workpieces are stacked, and 4) three workpiece stacks Welding experiments in the case of In this case, the workpiece was a 0.8 mm mild steel plate, the welding current was 7 kA, the energization time was 10 cycles, and the applied pressure was 2.45 kN.

この場合の出力電圧演算平均値Vwと時間(通電サイクル)の関係を図5に示す。なお、この場合の1サイクルは、1/60秒(60Hzでの1周期)である。そして、出力電圧演算平均値Vwは表示器31に表示され、パソコン36で得ることもできる。 FIG. 5 shows the relationship between the output voltage calculation average value Vw and time (energization cycle) in this case. Note that one cycle in this case is 1/60 second (one cycle at 60 Hz). The output voltage calculation average value Vw is displayed on the display 31 and can be obtained by the personal computer 36.

図5において、4サイクル目の116Vを下限レベルVLに、128Vを上限レベルVHに設定し、更に8サイクル目の112Vを下限レベルVLに、123Vを上限レベルVHに設定した。この設定は、監視電圧上限設定部33と監視電圧下限設定部34で行われる。この設定によって、溶接開始後、4サイクル目と8サイクル目が上限レベルVH及び下限レベルVLの間を外れた場合に警報を発する。 In FIG. 5, 116V in the fourth cycle is set to the lower limit level VL, 128V is set to the upper limit level VH, 112V in the eighth cycle is set to the lower limit level VL, and 123V is set to the upper limit level VH. This setting is performed by the monitoring voltage upper limit setting unit 33 and the monitoring voltage lower limit setting unit 34. With this setting, an alarm is issued when the fourth and eighth cycles are out of the upper limit level VH and lower limit level VL after the start of welding.

以上の実施例1によって設定した上限レベルVH及び下限レベルVLを使用して、実施例2として図6(A)〜(C)に示すようにワークの挟持が異なる状態について実験を行った。
図6(A)に示す例では、ワークの端を溶接すると、重ねた上側のワークの端が潰れて溶接部の抵抗が減少することによって、電極間電圧とそれに比例した出力電圧Vo及び演算電圧Vwが下がり、VL>Vwとなって警報を発した。図6(B)に示す例では、電極を使いすぎて、電極先端の断面積が増加し、電極先端とワークの接触抵抗が減少し、VL>Vwとなって警報を発した。また、図6(C)に示す例では、上電極が傾斜した場合には、溶接電流でワークが発熱すると電極がワークの上を滑り、重ねた上側のワークが電極で削られて厚みが薄くなり、溶接部の抵抗が減少し、VL>Vwとなって警報を発した。
Using the upper limit level VH and the lower limit level VL set in the first embodiment, an experiment was conducted as a second embodiment in a state in which the workpiece is sandwiched as shown in FIGS. 6 (A) to 6 (C).
In the example shown in FIG. 6A, when the ends of the workpiece are welded, the end of the stacked upper workpiece is crushed and the resistance of the welded portion is reduced. Vw dropped and VL> Vw and an alarm was issued. In the example shown in FIG. 6 (B), the electrode was used excessively, the sectional area of the electrode tip increased, the contact resistance between the electrode tip and the workpiece decreased, and an alarm was issued with VL> Vw. Further, in the example shown in FIG. 6C, when the upper electrode is inclined, when the work is heated by the welding current, the electrode slides on the work, and the upper upper work is scraped by the electrode to reduce the thickness. As a result, the resistance of the welded portion decreased and VL> Vw and an alarm was issued.

前記実施の形態及び実施例においては、溶接トランスの二次側に整流器を配置し、溶接トランスの二次電流を整流して直流の溶接電流を用いてワークの溶接を行っていたが、溶接トランスの二次側に整流器を設けないで、インバータ回路によって変換された交流(周波数は商用交流より高い場合と低い場合がある)の溶接電流を用いて抵抗溶接する場合において、インバータ回路から出力される負荷電流を定電流制御する場合にも、本発明は適用される。 In the above-described embodiment and examples, a rectifier is disposed on the secondary side of the welding transformer, the secondary current of the welding transformer is rectified, and the workpiece is welded using a DC welding current. Output from the inverter circuit when resistance welding is performed using an AC welding current (frequency may be higher or lower than commercial AC) converted by the inverter circuit without providing a rectifier on the secondary side The present invention is also applied when the load current is controlled at a constant current.

10:抵抗溶接装置、10a:溶接電源制御装置、11:整流回路、12:平滑用コンデンサ、13:インバータ回路、14:溶接トランス、15:整流器、16、17:二次導体、18、19:電極、20:CT、21:A/D変換回路、22:マイクロコンピュータ、23:PWM制御部、25:出力電圧測定回路、27:A/D変換回路、28:ゲートON/OFF時間測定部、29:出力電圧演算部、30:比較回路、31:表示器、32:警報回路、33:監視電圧上限設定部、34:監視電圧下限設定部、35:入出力回路、36:パソコン、37:ワーク 10: resistance welding device, 10a: welding power source control device, 11: rectifier circuit, 12: smoothing capacitor, 13: inverter circuit, 14: welding transformer, 15: rectifier, 16, 17: secondary conductor, 18, 19: Electrode, 20: CT, 21: A / D conversion circuit, 22: Microcomputer, 23: PWM control unit, 25: Output voltage measurement circuit, 27: A / D conversion circuit, 28: Gate ON / OFF time measurement unit, 29: output voltage calculation unit, 30: comparison circuit, 31: indicator, 32: alarm circuit, 33: monitoring voltage upper limit setting unit, 34: monitoring voltage lower limit setting unit, 35: input / output circuit, 36: personal computer, 37: work

Claims (6)

商用交流電源を整流回路を介して直流とし、PWM制御を行うスイッチング素子を用いて前記直流を、負荷電流の定電流制御を行うインバータ回路によって交流とし、該交流を溶接トランスに印加して、該溶接トランスの二次側から溶接電流を得る抵抗溶接の監視装置であって、
溶接時の前記溶接トランスの一次側又は二次側電圧に対応する前記PWM制御のスイッチング素子のゲート信号のオン時間の比率Tkと、前記整流回路の出力電圧V2との積(Tk・V2)を求め、この積(Tk・V2)が予め設定した上限レベルVHと下限レベルVLの範囲外である場合に、警告を発することを特徴とする抵抗溶接の監視装置。
A commercial AC power supply is set to DC via a rectifier circuit, the DC is set to AC using a switching element that performs PWM control, and AC is applied to an inverter circuit that performs constant current control of a load current, and the AC is applied to a welding transformer, A resistance welding monitoring device for obtaining a welding current from a secondary side of a welding transformer,
The product (Tk · V2) of the on-time ratio Tk of the gate signal of the PWM control switching element corresponding to the primary or secondary voltage of the welding transformer at the time of welding and the output voltage V2 of the rectifier circuit A resistance welding monitoring apparatus characterized in that a warning is issued when the product (Tk · V2) is outside a range between a preset upper limit level VH and a lower limit level VL.
請求項1記載の抵抗溶接の監視装置において、前記上限レベルVHと前記下限レベルVLは、外部から独立に設定可能であることを特徴とする抵抗溶接の監視装置。 The resistance welding monitoring apparatus according to claim 1, wherein the upper limit level VH and the lower limit level VL can be set independently from the outside. 請求項1又は2記載の抵抗溶接の監視装置において、各溶接時において、前記積(Tk・V2)の値をモニター表示することを特徴とする抵抗溶接の監視装置。 3. The resistance welding monitoring apparatus according to claim 1, wherein the value of the product (Tk · V2) is displayed on a monitor during each welding. 請求項1〜3のいずれか1記載の抵抗溶接の監視装置において、前記積(Tk・V2)の値を周辺機器に通信で伝送する手段を備えることを特徴とする抵抗溶接の監視装置。 The resistance welding monitoring apparatus according to any one of claims 1 to 3, further comprising means for communicating the value of the product (Tk · V2) to a peripheral device. 請求項1〜4のいずれか1記載の抵抗溶接の監視装置において、前記インバータ回路によって変換された交流は、100〜20000Hzの間にあることを特徴とする抵抗溶接の監視装置。 The resistance welding monitoring apparatus according to any one of claims 1 to 4, wherein the alternating current converted by the inverter circuit is between 100 and 20000 Hz. 商用交流電源を整流回路を介して直流とし、PWM制御を行うスイッチング素子を用いて前記直流を負荷電流の定電流制御を行うインバータ回路によってより周波数の高い交流とし、該交流を溶接トランスに印加して、該溶接トランスの二次側から溶接電流を得る抵抗溶接の監視方法において、
溶接時の前記溶接トランスの一次側又は二次側電圧に対応する前記PWM制御のスイッチング素子のゲート信号のオン時間の比率Tkと、前記整流回路の出力電圧V2との積(Tk・V2)を求め、この積(Tk・V2)が予め設定した上限レベルVHと下限レベルVLの範囲外である場合に、警告を発することを特徴とする抵抗溶接の監視方法。
A commercial AC power supply is converted to a direct current via a rectifier circuit, and the direct current is converted to a higher frequency alternating current by an inverter circuit that performs constant current control of the load current using a switching element that performs PWM control, and the alternating current is applied to a welding transformer. In the resistance welding monitoring method for obtaining a welding current from the secondary side of the welding transformer,
The product (Tk · V2) of the on-time ratio Tk of the gate signal of the PWM control switching element corresponding to the primary or secondary voltage of the welding transformer at the time of welding and the output voltage V2 of the rectifier circuit A resistance welding monitoring method characterized in that a warning is issued when the product (Tk · V2) is outside a range between a preset upper limit level VH and a lower limit level VL.
JP2009215783A 2009-09-17 2009-09-17 Resistance welding monitoring device and monitoring method Active JP4971398B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009215783A JP4971398B2 (en) 2009-09-17 2009-09-17 Resistance welding monitoring device and monitoring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009215783A JP4971398B2 (en) 2009-09-17 2009-09-17 Resistance welding monitoring device and monitoring method

Publications (2)

Publication Number Publication Date
JP2011062730A JP2011062730A (en) 2011-03-31
JP4971398B2 true JP4971398B2 (en) 2012-07-11

Family

ID=43949549

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009215783A Active JP4971398B2 (en) 2009-09-17 2009-09-17 Resistance welding monitoring device and monitoring method

Country Status (1)

Country Link
JP (1) JP4971398B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5851711B2 (en) * 2011-04-27 2016-02-03 株式会社ダイヘン Resistance welding control device
WO2013031247A1 (en) * 2011-08-30 2013-03-07 株式会社ナ・デックスプロダクツ Method for controlling welding current of resistance welding machine, and device therefor
JP6013846B2 (en) * 2011-10-06 2016-10-25 リコー電子デバイス株式会社 Switching regulator and electronic equipment
JP6537828B2 (en) * 2015-01-05 2019-07-03 ダイヤモンド電機株式会社 Power converter

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3172847B2 (en) * 1992-09-29 2001-06-04 松下電器産業株式会社 Method and apparatus for detecting voltage between chips of resistance welding machine
JPH06114569A (en) * 1992-10-08 1994-04-26 Honda Motor Co Ltd Welding current control method and device for dc resistance welding equipment
JP3421387B2 (en) * 1993-06-14 2003-06-30 株式会社ナ・デックス Apparatus and method for measuring voltage between electrodes of resistance welding machine
JPH1066339A (en) * 1996-08-12 1998-03-06 Nagano Japan Radio Co Switching power supply apparatus
JP3484457B2 (en) * 1999-04-23 2004-01-06 ミヤチテクノス株式会社 Resistance welding power supply
JP3669559B2 (en) * 1999-07-19 2005-07-06 日本アビオニクス株式会社 Resistance welding machine
JP2004090027A (en) * 2002-08-30 2004-03-25 Nas Toa Co Ltd Inverter type resistance welding machine
JP2006187791A (en) * 2005-01-07 2006-07-20 Miyachi Technos Corp Power source apparatus for inverter type resistance welding
JP5036058B2 (en) * 2007-12-06 2012-09-26 日本アビオニクス株式会社 Resistance welding power source and resistance welding method

Also Published As

Publication number Publication date
JP2011062730A (en) 2011-03-31

Similar Documents

Publication Publication Date Title
CA2703992C (en) Steel pipe material weld zone heating apparatus and method
JP4971398B2 (en) Resistance welding monitoring device and monitoring method
JP2001276980A (en) Connecting apparatus
JPS58500315A (en) Power factor monitoring and control device for resistance welding
Zhao et al. An effective quality assessment method for small scale resistance spot welding based on process parameters
Zhou et al. Constant current vs. constant power control in AC resistance spot welding
JP6540973B2 (en) Welding system and method for detecting abnormality on welding current flow path in welding system
JPS61189882A (en) Control device with secondary conductor monitor for resistance welder
JP5530912B2 (en) Setting method of welding conditions in spot welding equipment
JP2007050442A (en) Resistance welding method
CN110891723B (en) Arc welding machine
JP6338420B2 (en) Control method and control apparatus for resistance welding machine
CN111630764B (en) Power supply device and welding power supply device
JP2004508945A (en) Real-time dynamic diagnosis and decision assisting process of electric direct spark butt welder and its welding seam
CN103212770A (en) Welding power supply device
JP6054184B2 (en) Power supply device for arc welding and output voltage monitoring method for power supply device for arc welding
CN111992865A (en) Fault detection circuit and method for secondary rectifier module of inverter resistance welding
US20230311235A1 (en) Spatter detection method
TWI411483B (en) Welding anomaly detection method, seam welding abnormal detection device, seam welding device
JP2011240368A (en) Method and system for determining weld quality
WO2020095501A1 (en) Inverter power source device
JP2008194748A (en) Weld abnormality detecting method, seam weld abnormality detecting device and seam welding device
US20230311234A1 (en) Spatter detection method
JP5965620B2 (en) Resistance welding quality control method and resistance welding apparatus
Ibáñez et al. A Novel Real-Time Wear Detection System for the Secondary Circuit of Resistance Welding Guns

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120313

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120405

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150413

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4971398

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250