JP4969787B2 - Film forming apparatus and film forming method - Google Patents

Film forming apparatus and film forming method Download PDF

Info

Publication number
JP4969787B2
JP4969787B2 JP2005045295A JP2005045295A JP4969787B2 JP 4969787 B2 JP4969787 B2 JP 4969787B2 JP 2005045295 A JP2005045295 A JP 2005045295A JP 2005045295 A JP2005045295 A JP 2005045295A JP 4969787 B2 JP4969787 B2 JP 4969787B2
Authority
JP
Japan
Prior art keywords
liquid fine
fine particles
film
liquid
film forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005045295A
Other languages
Japanese (ja)
Other versions
JP2006236602A (en
Inventor
謙次 後藤
卓也 川島
信夫 田辺
康雄 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP2005045295A priority Critical patent/JP4969787B2/en
Priority to TW095125843A priority patent/TWI316563B/en
Publication of JP2006236602A publication Critical patent/JP2006236602A/en
Application granted granted Critical
Publication of JP4969787B2 publication Critical patent/JP4969787B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • C23C18/1216Metal oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1229Composition of the substrate
    • C23C18/1245Inorganic substrates other than metallic
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1258Spray pyrolysis

Description

本発明は、スプレー熱分解法(SPD:Spray Pyrolysis Deposition)により基材上に透明導電膜等を成膜する際に好適に用いられ、あらかじめ粒径を揃えた液滴を噴霧することが可能な成膜装置および成膜方法に関する。   INDUSTRIAL APPLICABILITY The present invention is suitably used when a transparent conductive film or the like is formed on a substrate by a spray pyrolysis method (SPD: Spray Pyrolysis Deposition), and can spray droplets having a uniform particle size in advance. The present invention relates to a film forming apparatus and a film forming method.

従来、太陽電池、液晶表示装置(LCD)、プラズマディスプレイ(PDP)等においては、たとえば絶縁体であるガラスなどからなる透明な基材上に透明導電膜(TCF:Transparent Conductive Films)を成膜した透明導電膜付基材が広く利用されている。
この透明導電膜は、スズ添加酸化インジウム(ITO:Indium Tin Oxide)や酸化スズ(TO:Tin Oxide)、フッ素添加スズ(FTO:Fluorine-doped Tin Oxide )等の導電性金属酸化物を主成分とする膜で、可視光に対する優れた透明性と優れた電気伝導性を併せ持っている。この透明導電膜の中でも、特にスズ添加酸化インジウム(ITO)を主成分とする透明導電膜が広く知られており、パーソナルコンピュータ(PC)、テレビジョン、携帯用電話機等の液晶表示装置(LCD)に応用されている。
Conventionally, in a solar cell, a liquid crystal display (LCD), a plasma display (PDP), etc., transparent conductive films (TCF: Transparent Conductive Films) are formed on a transparent base material made of, for example, glass as an insulator. Substrates with a transparent conductive film are widely used.
This transparent conductive film is composed mainly of conductive metal oxides such as tin-doped indium oxide (ITO), tin oxide (TO), and fluorine-doped tin oxide (FTO). It has excellent transparency to visible light and excellent electrical conductivity. Among these transparent conductive films, transparent conductive films mainly composed of tin-doped indium oxide (ITO) are widely known, and liquid crystal display devices (LCD) such as personal computers (PCs), televisions, and portable telephones. Has been applied.

透明基材上にスズ添加酸化インジウム(ITO)等の透明導電膜を成膜する方法として、スプレー熱分解法(SPD)がある。
このスプレー熱分解法は、あらかじめ成膜温度まで加熱されている基材上に、霧化器等の噴霧手段を用いて膜の原料となる溶液を噴霧することにより、反応初期には、基材表面に付着した液滴中の溶媒の蒸発と溶質が反応することにより結晶が形成し、反応が進むと、基材上に形成した結晶(多結晶体)上に液滴が付着し、液滴中の溶媒の蒸発と溶質および下部の結晶間で反応が進行することにより結晶(多結晶体)成長が進む、という一連の反応を応用した技術である。
このスプレー熱分解法では、噴霧に好適な原料溶液として、金属無機塩の水溶液またはアルコール溶液、あるいは有機溶剤中に有機金属化合物や有機酸塩を溶解した有機溶液、あるいはこれらの溶液を混合してなる混合溶液等が用いられる。基材の温度は、出発原料や原料溶液の種類によって異なるが、250〜700℃の温度範囲に設定される。このようなスプレー熱分解法は、成膜装置が簡易で安価なため、透明導電膜を低コストで成膜するのに有効である。
As a method for forming a transparent conductive film such as tin-added indium oxide (ITO) on a transparent substrate, there is a spray pyrolysis method (SPD).
This spray pyrolysis method involves spraying a solution that is a raw material of a film on a substrate that has been heated to a film formation temperature in advance using a spraying means such as an atomizer, so that in the initial stage of the reaction, Crystals are formed by the reaction of solvent evaporation and solutes in the droplets attached to the surface. When the reaction proceeds, the droplets adhere to the crystals (polycrystals) formed on the substrate. This is a technology that applies a series of reactions in which the growth of crystals (polycrystals) progresses by the reaction between the evaporation of the solvent and the solute and the lower crystals.
In this spray pyrolysis method, an aqueous solution or alcohol solution of a metal inorganic salt, an organic solution in which an organic metal compound or an organic acid salt is dissolved in an organic solvent, or a solution thereof is mixed as a raw material solution suitable for spraying. A mixed solution or the like is used. Although the temperature of a base material changes with the kind of starting raw material or raw material solution, it is set to the temperature range of 250-700 degreeC. Such a spray pyrolysis method is effective for forming a transparent conductive film at low cost because the film forming apparatus is simple and inexpensive.

ところが、図3に示すような液体供給部材120と気体供給部材121とを備える従来の成膜装置100では、微粒子生成手段aにおいて、液体供給部材120から供給される液体と、気体供給部材121から供給される気体とをぶつけ合うことにより、両者からなる原料溶液を微粒子化し、微粒子化した原料溶液を噴霧手段cによって基材110上に吹き付ける際、噴霧手段cから噴霧される液滴122のサイズは、噴霧手段cの噴霧ノズル(以下、「2流体噴霧ノズル」という場合がある。)に依存しており、液滴122のサイズの均一化が困難であり、膜厚のバラツキが生じていた。すなわち、透明導電膜形成手段d内でのスプレー熱分解法による透明導電膜の作製では、250〜700℃の温度範囲で加熱した基材上に噴霧ノズルによって原料溶液を吹き付ける際、噴霧ノズルから噴霧される液滴122のサイズは、微細化が可能な2流体噴霧ノズルを使用した場合においても、図2に従来装置として示すように、10〜120μmの分布をもつため、大面積に成膜する場合には、噴霧した液滴(ミスト)に面内分布が生じてしまい、膜厚分布が発生するとともに、シート抵抗や透過率等の膜特性に大きな分布が生じていた。   However, in the conventional film forming apparatus 100 including the liquid supply member 120 and the gas supply member 121 as shown in FIG. 3, the liquid supplied from the liquid supply member 120 and the gas supply member 121 in the fine particle generation unit a. The size of the droplets 122 sprayed from the spraying means c when the supplied raw material solution is made into fine particles by colliding with the supplied gas and sprayed onto the substrate 110 by the spraying means c. Depends on the spray nozzle of the spray means c (hereinafter sometimes referred to as “two-fluid spray nozzle”), and it is difficult to make the size of the droplets 122 uniform, resulting in variations in film thickness. . That is, in the production of the transparent conductive film by the spray pyrolysis method in the transparent conductive film forming means d, when the raw material solution is sprayed by the spray nozzle onto the substrate heated in the temperature range of 250 to 700 ° C., the spray is sprayed from the spray nozzle. Even when a two-fluid spray nozzle capable of miniaturization is used, the size of the droplet 122 to be formed has a distribution of 10 to 120 μm as shown in FIG. In some cases, an in-plane distribution occurs in the sprayed droplets (mist), a film thickness distribution occurs, and a large distribution occurs in film characteristics such as sheet resistance and transmittance.

そこで、噴出される液滴のサイズを均一化する手段として、幾つかの手段が提案されている。たとえば、噴霧ノズルから噴霧される液滴は、噴霧経路の中心から離れた位置では粒径の大きな液滴が多く存在し、また、中心付近に含まれる粗い液滴は噴出速度が速く、細かい液滴に比べて遠くへ飛ばされることに着目し、噴霧経路の周囲や正面に壁面を設け、噴霧経路の中心から離れた位置の粒経の大きな液滴や、中心付近の遠くへ飛ばされる粗い液滴を、これら壁面に当てて除去するようにしたものがある(特許文献1、2参照)。
特開平5−320919号公報 特開2001−205151号公報
Therefore, several means have been proposed as means for equalizing the size of the ejected droplets. For example, droplets sprayed from a spray nozzle have many droplets with a large particle size at a position away from the center of the spray path, and coarse droplets included near the center have a high ejection speed and are fine liquids. Focusing on the fact that the droplets are blown far away compared to the droplets, wall surfaces are provided around or in front of the spray path, and large droplets with a particle size away from the center of the spray path, or coarse liquids that are blown away near the center. There is one in which drops are applied to these wall surfaces to be removed (see Patent Documents 1 and 2).
Japanese Patent Laid-Open No. 5-320919 JP 2001-205151 A

しかしながら、上述した手段は、噴霧された液滴を効率良く選別して液滴のサイズを均一化しようとするものであり、あらかじめ粒径を揃えた液滴を噴霧するものではない。したがって、液滴のサイズの均一化にも限界があり、微細化された液滴だけを成膜に利用することが困難なものであった。
また、噴霧スプレーと基材間の距離が十分に、たとえば約500mm必要であり、積極的な液滴温度の制御や液滴噴霧速度、基材との衝突力の制御が不可能であったため、精密に膜特性を制御した膜形成は不可能であった。
However, the above-described means is intended to efficiently sort the sprayed droplets to make the droplet sizes uniform, and does not spray droplets having a uniform particle size in advance. Therefore, there is a limit to uniformizing the size of the droplets, and it is difficult to use only the miniaturized droplets for film formation.
In addition, a sufficient distance between the spray spray and the substrate is necessary, for example, about 500 mm, and it is impossible to actively control the droplet temperature, the droplet spray speed, and the collision force with the substrate. Film formation with precise control of film characteristics was impossible.

本発明は、上記事情に鑑みてなされたものであり、あらかじめ粒径を揃えた液滴を噴霧することが可能な成膜装置および成膜方法を提供することを目的とする。   The present invention has been made in view of the above circumstances, and an object thereof is to provide a film forming apparatus and a film forming method capable of spraying droplets having a uniform particle diameter in advance.

上記課題を解決するために、本発明は次のようなスプレー熱分解法による成膜装置と成膜方法を提供した。
すなわち、本発明のスプレー熱分解法による成膜装置は、粒径の制御された液状微粒子を生成する手段Aと、生成された前記液状微粒子を温度制御しながら誘導し、搬送する空間としての搬送路を有する手段Bと、誘導された前記液状微粒子を噴霧する手段Cと、噴霧された前記液状微粒子を被処理体に塗着させて透明導電膜を形成する空間からなる手段Dと、を少なくとも具備し、前記搬送路の内壁の表面に撥水性を有する樹脂からなる被膜が形成されたことを特徴とする。
In order to solve the above-mentioned problems, the present invention provides a film forming apparatus and a film forming method by the following spray pyrolysis method.
That is, the film forming apparatus using the spray pyrolysis method of the present invention includes means A for generating liquid fine particles having a controlled particle diameter , and transport as a space for guiding and transporting the generated liquid fine particles while controlling the temperature. means B that have a road, and means C for spraying induced the liquid fine particles, and means D consisting nebulized the liquid particles from the space for forming a transparent conductive film by coated on the workpiece, And a film made of a resin having water repellency is formed on the surface of the inner wall of the transport path .

このスプレー熱分解法による成膜装置では、手段Aにおいて、噴霧された液滴の粒径を制御してあらかじめ粒径を揃えた液状微粒子を生成する。次いで、手段Bにおいて、粒径が揃えられた液状微粒子だけを手段Cまで搬送する。その後、手段Cにおいて、あらかじめ粒径が揃えられた細かい液状微粒子だけを、手段Dの空間に配置された基材(被処理体)上に吹き付けることにより成膜する。
これにより、膜厚のバラツキが小さい膜を形成することができる。
In the film forming apparatus using this spray pyrolysis method, means A controls the particle size of the sprayed droplets to generate liquid fine particles having a uniform particle size in advance. Next, in the means B, only liquid fine particles having a uniform particle diameter are conveyed to the means C. After that, in the means C, a film is formed by spraying only fine liquid fine particles having a uniform particle diameter on the substrate (object to be processed) disposed in the space of the means D.
As a result, a film with small variations in film thickness can be formed.

の際、撥水性は、液状微粒子を誘導しながら搬送する搬送路の内壁と液状微粒子との接触がテフロン(登録商標)樹脂や塩化ビニル樹脂等の撥水性を付与するのに適するコート被膜を設けること等により、接触角80°以上となる条件が確保されていることが好ましい。
このような構成とすることで、外気温度の影響を受けることを少なくしつつ、液状微粒子の仕切り板への付着を抑制することができる。
During this, water repellency, the coating film in contact with the inner wall and the liquid fine particles of the transport path for transporting while inducing liquid particles suitable for imparting water repellency such as Teflon (registered trademark) resin and a vinyl chloride resin It is preferable to ensure the condition that the contact angle is 80 ° or more by providing the contact angle.
By adopting such a configuration, it is possible to suppress adhesion of liquid fine particles to the partition plate while reducing the influence of the outside air temperature.

前記手段Bは、液状微粒子を誘導する空間が仕切り部材によって外部と隔離され、かつ、上記空間内の温度が外部よりも高い温度を保つように温度を制御する機構を有するようにしても良い。
このような構成とすることで、結露などによる搬送路内壁への液状微粒子の付着や、液状微粒子同士の結着を抑制でき、粒径が揃えられた液状微粒子を安定して手段Cへ供給することができる。
The means B may have a mechanism for controlling the temperature so that the space for guiding the liquid fine particles is isolated from the outside by the partition member and the temperature in the space is kept higher than the outside.
By adopting such a configuration, it is possible to suppress adhesion of liquid fine particles to the inner wall of the conveyance path due to dew condensation or the like, and adhesion between the liquid fine particles, and stably supply liquid fine particles having a uniform particle diameter to the means C. be able to.

また、本発明の成膜方法は、スプレー熱分解法により基材上に成膜する方法であって、粒径の制御された液状微粒子を生成する工程と、生成された前記液状微粒子を温度制御して粒径を揃えたまま、内壁の表面に撥水性を有する樹脂からなる被膜が形成された搬送路内を誘導する工程と、誘導された前記液状微粒子を噴霧する工程と、噴霧された前記液状微粒子を基材上に堆積させて成膜する工程と、を少なくとも備えてなることを特徴とする。
これにより、粒径が細かく揃えられた液状微粒子だけを用いて膜を形成することができるため、膜厚分布の少ない膜を形成することができる。
Further, the film forming method of the present invention is a method of forming a film on a substrate by spray pyrolysis, which includes a step of generating liquid fine particles having a controlled particle size, and temperature control of the generated liquid fine particles. Then, the process of guiding the inside of the conveyance path in which a film made of a resin having water repellency is formed on the surface of the inner wall while keeping the particle size uniform, the process of spraying the induced liquid fine particles, and the sprayed And a step of depositing liquid fine particles on a substrate to form a film.
As a result, the film can be formed using only the liquid fine particles having a finely aligned particle size, so that a film having a small film thickness distribution can be formed.

本発明のスプレー熱分解法による成膜装置によれば、粒径の制御された液状微粒子を、温度制御しながら誘導する空間を介して噴霧手段としてのノズルへ導入したことにより、ノズルから噴霧する液状微粒子の面内分布を均一化することが可能となり、膜特性の面内分布範囲を縮小(狭める)することができる。
ゆえに、本発明に係る成膜装置は、大面積の透明導電膜を必要とする分野、たとえば液晶表示装置やEL表示装置などの分野に寄与する。
According to the film forming apparatus using the spray pyrolysis method of the present invention, the liquid fine particles having a controlled particle diameter are sprayed from the nozzle by introducing them into the nozzle as the spraying means through the space that is guided while controlling the temperature. The in-plane distribution of the liquid fine particles can be made uniform, and the in-plane distribution range of the film characteristics can be reduced (narrowed).
Therefore, the film forming apparatus according to the present invention contributes to a field requiring a large-area transparent conductive film, for example, a field such as a liquid crystal display device or an EL display device.

また、本発明の成膜方法では、粒径の揃った液状微粒子を利用して透明導電膜を形成するので、基材(被処理体)の面積に依存せず、均一・均質な成膜が可能となる。
ゆえに、本発明に係る成膜方法は、大面積の透明導電膜を大量生産する量産システムの構築に貢献する。
Further, in the film forming method of the present invention, since the transparent conductive film is formed using liquid fine particles having a uniform particle diameter, uniform and uniform film formation is possible regardless of the area of the base material (object to be processed). It becomes possible.
Therefore, the film forming method according to the present invention contributes to the construction of a mass production system for mass-producing a transparent conductive film having a large area.

以下、本発明の一実施の形態について説明する。
図1は、本実施形態に係る成膜装置の構造を示す概略図である。
本実施形態に係る成膜装置1は、粒径の制御された第一の液状微粒子を生成する手段(以下、「液状微粒子生成手段」という。)Aと、生成された第一の液状微粒子を温度制御しながら誘導する空間からなる手段(以下、「液状微粒子誘導手段」という。)Bと、誘導された第一の液状微粒子を微細化された第二の液状微粒子2に変えて噴霧する手段(以下、「液状微粒子噴霧手段」という。)Cと、噴霧された第二の液状微粒子2を被処理体(基材)としてのガラス基板10に塗着させて透明導電膜を形成する空間からなる手段(以下、「透明導電膜形成手段」という。)Dと、を少なくとも具備する。
Hereinafter, an embodiment of the present invention will be described.
FIG. 1 is a schematic view showing the structure of a film forming apparatus according to this embodiment.
The film forming apparatus 1 according to this embodiment includes a means (hereinafter referred to as “liquid fine particle producing means”) A for generating first liquid fine particles having a controlled particle diameter, and the produced first liquid fine particles. A means (hereinafter referred to as “liquid fine particle guiding means”) B that guides while controlling the temperature, and a means for spraying the induced first liquid fine particles in place of the refined second liquid fine particles 2. (Hereinafter referred to as “liquid fine particle spraying means”) From the space where C and the sprayed second liquid fine particles 2 are applied to the glass substrate 10 as the object to be processed (base material) to form a transparent conductive film. And means D (hereinafter referred to as “transparent conductive film forming means”) D.

液状微粒子生成手段Aは、後述する液状微粒子噴霧手段Cとは異なる噴霧手段により予備噴霧された液滴を、径の小さい(細かな)液滴だけを第一の液状微粒子として効率良く取り出してサイズを均一化するよう選別する制御を行うものである。
この生成される第一の液状微粒子は、60.0〜98.8 vol%のエアーを含んでいることが望ましい。
The liquid fine particle generating means A efficiently takes out droplets preliminarily sprayed by a spraying means different from the liquid fine particle spraying means C, which will be described later, by taking out only small (fine) droplets as first liquid fine particles. The control is performed so as to make uniform.
The generated first liquid fine particles desirably contain 60.0 to 98.8 vol% of air.

液状微粒子誘導手段Bは、液状微粒子生成手段Aで粒径を制御して生成された第一の液状微粒子を、液状微粒子生成手段Aから後続する液状微粒子噴霧手段Cまで粒径が壊れないように誘導しながら搬送する空間としての搬送路を有している。
この搬送路は、仕切り部材によって外部と隔離され、内壁の温度が液状微粒子と同じかあるいは高めで、かつ、透明導電膜原料液の溶媒の蒸発速度が極端とならない温度を保つように制御されている。すなわち、液状微粒子温度>搬送路内壁の温度>溶媒の蒸発温度という関係にある。
そして、搬送路内の液状微粒子には、流速100〜100,000cm/minの流れがある。
The liquid fine particle guiding means B prevents the particle diameter of the first liquid fine particles generated by controlling the particle diameter by the liquid fine particle generating means A from the liquid fine particle generating means A to the subsequent liquid fine particle spraying means C. It has a transport path as a space for transporting while guiding.
This conveyance path is isolated from the outside by a partition member, and is controlled so that the temperature of the inner wall is the same as or higher than that of the liquid fine particles, and the temperature at which the evaporation rate of the solvent of the transparent conductive film raw material liquid does not become extreme. Yes. That is, there is a relationship of liquid fine particle temperature> conveying path inner wall temperature> solvent evaporation temperature.
The liquid fine particles in the conveyance path have a flow rate of 100 to 100,000 cm / min.

また、搬送路の内壁は、フッ素樹脂等の撥水性を有する材料を採用するか、または表面に撥水性を付与する処理を施すことにより、外部と隔離されている。この際、搬送路を金属等の熱伝導性の良好な材料を採用したものとすると、外気温度の影響を受けやすく、搬送路内壁への液状微粒子の付着につながることから、塩化ビニル樹脂やフッ素樹脂等の熱伝導の低い樹脂材料を採用することが望ましい。なお、金属材料を採用する場合は、搬送路外壁の温度制御を行うことで対応できる。
また、薬液として塩酸や硫酸、硝酸等を使用する場合、液状微粒子と直接接触する内壁には、耐薬品性の材料を採用するか、あるいは耐薬品性の材料による表面処理を施すことが必要となる。
さらに、搬送路の距離は短いほど望ましい。しかしながら、液状微粒子温度や内壁温度、各手段の配置からの制約などの設計の観点から距離を必要とする場合も考えられること絵を考慮し、長くする場合は、10m未満とすることが望ましい。
Further, the inner wall of the conveyance path is isolated from the outside by adopting a water repellent material such as a fluororesin, or by performing a process of imparting water repellency to the surface. At this time, if the transport path is made of a material with good thermal conductivity such as metal, it is easily affected by the outside air temperature, which leads to adhesion of liquid fine particles to the inner wall of the transport path. It is desirable to employ a resin material with low thermal conductivity such as resin. In addition, when employ | adopting a metal material, it can respond by performing temperature control of a conveyance path outer wall.
In addition, when using hydrochloric acid, sulfuric acid, nitric acid, etc. as the chemical solution, it is necessary to use a chemical resistant material on the inner wall that is in direct contact with the liquid fine particles, or to apply a surface treatment with a chemical resistant material. Become.
Furthermore, it is desirable that the distance of the conveyance path is as short as possible. However, in consideration of the picture, it is desirable that the distance is less than 10 m, considering that the distance may be required from the viewpoint of design such as the temperature of the liquid fine particles, the temperature of the inner wall, and restrictions on the arrangement of each means.

液状微粒子噴霧手段Cは、液状微粒子誘導手段Bによって誘導された液状微粒子を、後続する透明導電膜形成手段Dの空間に配置されたガラス基板10上に吹き付けるものである。液状微粒子噴霧手段Cの出口からは、流速1,000〜100,000cm/minで液状微粒子が噴霧される。また、液状微粒子噴霧手段Cの出口とガラス基板10表面間の距離は、5〜200mmで制御されている。   The liquid fine particle spraying means C sprays the liquid fine particles induced by the liquid fine particle guiding means B onto the glass substrate 10 disposed in the space of the subsequent transparent conductive film forming means D. From the outlet of the liquid fine particle spraying means C, the liquid fine particles are sprayed at a flow rate of 1,000 to 100,000 cm / min. Further, the distance between the outlet of the liquid fine particle spraying means C and the surface of the glass substrate 10 is controlled to 5 to 200 mm.

透明導電膜形成手段Dは、液状微粒子噴霧手段Cの出口に対向して配置され、透明導電膜となる液状微粒子を堆積させるガラス基板10を載置する空間を具備している。透明導電膜形成手段Dでは、ガラス基板10に対して噴霧された導電性高分子を含む透明導電膜の原料液を塗布して透明導電膜の初期層を形成する。
また、ガラス基板10は、下部の基板ヒータからの伝熱と、上部からの熱戦ヒータによる熱線照射、さらに上部雰囲気からの高温流等により表面が加熱されており、200〜600℃の温度範囲に制御されている。
The transparent conductive film forming means D is disposed to face the outlet of the liquid fine particle spraying means C, and has a space for placing the glass substrate 10 on which the liquid fine particles to be a transparent conductive film are deposited. In the transparent conductive film forming means D, the raw material liquid of the transparent conductive film containing the conductive polymer sprayed on the glass substrate 10 is applied to form the initial layer of the transparent conductive film.
The surface of the glass substrate 10 is heated by heat transfer from the lower substrate heater, heat ray irradiation from the upper part of the thermal battle heater, and high-temperature flow from the upper atmosphere, and the temperature is in the range of 200 to 600 ° C. It is controlled.

次に、本実施形態に係る透明導電膜の成膜方法を説明する。
まず、液状微粒子生成手段Aにより粒径の制御された液状微粒子を生成する。次いで、生成された液状微粒子を、液状微粒子誘導手段Bにより温度制御して粒径を揃えたまま液状微粒子噴霧手段Cまで誘導する。その後、誘導された液状微粒子を液状微粒子噴霧手段Cにより被処理体に対して噴霧し、透明導電膜形成手段Dにおいて噴霧された液状微粒子2を被処理体としてのガラス基板10上に堆積させて成膜する。
Next, a method for forming a transparent conductive film according to this embodiment will be described.
First, liquid fine particles having a controlled particle size are generated by the liquid fine particle generating means A. Next, the temperature of the generated liquid fine particles is controlled by the liquid fine particle guiding means B, and the liquid fine particles are guided to the liquid fine particle spraying means C with the same particle diameter. Thereafter, the induced liquid fine particles are sprayed onto the object to be processed by the liquid fine particle spraying means C, and the liquid fine particles 2 sprayed in the transparent conductive film forming means D are deposited on the glass substrate 10 as the object to be processed. Form a film.

次に、本発明の実施例について説明する。これらの実施例は、本発明をより理解するために具体的になされたものであり、本発明は、これらの実施例に限定されない。
まず、本実施例では、透明導電膜としてスズ添加酸化インジウム(ITO)膜を成膜する。このITO膜の原料となる溶液は、塩化インジウム(III)五水和物(InCl・5HO 、分子量:293.24)5.58gと、塩化スズ(IV)五水和物(SnCl・5HO 、分子量:350.60)0.32gを、純水を溶媒として100mlに溶解させることにより調整した。
Next, examples of the present invention will be described. These examples are made specifically for better understanding of the present invention, and the present invention is not limited to these examples.
First, in this embodiment, a tin-added indium oxide (ITO) film is formed as a transparent conductive film. The solution used as a raw material for the ITO film was indium chloride (III) pentahydrate (InCl 3 .5H 2 O, molecular weight: 293.24) 5.58 g, tin (IV) chloride pentahydrate (SnCl 4 · 5H 2 O, molecular weight: 350.60) and 0.32 g, pure water was adjusted by dissolving in 100ml as a solvent.

本実施例では、以下の表1に示す条件にて、液状微粒子生成手段Aで生成された液状微粒子を液状微粒子誘導手段Bまで誘導した。また、液状微粒子を誘導する液状微粒子誘導手段Bの搬送路は、伸縮性を有する塩化ビニル製の蛇腹パイプを採用し、内面にはフッ素樹脂加工を施して撥水性を確保した。   In this example, the liquid fine particles generated by the liquid fine particle generating means A were guided to the liquid fine particle guiding means B under the conditions shown in Table 1 below. Further, the conveying path of the liquid fine particle guiding means B for guiding the liquid fine particles adopted a bellows pipe made of vinyl chloride having elasticity, and the inner surface was subjected to fluororesin processing to ensure water repellency.

Figure 0004969787
Figure 0004969787

また、本実施例では、以下の表2に示す条件にて、液状微粒子誘導手段Bによって誘導された液状微粒子を、液状微粒子噴霧手段Cのノズルにより被処理体としてのガラス基板10上に噴霧した。   Further, in this example, the liquid fine particles induced by the liquid fine particle guiding means B were sprayed on the glass substrate 10 as the object to be processed by the nozzle of the liquid fine particle spraying means C under the conditions shown in Table 2 below. .

Figure 0004969787
Figure 0004969787

そして、以上の条件に基づいて生成された液状微粒子の粒子径に対する体積分布率を測定し、液体供給部材から供給される液体と気体供給部材から供給される気体とをぶつけ合うことにより、両者からなる原料溶液を微粒子化し、微粒子化した原料溶液を噴霧手段の2流体噴霧ノズルによって基材上に吹き付けるようにする従来装置により生成された液滴との液滴サイズ分布を比較した。なお、本実施例での噴霧ノズルは、アトマックス社製の微小ミスト発生装置を用いた。その結果を、図2に示す。   And by measuring the volume distribution ratio with respect to the particle diameter of the liquid fine particles generated based on the above conditions, the liquid supplied from the liquid supply member and the gas supplied from the gas supply member collide with each other. The raw material solution was microparticulated, and the droplet size distribution was compared with droplets generated by a conventional apparatus in which the microparticulated raw material solution was sprayed onto the substrate by a two-fluid spray nozzle of the spraying means. In addition, the atomizing nozzle in this Example used the micro mist generator by Atmax. The result is shown in FIG.

図2に示す結果より、従来装置では液滴サイズ分布が9〜160μmであるのに対し、本発明に基づく装置では液滴サイズ分布が1〜60μmとなり、液滴サイズ分布が小サイズ化し、結果として70μm以上の液滴を除去でき、粒径を揃えた液滴を噴霧することが可能なことがわかる。   From the results shown in FIG. 2, the droplet size distribution is 9 to 160 μm in the conventional apparatus, whereas the droplet size distribution is 1 to 60 μm in the apparatus based on the present invention, and the droplet size distribution is reduced. It can be seen that droplets of 70 μm or more can be removed and droplets having a uniform particle size can be sprayed.

また、本実施例では、基材として500mm角、厚さ2mmの硼珪酸ガラス基板を用い、以上の条件によりガラス基板表面温度を350℃として成膜したITO膜の膜厚、シート抵抗、及び可視光の透過率についてそれぞれ測定し、従来の装置における同測定結果と比較した。その結果を表3に示す。   In this example, a borosilicate glass substrate of 500 mm square and 2 mm thickness was used as the base material, and the film thickness, sheet resistance, and visible resistance of the ITO film formed at a glass substrate surface temperature of 350 ° C. under the above conditions. Each of the light transmittances was measured and compared with the measurement results of a conventional apparatus. The results are shown in Table 3.

Figure 0004969787
Figure 0004969787

上記表3に示す結果より、本発明に基づく装置では膜厚分布およびシート抵抗分布の均一化に寄与し、透過率を含めた膜質を向上させることができたことがわかる。   From the results shown in Table 3 above, it can be seen that the apparatus based on the present invention contributed to uniform film thickness distribution and sheet resistance distribution, and improved film quality including transmittance.

また、本実施例では、基材として500mm角、厚さ2mmの硼珪酸ガラス基板を用い、500mm角成膜を実現するため、基板側で、水平方向をX軸とする方向に+−150mm、ノズル側で、基板側のX軸方向と直交する水平方向をY軸とする方向に+−100mm駆動させた。したがって、その際、基板側のX軸方向及びノズル側Y軸方向と共に垂直に直交する基板〜ノズル方向はZ軸方向となる。そして、以下の表4に示す(A)+(B)の組み合わせ条件にて、基板を加熱した。   In this example, a 500 mm square and 2 mm thick borosilicate glass substrate was used as the base material, and in order to realize 500 mm square film formation, + -150 mm in the direction with the horizontal direction as the X axis on the substrate side, On the nozzle side, it was driven + -100 mm in a direction with the horizontal direction orthogonal to the X-axis direction on the substrate side as the Y-axis. Therefore, at that time, the substrate-nozzle direction perpendicular to the substrate-side X-axis direction and the nozzle-side Y-axis direction is the Z-axis direction. Then, the substrate was heated under the combination conditions (A) + (B) shown in Table 4 below.

Figure 0004969787
Figure 0004969787

以上の条件により成膜したITO膜の膜厚分布、シート抵抗分布、及び可視光の透過率分布についてそれぞれ測定し、従来の装置における同測定結果と比較した。その結果を表5に示す。なお、成膜時間は、本実施例装置及び従来装置とも何れも15分間である。   The film thickness distribution, the sheet resistance distribution, and the visible light transmittance distribution of the ITO film formed under the above conditions were measured, respectively, and compared with the measurement results of the conventional apparatus. The results are shown in Table 5. The film formation time is 15 minutes for both the apparatus of this example and the conventional apparatus.

Figure 0004969787
Figure 0004969787

上記表5に示す結果より、同じ成膜時間において膜成長が速くなるとともに、膜厚分布およびシート抵抗が低減し、透過率特性も大幅に改善できたことがわかる。
これは、ノズルから噴出する液状微粒子の面内分布が均一化したこと、ノズルを基材に近づけて噴霧可能になったこと(従来500mm、本実施例20mm)、ノズルから噴出する液状微粒子流量の制御が可能なこと、基材に到達するまでの液状微粒子温度の制御が可能なこと、等による効果と考えられる。
From the results shown in Table 5 above, it can be seen that the film growth was faster in the same film formation time, the film thickness distribution and the sheet resistance were reduced, and the transmittance characteristics could be greatly improved.
This is because the in-plane distribution of the liquid fine particles ejected from the nozzle is uniform, the nozzle can be sprayed close to the substrate (conventional 500 mm, 20 mm in this embodiment), the flow rate of the liquid fine particles ejected from the nozzle This is considered to be due to the fact that it can be controlled, the temperature of the liquid fine particle temperature until reaching the substrate can be controlled, and the like.

本発明の成膜装置の構造を示す概略図である。It is the schematic which shows the structure of the film-forming apparatus of this invention. 本発明の成膜装置により制御された液状微粒子のサイズ分布を従来装置と比較して示す図である。It is a figure which shows the size distribution of the liquid microparticles | fine-particles controlled by the film-forming apparatus of this invention compared with the conventional apparatus. 従来の成膜装置の構造を示す概略図である。It is the schematic which shows the structure of the conventional film-forming apparatus.

符号の説明Explanation of symbols

A 液状微粒子生成手段、B 液状微粒子誘導手段、C 液状微粒子噴霧手段(ノズル)、D 透明導電膜形成手段、1 成膜装置、2 液状微粒子、10 被処理体(基材、ガラス基板)。
A liquid fine particle production | generation means, B liquid fine particle guidance | induction means, C liquid fine particle spraying means (nozzle), D transparent conductive film formation means, 1 film-forming apparatus, 2 liquid fine particles, 10 to-be-processed object (base material, glass substrate).

Claims (3)

粒径の制御された液状微粒子を生成する手段Aと、
生成された前記液状微粒子を温度制御しながら誘導し、搬送する空間としての搬送路を有する手段Bと、
誘導された前記液状微粒子を噴霧する手段Cと、
噴霧された前記液状微粒子を被処理体に塗着させて透明導電膜を形成する空間からなる手段Dと、を少なくとも具備し
前記搬送路の内壁の表面に撥水性を有する樹脂からなる被膜が形成されたことを特徴とする成膜装置。
Means A for producing liquid fine particles having a controlled particle size;
The generated said liquid particles induced with temperature control means B that have a conveying path as a space for conveying,
Means C for spraying the induced liquid fine particles;
Means D consisting nebulized the liquid particles from the space for forming a transparent conductive film by coated on the workpiece, the at least comprising,
A film forming apparatus, wherein a film made of water-repellent resin is formed on a surface of an inner wall of the transport path .
前記手段Bは、液状微粒子を誘導する空間が仕切り部材によって外部と隔離され、かつ、上記空間内の温度が外部よりも高い温度を保つように温度を制御する機構を有することを特徴とする請求項1記載の成膜装置。  The means B has a mechanism for controlling a temperature so that a space for inducing liquid fine particles is isolated from the outside by a partition member and the temperature in the space is kept higher than the outside. Item 2. The film forming apparatus according to Item 1. スプレー熱分解法により基材上に成膜する方法であって、
粒径の制御された液状微粒子を生成する工程と、
生成された前記液状微粒子を温度制御して粒径を揃えたまま、内壁の表面に撥水性を有する樹脂からなる被膜が形成された搬送路内を誘導する工程と、
誘導された前記液状微粒子を噴霧する工程と、
噴霧された前記液状微粒子を基材上に堆積させて成膜する工程と、
を少なくとも備えてなることを特徴とする成膜方法。
A method of forming a film on a substrate by spray pyrolysis,
Producing liquid fine particles with controlled particle size;
A step of guiding the inside of the transport path in which a film made of a resin having water repellency is formed on the surface of the inner wall while keeping the particle size uniform by controlling the temperature of the generated liquid fine particles;
Spraying the induced liquid particulates;
Depositing the sprayed liquid fine particles on a substrate to form a film;
A film forming method comprising:
JP2005045295A 2005-02-22 2005-02-22 Film forming apparatus and film forming method Active JP4969787B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005045295A JP4969787B2 (en) 2005-02-22 2005-02-22 Film forming apparatus and film forming method
TW095125843A TWI316563B (en) 2005-02-22 2006-07-14 Film forming apparatus and film forming method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005045295A JP4969787B2 (en) 2005-02-22 2005-02-22 Film forming apparatus and film forming method

Publications (2)

Publication Number Publication Date
JP2006236602A JP2006236602A (en) 2006-09-07
JP4969787B2 true JP4969787B2 (en) 2012-07-04

Family

ID=37044031

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005045295A Active JP4969787B2 (en) 2005-02-22 2005-02-22 Film forming apparatus and film forming method

Country Status (1)

Country Link
JP (1) JP4969787B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4841338B2 (en) * 2005-07-14 2011-12-21 株式会社野田スクリーン Film forming method and apparatus

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6113510A (en) * 1984-06-29 1986-01-21 アルプス電気株式会社 Method of forming transparent conductive film
JPS6169962A (en) * 1984-09-13 1986-04-10 Agency Of Ind Science & Technol Device for forming fogged thin film

Also Published As

Publication number Publication date
JP2006236602A (en) 2006-09-07

Similar Documents

Publication Publication Date Title
KR101018738B1 (en) Film forming apparatus
US20100126227A1 (en) Electrostatically depositing conductive films during glass draw
KR101171265B1 (en) Processing of FTO film on physically stabilized ultra-flexible thin substrate
US20100129533A1 (en) Conductive Film Formation On Glass
JP4969787B2 (en) Film forming apparatus and film forming method
JP4708130B2 (en) Film forming apparatus and method for producing transparent conductive film
JP5568482B2 (en) Conductive film formation in glass draw
WO2013094232A1 (en) Thin-film formation device, thin-film formation method, and method for manufacturing thin-film solar cell
TW201026623A (en) Process and apparatus for coating glass
JP2007077433A (en) Film deposition system
JP2008119634A (en) Film forming apparatus
KR101140750B1 (en) In-line Manufacturing Methods of Curved Surface F-dopped Tin oxide film
JP4509900B2 (en) Deposition equipment
WO2012127708A1 (en) Thin film forming apparatus and thin film forming method
JP2014005502A (en) Thin film deposition method
JP2008229536A (en) Film deposition system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110606

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110614

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110811

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120327

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120404

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150413

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150413

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250