JP4969448B2 - Biological conversion reaction system of cytochrome P450 - Google Patents

Biological conversion reaction system of cytochrome P450 Download PDF

Info

Publication number
JP4969448B2
JP4969448B2 JP2007535579A JP2007535579A JP4969448B2 JP 4969448 B2 JP4969448 B2 JP 4969448B2 JP 2007535579 A JP2007535579 A JP 2007535579A JP 2007535579 A JP2007535579 A JP 2007535579A JP 4969448 B2 JP4969448 B2 JP 4969448B2
Authority
JP
Japan
Prior art keywords
cytochrome
reaction system
naphthoquinone
reaction
moxa
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007535579A
Other languages
Japanese (ja)
Other versions
JPWO2007032540A1 (en
Inventor
章 有澤
良和 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Microbiopharm Japan Co Ltd
Original Assignee
Microbiopharm Japan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Microbiopharm Japan Co Ltd filed Critical Microbiopharm Japan Co Ltd
Priority to JP2007535579A priority Critical patent/JP4969448B2/en
Publication of JPWO2007032540A1 publication Critical patent/JPWO2007032540A1/en
Application granted granted Critical
Publication of JP4969448B2 publication Critical patent/JP4969448B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/26Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving oxidoreductase

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Biophysics (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Description

本発明は、シトクロムP450の基質となり得る化合物の生物学的変換反応系及びその変換反応系を使用する該化合物の生物学的変換生成物の製造方法に関する。   The present invention relates to a biological conversion reaction system of a compound that can be a substrate of cytochrome P450 and a method for producing a biological conversion product of the compound using the conversion reaction system.

シトクロムP450遺伝子がコードするシトクロムP450酵素(以下、単にP450ともいう)は、還元型で一酸化炭素を結合して450nm付近にソーレー吸収帯(Soret band)を示す一群のプロトヘム含有タンパク質である。P450は動植物を含む高等生物、カビ、酵母、細菌の一部において種を超えて広く分布し、酸化反応などを主とした様々な物質の代謝・分解に関与している。P450については多数の分子種が知られており、系統的研究からスーパーファミリーを形成していることが知られている。
P450はその機能的役割から生体内あるいは生体外物質など多様な物質を基質として、一原子酸素添加反応を介する水酸化反応、エポキシ化反応、脱アルキル化反応、脱窒素反応、あるいは稀にNO還元酵素のようにNADHからの電子を用いる還元反応、等の様々な反応を触媒することが知られている。これらの反応は通常、立体特異性(stereo−specificity)や位置特異性(regio−specificity)に厳格な反応として行われることが多い。ヒトに対して用いられる薬物の多くは肝臓や腎臓などで発現する特定のP450のもつ作用、例えば水酸化などにより体内で代謝・不活性化されたり、逆にその薬理効果が向上したり、あるいは副作用が増強されたりするため、P450は、薬物の代謝研究やプロドラッグ開発の観点から医薬産業上極めて高い重要性を有する。
近年、ゲノム情報の蓄積から、動植物や微生物において様々なP450遺伝子の存在が明らかになり、これらのP450遺伝子またはP450の機能を、各種の有用な化合物を取得するための物質もしくは化合物変換に応用すること等について産業上利用し得ることが期待できる。P450遺伝子またはP450の最も具体的な産業上の利用法としては、所望の変換反応を行うP450を発現する微生物細胞、または該P450を遺伝子工学的手法により発現させた組換え微生物を用いた物質変換が考えられる。例えば、放線菌シュードノカルディア オートトロフィカ(Pseudonocardia autotrophica)を利用してビタミンDの1α位と25位を水酸化して活性型ビタミンDを生産する方法が実用化されている。また、哺乳動物P450を機能的に発現させた酵母(非特許文献1参照。なお、本項で引用する具体的文献名は、下記にまとめて記載する。以下、同様。)や大腸菌組換え株(非特許文献2参照)によって、薬物の代謝物を得ることも可能となっている。さらに、種々の細菌由来の様々なP450をコードする遺伝子を宿主大腸菌で発現させる系に、電子伝達手段として異種のフェレドキシン遺伝子及びフェレドキシン還元酵素遺伝子を組み込むことにより、基質となり得る多様な化合物の効果的な変換系も提案されている(特許文献1参照)。
このようなシトクロムP450遺伝子またはP450を用いたある一定の化合物の生物学的もしくは微生物学的変換反応はその酵素を発現している微生物の培養液または菌体を用いて行われてきた。このような変換反応を利用する変換生成物の製造方法は、通常、発酵の形態をとり、製造ロットごとに培養液を仕込み、変換能を有する微生物の培養、基質の変換反応を進行させることが必要である。また、一般に、変換反応終了後においては変換生成物の回収精製に多くのプロセスを要する。
他方、加水分解酵素を用いた物質変換系の多くは、当該酵素または当該酵素活性を有する細胞それ自体もしくは処理物を膜リアクターないし固定化酵素を利用した変換反応系へ改変することによって、上記培養液等を用いる場合の変換方法に比較して、相当コストを抑制することができ、特定物質の産業上極めて有利な変換製造方法として確立している。
かような加水分解酵素と同様な膜リアクターないし固定化酵素による変換反応系がP450に転用できないことは当該酵素自体のもつ特有の性質に起因する。具体的には、加水分解酵素はコファクター非依存的に反応を行うので、その酵素のみが反応において必要かつ十分であるのに対し、P450は、それが係わる反応において、NADPH、フェレドキシン、フェレドキシン還元酵素などの電子伝達機能をもつコファクターを要求するからである。それゆえ、P450を利用した反応の場としては、このようなコファクターが十分機能しかつ再生可能な環境を提供する細胞内が最も望ましい。
したがって、P450等のコファクターを要求する特性を有する酵素を用いて加水分解酵素と同様な膜リアクターないし固定化酵素による目的物質の変換製造方法を実現するには、細胞内の反応系に不可欠なコファクターの機能的役割をいかにして簡易に入手可能な物質または手段により代替するかが当該技術分野における技術的課題であった。この課題を解決する手段の一つとしては、例えば、電子伝達機能をもつ安価な化学メディエーターを用いてP450を機能させることができる反応系の提供が挙げられる。仮に、このような反応系が提供できれば、P450を用いる生物学的変換反応を無細胞系の反応槽で進行させることが可能になるかも知れない。さらに、膜分離、酵素固定化などの技術の併用により基質となり得る化合物から変換した目的生成物の効率のよい分離が可能となり、産業上有用な連続反応系を構築できる可能性もある。
このような生理的条件下のP450反応系におけるコファクター機能を代替する物質として従来知られているものとして、酸素と電子を供給可能な、過酸化水素など含む過酸化物が挙げられる。さらに、提案されている別の系では、ある種のコバルト錯体を用いて電極からP450への電子伝達を可能にし、高級脂肪酸の水酸化を可能にする系が知られている(非特許文献3参照)。さらなる興味ある別の系として、近年、耐熱性P450酵素CYP119及びP450BM3などを適当な媒介物質を間にして電極につなぎ、電極からP450に電子を伝達することで酵素を活性化させる反応系も提案されている(非特許文献4及び非特許文献5参照)。
引用文献の一覧
国際公開第03/087381号パンフレット H.Murakamiら,J Biochem.vol.108、859−865、1990 H.Iwataら,Biochemical Pharmacology、vol.55,1315−1325,1998 A.K.Uditら,Journal of Inorganic Biochemistry,98,1547−1550,2004 E.Blairら,J.Am.Chem.Soc.126,8632−8633,2004 A.K.Uditら,J.Am.Chem.Soc.126,10218−10219,2004
Cytochrome P450 enzymes encoded by the cytochrome P450 gene (hereinafter also simply referred to as P450) are a group of protoheme-containing proteins that bind to carbon monoxide in a reduced form and exhibit a Soret band near 450 nm. P450 is widely distributed across species in higher organisms including animals and plants, molds, yeasts, and bacteria, and is involved in the metabolism and degradation of various substances mainly including oxidation reactions. Numerous molecular species are known for P450, and it is known from systematic studies that it forms a superfamily.
Because of its functional role, P450 uses various substances such as in vivo and in vitro substances as substrates, hydroxylation reaction, epoxidation reaction, dealkylation reaction, denitrogenation reaction, or rarely NO reduction via monoatomic oxygenation reaction. It is known to catalyze various reactions such as a reduction reaction using electrons from NADH, such as an enzyme. These reactions are usually performed as strict reactions with respect to stereo-specificity and regio-specificity. Many of the drugs used for humans are metabolized and inactivated in the body by the action of specific P450s expressed in the liver, kidney, etc., such as hydroxylation, and conversely their pharmacological effects are improved, or Since side effects are enhanced, P450 is extremely important in the pharmaceutical industry from the viewpoint of drug metabolism research and prodrug development.
In recent years, the accumulation of genome information has revealed the existence of various P450 genes in animals and plants and microorganisms, and these P450 genes or functions of P450 are applied to substances or compound conversions for obtaining various useful compounds. It can be expected that it can be used industrially. The most specific industrial application of the P450 gene or P450 is substance conversion using a microorganism cell that expresses P450 that performs a desired conversion reaction, or a recombinant microorganism that expresses the P450 by genetic engineering techniques. Can be considered. For example, a method for producing active vitamin D 3 by hydroxylating 1α-position and 25-position of vitamin D 3 using actinomycete Pseudonocardia autotrophica has been put into practical use. In addition, yeast (see Non-Patent Document 1) in which mammalian P450 is expressed functionally, and specific literature names cited in this section are described below. The same applies hereinafter. (See Non-Patent Document 2) It is also possible to obtain drug metabolites. Furthermore, by incorporating heterogeneous ferredoxin genes and ferredoxin reductase genes as electron transfer means into a system for expressing various P450-encoding genes from various bacteria in the host E. coli, it is possible to effectively use various compounds that can serve as substrates. A conversion system has also been proposed (see Patent Document 1).
Such a biological or microbiological conversion reaction of a certain compound using cytochrome P450 gene or P450 has been carried out using a culture medium or cells of a microorganism expressing the enzyme. A method for producing a conversion product using such a conversion reaction usually takes the form of fermentation, in which a culture solution is prepared for each production lot, and culture of microorganisms having conversion ability and substrate conversion reaction are allowed to proceed. is necessary. In general, after the conversion reaction is completed, many processes are required to recover and purify the conversion product.
On the other hand, many of the substance conversion systems using hydrolases are modified by changing the enzyme or cells having the enzyme activity itself or a processed product to a conversion reaction system using a membrane reactor or an immobilized enzyme. Compared with the conversion method in the case of using a liquid or the like, considerable cost can be suppressed, and it has been established as an industrially advantageous conversion manufacturing method for specific substances.
The fact that a conversion reaction system using a membrane reactor or an immobilized enzyme similar to such a hydrolase cannot be diverted to P450 is due to the unique properties of the enzyme itself. Specifically, since a hydrolase reacts in a cofactor-independent manner, only that enzyme is necessary and sufficient in the reaction, whereas P450 reduces NADPH, ferredoxin, ferredoxin in the reaction involved. This is because a cofactor having an electron transfer function such as an enzyme is required. Therefore, the place of reaction using P450 is most desirably in a cell in which such a cofactor sufficiently functions and provides a reproducible environment.
Therefore, in order to realize a conversion production method of a target substance using a membrane reactor similar to a hydrolase or an immobilized enzyme using an enzyme having a characteristic requiring a cofactor such as P450, it is indispensable for an intracellular reaction system. How to replace the cofactor's functional role with readily available materials or means has been a technical challenge in the art. One means for solving this problem is, for example, the provision of a reaction system that can function P450 using an inexpensive chemical mediator having an electron transfer function. If such a reaction system can be provided, a biological conversion reaction using P450 may be allowed to proceed in a cell-free reaction tank. Furthermore, the combined use of techniques such as membrane separation and enzyme immobilization makes it possible to efficiently separate the target product converted from a compound that can serve as a substrate, and there is a possibility that an industrially useful continuous reaction system can be constructed.
Conventionally known substances that substitute for the cofactor function in the P450 reaction system under such physiological conditions include peroxides that can supply oxygen and electrons, such as hydrogen peroxide. Further, in another proposed system, a system that enables electron transfer from an electrode to P450 using a certain type of cobalt complex and enables hydroxylation of higher fatty acids is known (Non-patent Document 3). reference). As another system of further interest, recently, a reaction system has also been proposed in which the thermostable P450 enzymes CYP119 and P450BM3 are connected to an electrode with an appropriate mediator in between, and the enzyme is activated by transferring electrons from the electrode to P450. (See Non-Patent Document 4 and Non-Patent Document 5).
List of cited references
International Publication No. 03/088381 Pamphlet H. Murakami et al., J Biochem. vol. 108, 859-865, 1990 H. Iwata et al., Biochemical Pharmacology, vol. 55, 1315-1325, 1998 A. K. Udit et al., Journal of Inorganic Biochemistry, 98, 1547-1550, 2004. E. Blair et al., J. MoI. Am. Chem. Soc. 126, 8632-8633, 2004 A. K. Udit et al. Am. Chem. Soc. 126, 10218-10219, 2004

前述の過酸化物は比較的安価で、酸素と電子を同時に供給可能な系を提供するものの、過酸化物による酵素の失活が大きな問題点となる。コバルト錯体などを化学メディエーターに用いる系では、化学メディエーターの調製にコストがかかることや自然酸化による劣化、反応効率の低さ等の欠点があり、必ずしも効果的な方法とはいえない。
したがって、本発明の目的は、上記の欠点を補うような以下の
(i)煩雑な前処理を必要としない、
(ii)反応系に補助的に添加するだけでコファクター機能を代替する安価で、入手しやすい、
(iii)比較的自然酸化されにくい、そして
(iv)酵素機能に障害を及ぼさない
条件を満たす化学メディエーターたり得る物質の入手及びそれらを使用するP450の関与する反応系を提供することにある。
本発明者等は、新しい化学メディエーターとなり得る物質の探索とそれに適合する応用的価値の高いP450との組合せを実現するため、鋭意研究を行ってきた。その結果、本発明者らは、これまでシトクロムP450の化学メディエーターとしては報告されていないキノン類縁化合物がP450、特に、放線菌由来のP450を電子伝達タンパク質非依存的に活性化して、基質の変換反応を効果的に進行させることを見出した。本発明は、このような知見に基づくものである。したがって、本発明は、上記の課題を解決すべき手段として、シトクロムP450の存在下におけるシトクロムP450の基質となりうる化合物の微生物学的変換反応を行う反応系であって、
(a)シトクロムP450、
(b)初発電子供給手段、及び
(c)キノン類縁化合物、を含んで成る反応系が提供される。
また、上記反応系において、シトクロムP450の基質となりうる化合物の生物学的変換,特に,酸化型の変換、をおこなう工程を含んで成る生物学的変換生成物の製造方法も提供される。
発明の具体的な態様の記述
本発明にいう,反応系は、変換せしめようとする物質(または基質となりうる化合物)に応じて適切に選択されたシトクロムP450を用いることにより、所望の生物学的変換生成物を取得するための組成物、装置もしくはバイオリアクター、または特定の基質のアッセイに用いるキット等に適用できる実在物を意味する。ここで使用する生物学的変換の語は、化学的変換に対する概念である。
シトクロムP450とは、動植物などの高等生物由来の他、カビ、きのこ、酵母、細菌に至るまでの広範囲な生物に分布するもののうち、細胞内で機能する場合には、通常、フェレドキシンおよびフェレドキシン還元酵素もしくはシトクロムP450還元酵素等の電子伝達機能を有するタンパク質をP450による変換反応のコファクターとして要求する活性酵素様物質の総称である。このようなシトクロムP450は、本発明の目的に沿い、前記コファクターをキノン類縁化合物で代替することにより、所定の触媒機能を発現するP450であれば起源を問うことなく使用できる。しかし、産業利用上、好ましくは、微生物において発現が比較的容易な細菌由来の可溶性P450、例えば、放線菌ノノムラエア レクチカテナ(Nonomuraea recticatena 旧名Microtetraspora recticatena)IFO14525由来のP450であるMoxAや放線菌ノカルディア ファルシニカ(Nocardia farcinica)IFM 10152由来のP450であるCYP154A等を挙げることができる。その他の微生物由来のP450の具体的なものには、前記の特許文献1に列挙されたもの、が包含される。
このようなP450については、特許文献1にも一部詳細に記載されているが、今日、様々な公開情報を利用して入手が可能である。近年、GenBankやEMBLなどの遺伝子データベースに加えて、インターネット上でP450遺伝子情報やゲノム情報を公開しているサイトから極めて多数のP450遺伝子配列やその起源生物の情報を容易に入手することができる。このような情報源の中には、D.NelsonによるP450遺伝子データベースhttp://drnelson.utmem.edu/bacteria.htmlや細菌の中でも比較的多種のP450遺伝子を有する放線菌ゲノムの公開データベース、例えば、P450遺伝子に26種を含むノカルディア ファルシニカ IFM 10152(Nocardia farcinica IFM 10152)のゲノムデータベース、http://nocardia.nih.go.jp/(このデータベースは石川らによる論文、Proc Natl Acad Sci U S A.2004、101(41):14925−30の記載内容により補足される)や、P450遺伝子33種を含むストレプトミセス エバーミチリス MA−4680(Streptomyce avermitilis MA−4680)のゲノムデータベース、http://avermitilis.ls.kitasato−u.ac.jp/(このデータベースはLambらによる論文、Biochem Biophys Res Commun.2003、307(3):610−9の記載内容により補足される)などが含まれている。当業者であれば、これらの遺伝子情報を利用して由来生物あるいはその近縁種から目的のP450遺伝子あるいはその相同遺伝子をクローニングし、適当な宿主にてそれらの遺伝子を発現させて、P450を取得できる。したがって、こうして取得できるP450も本発明で使用できる。
その具体的な取得方法のうち、最も容易なものは、入手できる遺伝子配列情報に基づき、特定の遺伝子配列のP450コード領域のN−末端配列およびC−末端配列部分に対応するDNA配列からプライマーを作製し、PCRでP450遺伝子コード領域を増幅する。次にこの増幅断片を発現ベクターに挿入し、その発現系が機能する宿主に形質転換することである。
例えば、MoxAをコードする遺伝子(moxA)の取得方法については当該技術分野で周知の方法で実施することができる。これらの操作全体についての詳細は、本出願人による前記特許文献1に記載されている(記載内容は引用することにより本明細書に組み入れられる。)。こうして取得されたP450遺伝子の周辺領域を含むヌクレオチド配列(コード配列におけるアミノ酸配列)を配列表の配列番号1に示す。この配列の塩基313〜塩基1533までの連続するヌクレオチド配列がP450遺伝子(moxA)に相当する。また、アミノ酸配列レベルでMoxAと40%以上、好ましくは60%以上、より好ましくは80%以上、特に、好ましくは90%以上の相同性をもつP450であって、その機能的性状もMoxAと類似しているもの、具体的にはNevertらの分類定義(D.R.Nelson et.al.,Pharmacogenetics,6,1−42,1996)に基づいてCYP105ファミリーに帰属される多くのP450群も本発明の反応系に用いることができる。なお、本明細書にいう、上記のような相同性は、配列の相同性を評価することのできる、市販のソフトウエア、例えば、GENETYX Version 6.0(株式会社ゼネティックス(英文表記:GENETYX CORPORATION)東京都渋谷区)のアミノ酸配列ホモロジー検索機能を用いて評価できる。CYP154A遺伝子は前述のノカルディア ファルシニカ IFM 10152のゲノムデータベースにおいて遺伝子コードnfa22930で特定されるP450遺伝子である。この遺伝子の塩基配列およびコード配列を配列番号2に示す。MoxAと同じ分類定義に基づき、CYP154ファミリーに帰属される多くのP450群も本発明の反応系に用いることができる。その「P450群」とは、CYP154Aとアミノ酸配列レベルで40%以上の相同性を有する類似した構造および機能をもつP450をいう。
クローニングしたP450遺伝子を適当な宿主にて発現する場合は様々な発現系を使うことができるが、P450による変換を産業上利用するのに都合のよい微生物宿主を用いるのが望ましい。例えば、大腸菌を宿主として利用できるが、この場合、P450遺伝子の発現にはpUC18、pTrcHis及びpET11a等の様々なベクターが利用可能である。放線菌を宿主とする場合には、pIJ702及びpIJ943等のベクターが利用可能である。酵母を宿主とする場合には、pPICZ,pPIC9K,pMET,及びpTEF1/Bsd等のベクターが利用可能である。
またP450を発現させた細胞から、すでに一般的に知られている生化学的方法に従ってP450タンパク質を精製することができる。特に、大腸菌組換え体で発現させる場合には、目的のP450のC−末端にヒスチジン−タグ(histidine−tag)を接続して発現させ、ニッケル−NTA アガロースカラムなどを用いて容易に精製する手法が確立されている。
このような精製方法に基づき、酵素源として調製されたP450は、本発明の反応系の触媒として使用することができる。P450の酵素源になり得るものとしては、所望の反応を触媒するP450を発現する細胞それ自体もしくはそのP450遺伝子の組換え体それ自体であってもよい。
さらにP450の酵素源はそれらの細胞から抽出精製したP450タンパク質のみならず、精製コスト低減のため、P450タンパク質を含む細胞自体あるいはその加工物、すなわち無細胞抽出液またはそれに部分精製等の処理を施したものなども使用することができる。ここで、P450の酵素源に精製タンパク質を使用する場合を除いて、厳密にいえば夾雑タンパク質として電子伝達機能をもつタンパク質が混入する可能性が想定されるが、本発明の反応系はこのような夾雑電子伝達タンパク質の有無に関わらず、実質的に添加したキノン類縁化合物が電子伝達タンパク質の役割を代替する現象を利用するものであるから、当該夾雑電子伝達タンパク質を積極的に共存させてもよい。
本発明にいう、シトクロムP450の基質となりうる化合物には、上記に挙げたいずれかのP450もしくはそれらの機能上等価の活性酵素様物質の基質もしくは基質様物質となり得る化合物を意味する。基質となり得る化合物には、上記の各種情報源から確認できる基質のみならず、当該基質を参照して、それらと構造上類似しもしくは類似しないが、現に、基質としていずれかのシトクロムP450の反応に関与できるものとして選択される化合物が包含される。
キノンは、芳香族化合物のCH原子団二つをCO原子団に変え、さらに二重結合をキノイド構造にするのに必要なだけ動かしてできる化合物の総称である。本発明の反応系に用いられるキノン類縁化合物は、本発明の目的に沿い、生理的条件下でのP450反応系におけるコファクター機能を代替することのできる上記キノンの定義に該当する化合物の全てを包含する。限定されるものでないが、キノン類縁化合物としては、ベンゾキノン、ナフトキノンのように芳香族キノンのほか、それらの化合物をアミノ基、カルボキシル基、メチル基で修飾した種種の誘導体、さらにナフトエ酸のように還元されたキノン化合物を挙げることができる。具体的な化合物の例としては、2−アミノ−3−カルボキシ−1,4−ナフトキノン(以下、ACNQとも言う)、1,4−ナフトキノン、1,4−ジヒドロキシ−2−ナフトエ酸、ビタミンK、1,4−ベンゾキノンなどが挙げられる。以下にACNQ、1,4−ナフトキノン、1,4−ジヒドロキシ−2−ナフトエ酸、ビタミンK、1,4−ベンゾキノンの構造式を示す。
ACNQは次式

Figure 0004969448
で表される。1,4−ナフトキノンは次式
Figure 0004969448
で表される。1,4−ジヒドロキシ−2−ナフトエ酸は次式
Figure 0004969448
で表される。ビタミンKは次式
Figure 0004969448
で表される。1,4−ベンゾキノンは次式
Figure 0004969448
で表される。
このようなキノン類縁化合物を含んで成る本発明に従うシトクロムP450の反応系は、従来反応に不可欠とされ、制限要因とされてきた電子伝達コファクターを排除することができ、安価で有用な物質変換に利用することができる。
本発明で使用する、初発電子供給手段とは、P450とキノン類縁化合物と,場合により、P450の基質となり得る化合物の存在する系において、電子を供給することのできる物質もしくは構造物を意味する。かような物質の代表的なものとしては、還元型ニコチンアミドアデニンジヌクレオチド(NADH)及び還元型ニコチンアミドアデニンジヌクレオチドリン酸(NADPH)などを挙げることができる。また、例えば,非特許文献5に記載されるように、例えば、グラファイト電極に一定の固定媒体またはリガンドを介して、必要により改変したP450またはその活性ドメインを固定すると、電極からP450に電子を伝達でき、例えば、一方では、共存する二原子酸素(dioxygen)を水までに変換できることが知られている。限定されるものでないが、このような電子を伝達できる電極であって、本発明の目的に沿うものであれば、本発明にいう初発電子供給手段に包含される。
以上の本発明の反応系は、例えば、通常の酵素変換を想定して組まれた反応形態のように、NAPDHまたはNADH、キノン類縁体、P450を含む適当な緩衝液を入れた反応槽に基質を添加する方法で、バッチまたは連続的な反応を行うことで実用に適する。
一方、初発電子供給手段に電極を選択する場合は電極を設置した反応槽内にキノン類縁体、およびP450を含む適当な緩衝液を入れ、さらに基質を添加しながら通電してバッチまたは連続的な反応を行う。この場合は電極からキノンへの電子伝達を円滑に行うためにフェリシアニド(ferricianide,化学式 Fe(CN) 3−)等の添加物を加えることもできる。このように反応系を構築することで、所望の基質をその酸化型化合物へ変換できるバイオリアクターを構築することもできる。
本発明の反応系では、初発電子供給手段、P450、キノン類縁化合物、存在させる場合の基質となり得る化合物は、バッチ式に、または連続様式でP450以外の要素を供給でき、それらの使用割合は、通常、
NADHまたはNADPH 0.1〜1mM
P450 0.1〜10μM
キノン類縁化合物 0.01〜1μM
基質有機化合物 1mM〜1000mM
とすることができる。
こうして、基質となり得る化合物からそれらの酸化型化合物に変換する工程を含んで成る該酸化型化合物の製造方法もさらなる別の態様の本発明として提供できる。反応系を稼動する温度は、使用するP450の温度感受性に応じて決定することができる。例えば、上述した耐熱性のP450酵素CYP119の場合には、30〜80℃で本発明の系を使用できる。かような反応系は通常、その系で働くP450酵素の至適pHにて十分な緩衝効果をもつような緩衝剤を使用して、至適pHに調整した緩衝液、例えばpH7.3付近が至適pHであれば100mMリン酸カリウム緩衝液(pH7.3)などを使用することができる。また、この緩衝液には必要に応じてP450酵素を安定化するのに寄与する物質、例えばグリセロールやジチオスレイトールなどを補助的に添加してもよい。Although the above-mentioned peroxide is relatively inexpensive and provides a system that can supply oxygen and electrons simultaneously, inactivation of the enzyme by the peroxide is a major problem. A system using a cobalt complex or the like as a chemical mediator is not necessarily an effective method because it has disadvantages such as costly preparation of the chemical mediator, deterioration due to natural oxidation, and low reaction efficiency.
Therefore, the object of the present invention does not require the following (i) complicated pretreatment to compensate for the above-mentioned drawbacks.
(Ii) It is inexpensive and easy to obtain, replacing the cofactor function by simply adding to the reaction system.
(Iii) To provide a reaction system involving P450 that uses a chemical mediator that satisfies conditions that do not easily oxidize relatively naturally and (iv) does not impair enzyme function, and that uses them.
The present inventors have conducted intensive research in order to realize a combination of P450 with a high applied value suitable for searching for a substance that can be a new chemical mediator. As a result, the present inventors have found that quinone analogs that have not been reported as chemical mediators of cytochrome P450 activate P450, particularly P450 derived from actinomycetes, in an electron transfer protein-independent manner, thereby converting the substrate. It has been found that the reaction proceeds effectively. The present invention is based on such knowledge. Therefore, the present invention provides a reaction system for performing a microbiological conversion reaction of a compound that can be a substrate of cytochrome P450 in the presence of cytochrome P450 as a means to solve the above-described problems,
(A) cytochrome P450,
There is provided a reaction system comprising (b) an initial electron supply means, and (c) a quinone analog.
Also provided is a method for producing a biological conversion product comprising a step of performing a biological conversion of a compound that can be a substrate of cytochrome P450, particularly an oxidized form, in the reaction system.
DESCRIPTION OF SPECIFIC EMBODIMENTS OF THE INVENTION The reaction system referred to in the present invention uses a cytochrome P450 appropriately selected according to the substance to be converted (or a compound that can serve as a substrate), so that a desired biological substance can be obtained. It means an entity applicable to a composition, an apparatus or a bioreactor for obtaining a conversion product, a kit used for assaying a specific substrate, or the like. As used herein, the term biological transformation is a concept for chemical transformation.
Cytochrome P450 is derived from higher organisms such as animals and plants, and is distributed in a wide range of organisms from molds, mushrooms, yeasts, and bacteria. When it functions in cells, ferredoxin and ferredoxin reductase are usually used. Alternatively, it is a general term for active enzyme-like substances that require a protein having an electron transfer function such as cytochrome P450 reductase as a cofactor of the conversion reaction by P450. Such cytochrome P450 can be used without regard to its origin as long as it is a P450 that expresses a predetermined catalytic function by substituting the quinone analog for the cofactor in accordance with the object of the present invention. However, for industrial use, preferably, soluble P450 derived from bacteria that is relatively easy to express in microorganisms, such as MoxA or Actinomyces nocardia falci (actinomycete Nocardia falci) which is a P450 derived from the actinomycete Nonomura Rectica naina (formerly Microtetraspora lecticanatena) IFO14525. And CYP154A, which is P450 derived from Nocardia farcinica) IFM 10152. Specific examples of P450 derived from other microorganisms include those listed in Patent Document 1.
Such P450 is also described in part in Patent Document 1, but it can be obtained using various public information today. In recent years, in addition to gene databases such as GenBank and EMBL, a very large number of P450 gene sequences and information on their origins can be easily obtained from sites that publish P450 gene information and genome information on the Internet. Among such information sources are D.I. The P450 gene database http: // drnelson. utmem. edu / bacteria. A public database of actinomycetes genomes having a relatively wide variety of P450 genes among html and bacteria, such as the genome database of Nocardia Farcinica IFM 10152 (Nocardia farcinica IFM 10152) containing 26 species in the P450 gene, http: // nocardia. nih. go. jp / (this database is supplemented by the content of a paper by Ishikawa et al., Proc Natl Acad Sci US A. 2004, 101 (41): 14925-30) and Streptomyces evermitilis MA- containing 33 P450 genes Genomic database of 4680 (Streptomyces avermitilis MA-4680), http: // avermitilis. ls. kitasato-u. ac. jp / (this database is supplemented by the article by Lamb et al., Biochem Biophys Res Commun. 2003, 307 (3): 610-9). Those skilled in the art can obtain P450 by cloning the target P450 gene or its homologous gene from the derived organism or its related species using these gene information, and expressing those genes in an appropriate host. it can. Therefore, P450 obtained in this way can also be used in the present invention.
Among the specific acquisition methods, the easiest one is based on the available gene sequence information, and using primers from DNA sequences corresponding to the N-terminal sequence and C-terminal sequence portion of the P450 coding region of a specific gene sequence. Prepare and amplify the P450 gene coding region by PCR. Next, this amplified fragment is inserted into an expression vector and transformed into a host in which the expression system functions.
For example, a method for obtaining a gene encoding MoxA (moxA) can be carried out by a method well known in the art. Details of these operations as a whole are described in the above-mentioned Patent Document 1 by the present applicant (the description is incorporated herein by reference). The nucleotide sequence (amino acid sequence in the coding sequence) including the peripheral region of the P450 gene thus obtained is shown in SEQ ID NO: 1 in the sequence listing. The continuous nucleotide sequence from base 313 to base 1533 of this sequence corresponds to the P450 gene (moxA). Further, it is P450 having homology of 40% or more, preferably 60% or more, more preferably 80% or more, particularly preferably 90% or more with MoxA at the amino acid sequence level, and its functional properties are similar to those of MoxA. In particular, many P450 groups belonging to the CYP105 family based on the classification definition of Nevert et al. (DR Nelson et.al., Pharmacogenetics, 6, 1-42, 1996) It can be used in the reaction system of the invention. As used herein, the homology as described above refers to commercially available software that can evaluate the homology of sequences, such as GENETYX Version 6.0 (Genetics Corporation (English: GENETYX CORPORATION)). It can be evaluated using the amino acid sequence homology search function of Shibuya-ku, Tokyo). The CYP154A gene is a P450 gene identified by the gene code nfa22930 in the genome database of the aforementioned Nocardia Farcinica IFM 10152. The base sequence and coding sequence of this gene are shown in SEQ ID NO: 2. Based on the same classification definition as MoxA, many P450 groups belonging to the CYP154 family can also be used in the reaction system of the present invention. The “P450 group” refers to P450 having a similar structure and function having 40% or more homology with CYP154A at the amino acid sequence level.
When the cloned P450 gene is expressed in a suitable host, various expression systems can be used. However, it is desirable to use a microorganism host that is convenient for industrial conversion using P450. For example, Escherichia coli can be used as a host. In this case, various vectors such as pUC18, pTrcHis and pET11a can be used for expression of the P450 gene. When using actinomycetes as a host, vectors such as pIJ702 and pIJ943 can be used. When yeast is used as a host, vectors such as pPICZ, pPIC9K, pMET, and pTEF1 / Bsd can be used.
In addition, P450 protein can be purified from cells expressing P450 according to biochemical methods that are already generally known. In particular, in the case of expressing in an E. coli recombinant, a method in which a histidine-tag is connected to the C-terminus of the target P450 and expressed, and is easily purified using a nickel-NTA agarose column or the like. Is established.
Based on such a purification method, P450 prepared as an enzyme source can be used as a catalyst in the reaction system of the present invention. The P450 enzyme source may be a cell itself expressing P450 that catalyzes a desired reaction, or a recombinant of the P450 gene itself.
Furthermore, the P450 enzyme source is not limited to the P450 protein extracted and purified from these cells, but to reduce the purification cost, the P450 protein-containing cell itself or a processed product thereof, that is, a cell-free extract or a partial purification treatment is applied. You can also use it. Except for the case where a purified protein is used as the P450 enzyme source, strictly speaking, there is a possibility that a protein having an electron transfer function is mixed as a contaminating protein. Regardless of the presence or absence of a nuisance electron transfer protein, the added quinone analog effectively utilizes the phenomenon of substituting the role of the electron transfer protein. Good.
The compound that can be a substrate of cytochrome P450 referred to in the present invention means any P450 listed above or a compound that can be a substrate of the functionally equivalent active enzyme-like substance or a substrate-like substance. The compound that can be a substrate is not only a substrate that can be confirmed from the above-mentioned various information sources, but with reference to the substrate, it is structurally similar or not similar to them, but in fact, it can react with any cytochrome P450 as a substrate. Compounds selected as being able to participate are included.
Quinone is a general term for compounds formed by moving two CH atom groups of an aromatic compound into CO atom groups and moving them as much as necessary to make double bonds into a quinoid structure. The quinone analogs used in the reaction system of the present invention are all compounds corresponding to the definition of quinone that can replace the cofactor function in the P450 reaction system under physiological conditions in accordance with the object of the present invention. Include. Although not limited, quinone analogs include aromatic quinones such as benzoquinone and naphthoquinone, various derivatives obtained by modifying these compounds with amino groups, carboxyl groups, and methyl groups, and naphthoic acid. Mention may be made of reduced quinone compounds. Specific examples of the compound include 2-amino-3-carboxy-1,4-naphthoquinone (hereinafter also referred to as ACNQ), 1,4-naphthoquinone, 1,4-dihydroxy-2-naphthoic acid, vitamin K 3. 1,4-benzoquinone and the like. The structural formulas of ACNQ, 1,4-naphthoquinone, 1,4-dihydroxy-2-naphthoic acid, vitamin K 3 and 1,4-benzoquinone are shown below.
ACNQ is the following formula
Figure 0004969448
It is represented by 1,4-naphthoquinone has the following formula
Figure 0004969448
It is represented by 1,4-dihydroxy-2-naphthoic acid has the formula
Figure 0004969448
It is represented by Vitamin K 3 is the following formula
Figure 0004969448
It is represented by 1,4-benzoquinone has the following formula
Figure 0004969448
It is represented by
The reaction system of cytochrome P450 according to the present invention comprising such a quinone analog can eliminate the electron transfer cofactor which has been indispensable for the conventional reaction and has been regarded as a limiting factor, and is an inexpensive and useful substance conversion. Can be used.
The initial electron supply means used in the present invention means a substance or a structure capable of supplying electrons in a system in which P450, a quinone-related compound, and optionally a compound that can be a substrate of P450 are present. Representative examples of such substances include reduced nicotinamide adenine dinucleotide (NADH) and reduced nicotinamide adenine dinucleotide phosphate (NADPH). For example, as described in Non-Patent Document 5, for example, when P450 or its active domain modified as necessary is fixed to a graphite electrode via a fixed medium or ligand, electrons are transferred from the electrode to P450. For example, it is known that, on the one hand, coexisting dioxygen can be converted to water. Although it is not limited, if it is an electrode which can transmit such an electron and is in accordance with the objective of this invention, it will be included by the initial electron supply means said to this invention.
The above reaction system of the present invention is, for example, a substrate in a reaction tank containing an appropriate buffer containing NAPDH or NADH, a quinone analog, and P450, as in a reaction form constructed assuming normal enzyme conversion. It is suitable for practical use by performing a batch or continuous reaction.
On the other hand, when an electrode is selected as the initial electron supply means, an appropriate buffer solution containing quinone analog and P450 is placed in a reaction vessel in which the electrode is installed, and a batch or continuous process is performed by adding current while adding a substrate. Perform the reaction. In this case, an additive such as ferricyanide (chemical formula Fe (CN) 6 3− ) can be added to smoothly transfer electrons from the electrode to the quinone. By constructing the reaction system in this way, it is possible to construct a bioreactor that can convert a desired substrate into its oxidized compound.
In the reaction system of the present invention, the initial electron supply means, P450, a quinone analog, and a compound that can be a substrate when present can supply elements other than P450 in a batch manner or in a continuous manner, and their use ratio is as follows: Normal,
NADH or NADPH 0.1-1 mM
P450 0.1-10 μM
Quinone analogs 0.01-1 μM
Substrate organic compound 1 mM to 1000 mM
It can be.
Thus, a method for producing the oxidized compound comprising the step of converting a compound that can serve as a substrate into the oxidized compound can also be provided as another aspect of the present invention. The temperature at which the reaction system is operated can be determined according to the temperature sensitivity of P450 used. For example, in the case of the above-described thermostable P450 enzyme CYP119, the system of the present invention can be used at 30 to 80 ° C. Such a reaction system usually uses a buffer that has a sufficient buffering effect at the optimum pH of the P450 enzyme working in the system, and a buffer solution adjusted to the optimum pH, for example, around pH 7.3. If the pH is optimum, 100 mM potassium phosphate buffer (pH 7.3) or the like can be used. In addition, a substance that contributes to stabilizing the P450 enzyme, such as glycerol or dithiothreitol, may be supplementarily added to the buffer as necessary.

図1は、ACNQなどの添加とMoxAによるジクロフェナクの4’位水酸化変換量の関係を表すグラフである。図中、aはMoxAおよびジクロフェナクを添加するが、ACNQ、NADH+NADPHおよびグルコースデヒドロゲナーゼ+グルコースは無添加の系、bはMoxA、ジクロフェナクおよびACNQを添加するが、NADH+NADPHおよびグルコースデヒドロゲナーゼ+グルコースは無添加の系、cはMoxA、ジクロフェナク、ACNQおよびNADH+NADPHを添加するが、グルコースデヒドロゲナーゼ+グルコースは無添加の系、そしてdはMoxA、ジクロフェナク、ACNQ、NADH+NADPHおよびグルコースデヒドロゲナーゼ+グルコースを添加した系を表す。
図2は、各種キノン化合物のジクロフェナクの4’位水酸化変換に対する効果を表すグラフである。図中、■印はACNQの添加系、▲印は1,4−ジヒドロキシ−2−ナフトエ酸の添加系、□印はビタミンKの添加系、*印は1,4−ベンゾキノンの添加系、および●印は1,4−ナフトキノンの添加系を表し、そして◆印はキノン無添加系を表す。
図3は、1,4−ナフトキノンの添加の有無とCYP154Aにより生成する7−ヒドロキシクマリン量の関係を表すグラフである。図中、aは精製CYP154A溶液を添加しないが、1,4−ナフトキノン、NADPHおよび7−エトキシクマリンを添加した系、bは1,4−ナフトキノンを添加しないが、精製CYP154A溶液、NADPHおよび7−エトキシクマリンを添加した系、cは精製CYP154A溶液、1,4−ナフトキノン、NADPHおよび7−エトキシクマリンを添加した系を表す。
FIG. 1 is a graph showing the relationship between the addition of ACNQ or the like and the amount of 4′-hydroxylation conversion of diclofenac by MoxA. In the figure, a is a system to which MoxA and diclofenac are added, but ACNQ, NADH + NADPH and glucose dehydrogenase + glucose are not added, b is a system to which MoxA, diclofenac and ACNQ are added, but NADH + NADPH and glucose dehydrogenase + glucose are not added , C represents a system to which MoxA, diclofenac, ACNQ and NADH + NADPH are added, but glucose dehydrogenase + glucose is not added, and d represents a system to which MoxA, diclofenac, ACNQ, NADH + NADPH and glucose dehydrogenase + glucose are added.
FIG. 2 is a graph showing the effect of various quinone compounds on the 4′-hydroxylation of diclofenac. In the figure, ■ indicates an ACNQ addition system, ▲ indicates a 1,4-dihydroxy-2-naphthoic acid addition system, □ indicates a vitamin K 3 addition system, * indicates a 1,4-benzoquinone addition system, And ● represent a 1,4-naphthoquinone-added system, and ◆ represents a quinone-free system.
FIG. 3 is a graph showing the relationship between the presence or absence of addition of 1,4-naphthoquinone and the amount of 7-hydroxycoumarin produced by CYP154A. In the figure, a is a system in which a purified CYP154A solution is not added, but 1,4-naphthoquinone, NADPH and 7-ethoxycoumarin are added, and b is a system in which 1,4-naphthoquinone is not added, but a purified CYP154A solution, NADPH and 7- The system to which ethoxycoumarin has been added, c represents the system to which purified CYP154A solution, 1,4-naphthoquinone, NADPH and 7-ethoxycoumarin have been added.

以下、ノノムラエア レクチカテナIFO 14525由来のP450であるMoxA、およびノカルディア ファルシニカ(Nocardia farcinica IFM 10152)由来のP450であるCYP154Aを用いた、反応例を詳細に説明するが、本発明はこれらの例に何ら制限されるものではない。   Hereinafter, reaction examples using MoxA, which is P450 derived from Nonomura Air Recticaena IFO 14525, and CYP154A, which is P450 derived from Nocardia farcinica IFM 10152, will be described in detail, but the present invention is not limited to these examples. It is not limited.

プラスミドの構築
(1) pMoxAhisの構築
プライマーMoxA−1F(5’−GCCCCCCATATGACGAAGAACGTCGCCGACGAACTG−3’)(配列番号3参照)およびMoxA−Rhis(5’−GGCCAAGCTTCCAGGTGACCGGGAGTTCGTGAAC−3’)(配列番号4参照)を用いて、Nonomuraea recticatena IFO 14525の全DNAを鋳型にして以下の反応条件にてポリメラーゼ連鎖反応(PCR)を行い、moxA遺伝子を増幅した。
(反応液組成)
滅菌精製水 30μl
2倍濃縮GC緩衝液I(宝酒造社製) 50μl
dNTP混合溶液(dATP、dGTP、dTTP、
dCTP各2.5mM) 16μl
MoxA−1Fプライマー(100pmol/μl) 1μl
MoxA−Rhisプライマー(100pmol/μl) 1μl
Nonomuraea recticatena
IFO 14525全DNA(100ng/μl) 1μl
LA Taq polymerase(5units/μl、
宝酒造社製) 1μl
50μlずつ2本のマイクロチューブに分注する。
(温度条件)
94℃ 3分,(98℃ 20秒,63℃ 30秒,68℃ 2分)25サイクル,72℃ 5分
この反応により増幅されたDNA断片をQIAquick PCR Purification Kit(キアゲン社製)を用いて精製した。このDNA溶液を反応容量50μl中で制限酵素Nde IおよびHind IIIで処理した後、0.8%アガロースゲルにて電気泳動した。泳動後、このゲルから切り出した1.2kb moxA遺伝子断片を含むゲル切片から同断片をQIAquick Gel Extraction Kit(キアゲン社製)を用いて回収し、精製した。この断片を大腸菌プラスミドベクターpET29b(+)(Novagen社製)のNde I部位およびHind III部位にT4 DNAリガーゼにより連結して、大腸菌DH5αに形質転換して、プラスミドpMoxAhisを構築した。
(2) pNfa2293Hisの構築 プライマーNfa2293−1F(5’−GCCCCCCATATGGAGTCAACCCAGATGCCG−3’)(配列番号5参照)およびNfa2293−3R(5‘−GCAAGCTTCTCCGCCGTCAGGTACACCGG−3’)(配列番号6参照)を用いて、Nocardia farcinica IFM 10152の全DNAを鋳型にして以下の反応条件にてPCRを行い、CYP154A遺伝子を増幅した。
(反応液組成)
滅菌精製水 71μl
10倍濃縮KOD−Plus−緩衝液(東洋紡社製) 10μl
25mM MgSO 4μl
dNTP混合溶液(dATP、dGTP、dTTP、
dCTP各2mM) 10μl
Nfa2293−1Fプライマー(50pmol/μl) 1μl
Nfa2293−3Rプライマー(50pmol/μl) 1μl
Nocardia farcinica IFM 10152
全DNA(100ng/μl) 1μl
KOD−Plus−polymerase
(1unit/μl、東洋紡社製) 2μl
50μlずつ2本のマイクロチューブに分注する。
(温度条件)
94℃ 3分,(98℃ 20秒,63℃ 30秒,68度 2分)25サイクル,72℃ 5分
この反応により増幅されたDNA断片をQIAquick PCR Purification Kit(キアゲン社製)を用いて精製した。このDNA溶液を反応容量50μl中で制限酵素Nde IおよびHind IIIで処理したのち、0.8%アガロースゲルにて電気泳動した。泳動後、このゲルから切り出した1.2kb CYP154A遺伝子断片を含むゲル切片から同断片をQIAquick Gel Extraction Kit(キアゲン社製)を用いて回収し、精製した。この断片を大腸菌プラスミドベクターpET29(+)(Novagen社製)のNde I部位およびHind III部位にT4 DNAリガーゼにより連結して、大腸菌DH5αに形質転換して、プラスミドpNfa2293Hisを構築した。
Construction of plasmid (1) Construction of pMoxAhis Primer MoxA-1F (5′-GCCCCCCATATGACGGAAGAACGTCCGCCGACGGAACTG-3 ′) (see SEQ ID NO: 3) and MoxA-Rhis (5′-GGCCAGGCTCCCAGGTGACCGGGAGTTCGAGA-3 ′) The polymerase chain reaction (PCR) was carried out under the following reaction conditions using the whole DNA of Nonuraea lecticcatena IFO 14525 as a template to amplify the moxA gene.
(Reaction solution composition)
Sterile purified water 30 μl
2-fold concentrated GC buffer I (Takara Shuzo) 50 μl
dNTP mixed solution (dATP, dGTP, dTTP,
dCTP 2.5 mM each) 16 μl
MoxA-1F primer (100 pmol / μl) 1 μl
MoxA-Rhis primer (100 pmol / μl) 1 μl
Nonomuraea lecticatena
IFO 14525 total DNA (100 ng / μl) 1 μl
LA Taq polymerase (5 units / μl,
(Takara Shuzo) 1 μl
Dispense 50 μl into two microtubes.
(Temperature conditions)
94 ° C. 3 minutes (98 ° C. 20 seconds, 63 ° C. 30 seconds, 68 ° C. 2 minutes) 25 cycles, 72 ° C. 5 minutes The DNA fragment amplified by this reaction was purified using QIAquick PCR Purification Kit (Qiagen) did. This DNA solution was treated with restriction enzymes Nde I and Hind III in a reaction volume of 50 μl, and then electrophoresed on a 0.8% agarose gel. After the electrophoresis, the fragment was recovered from the gel slice containing the 1.2 kb moxA gene fragment cut out from this gel using QIAquick Gel Extraction Kit (manufactured by Qiagen) and purified. This fragment was ligated to the Nde I site and Hind III site of E. coli plasmid vector pET29b (+) (Novagen) with T4 DNA ligase, and transformed into E. coli DH5α to construct plasmid pMoxAhis.
(2) Construction of pNfa2293His Primers Nfa2293-1F (5′-GCCCCCCATATGGAGTCAACCCAGATCGCCG-3 ′) (see SEQ ID NO: 5) and Nfa2293-3R (5′-GCAAGCTCTCCCGCGTCAGGTACACCGG-3 ′) (see SEQ ID No. c in ac) PCR was carried out using the total DNA of IFM 10152 as a template under the following reaction conditions to amplify the CYP154A gene.
(Reaction solution composition)
Sterile purified water 71μl
10-fold concentrated KOD-Plus-buffer (manufactured by Toyobo) 10 μl
25 mM MgSO 4 4 μl
dNTP mixed solution (dATP, dGTP, dTTP,
dCTP 2 mM each) 10 μl
Nfa 2293-1F primer (50 pmol / μl) 1 μl
Nfa 2293-3R primer (50 pmol / μl) 1 μl
Nocardia farcinica IFM 10152
Total DNA (100 ng / μl) 1 μl
KOD-Plus-polymerase
(1 unit / μl, manufactured by Toyobo Co., Ltd.) 2 μl
Dispense 50 μl into two microtubes.
(Temperature conditions)
94 ° C for 3 minutes, (98 ° C for 20 seconds, 63 ° C for 30 seconds, 68 ° C for 2 minutes) 25 cycles, 72 ° C for 5 minutes The DNA fragment amplified by this reaction was purified using QIAquick PCR Purification Kit (Qiagen) did. This DNA solution was treated with restriction enzymes Nde I and Hind III in a reaction volume of 50 μl, and then electrophoresed on a 0.8% agarose gel. After the electrophoresis, the fragment was recovered from the gel slice containing the 1.2 kb CYP154A gene fragment cut out from the gel using QIAquick Gel Extraction Kit (manufactured by Qiagen) and purified. This fragment was ligated to the Nde I site and Hind III site of E. coli plasmid vector pET29 (+) (manufactured by Novagen) with T4 DNA ligase and transformed into E. coli DH5α to construct plasmid pNfa2293His.

P450酵素の調製法
プラスミドpMoxAhis DNAまたはpNfa2293Hisを大腸菌BL21(DE3)に形質転換した。得られた株の20%グリセロール保存カルチャーを調製し、その10μlを、カナマイシン25μg/ml(終濃度)を添加したLB培地2mlに加え、30℃、16時間、220rpmで振とう培養した。この培養液500μlを、カナマイシン25μg/ml(終濃度)を添加したM9mix培地(M9塩、0.4%グルコース、0.5%カザミノ酸、20μl/mlチミン、0.1mM CaCl、1mM MgCl、0.1mM FeSO)50mlに加え、37℃で2.5時間振とう培養後、100mM IPTGを50μl、80mg/ml5−アミノレブリン酸を50μl順次添加し、22℃、120rpmで16時間振とう培養した。遠心分離により、この培養液から回収した菌体をトリス緩衝液(50mM Tris−HCl(pH7.4)、10%グリセロール)10mlで1回洗浄し、次に菌体を10mlの同緩衝液に懸濁した。この菌体懸濁液9mlにBugBaster(Novagen社製)を900μl、Benzonase(Merck社製、25units/μl)を3μl、リゾチーム溶液(40mg/ml)を900μl順次添加し、30℃で20分インキュベートした。この溶菌液を遠心分離(3000xg、4℃、10分)した後に得られた上清を、予めイオン交換水で洗浄した後トリス緩衝液で平衡化させた、ProBondカラム(Invitrogen社製)に通過させた。その後カラムをトリス緩衝液10mlで洗浄した。次に50mM イミダゾールを含むトリス緩衝液5mlでカラムを洗浄した後、200mM イミダゾールを含むトリス緩衝液5mlでMoxAまたはCYP154Aを溶出させた。この溶出液をCV−1緩衝液(50mM リン酸ナトリウム緩衝液(pH7.4)、10%グリセロール、2mM ジチオスレイトール、1mM EDTA、1mM グルコース)中で透析した結果得られた溶液を精製P450溶液とした。この溶液はSDS−PAGEでP450タンパク質の推定分子量と一致する約45kDに、ほぼ単一のバンドを示した。また、大村および佐藤らの方法(J.Biol.Chem.1964239:2370−に378)に従って、還元条件下で一酸化炭素結合前後の差スペクトルを測定することで溶液中に含まれるP450濃度を測定した結果、MoxA溶液で6.1μM、CYP154A溶液で11.2μMのP450が含まれていた。これらの精製P450溶液を以下の実施例にて記述する反応に使用した。
Preparation of P450 enzyme Plasmid pMoxAhis DNA or pNfa2293His was transformed into E. coli BL21 (DE3). A 20% glycerol preservation culture of the obtained strain was prepared, 10 μl thereof was added to 2 ml of LB medium supplemented with 25 μg / ml (final concentration) kanamycin, and cultured with shaking at 30 ° C. for 16 hours at 220 rpm. 500 μl of this culture solution was added to M9mix medium (M9 salt, 0.4% glucose, 0.5% casamino acid, 20 μl / ml thymine, 0.1 mM CaCl 2 , 1 mM MgCl 2 ) supplemented with kanamycin 25 μg / ml (final concentration). , 0.1 mM FeSO 4 ) and shaking culture at 37 ° C. for 2.5 hours, 50 μl of 100 mM IPTG and 50 μl of 80 mg / ml 5-aminolevulinic acid were added successively, and shaking culture at 22 ° C. and 120 rpm for 16 hours. did. By centrifuging, the cells recovered from this culture solution were washed once with 10 ml of Tris buffer (50 mM Tris-HCl (pH 7.4), 10% glycerol), and then the cells were suspended in 10 ml of the same buffer. It became cloudy. 900 μl of BugBaster (manufactured by Novagen), 3 μl of Benzonase (manufactured by Merck, 25 units / μl) and 900 μl of lysozyme solution (40 mg / ml) were sequentially added to 9 ml of this cell suspension, and incubated at 30 ° C. for 20 minutes. . The supernatant obtained after centrifuging this lysate (3000 × g, 4 ° C., 10 minutes) is passed through a ProBond column (manufactured by Invitrogen) that has been pre-washed with ion-exchanged water and equilibrated with Tris buffer. I let you. The column was then washed with 10 ml of Tris buffer. Next, after washing the column with 5 ml of Tris buffer containing 50 mM imidazole, MoxA or CYP154A was eluted with 5 ml of Tris buffer containing 200 mM imidazole. The eluate was dialyzed in CV-1 buffer (50 mM sodium phosphate buffer (pH 7.4), 10% glycerol, 2 mM dithiothreitol, 1 mM EDTA, 1 mM glucose) to obtain a purified P450 solution. It was. This solution showed an almost single band at about 45 kD, which was consistent with the estimated molecular weight of P450 protein by SDS-PAGE. Further, according to the method of Omura and Sato et al. (J. Biol. Chem. 1964239: 2370-378), the P450 concentration contained in the solution is measured by measuring the difference spectrum before and after the carbon monoxide bond under reducing conditions. As a result, 6.1 μM of the MoxA solution and 11.2 μM of P450 were contained in the CYP154A solution. These purified P450 solutions were used in the reactions described in the examples below.

ACNQを用いたジクロフェナクの水酸化
以下に示す条件にてジクロフェナクの水酸化反応試験を実施した。
(反応液組成)
6.1μM 精製MoxA溶液 234μl
10mM ACNQ(DMSQ溶液) 5μl
50mM NADH 25μl
50mM NADPH 25μl
1unit/μl グルコースデヒドロゲナーゼ
(東洋紡社製) 10μl
2M グルコース 10μl
100mM ジクロフェナクナトリウム(DMSO溶液) 5μl
CV−1緩衝液で最終容量が500μlになるように調整
この他、上記反応液組成に倣って、(1)ACNQ、NADH、NADPH、グルコースデヒドロゲナーゼ、グルコースを添加しないもの、(2)NADH、NADPH、グルコースデヒドロゲナーゼ、グルコースを添加しないもの、(3)グルコースデヒドロゲナーゼ、グルコースを添加しないものも比較するため反応液を調製し、30℃で200rpmのしんとう条件下、20時間反応を行った。
反応後、500μlのメタノールを加え、ボルテックスした後、遠心して得られた上清を下記の条件によりHPLCで分析した。
(HPLC分析条件)
カラム:J’sphere ODS−H80(75×4.6mm i.D.ワイエムシー社製)
移動相:0.85%リン酸水溶液−メタノール(40:60)
流速:1.0ml/min
カラム温度:40℃
検出波長:267nm
保持時間:ジクロフェナク:11.5min、4’−水酸化ジクロフェナク:4.0min
その結果、図1に示すように、反応系にACNQを添加した時にのみジクロフェナクの水酸化が認められた。この時、ACNQ単独よりNADPHおよびNADHを加えた系にて水酸化物変換量が7倍以上増加し、これにNADHの再生のためにグルコースデヒドロゲナーゼおよびグルコースを添加すると、変換量はさらに約2倍増加した。
Diclofenac hydroxylation using ACNQ A diclofenac hydroxylation test was conducted under the following conditions.
(Reaction solution composition)
6.1 μM Purified MoxA solution 234 μl
10 mM ACNQ (DMSQ solution) 5 μl
50 mM NADH 25 μl
50 mM NADPH 25 μl
1 unit / μl glucose dehydrogenase (manufactured by Toyobo) 10 μl
2M glucose 10 μl
100 mM diclofenac sodium (DMSO solution) 5 μl
In addition to this, the final volume was adjusted to 500 μl with CV-1 buffer. In addition, following the above reaction solution composition, (1) ACNQ, NADH, NADPH, glucose dehydrogenase, glucose not added, (2) NADH, NADPH In order to compare glucose dehydrogenase, glucose not added, and (3) glucose dehydrogenase, glucose not added, a reaction solution was prepared and reacted at 30 ° C. under 200 rpm for 20 hours.
After the reaction, 500 μl of methanol was added, vortexed, and the supernatant obtained by centrifugation was analyzed by HPLC under the following conditions.
(HPLC analysis conditions)
Column: J'sphere ODS-H80 (75 × 4.6 mm id manufactured by YMC Corporation)
Mobile phase: 0.85% phosphoric acid aqueous solution-methanol (40:60)
Flow rate: 1.0 ml / min
Column temperature: 40 ° C
Detection wavelength: 267 nm
Retention time: Diclofenac: 11.5 min, 4′-hydroxydiclofenac: 4.0 min
As a result, as shown in FIG. 1, hydroxylation of diclofenac was observed only when ACNQ was added to the reaction system. At this time, the amount of hydroxide conversion increased by 7 times or more in a system in which NADPH and NADH were added from ACNQ alone, and when glucose dehydrogenase and glucose were added to regenerate NADH, the conversion amount was further doubled. Increased.

各種キノンのジクロフェナクの水酸化に対する効果
以下に示す条件にて、
(反応液組成)
6.1μM 精製MoxA溶液 40μl
50mM NADPH 10μl
10mM 各種キノン−DMSO溶液* 1μl
100mM ジクロフェナクナトリウム 1μl
CV−1緩衝液 48μl
* 上記反応液組成における各種キノンについては、ACNQ、1,4−ナフトキノン、1,4−ジヒドロキシ−2−ナフトエ酸、ビタミンK、1,4−ベンゾキノンを試験した。対照(キノン無添加)にDMSOのみを用いた。
反応後、5μlの1N塩酸を加えて、100μlの酢酸エチルで抽出した。この酢酸エチル抽出液50μlをサンプルチューブに移して、エバポレーターで減圧乾固した。これをメタノール200μlに溶解し、試料溶液として実施例3に記載した条件と同様にしてHPLCで分析した。
この試験の結果、図2に示すように5種のキノン類のうち、いずれを添加した反応系においても、ジクロフェナクの水酸化活性が認められた。水酸化体の変換量から、この反応に比較的適したキノンはACNQと1,4−ナフトキノンであった。各種キノン類縁化合物存在下で得られた4’−水酸化ジクロフェナクの変換量は、本反応条件において、1,4−ナフトキノンを添加した場合の18時間後に得られた4’−水酸化ジクロフェナクの量を100とした相対値で表した。
Effect of various quinones on hydroxylation of diclofenac Under the conditions shown below,
(Reaction solution composition)
6.1 μM purified MoxA solution 40 μl
50 mM NADPH 10 μl
10 mM various quinone-DMSO solutions * 1 μl
100 mM diclofenac sodium 1 μl
48 μl of CV-1 buffer
* ACNQ, 1,4-naphthoquinone, 1,4-dihydroxy-2-naphthoic acid, vitamin K 3 and 1,4-benzoquinone were tested for various quinones in the above reaction solution composition. Only DMSO was used as a control (no quinone added).
After the reaction, 5 μl of 1N hydrochloric acid was added and extracted with 100 μl of ethyl acetate. 50 μl of this ethyl acetate extract was transferred to a sample tube and dried under reduced pressure using an evaporator. This was dissolved in 200 μl of methanol and analyzed by HPLC under the same conditions as described in Example 3 as a sample solution.
As a result of this test, as shown in FIG. 2, hydroxylation activity of diclofenac was observed in the reaction system to which any of the five quinones was added. The quinones relatively suitable for this reaction were ACNQ and 1,4-naphthoquinone due to the amount of hydroxide converted. The conversion amount of 4′-hydroxy diclofenac obtained in the presence of various quinone analogs is the amount of 4′-hydroxy diclofenac obtained after 18 hours when 1,4-naphthoquinone is added under the present reaction conditions. Is expressed as a relative value where 100 is 100.

1,4−ナフトキノンを用いた7−エトキシクマリンの脱エチル化
以下に示す条件にて7−エトキシクマリンの脱エチル化試験を実施した。
(反応液組成)
11.2μM 精製CYP154A溶液 80μl
10mM 1,4−ナフトキノン(DMSO溶液) 4μl
100mM NADPH 10μl
100mM 7−エトキシクマリン(DMSO溶液) 0.8μl
CV−1 緩衝液で最終容量が400μlになるように調整
この他、上記反応液組成に倣って、
(1)精製CYP154A溶液を添加しないもの、
(2)1,4−ナフトキノンを添加しないものも比較するため反応液を調製し、30℃で125rpmのしんとう条件下、4時間反応を行った。
反応後、400μlの酢酸エチルで抽出した。この酢酸エチル抽出液200ulを試験管に移して、エバポレーターで減圧乾固した。乾固物を25mM リン酸カリウム緩衝液(pH7.4)4mlに溶解し、試料溶液とした。7−エトキシクマリンの脱エチル化の結果生成する7−ヒドロキシクマリンを検出するため、蛍光検出器により励起波長380nmにおける450nmの蛍光を測定した。
その結果、図3に示すように、1,4−ナフトキノンの存在下でCYP154Aによる7−エトキシクマリンの脱エチル化が認められた。
Deethylation of 7-ethoxycoumarin using 1,4-naphthoquinone A 7-ethoxycoumarin deethylation test was carried out under the following conditions.
(Reaction solution composition)
11.2 μM purified CYP154A solution 80 μl
10 mM 1,4-naphthoquinone (DMSO solution) 4 μl
100 mM NADPH 10 μl
100 mM 7-ethoxycoumarin (DMSO solution) 0.8 μl
Adjust the final volume to 400 μl with CV-1 buffer.
(1) No addition of purified CYP154A solution,
(2) A reaction solution was prepared in order to compare those without addition of 1,4-naphthoquinone, and the reaction was carried out at 30 ° C. under a condition of 125 rpm for 4 hours.
After the reaction, extraction was performed with 400 μl of ethyl acetate. 200 ul of this ethyl acetate extract was transferred to a test tube and dried under reduced pressure using an evaporator. The dried product was dissolved in 4 ml of 25 mM potassium phosphate buffer (pH 7.4) to obtain a sample solution. In order to detect 7-hydroxycoumarin produced as a result of deethylation of 7-ethoxycoumarin, fluorescence at 450 nm at an excitation wavelength of 380 nm was measured with a fluorescence detector.
As a result, as shown in FIG. 3, deethylation of 7-ethoxycoumarin by CYP154A was observed in the presence of 1,4-naphthoquinone.

本発明によれば、無細胞系である一定の有機化合物を効果的に変換できる酸化的反応系が提供できるので、本発明は、例えば、生物活性を改変した医薬の製造業、薬物代謝の研究ツール等を提供する産業、等で利用可能である。
[配列表]

Figure 0004969448
Figure 0004969448
Figure 0004969448
Figure 0004969448
Figure 0004969448
Figure 0004969448
According to the present invention, since an oxidative reaction system capable of effectively converting a certain organic compound which is a cell-free system can be provided, the present invention can be applied to, for example, the manufacture of pharmaceuticals with modified biological activity, research on drug metabolism. It can be used in industries that provide tools and the like.
[Sequence Listing]
Figure 0004969448
Figure 0004969448
Figure 0004969448
Figure 0004969448
Figure 0004969448
Figure 0004969448

Claims (13)

シトクロムP450の存在下におけるシトクロムP450の基質となりうる化合物の生物学的変換反応を行うための反応系であって、
(a)放線菌由来のシトクロムP450と、
(b)NADH及びNADPH、並びに電子を供給し得る電極からなる群より選ばれる初発電子供給手段と、
(c)(1)1,4−ナフトキノン、1,4−ベンゾキノン、2−アミノ−3−カルボキシ−1,4−ナフトキノン、1,4−ジヒドロキシ−2−ナフトエ酸、及びビタミンK3、並びに
(2)(1)に記載の化合物以外の化合物であって、1,4−ベンゾキノンまたは1,4−ナフトキノンをアミノ基、カルボキシル基またはメチル基で修飾した化合物から選ばれ、かつ、生理的条件下でシトクロムP450反応系におけるコファクター機能を代替できる化合物
よりなる群より選ばれるキノン類縁化合物
を含むことを特徴とする、上記反応系。
A reaction system for conducting a biological conversion reaction of a compound that can be a substrate of cytochrome P450 in the presence of cytochrome P450,
(A) cytochrome P450 derived from actinomycetes ,
(B) NADH and NADPH, and an initial electron supply means selected from the group consisting of electrodes capable of supplying electrons;
(C) (1) 1,4-naphthoquinone, 1,4-benzoquinone, 2-amino-3-carboxy-1,4-naphthoquinone, 1,4-dihydroxy-2-naphthoic acid, and vitamin K 3 , and ( 2) A compound other than the compound described in (1), which is selected from compounds in which 1,4-benzoquinone or 1,4-naphthoquinone is modified with an amino group, a carboxyl group or a methyl group, and under physiological conditions And a quinone analog selected from the group consisting of compounds capable of substituting the cofactor function in the cytochrome P450 reaction system.
シトクロムP450が放線菌由来のMoxAもしくはCYP154A、またはアミノ酸配列レベルでMoxAと90%以上の同一性をもち、かつ、P450の機能をもつ請求項1記載の反応系。The reaction system according to claim 1, wherein cytochrome P450 has 90 % or more identity with MoxA or CYP154A derived from actinomycetes or MoxA at the amino acid sequence level and has a function of P450. シトクロムP450が放線菌由来のMoxAまたはCYP154Aである請求項1または2に記載の反応系。The reaction system according to claim 1 or 2, wherein the cytochrome P450 is MoxA or CYP154A derived from actinomycetes . キノン類縁化合物が1,4−ナフトキノン、1,4−ベンゾキノン、2−アミノ−3−カルボキシ−1,4−ナフトキノン、1,4−ジヒドロキシ−2−ナフトエ酸、及びビタミンK3からなる群より選ばれる請求項1〜3のいずれかに記載の反応系。The quinone analog is selected from the group consisting of 1,4-naphthoquinone, 1,4-benzoquinone, 2-amino-3-carboxy-1,4-naphthoquinone, 1,4-dihydroxy-2-naphthoic acid, and vitamin K 3 The reaction system according to any one of claims 1 to 3. 初発電子供給手段が、NADH及びNADPHから選ばれる1種または2種である請求項1〜4のいずれかに記載の反応系。The reaction system according to any one of claims 1 to 4, wherein the initial electron supply means is one or two selected from NADH and NADPH. 初発電子供給手段が、電子を供給し得る電極であるである請求項1〜4のいずれかに記載の反応系。The reaction system according to any one of claims 1 to 4, wherein the initial electron supply means is an electrode capable of supplying electrons. シトクロムP450の存在下におけるシトクロムP450の基質となりうる化合物の生物学的変換反応を行う反応系であって、
(a)放線菌由来のシトクロムP450と、
(b)NADH及びNADPH、並びに電子を供給し得る電極からなる群より選ばれる初発電子供給手段と、
(c)(1)1,4−ナフトキノン、1,4−ベンゾキノン、2−アミノ−3−カルボキシ−1,4−ナフトキノン、1,4−ジヒドロキシ−2−ナフトエ酸、及びビタミンK3、並びに
(2)(1)に記載の化合物以外の化合物であって、1,4−ベンゾキノンまたは1,4−ナフトキノンをアミノ基、カルボキシル基またはメチル基で修飾した化合物から選ばれ、かつ、生理的条件下でシトクロムP450反応系におけるコファクター機能を代替できる化合物
よりなる群より選ばれるキノン類縁化合物、を含んで成る、上記反応系において、シトクロムP450の基質となりうる化合物の生物学的変換を行う工程を含むことを特徴とする生物学的変換生成物の製造方法。
A reaction system for performing a biological conversion reaction of a compound that can be a substrate of cytochrome P450 in the presence of cytochrome P450,
(A) cytochrome P450 derived from actinomycetes ,
(B) NADH and NADPH, and an initial electron supply means selected from the group consisting of electrodes capable of supplying electrons;
(C) (1) 1,4-naphthoquinone, 1,4-benzoquinone, 2-amino-3-carboxy-1,4-naphthoquinone, 1,4-dihydroxy-2-naphthoic acid, and vitamin K 3 , and ( 2) A compound other than the compound described in (1), which is selected from compounds in which 1,4-benzoquinone or 1,4-naphthoquinone is modified with an amino group, a carboxyl group or a methyl group, and under physiological conditions A quinone analog selected from the group consisting of compounds capable of substituting a cofactor function in a cytochrome P450 reaction system, wherein a biological conversion of a compound that can be a substrate of cytochrome P450 in the reaction system is included. A method for producing a biological transformation product characterized by the above.
生物学的変換が酸化型である請求項7記載の製造方法。The method according to claim 7, wherein the biological transformation is an oxidized form. シトクロムP450が放線菌由来のMoxAもしくはCYP154A、またはアミノ酸配列レベルでMoxAと90%以上の同一性をもち、かつ、P450の機能をもつ請求項7または8に記載の製造方法。The production method according to claim 7 or 8, wherein cytochrome P450 has 90 % or more identity with MoxA or CYP154A derived from actinomycetes or MoxA at the amino acid sequence level and has a function of P450. キノン類縁化合物が1,4−ナフトキノン、1,4−ベンゾキノン、2−アミノ−3−カルボキシ−1,4−ナフトキノン、1,4−ジヒドロキシ−2−ナフトエ酸、及びビタミンK3からなる群より選ばれる請求項7〜9のいずれかに記載の製造方法。The quinone analog is selected from the group consisting of 1,4-naphthoquinone, 1,4-benzoquinone, 2-amino-3-carboxy-1,4-naphthoquinone, 1,4-dihydroxy-2-naphthoic acid, and vitamin K 3 The manufacturing method in any one of Claims 7-9. シトクロムP450が放線菌由来のMoxAまたはCYP154Aである請求項7〜10のいずれかに記載の製造方法。The method according to any one of claims 7 to 10, wherein the cytochrome P450 is MoxA or CYP154A derived from actinomycetes . 初発電子供給手段が、NADH及びNADPHから選ばれる1種または2種である請求項7〜11のいずれかに記載の製造方法。The manufacturing method according to any one of claims 7 to 11, wherein the initial electron supply means is one or two selected from NADH and NADPH. 初発電子供給手段が、電子を供給し得る電極である請求項7〜11のいずれかに記載の製造方法。The manufacturing method according to claim 7, wherein the initial electron supply means is an electrode capable of supplying electrons.
JP2007535579A 2005-09-13 2006-09-13 Biological conversion reaction system of cytochrome P450 Expired - Fee Related JP4969448B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007535579A JP4969448B2 (en) 2005-09-13 2006-09-13 Biological conversion reaction system of cytochrome P450

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005265436 2005-09-13
JP2005265436 2005-09-13
PCT/JP2006/318552 WO2007032540A1 (en) 2005-09-13 2006-09-13 Biological conversion reaction system using cytochrome p450
JP2007535579A JP4969448B2 (en) 2005-09-13 2006-09-13 Biological conversion reaction system of cytochrome P450

Publications (2)

Publication Number Publication Date
JPWO2007032540A1 JPWO2007032540A1 (en) 2009-03-19
JP4969448B2 true JP4969448B2 (en) 2012-07-04

Family

ID=37865115

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007535579A Expired - Fee Related JP4969448B2 (en) 2005-09-13 2006-09-13 Biological conversion reaction system of cytochrome P450

Country Status (2)

Country Link
JP (1) JP4969448B2 (en)
WO (1) WO2007032540A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003087381A1 (en) * 2002-04-12 2003-10-23 Mercian Corporation Expression system of actinomycete-origin cytochrome p-450 in escherichia coli

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003087381A1 (en) * 2002-04-12 2003-10-23 Mercian Corporation Expression system of actinomycete-origin cytochrome p-450 in escherichia coli

Also Published As

Publication number Publication date
JPWO2007032540A1 (en) 2009-03-19
WO2007032540A1 (en) 2007-03-22

Similar Documents

Publication Publication Date Title
Pazmiño et al. Efficient biooxidations catalyzed by a new generation of self-sufficient Baeyer-Villiger monooxygenases
Scheps et al. Synthesis of ω‐hydroxy dodecanoic acid based on an engineered CYP153A fusion construct
Hillas et al. The AhpC and AhpD antioxidant defense system of Mycobacterium tuberculosis
Schewe et al. Improvement of P450 BM-3 whole-cell biocatalysis by integrating heterologous cofactor regeneration combining glucose facilitator and dehydrogenase in E. coli
Fujii et al. Purification, characterization, and directed evolution study of a vitamin D3 hydroxylase from Pseudonocardia autotrophica
Budde et al. Cloning, expression and characterisation of CYP102A2, a self-sufficient P450 monooxygenase from Bacillus subtilis
Montersino et al. Functional annotation and characterization of 3-hydroxybenzoate 6-hydroxylase from Rhodococcus jostii RHA1
Wallace et al. Purification of Crotonyl‐CoA Reductase from Streptomyces collinus and Cloning, Sequencing and Expression of the Corresponding Gene in Escherichia coli
WO2018113476A1 (en) Genetically engineered bacterium of coexpressing cyclohexanone monooxygenase and isopropanol dehydrogenase and use thereof
Morokutti et al. Structure and function of YcnD from Bacillus subtilis, a flavin-containing oxidoreductase
Litthauer et al. Heterologous expression and characterization of the ene-reductases from Deinococcus radiodurans and Ralstonia metallidurans
WO2006051729A1 (en) Method of isolating p450 gene
Chen et al. Recent progress on discovery and research of aldoxime dehydratases
Ichinose et al. Heterologous expression and mechanistic investigation of a fungal cytochrome P450 (CYP5150A2): involvement of alternative redox partners
Shimekake et al. A novel thermostable d-amino acid oxidase of the thermophilic fungus Rasamsonia emersonii strain YA
Kadow et al. Functional assembly of camphor converting two-component Baeyer–Villiger monooxygenases with a flavin reductase from E. coli
Munday et al. Characterisation of two self-sufficient CYP102 family monooxygenases from Ktedonobacter racemifer DSM44963 which have new fatty acid alcohol product profiles
Mowafy et al. 2-Haloacrylate hydratase, a new class of flavoenzyme that catalyzes the addition of water to the substrate for dehalogenation
US20080044882A1 (en) Oxidation by Hydrogen Peroxide
Buergler et al. Process intensification for cytochrome P450 BM3‐catalyzed oxy‐functionalization of dodecanoic acid
Milhim et al. Identification of a new plasmid-encoded cytochrome P450 CYP107DY1 from Bacillus megaterium with a catalytic activity towards mevastatin
Ying et al. Characterization of an allylic/benzyl alcohol dehydrogenase from Yokenella sp. strain WZY002, an organism potentially useful for the synthesis of α, β-unsaturated alcohols from allylic aldehydes and ketones
Wang et al. A membrane-bound gluconate dehydrogenase from 2-keto-d-gluconic acid industrial producing strain Pseudomonas plecoglossicida JUIM01: Purification, characterization, and gene identification
JP4969448B2 (en) Biological conversion reaction system of cytochrome P450
Guo et al. Construction and functional analysis of a whole-cell biocatalyst based on CYP108N7

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110802

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110930

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20111114

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20111114

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120327

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120403

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150413

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees