JP4968908B2 - ELECTROLYTE COMPOSITION, PROCESS FOR PRODUCING THE SAME AND ELECTROCHEMICAL DEVICE USING ELECTROLYTE COMPOSITION - Google Patents

ELECTROLYTE COMPOSITION, PROCESS FOR PRODUCING THE SAME AND ELECTROCHEMICAL DEVICE USING ELECTROLYTE COMPOSITION Download PDF

Info

Publication number
JP4968908B2
JP4968908B2 JP2007047401A JP2007047401A JP4968908B2 JP 4968908 B2 JP4968908 B2 JP 4968908B2 JP 2007047401 A JP2007047401 A JP 2007047401A JP 2007047401 A JP2007047401 A JP 2007047401A JP 4968908 B2 JP4968908 B2 JP 4968908B2
Authority
JP
Japan
Prior art keywords
liquid crystal
electrolyte
electrolyte composition
group
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007047401A
Other languages
Japanese (ja)
Other versions
JP2008210696A (en
Inventor
隆史 加藤
正史 吉尾
健史 岸本
弘幸 大野
洋介 飯沼
和彦 宮内
豊 岸井
恭子 西口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Chemical Corp
Nitto Denko Corp
Tokyo University of Agriculture and Technology NUC
University of Tokyo NUC
Original Assignee
Nissan Chemical Corp
Nitto Denko Corp
Tokyo University of Agriculture and Technology NUC
University of Tokyo NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Chemical Corp, Nitto Denko Corp, Tokyo University of Agriculture and Technology NUC, University of Tokyo NUC filed Critical Nissan Chemical Corp
Priority to JP2007047401A priority Critical patent/JP4968908B2/en
Publication of JP2008210696A publication Critical patent/JP2008210696A/en
Application granted granted Critical
Publication of JP4968908B2 publication Critical patent/JP4968908B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Conductive Materials (AREA)
  • Secondary Cells (AREA)
  • Hybrid Cells (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Description

本発明は、基板平面に対して水平配向させることにより基板方向(即ち、基板平面に対して垂直方向)に高いイオン伝導性を示し、リチウムおよびリチウムイオン二次電池、電気二重層キャパシタ、光電気化学電池、イオンセンサ、およびフォトクロミック素子等の各種デバイスに適した特性を有する電解質組成物及びその製造方法、並びにこの電解質組成物を用いた電気化学素子に関するものである。   The present invention exhibits high ionic conductivity in the substrate direction (that is, the direction perpendicular to the substrate plane) by being oriented horizontally with respect to the substrate plane, and lithium and lithium ion secondary batteries, electric double layer capacitors, photoelectricity The present invention relates to an electrolyte composition having characteristics suitable for various devices such as a chemical battery, an ion sensor, and a photochromic element, a method for producing the same, and an electrochemical element using the electrolyte composition.

近年、リチウム及びリチウムイオン二次電池、電気二重層キャパシタ、光電気化学電池、イオンセンサ、フォトクロミック素子、燃料電池などのエネルギー変換デバイス等への需要の増大から、それらを構成する電解質にも、より一層の高性能化が要求されている。   In recent years, due to an increase in demand for energy conversion devices such as lithium and lithium ion secondary batteries, electric double layer capacitors, photoelectrochemical cells, ion sensors, photochromic elements, fuel cells, etc. There is a demand for higher performance.

電解質は、無機材料を用いた無機固体電解質、有機高分子を用いた高分子固体電解質及び水や非水溶媒を用いた液状電解質といった態様で利用されている。   The electrolyte is used in the form of an inorganic solid electrolyte using an inorganic material, a polymer solid electrolyte using an organic polymer, and a liquid electrolyte using water or a non-aqueous solvent.

これらの中で、高分子固体電解質は、次世代のリチウム二次電池用の電解質などとして注目を集めている。高分子固体電解質は、液漏れの恐れが無く、不揮発性であり、しかも形状の自由度が大きい。   Among these, polymer solid electrolytes are attracting attention as electrolytes for next-generation lithium secondary batteries. The polymer solid electrolyte has no fear of liquid leakage, is non-volatile, and has a high degree of freedom in shape.

しかしながら、高分子固体電解質は、液状電解質に比べてイオン伝導率が小さい。このため、高分子固体電解質の改良は、イオン伝導率の向上を目的として為されることが多いが、現状の改良では、これらデバイス用の電解質として用いるには不十分である。   However, the polymer solid electrolyte has lower ionic conductivity than the liquid electrolyte. For this reason, the improvement of the solid polymer electrolyte is often made for the purpose of improving the ionic conductivity, but the current improvement is insufficient for use as an electrolyte for these devices.

これら高分子固体電解質の特徴を活かし伝導率を向上させるために、液状電解質をゲル化剤などで固体化させたゲル電解質が検討されている。しかし、ゲル電解質は、容易に揮発する液状成分を含むため、現状デバイスの安全性を大幅に向上させるものには至っていない。   In order to improve the conductivity by taking advantage of these polymer solid electrolytes, a gel electrolyte obtained by solidifying a liquid electrolyte with a gelling agent or the like has been studied. However, since the gel electrolyte contains a liquid component that volatilizes easily, the gel electrolyte has not yet been improved significantly.

一方、近年、固体と液体の中間的性質を有する液晶材料を用い、その配向性をイオン伝導の場として利用した様々なイオン伝導体が提案されている(例えば、特許文献1参照)。
WO2003/062286
On the other hand, in recent years, various ionic conductors using a liquid crystal material having an intermediate property between a solid and a liquid and utilizing the orientation as a field for ionic conduction have been proposed (see, for example, Patent Document 1).
WO2003 / 062286

実用に供される条件を考慮すると、電極間に配置されるイオン伝導体は、室温下で電極間方向に高いイオン伝導性を示すことが望まれる。しかし、従来の液晶化合物はこのような特性を得るには適していない。例えば、特許文献1に開示されている液晶化合物は、分子が電極平面に対して垂直配向したスメクチック液晶相を示すが、この状態では有効なイオン伝導パスが電極平面に対して平行に形成されるため、電極間方向、即ち電極平面に対して垂直方向のイオン伝導率が十分に大きくならない。   Considering the conditions for practical use, it is desirable that the ionic conductor disposed between the electrodes exhibits high ionic conductivity in the direction between the electrodes at room temperature. However, conventional liquid crystal compounds are not suitable for obtaining such characteristics. For example, the liquid crystal compound disclosed in Patent Document 1 exhibits a smectic liquid crystal phase in which molecules are vertically aligned with respect to the electrode plane. In this state, an effective ion conduction path is formed parallel to the electrode plane. For this reason, the ion conductivity in the direction between the electrodes, that is, in the direction perpendicular to the electrode plane is not sufficiently increased.

本発明は上記課題に鑑みてなされたものであり、本発明の目的は、基板平面に対して水平配向させることにより、基板方向(即ち基板平面に対して垂直方向)に高いイオン伝導性を示す電解質組成物及びその製造方法並びにこれを用いた電気化学素子を提供することにある。   The present invention has been made in view of the above problems, and an object of the present invention is to exhibit high ion conductivity in the substrate direction (that is, the direction perpendicular to the substrate plane) by being horizontally oriented with respect to the substrate plane. It is an object to provide an electrolyte composition, a method for producing the same, and an electrochemical device using the same.

本発明の電解質組成物は、下記一般式(I)で示される液晶単量体と電解質塩とを含む混合組成物を重合した電解質組成物であって、基板平面に対して水平方向に配向していることを特徴とする。
R−α-Xm-β−A-γ−Yn−ω ・・・(I)
(Rは化1で表されるアクリル基、メタクリル基、エポキシ基、ビニル基、またはアリル基を示す。Xは−CH−を示し、mは1〜20の整数を示す。Aはメソゲン基を示す。Yは−CHCHO−または−CHCHCHO−を示し、nは1〜20の整数を示す。α、β及びγは酸素原子あるいは酸素原子無し、ωは水素原子あるいはメチル基を示す)
The electrolyte composition of the present invention is an electrolyte composition obtained by polymerizing a mixed composition containing a liquid crystal monomer represented by the following general formula (I) and an electrolyte salt, and is oriented in a horizontal direction with respect to a substrate plane. It is characterized by.
R-α-Xm-β-A-γ-Yn-ω (I)
(R represents an acryl group, a methacryl group, an epoxy group, a vinyl group, or an allyl group represented by Chemical Formula 1. X represents —CH 2 —, m represents an integer of 1 to 20, and A represents a mesogenic group. Y represents —CH 2 CH 2 O— or —CHCH 3 CH 2 O—, n represents an integer of 1 to 20, α, β, and γ are oxygen atoms or no oxygen atoms, and ω is a hydrogen atom Or a methyl group)

前記一般式(I)で示される液晶単量体のAは、下記構造式(I)〜(I13)であることが好ましい。 A of the liquid crystal monomer represented by the general formula (I) is preferably the following structural formulas (I 1 ) to (I 13 ).

(図中、lは0〜4の整数で表されるフッ素原子を示す。) (In the figure, l represents a fluorine atom represented by an integer of 0 to 4.)

(図中、lは0〜4の整数で表されるフッ素原子数を示す。) (In the figure, l represents the number of fluorine atoms represented by an integer of 0 to 4.)

前記混合組成物に、さらに交叉結合剤を混合することが好ましい。   It is preferable that a cross-linking agent is further mixed into the mixed composition.

また、本発明の電解質組成物の製造方法は、一対の配向膜付き基板を、配向膜の配向軸を一致させかつ一定の間隔を空けて配向膜面を対向させた状態で配置してセルを作製する工程と、前記セルを、下記一般式(I)で示される液晶単量体と電解質塩と重合開始剤とを含む混合組成物の等方相転移温度以上に加熱する工程と、
R−α-Xm-β−A-γ−Yn−ω ・・・(I)
(Rは化1で表されるアクリル基、メタクリル基、エポキシ基、ビニル基、またはアリル基を示す。Xは−CH−を示し、mは1〜20の整数を示す。Aはメソゲン基を示す。Yは−CHCHO−または−CHCHCHO−を示し、nは1〜20の整数を示す。α、β及びγは酸素原子あるいは酸素原子無し、ωは水素原子あるいはメチル基を示す)
前記混合組成物をセルに注入した後、特定の液晶相を発現する温度までセルを冷却して前記基板平面に対して水平配向状態とする工程と、前記水平配向状態を維持したまま加熱又は光照射により液晶単量体の重合反応を行う工程とを備えることにより、液晶重合体と電解質塩とを含む電解質組成物を製造することを特徴とする。
Further, the method for producing an electrolyte composition of the present invention comprises arranging a cell with a pair of alignment film-attached substrates in a state where the alignment axes of the alignment films coincide with each other and the alignment film surfaces face each other with a certain interval. A step of producing, a step of heating the cell above the isotropic phase transition temperature of a mixed composition comprising a liquid crystal monomer represented by the following general formula (I), an electrolyte salt, and a polymerization initiator;
R-α-Xm-β-A-γ-Yn-ω (I)
(R represents an acryl group, a methacryl group, an epoxy group, a vinyl group, or an allyl group represented by Chemical Formula 1. X represents —CH 2 —, m represents an integer of 1 to 20, and A represents a mesogenic group. Y represents —CH 2 CH 2 O— or —CHCH 3 CH 2 O—, n represents an integer of 1 to 20, α, β, and γ are oxygen atoms or no oxygen atoms, and ω is a hydrogen atom Or a methyl group)
After injecting the mixed composition into the cell, the step of cooling the cell to a temperature at which a specific liquid crystal phase is developed to obtain a horizontal alignment state with respect to the substrate plane, and heating or light while maintaining the horizontal alignment state And a step of performing a polymerization reaction of a liquid crystal monomer by irradiation to produce an electrolyte composition containing a liquid crystal polymer and an electrolyte salt.

また、本発明の電解質組成物の製造方法は、一つの配向膜付き基板を、下記一般式(I)で示される液晶単量体と電解質塩と重合開始剤とを含む混合組成物の等方相転移温度以上に加熱する工程と、
R−α-Xm-β−A-γ−Yn−ω ・・・(I)
(Rは化1で表されるアクリル基、メタクリル基、エポキシ基、ビニル基、またはアリル基を示す。Xは−CH−を示し、mは1〜20の整数を示す。Aはメソゲン基を示す。Yは−CHCHO−または−CHCHCHO−を示し、nは1〜20の整数を示す。α、β及びγは酸素原子あるいは酸素原子無し、ωは水素原子あるいはメチル基を示す)

前記混合組成物を前記基板上に塗布した後、特定の液晶相を発現する温度まで基板を冷却して前記基板平面に対して水平配向状態とする工程と、前記水平配向状態を維持したまま加熱又は光照射により液晶単量体の重合反応を行う工程と、を備えることにより、液晶重合体と電解質塩とを含む電解質組成物を製造することを特徴とする。
The method for producing an electrolyte composition of the present invention is an isotropy of a mixed composition comprising a liquid crystal monomer represented by the following general formula (I), an electrolyte salt, and a polymerization initiator on one alignment film-attached substrate. Heating to a temperature above the phase transition temperature;
R-α-Xm-β-A-γ-Yn-ω (I)
(R represents an acryl group, a methacryl group, an epoxy group, a vinyl group, or an allyl group represented by Chemical Formula 1. X represents —CH 2 —, m represents an integer of 1 to 20, and A represents a mesogenic group. Y represents —CH 2 CH 2 O— or —CHCH 3 CH 2 O—, n represents an integer of 1 to 20, α, β, and γ are oxygen atoms or no oxygen atoms, and ω is a hydrogen atom Or a methyl group)

After the mixed composition is applied on the substrate, the substrate is cooled to a temperature at which a specific liquid crystal phase is developed to be in a horizontal alignment state with respect to the substrate plane, and heated while maintaining the horizontal alignment state. Alternatively, an electrolyte composition containing a liquid crystal polymer and an electrolyte salt is produced by providing a step of polymerizing a liquid crystal monomer by light irradiation.

前記混合組成物に、さらに交叉結合剤を混合することが好ましい。   It is preferable that a cross-linking agent is further mixed into the mixed composition.

前記電解質組成物を用いて、リチウムイオン二次電池や電気二重層キャパシタとすることができる。   A lithium ion secondary battery or an electric double layer capacitor can be obtained using the electrolyte composition.

本発明によれば、電解質組成物を基板平面に対して水平配向させることにより、基板方向(即ち基板平面に対して垂直方向)に高いイオン伝導性を示すものとなる。このため、実用上有用な電極平面に対して垂直方向(即ち、電極間方向)のイオン伝導率が大きい電解質組成物を提供することが可能となる。   According to the present invention, when the electrolyte composition is horizontally oriented with respect to the substrate plane, high ion conductivity is exhibited in the substrate direction (that is, the direction perpendicular to the substrate plane). For this reason, it becomes possible to provide an electrolyte composition having a large ion conductivity in the direction perpendicular to the electrode plane that is practically useful (that is, the direction between the electrodes).

(電解質組成物)
本発明の電解質組成物は、液晶単量体と電解質塩とを含む混合組成物を、基板平面に対して水平方向に配向させ、この水平配向状態を維持したまま、熱または光重合することにより作製される。また、この混合組成物には、交叉結合剤および重合開始剤も併せて添加することが好ましい。以下、各要素毎に詳しく説明する。
(Electrolyte composition)
The electrolyte composition of the present invention is obtained by thermally or photopolymerizing a mixed composition containing a liquid crystal monomer and an electrolyte salt in a horizontal direction with respect to a substrate plane and maintaining this horizontal alignment state. Produced. In addition, it is preferable that a cross-linking agent and a polymerization initiator are also added to the mixed composition. Hereinafter, each element will be described in detail.

(液晶単量体)
本発明の液晶単量体は、下記の一般式(I)で示される構造とする。
R−α-Xm-β−A-γ−Yn−ω ・・・(I)
(Rは化1で表されるアクリル基、メタクリル基、エポキシ基、ビニル基、またはアリル基を示す。Xは−CH−を示し、mは1〜20の整数を示す。Aはメソゲン基を示す。Yは−CHCHO−または−CHCHCHO−を示し、nは1〜20の整数を示す。α、β及びγは酸素原子あるいは酸素原子無し、ωは水素原子あるいはメチル基を示す)

前記一般式(I)で示される液晶単量体において、メソゲン基Aの構造としては、例えば以下のようなものが例示される。
(Liquid crystal monomer)
The liquid crystal monomer of the present invention has a structure represented by the following general formula (I).
R-α-Xm-β-A-γ-Yn-ω (I)
(R represents an acryl group, a methacryl group, an epoxy group, a vinyl group, or an allyl group represented by Chemical Formula 1. X represents —CH 2 —, m represents an integer of 1 to 20, and A represents a mesogenic group. Y represents —CH 2 CH 2 O— or —CHCH 3 CH 2 O—, n represents an integer of 1 to 20, α, β, and γ are oxygen atoms or no oxygen atoms, and ω is a hydrogen atom Or a methyl group)

In the liquid crystal monomer represented by the general formula (I), examples of the structure of the mesogenic group A include the following.

(図中lは0から4の整数で表されるフッ素原子数を示す。) (In the figure, l represents the number of fluorine atoms represented by an integer from 0 to 4.)

(図中lは0から4の整数で表されるフッ素原子数を示す。) (In the figure, l represents the number of fluorine atoms represented by an integer from 0 to 4.)

(電解質塩)
電解質塩としては、アルカリ金属塩、特にリチウム塩が好適であり、具体的には、LiPF6 、LiBF4 、LiN(C25SO22 、LiAsF6 、LiSbF6 、LiAlF4 、LiGaF4、LiInF4 、LiClO4、LiN(CF3SO22、LiCF3SO3、LiSiF6、LiN(CF3SO2 )(C49SO2)等を用いることができる。
(Electrolyte salt)
As the electrolyte salt, alkali metal salts, are particularly suitable lithium salt, specifically, LiPF 6, LiBF 4, LiN (C 2 F 5 SO 2) 2, LiAsF 6, LiSbF 6, LiAlF 4, LiGaF 4 LiInF 4 , LiClO 4 , LiN (CF 3 SO 2 ) 2 , LiCF 3 SO 3 , LiSiF 6 , LiN (CF 3 SO 2 ) (C 4 F 9 SO 2 ), or the like can be used.

電解質塩はデバイスに応じて適宜選択すると良い。リチウム塩以外の電解質塩としては、LiI、NaI、KI、CsI、CaI2などの金属ヨウ化物、4級イミダゾリウム化合物のヨウ素塩、テトラアルキルアンモニウム化合物のヨウ素塩、LiBr、NaBr、KBr、CsBr、CaBr等の金属臭化物を例示することができる。 The electrolyte salt may be appropriately selected according to the device. As an electrolyte salt other than the lithium salt, LiI, NaI, KI, CsI, metal iodide such as CaI 2, iodine salt of a quaternary imidazolium compound, an iodine tetraalkylammonium compounds Motoshio, LiBr, NaBr, KBr, CsBr, A metal bromide such as CaBr 2 can be exemplified.

電解質塩の別の好ましい例としてはプロトン酸である。プロトン酸は無機酸でも有機酸でも良い。無機酸としては、硝酸、硫酸、亜硫酸、重亜硫酸、燐酸、亜燐酸、次燐酸、メタ燐酸、次亜燐酸、アミド燐酸、炭酸、重炭酸、塩酸、臭化水素酸、ヨウ化水素酸、オルトホウ酸、メタホウ酸、アルミン酸、アミド硫酸、ヒドラジノ硫酸、スルファミン酸などが上げられる。有機酸としては、イソ吉草酸、イソ酪酸、オクタン酸、シクロヘキサンカルボン酸、乳酸、酢酸、酪酸、クロトン酸、アゼライン酸、クエン酸、コハク酸、シュウ酸、酒石酸、フマル酸、マロン酸、リンゴ酸、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、アニス酸、安息香酸、p−アミノ安息香酸、ナフトエ酸、テレフタル酸、ピロメリット酸、アスパラギン、アスパラギン酸、4−アミノ酪酸、アラニン、アルギニン、イソロイシン、グリシン、グルタミン酸、システイン、セリン、バリン、ヒスチジン、メチオニン、ロイシン、安息香酸、安息香酸−2−燐酸、アデノシン−2′−燐酸、フェノ−ル−3−燐酸、ガラクト−ス−1−燐酸、ベンゼンホスホン酸、2−アミノエチルホスホン酸、2−ブロム−p−トリルホスホン酸、2−メトキシフェニルホスホン酸、t−ブチルホスフィン酸、o−クレゾ−ル、m−クレゾ−ル、p−クレゾ−ル、4−アミノ−m−クレゾ−ル、2,4−ジニトロフェノ−ル、o−ブロモフェノ−ル、p−フェノ−ルスルホン酸、p−アセチルフェノ−ル、アスコルビン酸、レダクチン、3−ヒドロキシフェニルホウ酸、3−アミノフェニルホウ酸、β−フェニルエチルボロン酸、ヒドラジン−N,N−ジ酢酸、ヒドラジン−N,N′−ジ酢酸などが例示できる。プロトン酸は、上記に限らず、スルフォニルイミド酸及びその誘導体も好ましい。   Another preferred example of the electrolyte salt is protonic acid. The proton acid may be an inorganic acid or an organic acid. Inorganic acids include nitric acid, sulfuric acid, sulfurous acid, bisulfite, phosphoric acid, phosphorous acid, hypophosphoric acid, metaphosphoric acid, hypophosphorous acid, amidophosphoric acid, carbonic acid, bicarbonate, hydrochloric acid, hydrobromic acid, hydroiodic acid, orthoboron. Examples thereof include acid, metaboric acid, aluminate, amidosulfuric acid, hydrazinosulfuric acid and sulfamic acid. Organic acids include isovaleric acid, isobutyric acid, octanoic acid, cyclohexanecarboxylic acid, lactic acid, acetic acid, butyric acid, crotonic acid, azelaic acid, citric acid, succinic acid, oxalic acid, tartaric acid, fumaric acid, malonic acid, malic acid , Lauric acid, myristic acid, palmitic acid, stearic acid, anisic acid, benzoic acid, p-aminobenzoic acid, naphthoic acid, terephthalic acid, pyromellitic acid, asparagine, aspartic acid, 4-aminobutyric acid, alanine, arginine, isoleucine Glycine, glutamic acid, cysteine, serine, valine, histidine, methionine, leucine, benzoic acid, benzoic acid-2-phosphate, adenosine-2'-phosphate, phenol-3-phosphate, galactose-1-phosphate, Benzenephosphonic acid, 2-aminoethylphosphonic acid, 2-bromo-p-tolylphos Acid, 2-methoxyphenylphosphonic acid, t-butylphosphinic acid, o-cresol, m-cresol, p-cresol, 4-amino-m-cresol, 2,4-dinitrophenol -Ol, o-bromophenol, p-phenolsulfonic acid, p-acetylphenol, ascorbic acid, reductin, 3-hydroxyphenylboric acid, 3-aminophenylboric acid, β-phenylethylboronic acid, hydrazine Examples thereof include -N, N-diacetic acid and hydrazine-N, N'-diacetic acid. Protonic acid is not limited to the above, and sulfonylimide acid and derivatives thereof are also preferable.

(交叉結合剤)
本発明において、液晶単量体と電解質塩とからなる混合組成物を重合して電解質フィルムとした時に十分な機械的強度を持たせるために、交叉結合剤(内部架橋剤)として、分子内に(メタ)アクリロイル基を2個またはそれ以上有する多官能(メタ)アクリレートを用いることが好ましい。このような多官能(メタ)アクリレートは、液晶単量体100mol%に対し、通常0.1〜20mol%、好ましくは0.5〜10mol%の範囲内で用いることができる。また、2官能の場合は多めに、3官能やそれ以上の多官能の場合は少なめにするとよい。0.1mol%未満では架橋度が低くなり、電解質フィルムの機械的強度が弱くなる。また、20mol%を超えると液晶化合物と相分離を起こしやすい。あるいは液晶相が発現しなくなりやすい。
(Cross-linking agent)
In the present invention, in order to give sufficient mechanical strength when a mixed composition comprising a liquid crystal monomer and an electrolyte salt is polymerized to form an electrolyte film, It is preferable to use a polyfunctional (meth) acrylate having two or more (meth) acryloyl groups. Such polyfunctional (meth) acrylate can be used in the range of usually 0.1 to 20 mol%, preferably 0.5 to 10 mol%, based on 100 mol% of the liquid crystal monomer. In addition, it is better to use a larger amount in the case of bifunctionality and a smaller amount in the case of a polyfunctionality of 3 or more functionalities. If it is less than 0.1 mol%, the degree of cross-linking will be low, and the mechanical strength of the electrolyte film will be weak. On the other hand, if it exceeds 20 mol%, phase separation is likely to occur with the liquid crystal compound. Alternatively, the liquid crystal phase is not likely to be expressed.

このような多官能(メタ)アクリレートとしては、エチレングリコールジ(メタ)アクリレート、プロパンジオールジ(メタ)アクリレート、ブタンジオールジ(メタ)アクリレート、ノナンジオールジ(メタ)アクリレート、ヘキサンジオールジ(メタ)アクリレートなどのアルカンジオール由来のジ(メタ)アクリレート類テトラエチレングリコールジ(メタ)アクリレート、(ポリ)エチレングリコールジ(メタ)アクリレート、(ポリ)プロピレングリコールジ(メタ)アクリレートなどの(ポリ)エチレングリコールや(ポリ)プロピレングリコール由来のジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、ペンタエリスリトールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレートなどの多価アルコール由来のジ、トリあるいはテトラ(メタ)アクリレート、エポキシ(メタ)アクリレート、ポリエステル(メタ)アクリレート、ウレタン(メタ)アクリレート、などを挙げることができる。   Such polyfunctional (meth) acrylates include ethylene glycol di (meth) acrylate, propanediol di (meth) acrylate, butanediol di (meth) acrylate, nonanediol di (meth) acrylate, and hexanediol di (meth). Di (meth) acrylates derived from alkanediols such as acrylate Tetraethylene glycol di (meth) acrylate, (poly) ethylene glycol di (meth) acrylate, (poly) ethylene glycol such as (poly) propylene glycol di (meth) acrylate And (poly) propylene glycol-derived di (meth) acrylate, neopentyl glycol di (meth) acrylate, pentaerythritol di (meth) acrylate, trimethylolpropane tri (meth) acrylate Di-, tri- or tetra (meth) acrylates derived from polyhydric alcohols such as pentaerythritol tri (meth) acrylate and dipentaerythritol hexa (meth) acrylate, epoxy (meth) acrylate, polyester (meth) acrylate, urethane (meta ) Acrylate, etc.

(重合反応)
重合反応は、紫外線などの光重合法によるか、熱重合法により行われる。電解質フィルムへの加工性の観点からは、光重合法によるのが好ましい。この光重合法としては、窒素ガスなどの不活性ガスで置換した酸素のない雰囲気中で行うか、または紫外線透過性基板による被覆で空気と遮断した状態で行うのが望ましい。
(Polymerization reaction)
The polymerization reaction is performed by a photopolymerization method such as ultraviolet rays or a thermal polymerization method. From the viewpoint of processability to an electrolyte film, it is preferable to use a photopolymerization method. This photopolymerization method is preferably performed in an oxygen-free atmosphere substituted with an inert gas such as nitrogen gas, or in a state where it is shielded from air by coating with an ultraviolet transparent substrate.

光重合法において、紫外線は波長範囲が約180〜460nmの電磁放射線であるが、これより長波長または短波長の電磁放射線であってもよい。紫外線源には、水銀アーク、炭素アーク、低圧水銀ランプ、中・高圧水銀ランプ、メタルハライドランプなどの照射装置が用いられる。紫外線の強度は、被照射体までの距離や電圧の調整により、適宜設定できる。照射時間(生産性)との兼ね合いで、通常は0.1〜100mW/cmの光を用いるのが望ましい。 In the photopolymerization method, ultraviolet rays are electromagnetic radiation having a wavelength range of about 180 to 460 nm, but may be electromagnetic radiation having a longer wavelength or shorter wavelength. Irradiation devices such as a mercury arc, a carbon arc, a low pressure mercury lamp, a medium / high pressure mercury lamp, a metal halide lamp are used as the ultraviolet ray source. The intensity of the ultraviolet rays can be appropriately set by adjusting the distance to the irradiated object and the voltage. In consideration of irradiation time (productivity), it is usually desirable to use light of 0.1 to 100 mW / cm 2 .

(光重合開始剤)
光重合開始剤としては、4−(2−ヒドロキシエトキシ)フェニル(2−ヒドロキシ−2−プロピル)ケトン、α−ヒドロキシーα,α′−ジメチルアセトフェノン、メトキシアセトフェノン、2,2−ジメトキシ−2−フェニルアセトフェノン、2,2−ジエトキシアセトフェノン、1−ヒドロキシシクロヘキシルフェニルケトン、2−メチル−1−〔4−(メチルチオ)−フェニル〕−2−モルホリノブロバン−1などのアセトフェノン系化合物、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、アニゾインメチルエーテルなどのベンゾインエーテル系化合物、2−メチル−2−ヒドロキシプロピオフェノンなどのα−ケトール系化合物、ベンジルジメチルケタールなどのケタール系化合物、2−ナフタレンスルホニルクロリドなどの芳香族スルホニルクロリド系化合物、1−フェノン−1,1−プロパンジオン−2−(o−エトキシカルボニル)オキシムなどの光活性オキシム系化合物、ベンゾフェノン、ベンゾイル安息香酸、3,3′−ジメチル−4−メトキシベンゾフェノンなどのベンゾフェノン系化合物などが挙げられる。
(Photopolymerization initiator)
As photopolymerization initiators, 4- (2-hydroxyethoxy) phenyl (2-hydroxy-2-propyl) ketone, α-hydroxy-α, α'-dimethylacetophenone, methoxyacetophenone, 2,2-dimethoxy-2-phenyl Acetophenone compounds such as acetophenone, 2,2-diethoxyacetophenone, 1-hydroxycyclohexyl phenyl ketone, 2-methyl-1- [4- (methylthio) -phenyl] -2-morpholinobroban-1, benzoin ethyl ether, benzoin Benzoin ether compounds such as isopropyl ether and anisoin methyl ether, α-ketol compounds such as 2-methyl-2-hydroxypropiophenone, ketal compounds such as benzyldimethyl ketal, 2-naphthalenesulfonyl chloride Aromatic sulfonyl chloride compounds such as 1-phenone-1,1-propanedione-2- (o-ethoxycarbonyl) oxime, benzophenone, benzoylbenzoic acid, 3,3′-dimethyl And benzophenone-based compounds such as -4-methoxybenzophenone.

(低分子量成分)
本発明において、液晶単量体と電解質塩からなる混合組成物には、液晶の配向を乱さない範囲において可塑剤などの低分子量成分を添加することができる。低分子量成分としては例えば、ポリスチレン換算の重量平均分子量が10,000以下の(ポリ)エチレンオキサイド、(ポリ)プロピレンオキサイド、(ポリ)エチレンイミン、(ポリ)シロキサン等を例示することができる。
(Low molecular weight component)
In the present invention, a low molecular weight component such as a plasticizer can be added to the mixed composition comprising the liquid crystal monomer and the electrolyte salt within a range not disturbing the alignment of the liquid crystal. Examples of the low molecular weight component include (poly) ethylene oxide, (poly) propylene oxide, (poly) ethyleneimine, (poly) siloxane, and the like having a polystyrene-equivalent weight average molecular weight of 10,000 or less.

(電解液)
また、本発明において、液晶単量体と電解質塩からなる混合組成物には、必要に応じて電解液を添加することができる。ここで、電解液とは、電解質塩を溶剤に溶解してなる溶液である。電解質塩としては、上述の電解質塩を用いることができる。これらの中では、特にアルカリ金属イオンを含む電解質塩が好ましく用いられる。
(Electrolyte)
Moreover, in this invention, electrolyte solution can be added to the mixed composition which consists of a liquid crystal monomer and electrolyte salt as needed. Here, the electrolytic solution is a solution obtained by dissolving an electrolyte salt in a solvent. As the electrolyte salt, the above-described electrolyte salt can be used. Among these, electrolyte salts containing alkali metal ions are particularly preferably used.

電解液のための溶剤としては、上述の電解質塩を溶解するものであればどのようなものでも用いることができるが、非水系の溶媒としては、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、γ−ブチロラクトン等の環状エステル類、テトラヒドロフラン、ジメトキシエタン等のエーテル類、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート等の鎖状エステル類が用いられる。これらの溶剤は、単独で、又は2種類以降の混合物として用いられる。   Any solvent can be used as the solvent for the electrolytic solution as long as it dissolves the above-described electrolyte salt. Examples of non-aqueous solvents include ethylene carbonate, propylene carbonate, butylene carbonate, and γ-butyrolactone. Cyclic esters such as tetrahydrofuran, ethers such as dimethoxyethane, and chain esters such as dimethyl carbonate, diethyl carbonate, and ethyl methyl carbonate. These solvents are used alone or as a mixture of two or more kinds.

(電解質組成物の製造方法)
前述の電解質組成物を作成するためには、まず、上記の液晶単量体、電解質塩、交叉結合剤および重合開始剤を溶媒中に溶解し均一状態にした後に、真空乾燥等により脱溶媒することにより液晶単量体−電解質塩混合組成物を作製する。
(Method for producing electrolyte composition)
In order to prepare the above-described electrolyte composition, first, the above liquid crystal monomer, electrolyte salt, cross-linking agent and polymerization initiator are dissolved in a solvent to obtain a uniform state, and then the solvent is removed by vacuum drying or the like. Thus, a liquid crystal monomer-electrolyte salt mixed composition is prepared.

液晶単量体、電解質塩、交叉結合剤および重合開始剤の溶解に用いられる溶媒は、各成分が全て溶解するものであれば良く特に限定はないが、テトラヒドロフラン、ジクロロメタン、トリクロロメタンなどが好ましく用いられる。   The solvent used for dissolving the liquid crystal monomer, electrolyte salt, cross-linking agent and polymerization initiator is not particularly limited as long as each component can be dissolved, but tetrahydrofuran, dichloromethane, trichloromethane, etc. are preferably used. It is done.

次に、液晶単量体−電解質塩混合組成物を基板平面に対して水平方向に配向させる。   Next, the liquid crystal monomer-electrolyte salt mixture composition is aligned in the horizontal direction with respect to the substrate plane.

(水平配向方法)
液晶単量体−電解質塩混合組成物を水平配向させる方法としては、大きく2つの方法が挙げられる。第1の方法としては、まず、一対の配向膜付き基板を、配向膜の配向軸を一致させかつ一定の間隔を空けて配向膜面を対向させたセルを作製する。
(Horizontal orientation method)
There are roughly two methods for horizontally aligning the liquid crystal monomer-electrolyte salt mixture composition. As a first method, first, a cell in which a pair of alignment film-attached substrates are aligned with the alignment axes of the alignment films and the alignment film surfaces are opposed to each other with a certain interval is produced.

図1に、本発明の電解質組成物の製造方法に用いるセルの断面図を示す。このセルは、配向膜2付き上側基板1と、配向膜3付き下側基板5とをスペーサー4を挟んで対向させたものである。   In FIG. 1, sectional drawing of the cell used for the manufacturing method of the electrolyte composition of this invention is shown. In this cell, an upper substrate 1 with an alignment film 2 and a lower substrate 5 with an alignment film 3 are opposed to each other with a spacer 4 interposed therebetween.

次に、このセルを液晶単量体−電解質塩混合組成物の等方相転移温度以上に加熱し、然る後にこの混合組成物をセルに注入する。その後、所望の液晶相を発現する温度までセルを冷却する。更に、この液晶相の配向状態を維持したまま前述の重合方法により液晶単量体および交叉結合剤の重合を行う。これより、交叉結合剤により部分的に架橋された液晶重合体と電解質塩からなる電解質組成物を作製することができる。   Next, this cell is heated above the isotropic phase transition temperature of the liquid crystal monomer-electrolyte salt mixture composition, and then the mixture composition is injected into the cell. Thereafter, the cell is cooled to a temperature at which a desired liquid crystal phase is developed. Further, the liquid crystal monomer and the cross-linking agent are polymerized by the above-described polymerization method while maintaining the alignment state of the liquid crystal phase. Thus, an electrolyte composition comprising a liquid crystal polymer partially crosslinked with a cross-linking agent and an electrolyte salt can be produced.

また、第2の方法として、一つの配向膜付き基板を、液晶単量体−電解質塩混合組成物の等方相転移温度以上に加熱し、この組成物を一つの配向膜付き基板上に塗布する。その後、特定の液晶相を発現する温度まで基板を冷却する。さらに、然る後水平配向状態を維持したまま前述の重合方法により液晶単量体および交叉結合剤の重合を行う。これより、交叉結合剤により部分的に架橋された液晶重合体と電解質塩からなる電解質組成物を作製することができる。   Further, as a second method, one substrate with an alignment film is heated to a temperature higher than the isotropic phase transition temperature of the liquid crystal monomer-electrolyte salt mixture composition, and this composition is applied onto one substrate with an alignment film. To do. Thereafter, the substrate is cooled to a temperature at which a specific liquid crystal phase is developed. Further, the liquid crystal monomer and the cross-linking agent are polymerized by the above-described polymerization method while maintaining the horizontal alignment state. Thus, an electrolyte composition comprising a liquid crystal polymer partially crosslinked with a cross-linking agent and an electrolyte salt can be produced.

(配向膜)
前記配向膜付き基板に用いる配向膜としては、液晶を配向させる能力を備えたものであれば特に限定はなく、例えばポリビニルアルコール系あるいはポリイミド系及びそれらの変性物などの高分子をラビング処理した膜、SiOを斜方蒸着した膜などを用いることができるが、配向膜の耐水性や取り扱いの容易性から、ポリイミド系及びその変性物のラビング膜が好ましく用いられる。
(Alignment film)
The alignment film used for the substrate with the alignment film is not particularly limited as long as it has the ability to align liquid crystal. For example, a film obtained by rubbing a polymer such as polyvinyl alcohol or polyimide and their modified products. A film in which SiO is obliquely vapor-deposited can be used. From the viewpoint of the water resistance of the alignment film and the ease of handling, a rubbing film made of a polyimide or a modified product thereof is preferably used.

ラビング処理を施した配向膜付き基板を用いる場合は、前記配向膜付き基板を対向させたセルを作製する際に、図2に示すように、配向膜2のラビング方向6と配向膜3のラビング方向7とが反対方向(アンチパラレル)となるように対向させることが好ましい。   In the case of using a substrate with an alignment film subjected to rubbing treatment, as shown in FIG. 2, the rubbing direction 6 of the alignment film 2 and the rubbing of the alignment film 3 are performed as shown in FIG. It is preferable to face the direction 7 so as to be in the opposite direction (anti-parallel).

配向膜を設ける上側基板1及び下側基板5としては、表面が平滑であれば特に限定はないが、ガラス板石英板、フッ化カルシウム板、あるいはアルミフィルム、ステンレスフィルム等の金属性フィルムポリエーテルサルフォンフィルム、ポリイミドフィルム、ポリエステルフィルム等のプラスチックフィルムなどが好適に用いられる。   The upper substrate 1 and the lower substrate 5 on which the alignment film is provided are not particularly limited as long as the surface is smooth, but a metallic film polyether such as a glass plate quartz plate, a calcium fluoride plate, an aluminum film, or a stainless film. A plastic film such as a sulfone film, a polyimide film, or a polyester film is preferably used.

(液晶相)
液晶相としては、スメクチック液晶を用いることが好ましい。スメクチック液晶は、配向秩序に加えて、一次元の位置の秩序を持ち、層構造を有する液晶相である。本発明では、図3に示すように、特にスメクチック液晶からなる電解質組成物8を基板平面に対して水平配向させることにより、基板平面に対して垂直方向にイオン伝導パス9を形成して、イオン伝導性を向上させる。スメクチック液晶は、具体的には、液晶便覧編集委員会、「液晶便覧」、丸善株式会社、平成12年10月30日、p.12−16記載のスメクチック相が望ましく、特に、スメクチックA相またはスメクチックC相またはスメクチックB相(ヘキサチックB相、クリスタルB相)であることが好ましい。
(Liquid crystal phase)
As the liquid crystal phase, it is preferable to use a smectic liquid crystal. The smectic liquid crystal is a liquid crystal phase having a one-dimensional positional order and a layer structure in addition to the alignment order. In the present invention, as shown in FIG. 3, an ion conduction path 9 is formed in a direction perpendicular to the substrate plane by horizontally aligning the electrolyte composition 8 made of smectic liquid crystal with respect to the substrate plane. Improve conductivity. Specifically, the smectic liquid crystal is preferably the smectic phase described in the Liquid Crystal Handbook Editorial Committee, “Liquid Crystal Handbook”, Maruzen Co., Ltd., October 30, 2000, p.12-16, and in particular, the smectic A phase or A smectic C phase or a smectic B phase (hexatic B phase, crystal B phase) is preferred.

(電解質組成物の厚さ)
また、前記方法により作製される電解質組成物の厚さは、5〜60μmが好ましく、特に15〜30μmであることが好ましい。電解質組成物の厚さが5μmより薄くなると、正極と負極の短絡を起こす可能性が高くなり、また電解質組成物の厚さが60μmより厚くなると、イオン伝導パスを形成する分子配向が乱れる傾向がある。
(Thickness of electrolyte composition)
The thickness of the electrolyte composition produced by the above method is preferably 5 to 60 μm, and particularly preferably 15 to 30 μm. When the thickness of the electrolyte composition is less than 5 μm, there is a high possibility of causing a short circuit between the positive electrode and the negative electrode, and when the thickness of the electrolyte composition is more than 60 μm, the molecular orientation forming the ion conduction path tends to be disturbed. is there.

(リチウムイオン二次電池)
本発明の電解質組成物は、リチウムイオン二次電池の電解質として用いることができる。本発明の電解質組成物を使用したリチウムイオン二次電池の構造は特に限定されないが、通常、図4に示すように、負電極10及び正電極20と、電解質30とから構成され、積層型電池や円筒型電池等に適用される。
(Lithium ion secondary battery)
The electrolyte composition of the present invention can be used as an electrolyte of a lithium ion secondary battery. Although the structure of the lithium ion secondary battery using the electrolyte composition of the present invention is not particularly limited, it is usually composed of a negative electrode 10, a positive electrode 20, and an electrolyte 30, as shown in FIG. And is applied to cylindrical batteries and the like.

電解質組成物と組み合わせる電極は、リチウムイオン二次電池の電極として公知のものの中から適宜選択して使用すればよく、電極活物質と電解質組成物との混合物を用いることも可能である。   The electrode combined with the electrolyte composition may be appropriately selected from those known as electrodes for lithium ion secondary batteries, and a mixture of an electrode active material and an electrolyte composition can also be used.

負電極10は、負極活物質11と集電体12とからなり、負極活物質11としては、炭素、リチウム金属、リチウム合金あるいは酸化物材料などが挙げられる。   The negative electrode 10 includes a negative electrode active material 11 and a current collector 12, and examples of the negative electrode active material 11 include carbon, lithium metal, a lithium alloy, and an oxide material.

活物質として用いる炭素は、例えば、天然あるいは人造の黒鉛、樹脂焼成炭素材料、炭素繊維などから適宜選択すればよい。これらは粉末で用いられる。これらのうち好ましいものは、黒鉛であり、その平均粒子径は1〜30μm 、特に5〜25μmであることが好ましい。平均粒子径が1μm未満だと、充放電サイクル寿命が短くなり、また、容量のばらつき(個体差)が大きくなる傾向にある。平均粒子径が30μmより大きくなると、容量のばらつきが著しく大きくなり、平均容量が小さくなってしまう。平均粒子径が大きい場合に容量のばらつきが生じるのは、黒鉛と集電体との接触や黒鉛同士の接触にばらつきが生じるためと考えられる。   The carbon used as the active material may be appropriately selected from, for example, natural or artificial graphite, resin-fired carbon material, carbon fiber, and the like. These are used in powder form. Among these, graphite is preferable, and the average particle diameter is preferably 1 to 30 μm, particularly preferably 5 to 25 μm. When the average particle size is less than 1 μm, the charge / discharge cycle life is shortened and the capacity variation (individual difference) tends to increase. When the average particle diameter is larger than 30 μm, the variation in capacity becomes remarkably large and the average capacity becomes small. The reason why the variation in capacity occurs when the average particle size is large is thought to be because the contact between graphite and the current collector or the contact between graphites varies.

正電極20は、正極活物質21と集電体22とからなり、正極活物質21としては、リチウムイオンがインターカレート・デインターカレート可能な酸化物または炭素などが挙げられる。このような電極を用いることにより、良好な特性のリチウムイオン二次電池を得ることができる。   The positive electrode 20 includes a positive electrode active material 21 and a current collector 22, and examples of the positive electrode active material 21 include oxides or carbon that can intercalate and deintercalate lithium ions. By using such an electrode, a lithium ion secondary battery with good characteristics can be obtained.

リチウムイオンがインターカレート・デインターカレート可能な酸化物としては、リチウムを含む複合酸化物が好ましく、例えば、LiCoO2、LiMn24、LiNiO2、LiV24などが挙げられる。これらの酸化物粉末の平均粒子径は1〜40μm 程度であることが好ましい。 The oxide capable of intercalating and deintercalating lithium ions is preferably a composite oxide containing lithium, and examples thereof include LiCoO 2 , LiMn 2 O 4 , LiNiO 2 , and LiV 2 O 4 . The average particle size of these oxide powders is preferably about 1 to 40 μm.

負電極10、正電極20には、必要により導電助剤が添加される。導電助剤としては、好ましくは黒鉛、カーボンブラック、炭素繊維、ニッケル、アルミニウム、銅、銀等の金属が挙げられ、特に黒鉛、カーボンブラックが好ましい。   If necessary, a conductive aid is added to the negative electrode 10 and the positive electrode 20. Preferred examples of the conductive aid include metals such as graphite, carbon black, carbon fiber, nickel, aluminum, copper, and silver, and graphite and carbon black are particularly preferable.

電極の製造は、まず、活物質と必要に応じて導電助剤を、バインダ溶液に分散し、塗布液を調製する。   In manufacturing the electrode, first, an active material and, if necessary, a conductive additive are dispersed in a binder solution to prepare a coating solution.

そして、この電極塗布液を集電体12、22に塗布する。塗布する手段は特に限定されず、集電体12、22の材質や形状などに応じて適宜決定すればよい。一般に、メタルマスク印刷法、静電塗装法、ディップコート法、スプレーコート法、ロールコート法、ドクターブレード法、グラビアコート法、スクリーン印刷法等が使用されている。その後、必要に応じて、平板プレス、カレンダーロール等により圧延処理を行う。   Then, this electrode coating solution is applied to the current collectors 12 and 22. The means for applying is not particularly limited, and may be appropriately determined according to the material and shape of the current collectors 12 and 22. In general, a metal mask printing method, an electrostatic coating method, a dip coating method, a spray coating method, a roll coating method, a doctor blade method, a gravure coating method, a screen printing method and the like are used. Then, if necessary, a rolling process is performed using a flat plate press, a calendar roll, or the like.

集電体12、22は、電池の使用するデバイスの形状やケース内への集電体の配置方法などに応じて、適宜通常の集電体から選択すればよい。一般に、集電体12には銅、ニッケル等が、集電体22にはアルミニウム等が使用される。なお、集電体12、22は、通常、金属箔、金属メッシュなどが使用される。金属箔よりも金属メッシュの方が電極との接触抵抗が小さくなるが、金属箔でも十分小さい接触抵抗が得られる。   The current collectors 12 and 22 may be appropriately selected from ordinary current collectors according to the shape of the device used by the battery, the method of arranging the current collector in the case, and the like. In general, the current collector 12 is made of copper, nickel or the like, and the current collector 22 is made of aluminum or the like. The current collectors 12 and 22 are usually made of metal foil, metal mesh, or the like. The metal mesh has a smaller contact resistance with the electrode than the metal foil, but a sufficiently small contact resistance can be obtained even with the metal foil.

そして、溶媒を蒸発させ、負電極10及び正電極20を作製する。塗布厚は、50〜1,000μm程度とすることが好ましい。   And the solvent is evaporated and the negative electrode 10 and the positive electrode 20 are produced. The coating thickness is preferably about 50 to 1,000 μm.

このようにして得られた負電極10及び正電極20を、正電極20、電解質30、負電極30の順に積層し、圧着してリチウムイオン二次電池とする。   The negative electrode 10 and the positive electrode 20 obtained in this way are laminated in the order of the positive electrode 20, the electrolyte 30, and the negative electrode 30, and are pressed to form a lithium ion secondary battery.

(電気二重層キャパシタ)
本発明の電解質組成物は、電気二重層キャパシタに使用することも可能である。
図5に、電気二重層キャパシタの概略図を示す。電気二重層キャパシタは、一般にケースの中に一対の分極性電極41とその間に、電解質42を配した構造をしている。さらに集電極43が分極性電極41の反対側にあり、これらが密閉性のケースに封入された構造をしている。
(Electric double layer capacitor)
The electrolyte composition of the present invention can also be used for electric double layer capacitors.
FIG. 5 shows a schematic diagram of an electric double layer capacitor. The electric double layer capacitor generally has a structure in which a pair of polarizable electrodes 41 and an electrolyte 42 are disposed between them in a case. Further, the collector electrode 43 is on the opposite side of the polarizable electrode 41, and these are enclosed in a hermetically sealed case.

分極性電極41間には、電解質が単独で存在していればよいが、電解質と不織布や多孔質膜のセパレーターとの組み合わせからなるものを使用してもよい。セパレーターの素材としては、例えば、ポリエチレン、ポリプロピレン、ポリアミド、ポリエステル、ポリテトラフルオロエチレンなどが使用される。分極性電極間の厚みは、通常10μm〜500μm程度に設定される。   An electrolyte may be present between the polarizable electrodes 41 alone, but a combination of an electrolyte and a nonwoven fabric or porous membrane separator may be used. Examples of the material for the separator include polyethylene, polypropylene, polyamide, polyester, polytetrafluoroethylene, and the like. The thickness between the polarizable electrodes is usually set to about 10 μm to 500 μm.

分極性電極41の材料としては活性炭を用いるのが好ましく、このような活性炭の原料としては、ヤシガラや竹などの植物材料、フェノール樹脂やポリビニルアルコールなどの合成樹脂材料、合成メソフェーズピッチ、石炭、天然ピッチ、等方性ピッチなどのピッチ系材料などが挙げられる。このような材料をガス賦活や、水酸化カリウム、塩化亜鉛などで化学賦活することによって製造した活性炭を分極性材料として用いることができる。活性炭の形状は、粒状、布状、繊維を破砕したもの、繊維状など任意である。   Activated carbon is preferably used as the material of the polarizable electrode 41. As the raw material of such activated carbon, plant materials such as coconut husk and bamboo, synthetic resin materials such as phenol resin and polyvinyl alcohol, synthetic mesophase pitch, coal, natural Examples thereof include pitch materials such as pitch and isotropic pitch. Activated carbon produced by gas activation, chemical activation of potassium hydroxide, zinc chloride, or the like can be used as the polarizable material. The shape of the activated carbon is arbitrary, such as granular, cloth-like, crushed fiber, and fibrous.

活性炭が布形状の場合にはそのまま使用することができ、粒状、繊維を破砕したものの場合は、ポリテトラフルオロエチレンやポリ二弗化エチレンに代表されるバインダ、カーボンブラックのような導電性材料及び有機溶剤との混合物を集電部材の上に塗布し、乾燥すればよい。   When activated carbon is in the form of a cloth, it can be used as it is. In the case of granular or crushed fibers, a binder typified by polytetrafluoroethylene or polydifluoroethylene, a conductive material such as carbon black, and What is necessary is just to apply | coat the mixture with an organic solvent on a current collection member, and to dry.

分極性電極41の厚みは、通常20μm〜1mm程度である。   The thickness of the polarizable electrode 41 is usually about 20 μm to 1 mm.

集電極43となる集電部材としては、例えばアルミニウムやニッケルなどを挙げることができる。集電部材の抵抗を低減化するために、カーボンブラックのような導電性材料を含有する合成樹脂で集電部材である金属箔と分極性電極41を接着したアルミニウムを分極性電極41上に溶射してもよい。   Examples of the current collecting member that becomes the current collecting electrode 43 include aluminum and nickel. In order to reduce the resistance of the current collecting member, aluminum in which the metal foil as the current collecting member and the polarizable electrode 41 are bonded with a synthetic resin containing a conductive material such as carbon black is sprayed on the polarizable electrode 41. May be.

以下、実施例により本発明をより具体的に説明する。   Hereinafter, the present invention will be described more specifically with reference to examples.

特許文献1の実施例3に記載した合成方法に従い、下記液晶単量体M1を得た。
<液晶単量体M1>
According to the synthesis method described in Example 3 of Patent Document 1, the following liquid crystal monomer M1 was obtained.
<Liquid crystal monomer M1>


次に、日産化学工業(株)製液晶配向コーティング剤RN−1199をガラス板にスピンコートで塗布し、ホットプレート上で80℃、5分乾燥した後、熱風循環乾燥機にて250℃、1時間焼成を行った。さらに得られた配向膜付ガラス基板をレーヨン布でラビング処理し、図2に示すように、ガラス基板(上側基板)1の配向膜2のラビング方向5とガラス基板(下側基板)5の配向膜3のラビング方向6とが反対方向(アンチパラレル)となるように対向させて配向膜2、3付きガラス基板1、5を作製した。尚、スペーサー4としては、25μm直径のポリスチレン標準粒子あるいは厚み25μmの粘着剤付きポリフェニレンサルファイドフィルムを用いた。   Next, a liquid crystal alignment coating agent RN-1199 manufactured by Nissan Chemical Industries, Ltd. was applied to a glass plate by spin coating, dried on a hot plate at 80 ° C. for 5 minutes, and then heated at 250 ° C. with a hot air circulating dryer. Time firing was performed. Further, the obtained glass substrate with an alignment film is rubbed with a rayon cloth, and as shown in FIG. 2, the rubbing direction 5 of the alignment film 2 of the glass substrate (upper substrate) 1 and the alignment of the glass substrate (lower substrate) 5 The glass substrates 1 and 5 with the alignment films 2 and 3 were produced so as to face each other so that the rubbing direction 6 of the film 3 was opposite (anti-parallel). In addition, as the spacer 4, a polystyrene standard particle having a diameter of 25 μm or a polyphenylene sulfide film with an adhesive having a thickness of 25 μm was used.

次に、テトラヒドロフラン溶媒中で、液晶単量体M1 100mol%に対して、電解質塩としてLiCFSOを20.5mol%、交叉結合剤として1,6−ヘキサンジオールジアクリレートを5mol%、光重合開始剤として2,2−ジメトキシ−2−フェニルアセトフェノンを1mol%、均一となるように溶解した後、真空乾燥機で室温、一晩脱溶媒を行うことにより、液晶単量体−電解質混合組成物を作製した。 Next, in tetrahydrofuran solvent, the liquid crystal monomer M1 100mol%, LiCF 3 SO 3 to 20.5mol%, 5mol% 1,6-hexanediol diacrylate as a crosslinking agent as an electrolyte salt, photopolymerization After dissolving 1 mol% of 2,2-dimethoxy-2-phenylacetophenone as an initiator so as to be uniform, it is desolvated overnight at room temperature in a vacuum dryer, whereby a liquid crystal monomer-electrolyte mixture composition Was made.

次に、上記セルをホットプレート上で95℃に加熱した。加熱したセルに前記液晶単量体−電解質塩混合組成物を注入し、透明な溶液状態にした。その後ホットプレート温度をスメクチックA相が発現する60℃となるように自然放冷し、液晶単量体−電解質塩混合組成物を注入したセルの温度が60℃となるようにした。セルの状態を維持したまま、スポットUV装置を用い、35mW/cm、5分間紫外線を照射し、交叉結合剤により部分的に架橋された液晶重合体と電解質塩からなる電解質組成物を作製した。得られた液晶重合体−電解質塩混合組成物を、室温にて偏光顕微鏡のクロスニコル下で観察したところ、ステージを45°回転させることにより観察像の明暗が変化した。このことから、得られた液晶重合体−電解質塩混合組成物の液晶は水平配向していることが確認された。 Next, the cell was heated to 95 ° C. on a hot plate. The liquid crystal monomer-electrolyte salt mixed composition was poured into the heated cell to make a transparent solution. Thereafter, the hot plate temperature was naturally allowed to cool to 60 ° C. at which the smectic A phase was developed, so that the temperature of the cell into which the liquid crystal monomer-electrolyte salt mixed composition was injected was set to 60 ° C. While maintaining the state of the cell, using a spot UV device, an ultraviolet ray was irradiated at 35 mW / cm 2 for 5 minutes to prepare an electrolyte composition composed of a liquid crystal polymer partially crosslinked with a cross-linking agent and an electrolyte salt. . When the obtained liquid crystal polymer-electrolyte salt mixed composition was observed at room temperature under a crossed Nicol with a polarizing microscope, the brightness of the observed image was changed by rotating the stage by 45 °. From this, it was confirmed that the liquid crystal of the obtained liquid crystal polymer-electrolyte salt mixed composition was horizontally aligned.

次に、液晶重合体−電解質塩混合組成物をガラス基板より剥離して、フィルム状の電解質組成物を得た。得られた電解質組成物のイオン伝導率は3×10-6S/cmであった。
尚、イオン伝導率は、以下に記載の方法で測定した。得られたフィルム状の電解質組成物を、所定の面積に裁断し、一対のニッケル電極に挟み込んだ。インピーダンス測定装置(横河ヒューレットパッカード製4284A)を用い、室温にて、0.3Vの交流電圧を印加し、測定を行った。複素インピーダンス法により、高周波数側の円弧と低周波数側の直線との交点の実数成分インピーダンスを求め、以下の式に基づいて伝導率σ(S/cm)を算出した。
σv=d/(R×A)
d:電解質厚み(cm)、R:実数成分インピーダンス(Ω)、A:電解質面積(cm2)
Next, the liquid crystal polymer-electrolyte salt mixed composition was peeled from the glass substrate to obtain a film-like electrolyte composition. The ionic conductivity of the obtained electrolyte composition was 3 × 10 −6 S / cm.
The ionic conductivity was measured by the method described below. The obtained film-like electrolyte composition was cut into a predetermined area and sandwiched between a pair of nickel electrodes. Using an impedance measuring device (Yokogawa Hewlett-Packard 4284A), an AC voltage of 0.3 V was applied at room temperature for measurement. The real component impedance at the intersection of the arc on the high frequency side and the straight line on the low frequency side was determined by the complex impedance method, and the conductivity σ (S / cm) was calculated based on the following equation.
σv = d / (R × A)
d: electrolyte thickness (cm), R: real component impedance (Ω), A: electrolyte area (cm 2)

実施例1記載の液晶単量体−電解質混合組成物を作製する際に、1,6−ヘキサンジオールジアクリレートを添加しなかった以外は、実施例1と同様に液晶重合体−電解質塩混合組成物を作製した。得られた液晶重合体−電解質塩混合組成物を、室温にて、偏光顕微鏡のクロスニコル下で観察したところ、ステージを45°回転させることにより観察像の明暗が変化した。このことから、得られた液晶重合体−電解質塩混合組成物の液晶は水平配向していることが確認された。また、液晶重合体−電解質塩混合組成物をガラス基板より剥離して得たフィルム状の電解質組成物のイオン伝導率は8×10-6S/cmであった。 Liquid crystal polymer-electrolyte salt mixed composition as in Example 1 except that 1,6-hexanediol diacrylate was not added when preparing the liquid crystal monomer-electrolyte mixed composition described in Example 1. A product was made. When the obtained liquid crystal polymer-electrolyte salt mixed composition was observed at room temperature under a crossed Nicol with a polarizing microscope, the brightness of the observed image was changed by rotating the stage by 45 °. From this, it was confirmed that the liquid crystal of the obtained liquid crystal polymer-electrolyte salt mixed composition was horizontally aligned. Moreover, the ionic conductivity of the film-like electrolyte composition obtained by peeling the liquid crystal polymer-electrolyte salt mixture composition from the glass substrate was 8 × 10 −6 S / cm.

実施例1記載の液晶単量体−電解質混合組成物を作製する際に、テトラエチレングリコールジアクリレートを添加した以外は、実施例1と同様に液晶重合体−電解質塩混合組成物を作製した。得られた液晶重合体−電解質塩混合組成物を、室温にて、偏光顕微鏡のクロスニコル下で観察したところ、ステージを45°回転させることにより観察像の明暗が変化した。このことから、得られた液晶重合体−電解質塩混合組成物の液晶は水平配向していることが確認された。また、液晶重合体−電解質塩混合組成物をガラス基板より剥離して得たフィルム状の電解質組成物のイオン伝導率は1.0×10−5S/cmであった。 When preparing the liquid crystal monomer-electrolyte mixed composition described in Example 1, a liquid crystal polymer-electrolyte salt mixed composition was prepared in the same manner as in Example 1 except that tetraethylene glycol diacrylate was added. When the obtained liquid crystal polymer-electrolyte salt mixed composition was observed at room temperature under a crossed Nicol with a polarizing microscope, the brightness of the observed image was changed by rotating the stage by 45 °. From this, it was confirmed that the liquid crystal of the obtained liquid crystal polymer-electrolyte salt mixed composition was horizontally aligned. Moreover, the ionic conductivity of the film-like electrolyte composition obtained by peeling the liquid crystal polymer-electrolyte salt mixed composition from the glass substrate was 1.0 × 10 −5 S / cm.

実施例1記載の液晶単量体−電解質混合組成物を作製する際に、1,6−ヘキサンジオールジメタクリレートを添加した以外は、実施例1と同様に液晶重合体―電解質塩混合組成物を作製した。得られた液晶重合体−電解質塩混合組成物を、室温にて、偏光顕微鏡のクロスニコル下で観察したところ、ステージを45°回転させることにより観察像の明暗が変化した。このことから、得られた液晶重合体―電解質塩混合組成物の液晶は水平配向していることが確認された。また、液晶重合体−電解質塩混合組成物をガラス板より剥離して得たフィルム状の電解質組成物のイオン伝導率は1.5×10−5S/cmであった。 A liquid crystal polymer-electrolyte salt mixture composition was prepared in the same manner as in Example 1 except that 1,6-hexanediol dimethacrylate was added when the liquid crystal monomer-electrolyte mixture composition described in Example 1 was prepared. Produced. When the obtained liquid crystal polymer-electrolyte salt mixed composition was observed at room temperature under a crossed Nicol with a polarizing microscope, the brightness of the observed image was changed by rotating the stage by 45 °. From this, it was confirmed that the liquid crystal of the obtained liquid crystal polymer-electrolyte salt mixed composition was horizontally aligned. Moreover, the ionic conductivity of the film-like electrolyte composition obtained by peeling the liquid crystal polymer-electrolyte salt mixed composition from the glass plate was 1.5 × 10 −5 S / cm.

実施例1記載の液晶単量体−電解質混合組成物を作製する際に、1,9−ノナンジオールジメタクリレートを添加した以外は、実施例1と同様に液晶重合体−電解質塩混合組成物を作製した。得られた液晶重合体−電解質塩混合組成物を、室温にて、偏光顕微鏡のクロスニコル下で観察したところ、ステージを45°回転させることにより観察像の明暗が変化した。このことから、得られた液晶重合体―電解質塩混合組成物の液晶は水平配向していることが確認された。また、液晶重合体−電解質塩混合組成物をガラス基板より剥離して得たフィルム状の電解質組成物のイオン伝導率は1.2×10−5S/cmであった。 A liquid crystal polymer-electrolyte salt mixture composition was prepared in the same manner as in Example 1 except that 1,9-nonanediol dimethacrylate was added when preparing the liquid crystal monomer-electrolyte mixture composition described in Example 1. Produced. When the obtained liquid crystal polymer-electrolyte salt mixed composition was observed at room temperature under a crossed Nicol with a polarizing microscope, the brightness of the observed image was changed by rotating the stage by 45 °. From this, it was confirmed that the liquid crystal of the obtained liquid crystal polymer-electrolyte salt mixed composition was horizontally aligned. Moreover, the ionic conductivity of the film-like electrolyte composition obtained by peeling the liquid crystal polymer-electrolyte salt mixed composition from the glass substrate was 1.2 × 10 −5 S / cm.

比較例1Comparative Example 1

ガラス基板に配向膜を形成しない以外は実施例1と同様に液晶重合体−電解質塩混合体を作製した。得られた液晶重合体―電解質塩混合組成物を、室温にて、偏光顕微鏡のクロスニコル下で観察したところ、ステージを45°回転させても観察像の明暗は変化しなかった。このことから、得られた液晶重合体―電解質塩混合組成物の液晶は水平配向していないことが確認された。   A liquid crystal polymer-electrolyte salt mixture was prepared in the same manner as in Example 1 except that no alignment film was formed on the glass substrate. When the obtained liquid crystal polymer-electrolyte salt mixture composition was observed at room temperature under crossed Nicols with a polarizing microscope, the brightness of the observed image did not change even when the stage was rotated 45 °. From this, it was confirmed that the liquid crystal of the obtained liquid crystal polymer-electrolyte salt mixture composition was not horizontally aligned.

さらに、この液晶重合体−電解質塩混合組成物をガラス基板より剥離して得たフィルム状の電解質組成物のイオン伝導率は4×10−7S/cmであり、イオン導電率は、実施例と比較して、著しく小さかった。 Furthermore, the ionic conductivity of the film-like electrolyte composition obtained by peeling this liquid crystal polymer-electrolyte salt mixed composition from the glass substrate is 4 × 10 −7 S / cm, and the ionic conductivity is that of Example. It was remarkably small compared with.

尚、本発明の電解質組成物は、上述の例にのみ限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。   It should be noted that the electrolyte composition of the present invention is not limited to the above-described examples, and it is needless to say that various modifications can be made without departing from the gist of the present invention.

産業上の利用の可能性Industrial applicability

本発明によれば、実用上有用な電極平面に垂直方向のイオン伝導率が高い電解質組成物を提供することができ、リチウムおよびリチウムイオン二次電池、電気二重層キャパシタ、光電気化学電池、イオンセンサ、およびフォトクロミック素子等の各種デバイスに好適に用いることができる。   According to the present invention, it is possible to provide an electrolyte composition having a high ion conductivity in a direction perpendicular to a practically useful electrode plane, lithium and a lithium ion secondary battery, an electric double layer capacitor, a photoelectrochemical battery, an ion It can be suitably used for various devices such as sensors and photochromic elements.

本発明の電解質組成物の製造方法に使用するセルの一例を示す断面図である。It is sectional drawing which shows an example of the cell used for the manufacturing method of the electrolyte composition of this invention. 本発明の電解質組成物の製造方法に使用するセルの一例を示す斜視図である。It is a perspective view which shows an example of the cell used for the manufacturing method of the electrolyte composition of this invention. 本発明において、基板平面方向に対して垂直方向にイオン伝導パスを形成した模式図である。In this invention, it is the schematic diagram which formed the ion conduction path in the orthogonal | vertical direction with respect to the board | substrate plane direction. 本発明のリチウムイオン二次電池の一例を示す模式的な断面図である。It is typical sectional drawing which shows an example of the lithium ion secondary battery of this invention. 本発明の電気二重層キャパシタの一例を示す模式的な断面図である。It is typical sectional drawing which shows an example of the electrical double layer capacitor of this invention.

符号の説明Explanation of symbols

1 上側基板(ガラス基板)
2 配向膜
3 配向膜
4 スペーサー
5 下側基板(ガラス基板)
6 配向膜2のラビング方向
7 配向膜3のラビング方向
10 負電極
11 負極活物質
12 集電体
20 正電極
21 正極活物質
22 集電体
30 電解質
41 分極性電極
42 電解質
43 集電極
1 Upper substrate (glass substrate)
2 Alignment film 3 Alignment film 4 Spacer 5 Lower substrate (glass substrate)
6 Rubbing direction of alignment film 2 7 Rubbing direction of alignment film 3 10 Negative electrode 11 Negative electrode active material 12 Current collector 20 Positive electrode 21 Positive electrode active material 22 Current collector 30 Electrolyte 41 Polarized electrode 42 Electrolyte 43 Current collecting electrode

Claims (10)

下記一般式(I)で示される液晶単量体と電解質塩とを含む混合組成物を重合させることにより形成されるフィルム状の電解質組成物であって、該電解質組成物のフィルム表面に対して液晶重合体が水平方向に配向していることを特徴とする電解質組成物。
R−α-Xm-β−A-γ−Yn−ω ・・・(I)
(Rは化1で表されるアクリル基、メタクリル基、エポキシ基、ビニル基、またはアリル基を示す。Xは−CH−を示し、mは1〜20の整数を示す。Aはメソゲン基を示す。Yは−CHCHO−または−CHCHCHO−を示し、nは1〜20の整数を示す。α、β及びγは酸素原子あるいは酸素原子無し、ωは水素原子あるいはメチル基を示す)
A film-like electrolyte composition formed by polymerizing a mixed composition containing a liquid crystal monomer represented by the following general formula (I) and an electrolyte salt, with respect to the film surface of the electrolyte composition An electrolyte composition, wherein the liquid crystal polymer is aligned in a horizontal direction.
R-α-Xm-β-A-γ-Yn-ω (I)
(R represents an acryl group, a methacryl group, an epoxy group, a vinyl group, or an allyl group represented by Chemical Formula 1. X represents —CH 2 —, m represents an integer of 1 to 20, and A represents a mesogenic group. Y represents —CH 2 CH 2 O— or —CHCH 3 CH 2 O—, n represents an integer of 1 to 20, α, β, and γ are oxygen atoms or no oxygen atoms, and ω is a hydrogen atom Or a methyl group)
前記一般式(I)で示される液晶単量体のAが、下記構造式(I)〜(I13)であることを特徴とする請求項1記載の電解質組成物。


(図中lは0から4の整数で表されるフッ素原子数を示す。)



(図中、lは0〜4の整数で表されるフッ素原子数を示す。)
2. The electrolyte composition according to claim 1, wherein A of the liquid crystal monomer represented by the general formula (I) is represented by the following structural formulas (I 1 ) to (I 13 ).


(In the figure, l represents the number of fluorine atoms represented by an integer from 0 to 4.)



(In the figure, l represents the number of fluorine atoms represented by an integer of 0 to 4.)
前記混合組成物に、さらに交叉結合剤を混合してなることを特徴とする請求項1または2記載の電解質組成物。   The electrolyte composition according to claim 1, wherein a cross-linking agent is further mixed with the mixed composition. 一対の配向膜付き基板を、配向膜の配向軸を一致させかつ一定の間隔を空けて配向膜面を対向させた状態で配置してセルを作製する工程と、
前記セルを、下記一般式(I)で示される液晶単量体と電解質塩と重合開始剤とを含む混合組成物の等方相転移温度以上に加熱する工程と、
R−α-Xm-β−A-γ−Yn−ω ・・・(I)
(Rは化1で表されるアクリル基、メタクリル基、エポキシ基、ビニル基、またはアリル基を示す。Xは−CH−を示し、mは1〜20の整数を示す。Aはメソゲン基を示す。Yは−CHCHO−または−CHCHCHO−を示し、nは1〜20の整数を示す。α、β及びγは酸素原子あるいは酸素原子無し、ωは水素原子あるいはメチル基を示す)
前記混合組成物をセルに注入した後、特定の液晶相を発現する温度までセルを冷却して前記基板平面に対して水平配向状態とする工程と、
前記水平配向状態を維持したまま加熱又は光照射により液晶単量体の重合反応を行う工程と、
重合により形成されたフィルム状の電解質組成物を配向膜付き基板から剥離する工程
とを備えることにより、液晶重合体と電解質塩とを含む電解質組成物を製造することを特徴とする電解質組成物の製造方法。
Arranging a pair of alignment film-attached substrates in a state in which the alignment axes of the alignment films coincide with each other and the alignment film surfaces face each other with a certain interval;
Heating the cell above the isotropic phase transition temperature of a mixed composition comprising a liquid crystal monomer represented by the following general formula (I), an electrolyte salt, and a polymerization initiator;
R-α-Xm-β-A-γ-Yn-ω (I)
(R represents an acryl group, a methacryl group, an epoxy group, a vinyl group, or an allyl group represented by Chemical Formula 1. X represents —CH 2 —, m represents an integer of 1 to 20, and A represents a mesogenic group. Y represents —CH 2 CH 2 O— or —CHCH 3 CH 2 O—, n represents an integer of 1 to 20, α, β, and γ are oxygen atoms or no oxygen atoms, and ω is a hydrogen atom Or a methyl group)
After injecting the mixed composition into the cell, the step of cooling the cell to a temperature at which a specific liquid crystal phase is developed to be in a horizontal alignment state with respect to the substrate plane;
A step of performing a polymerization reaction of a liquid crystal monomer by heating or light irradiation while maintaining the horizontal alignment state ;
A step of peeling the film-like electrolyte composition formed by polymerization from the substrate with the alignment film , thereby producing an electrolyte composition containing a liquid crystal polymer and an electrolyte salt. A method for producing an electrolyte composition.
一つの配向膜付き基板を、下記一般式(I)で示される液晶単量体と電解質塩と重合開始剤とを含む混合組成物の等方相転移温度以上に加熱する工程と、
R−α-Xm-β−A-γ−Yn−ω ・・・(I)
(Rは化1で表されるアクリル基、メタクリル基、エポキシ基、ビニル基、またはアリル基を示す。Xは−CH−を示し、mは1〜20の整数を示す。Aはメソゲン基を示す。Yは−CHCHO−または−CHCHCHO−を示し、nは1〜20の整数を示す。α、β及びγは酸素原子あるいは酸素原子無し、ωは水素原子あるいはメチル基を示す)
前記混合組成物を前記基板上に塗布した後、特定の液晶相を発現する温度まで基板を冷却して前記基板平面に対して水平配向状態とする工程と、
前記水平配向状態を維持したまま加熱又は光照射により液晶単量体の重合反応を行う工程と、
重合により形成されたフィルム状の電解質組成物を配向膜付き基板から剥離する工程
とを備えることにより、液晶重合体と電解質塩とを含む電解質組成物を製造することを特徴とする電解質組成物の製造方法。
Heating one alignment film-attached substrate to an isotropic phase transition temperature or higher of a mixed composition containing a liquid crystal monomer represented by the following general formula (I), an electrolyte salt, and a polymerization initiator;
R-α-Xm-β-A-γ-Yn-ω (I)
(R represents an acryl group, a methacryl group, an epoxy group, a vinyl group, or an allyl group represented by Chemical Formula 1. X represents —CH 2 —, m represents an integer of 1 to 20, and A represents a mesogenic group. Y represents —CH 2 CH 2 O— or —CHCH 3 CH 2 O—, n represents an integer of 1 to 20, α, β, and γ are oxygen atoms or no oxygen atoms, and ω is a hydrogen atom Or a methyl group)
After applying the mixed composition on the substrate, cooling the substrate to a temperature at which a specific liquid crystal phase is developed to be in a horizontal alignment state with respect to the substrate plane;
A step of performing a polymerization reaction of a liquid crystal monomer by heating or light irradiation while maintaining the horizontal alignment state ;
A step of peeling the film-like electrolyte composition formed by polymerization from the substrate with the alignment film , thereby producing an electrolyte composition containing a liquid crystal polymer and an electrolyte salt. A method for producing an electrolyte composition.
前記混合組成物に、さらに交叉結合剤を混合してなることを特徴とする請求項4又は5記載の電解質組成物の製造方法。   6. The method for producing an electrolyte composition according to claim 4, further comprising a cross-linking agent mixed with the mixed composition. 請求項1から請求項3のいずれか1項記載の電解質組成物を用いたリチウムイオン二次電池。   The lithium ion secondary battery using the electrolyte composition of any one of Claims 1-3. 請求項1から請求項3のいずれか1項記載の電解質組成物を用いた電気二重層キャパシタ。   The electric double layer capacitor using the electrolyte composition of any one of Claims 1-3. 請求項1〜3のいずれかの電解質組成物と、前記電解組成物のフィルムの両面に接するように配置され、前記電解質組成物をその間に挟持する2つの電極とを備えることを特徴とする、請求項7に記載のリチウムイオン二次電池 An electrolyte composition according to any one of claims 1 to 3, and two electrodes arranged so as to be in contact with both surfaces of the film of the electrolyte composition and sandwiching the electrolyte composition therebetween, The lithium ion secondary battery according to claim 7 . 請求項1〜3のいずれかの電解質組成物と、前記電解組成物のフィルムの両面に接するように配置され、前記電解質組成物をその間に挟持する2つの電極とを備えることを特徴とする、請求項8に記載の電気二重層キャパシタ An electrolyte composition according to any one of claims 1 to 3, and two electrodes arranged so as to be in contact with both surfaces of the film of the electrolyte composition and sandwiching the electrolyte composition therebetween, The electric double layer capacitor according to claim 8 .
JP2007047401A 2007-02-27 2007-02-27 ELECTROLYTE COMPOSITION, PROCESS FOR PRODUCING THE SAME AND ELECTROCHEMICAL DEVICE USING ELECTROLYTE COMPOSITION Expired - Fee Related JP4968908B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007047401A JP4968908B2 (en) 2007-02-27 2007-02-27 ELECTROLYTE COMPOSITION, PROCESS FOR PRODUCING THE SAME AND ELECTROCHEMICAL DEVICE USING ELECTROLYTE COMPOSITION

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007047401A JP4968908B2 (en) 2007-02-27 2007-02-27 ELECTROLYTE COMPOSITION, PROCESS FOR PRODUCING THE SAME AND ELECTROCHEMICAL DEVICE USING ELECTROLYTE COMPOSITION

Publications (2)

Publication Number Publication Date
JP2008210696A JP2008210696A (en) 2008-09-11
JP4968908B2 true JP4968908B2 (en) 2012-07-04

Family

ID=39786818

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007047401A Expired - Fee Related JP4968908B2 (en) 2007-02-27 2007-02-27 ELECTROLYTE COMPOSITION, PROCESS FOR PRODUCING THE SAME AND ELECTROCHEMICAL DEVICE USING ELECTROLYTE COMPOSITION

Country Status (1)

Country Link
JP (1) JP4968908B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102471593B (en) 2009-07-08 2014-06-04 综研化学株式会社 Composition for solid electrolyte and solar cell using same
JP5593798B2 (en) * 2010-04-08 2014-09-24 トヨタ自動車株式会社 Metal air battery
CN113299982A (en) * 2020-02-21 2021-08-24 广州天赐高新材料股份有限公司 In-situ polymerization electrolyte, method for preparing in-situ all-solid-state battery by adopting same and in-situ all-solid-state battery

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2003062286A1 (en) * 2002-01-22 2005-05-19 独立行政法人科学技術振興機構 Polymerizable ion-conducting liquid crystal composite, anisotropic ion-conducting polymer liquid crystal composite, and method for producing the same
JP2006070163A (en) * 2004-09-02 2006-03-16 Nitto Denko Corp Oriented ion-conductive film
JP2006260833A (en) * 2005-03-15 2006-09-28 Fuji Photo Film Co Ltd Solid electrolyte and manufacturing method of solid electrolyte, as well as electrode membrane assembly and fuel cell

Also Published As

Publication number Publication date
JP2008210696A (en) 2008-09-11

Similar Documents

Publication Publication Date Title
Tsao et al. Immobilized cation functional gel polymer electrolytes with high lithium transference number for lithium ion batteries
Zhou et al. Understanding the role of solvents on the morphological structure and Li-ion conductivity of poly (vinylidene fluoride)-based polymer electrolytes
Zhou et al. Ternary lithium-salt organic ionic plastic crystal polymer composite electrolytes for high voltage, all-solid-state batteries
Yue et al. Sandwich-like poly (propylene carbonate)-based electrolyte for ambient-temperature solid-state lithium ion batteries
Wu et al. A flexible and self-healable gelled polymer electrolyte based on a dynamically cross-linked PVA ionogel for high-performance supercapacitors
TW200922790A (en) Laminated porous film
CN109994770B (en) Precursor material for lithium ion battery and method for manufacturing lithium ion battery
JP2002252037A (en) Ion conduction structure, secondary battery and method for manufacturing them
Voropaeva et al. Solvation and sodium conductivity of nonaqueous polymer electrolytes based on Nafion-117 membranes and polar aprotic solvents
JP7007466B2 (en) Composite Polymer Electrolyte (CPE) Membranes for Secondary Solid Li Metallic Batteries and Methods for Their Manufacture
JP2007280912A (en) Polymer electrolyte, and its manufacturing method
TW200909217A (en) Laminated porous film
JP7152429B2 (en) Solid polymer electrolyte for batteries
Jamal et al. Enhanced compatibility of a polymer-based electrolyte with Li-metal for stable and dendrite-free all-solid-state Li-metal batteries
Di Lecce et al. Triglyme-based electrolyte for sodium-ion and sodium-sulfur batteries
Sivaraj et al. Free-standing, high Li-ion conducting hybrid PAN/PVdF/LiClO 4/Li 0.5 La 0.5 TiO 3 nanocomposite solid polymer electrolytes for all-solid-state batteries
Wang et al. Electrochemical performances of a new solid composite polymer electrolyte based on hyperbranched star polymer and ionic liquid for lithium-ion batteries
JP4968908B2 (en) ELECTROLYTE COMPOSITION, PROCESS FOR PRODUCING THE SAME AND ELECTROCHEMICAL DEVICE USING ELECTROLYTE COMPOSITION
Zhang et al. Stabilizing SEI by cyclic ethers toward enhanced K+ storage in graphite
Verma et al. Microporous PVDF–PMMA blend-based gel polymer electrolyte for electrochemical applications: effect of PMMA on electrochemical and structural properties
WO2016159083A1 (en) Electrochemical capacitor
EP4084111A1 (en) Method for manufacturing or recycling member for electrochemical device, method for manufacturing electrochemical device, member for electrochemical device, and electrochemical device
JPH1186629A (en) Ionic conductive material, its manufacture and battery using the same
JPH1140132A (en) Separator for electrochemical element, and use thereof
JP4568619B2 (en) Ionic conductor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110303

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110405

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110606

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20110912

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120308

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120402

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150413

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4968908

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees