JP4968597B2 - Manufacturing method of composite fiber - Google Patents

Manufacturing method of composite fiber Download PDF

Info

Publication number
JP4968597B2
JP4968597B2 JP2008514370A JP2008514370A JP4968597B2 JP 4968597 B2 JP4968597 B2 JP 4968597B2 JP 2008514370 A JP2008514370 A JP 2008514370A JP 2008514370 A JP2008514370 A JP 2008514370A JP 4968597 B2 JP4968597 B2 JP 4968597B2
Authority
JP
Japan
Prior art keywords
fiber
raw
composite
monomer
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008514370A
Other languages
Japanese (ja)
Other versions
JPWO2007129440A1 (en
Inventor
孝郎 山内
孝二 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Exlan Co Ltd
Original Assignee
Japan Exlan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Exlan Co Ltd filed Critical Japan Exlan Co Ltd
Priority to JP2008514370A priority Critical patent/JP4968597B2/en
Publication of JPWO2007129440A1 publication Critical patent/JPWO2007129440A1/en
Application granted granted Critical
Publication of JP4968597B2 publication Critical patent/JP4968597B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/10Other agents for modifying properties
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/58Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with nitrogen or compounds thereof, e.g. with nitrides
    • D06M11/63Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with nitrogen or compounds thereof, e.g. with nitrides with hydroxylamine or hydrazine
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M13/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
    • D06M13/322Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing nitrogen
    • D06M13/402Amides imides, sulfamic acids
    • D06M13/422Hydrazides
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M14/00Graft polymerisation of monomers containing carbon-to-carbon unsaturated bonds on to fibres, threads, yarns, fabrics, or fibrous goods made from such materials
    • D06M14/08Graft polymerisation of monomers containing carbon-to-carbon unsaturated bonds on to fibres, threads, yarns, fabrics, or fibrous goods made from such materials on to materials of synthetic origin
    • D06M14/10Graft polymerisation of monomers containing carbon-to-carbon unsaturated bonds on to fibres, threads, yarns, fabrics, or fibrous goods made from such materials on to materials of synthetic origin of macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/21Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/227Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of hydrocarbons, or reaction products thereof, e.g. afterhalogenated or sulfochlorinated
    • D06M15/233Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of hydrocarbons, or reaction products thereof, e.g. afterhalogenated or sulfochlorinated aromatic, e.g. styrene

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Graft Or Block Polymers (AREA)

Description

本発明は、原料繊維、過酸化水素、及びモノマーを含む混合液において、該混合液中のモノマーを重合せしめることによって、原料繊維にポリマーを複合させた複合繊維の製造方法に関する。   The present invention relates to a method for producing a composite fiber in which a raw material fiber, a hydrogen peroxide, and a monomer are mixed with each other to polymerize the monomer in the mixed liquid to polymerize the raw material fiber.

原料繊維に、新たにポリマーを複合する方法については、これまでいくつかの方法が提案されている。例えば、繊維に親水基を有するモノマーをグラフト重合することにより、繊維に機能を付与する方法(特開2002−371470号公報参照)、繊維表面に熱可塑性樹脂のモノマー及び/又はオリゴマーを付与した後、重合することによりポリマーと繊維を複合化する方法(特開2003−277530号公報参照)、非水溶剤、リチウム無機塩、および電子線により重合するモノマーを含有するプレゲル液を、アクリル系繊維を主成分とする不織布基材に含浸させ、電子線照射してモノマーを重合しマトリックスポリマーを形成させることを特徴とするポリマー電池用不織布複合化ゲル状電解質を作製する方法(特開2002−246065号公報参照)などが提案されている。   Several methods have been proposed so far for newly combining a polymer with a raw fiber. For example, a method of imparting a function to a fiber by graft polymerization of a monomer having a hydrophilic group on the fiber (see JP 2002-371470 A), after a monomer and / or oligomer of a thermoplastic resin is imparted to the fiber surface , A method of compounding a polymer and a fiber by polymerization (see JP 2003-277530 A), a non-aqueous solvent, a lithium inorganic salt, and a pregel solution containing a monomer that is polymerized by an electron beam, an acrylic fiber A method for producing a non-woven fabric composite gel electrolyte for a polymer battery, comprising impregnating a non-woven fabric base material as a main component and polymerizing a monomer by irradiation with an electron beam to form a matrix polymer (Japanese Patent Application Laid-Open No. 2002-246065) (See the publication).

特開2002−371470号公報の方法では、100℃以上の蒸気や紫外線照射により重合反応を進行させており、紫外線や蒸気を発生させる装置を用意する必要があり、工業的に手間がかかり不利である。特開2003−277530号の方法では、原料繊維に複合させるポリマーが繊維表面にのみ複合され、繊維中にポリマーが複合されない。また、複合されるポリマーは熱可塑性樹脂のモノマーを重合したポリマーに制限されている。特開2002−246065号公報の方法では、不織布基材内で、電子線を使ってモノマーを重合することによって、ポリマーを作製し不織布に複合している。電子線による重合のため、比較的高価な装置を使用しなければならず工業的に不利である。   In the method of JP-A-2002-371470, the polymerization reaction is advanced by irradiation with steam of 100 ° C. or higher and ultraviolet rays, and it is necessary to prepare an apparatus for generating ultraviolet rays and vapors. is there. In the method of Japanese Patent Application Laid-Open No. 2003-277530, the polymer to be combined with the raw fiber is combined only on the fiber surface, and the polymer is not combined in the fiber. The polymer to be combined is limited to a polymer obtained by polymerizing a monomer of a thermoplastic resin. In the method disclosed in Japanese Patent Application Laid-Open No. 2002-246065, a polymer is produced by polymerizing a monomer using an electron beam in a nonwoven fabric substrate, and is combined with the nonwoven fabric. Due to the electron beam polymerization, a relatively expensive apparatus must be used, which is industrially disadvantageous.

本発明の目的は、複合したポリマーが繊維表面に局在したり、重合開始時に電子線照射装置や紫外線照射装置が必要であったりという従来の技術が抱える問題を解決し、原料繊維にポリマーを容易に複合させ得る複合繊維の製造方法を提供することにある。   The object of the present invention is to solve the problems of the conventional technology that the composite polymer is localized on the fiber surface or an electron beam irradiation device or an ultraviolet irradiation device is required at the start of polymerization, and the polymer is applied to the raw fiber. An object of the present invention is to provide a method for producing a composite fiber that can be easily combined.

本発明の上記目的は、以下の手段により達成される。すなわち、
[1]水に対する膨潤度が0.5以上であり、かつ架橋構造及びカルボキシル基を有する原料繊維、過酸化水素、及びモノマーを含む混合液において、該混合液中のモノマーを重合せしめることによって、原料繊維にポリマーを複合させることを特徴とする複合繊維の製造方法。
[2]原料繊維がポリアクリル酸系架橋体繊維、無水マレイン酸系架橋体繊維、アルギン酸系架橋体繊維、又はアクリレート系架橋体繊維であることを特徴とする前記[1]に記載の複合繊維の製造方法。
[3]原料繊維がアクリレート系架橋体繊維であり、原料繊維の架橋構造が、1分子中に2個以上の窒素原子を有する窒素含有化合物により導入されたものであることを特徴とする前記[2]に記載の複合繊維の製造方法。
[4]前記[1]〜[3]のいずれかに記載の製造方法によって得られる複合繊維。
The above object of the present invention is achieved by the following means. That is,
[1] In a mixed solution containing a raw material fiber having a degree of swelling with respect to water of 0.5 or more and having a crosslinked structure and a carboxyl group, hydrogen peroxide, and a monomer, by polymerizing the monomer in the mixed solution, A method for producing a composite fiber, wherein a polymer is combined with a raw fiber.
[2] The composite fiber according to [1], wherein the raw fiber is a polyacrylic acid-based crosslinked fiber, a maleic anhydride-based crosslinked fiber, an alginate-based crosslinked fiber, or an acrylate-based crosslinked fiber. Manufacturing method.
[3] The material fiber is an acrylate-based crosslinked fiber, and the crosslinked structure of the material fiber is introduced by a nitrogen-containing compound having two or more nitrogen atoms in one molecule. 2] The method for producing a composite fiber according to [2].
[4] A composite fiber obtained by the production method according to any one of [1] to [3].

本発明の製造方法によれば、膨潤度が0.5以上でありかつ架橋構造を有する原料繊維、過酸化水素、及びモノマーを含む混合液中のモノマーを重合することによって、繊維中にポリマーが複合された複合繊維を容易に得ることができ、複合するポリマーを任意に変えることによって、様々な機能を有する複合繊維を容易に得ることができる。   According to the production method of the present invention, the polymer in the fiber is obtained by polymerizing the monomer in the mixed solution including the raw fiber having a degree of swelling of 0.5 or more and having a crosslinked structure, hydrogen peroxide, and the monomer. A composite conjugate fiber can be easily obtained, and composite fibers having various functions can be easily obtained by arbitrarily changing the composite polymer.

以下、本発明を詳述する。
本発明で使用される原料繊維は、水に対する膨潤度が、0.5以上であることが必要である。膨潤度が0.5未満の場合には、繊維内部での重合が起こりにくく、十分な機能を持った複合繊維が得られない。膨潤度が0.5以上になると、多くのポリマーを複合することが可能となり、原料繊維に高い機能を付与することができる。従って、膨潤度としては高い方が好ましいが、膨潤度が高すぎると、原料繊維自体の繊維強度が弱くなるため、工業的には膨潤度が0.5〜4.5であることが好ましい。膨潤度を制御する方法としては、原料繊維中の架橋構造の含有量を変化させる方法が挙げられる。具体的には、カルボキシル基と水酸基からエステル架橋を形成する場合には、原料繊維や架橋剤が含有するカルボキシル基や水酸基の含有比率を変化させたり、処理温度や時間を変化させることにより膨潤度を制御できる。また、アクリロニトリル系繊維に架橋剤により架橋を導入する場合には、架橋剤の浴比や濃度あるいは処理する温度・時間を変化させることにより膨潤度を制御することができる。また、熱や電子線により架橋を導入する場合には、温度、電子線の強度、処理時間等を変化させることにより膨潤度を制御できる。また、原料繊維を構成する重合体の親水性を変化させることによっても膨潤度を制御することができる。具体的には、親水性モノマーと疎水性モノマーの比率を調整する方法が挙げられる。あるいは、加水分解等により親水性基を導入する場合には、加水分解の程度を調整して、親水性基の量を変化させて膨潤度を制御する方法が挙げられる。
The present invention is described in detail below.
The raw fiber used in the present invention is required to have a degree of swelling with respect to water of 0.5 or more. When the degree of swelling is less than 0.5, polymerization inside the fiber hardly occurs, and a composite fiber having a sufficient function cannot be obtained. When the degree of swelling is 0.5 or more, many polymers can be combined, and a high function can be imparted to the raw fiber. Therefore, a higher degree of swelling is preferable, but if the degree of swelling is too high, the fiber strength of the raw fiber itself is weakened, and therefore the degree of swelling is preferably 0.5 to 4.5 industrially. Examples of the method for controlling the degree of swelling include a method of changing the content of the crosslinked structure in the raw fiber. Specifically, when ester crosslinking is formed from a carboxyl group and a hydroxyl group, the degree of swelling can be increased by changing the content ratio of the carboxyl group or hydroxyl group contained in the raw fiber or the crosslinking agent, or by changing the treatment temperature or time. Can be controlled. In addition, when cross-linking is introduced into the acrylonitrile fiber by a cross-linking agent, the degree of swelling can be controlled by changing the bath ratio and concentration of the cross-linking agent or the processing temperature and time. In addition, when crosslinking is introduced by heat or electron beam, the degree of swelling can be controlled by changing temperature, electron beam intensity, treatment time, and the like. The degree of swelling can also be controlled by changing the hydrophilicity of the polymer constituting the raw fiber. Specifically, a method of adjusting the ratio between the hydrophilic monomer and the hydrophobic monomer can be mentioned. Alternatively, when a hydrophilic group is introduced by hydrolysis or the like, a method of adjusting the degree of hydrolysis and changing the amount of the hydrophilic group to control the degree of swelling can be mentioned.

また、本発明で使用される原料繊維は、架橋構造を有することが必要である。架橋構造を有することにより、膨潤度が高くても、繊維強度が高い原料繊維とすることができる。かかる架橋構造を有する繊維としては、カルボキシル基又はそのアルカリ金属塩基などの親水性基含有モノマーと、カルボキシル基と反応してエステル架橋構造を形成できるヒドロキシル基含有モノマーなどとが共重合され、かつエステル架橋結合が導入されてなるポリアクリル酸系架橋体繊維、無水マレイン酸系架橋体繊維、アルギン酸系架橋体繊維、アクリロニトリル系繊維に架橋剤により架橋構造を導入した後、加水分解することによりカルボキシル基を導入したアクリレート系架橋体繊維などを挙げることができる。特に、アクリレート系架橋体繊維は、架橋剤による架橋条件、加水分解条件をコントロールすることにより、膨潤度が高く、しかも繊維強度にも優れた繊維が得られるため、本発明で使用される原料繊維として好ましいものである。アクリロニトリル系繊維に架橋構造を導入するための架橋剤としては、従来公知のいずれの架橋剤も使用することができるが、窒素含有化合物を使用することが架橋反応の効率及び取扱いの容易さの点から好ましい。この窒素含有化合物は1分子中に2個以上の窒素原子を有することが必要である。1分子中の窒素原子の数が2個未満であると、架橋反応が生じないからである。かかる窒素含有化合物の具体例としては、架橋構造を形成しうるものであれば特に限定されるものではないが、2個以上の1級アミノ基を有するアミノ化合物やヒドラジン系化合物が好ましい。2個以上の1級アミノ基を有するアミノ化合物としては、エチレンジアミン、ヘキサメチレンジアミンなどのジアミン系化合物、ジエチレントリアミン、3,3’−イミノビス(プロピルアミン)、N−メチル−3,3’−イミノビス(プロピルアミン)などのトリアミン系化合物、トリエチレンテトラミン、N,N’−ビス(3−アミノプロピル)−1,3−プロプレンジアミン、N,N’−ビス(3−アミノプロピル)−1,4−ブチレンジアミンなどのテトラミン系化合物、ポリビニルアミン、ポリアリルアミンなどで2個以上の1級アミノ基を有するポリアミン系化合物などが例示される。また、ヒドラジン系化合物としては、水加ヒドラジン、硫酸ヒドラジン、塩酸ヒドラジン、臭素酸ヒドラジン、ヒドラジンカーボネートなどが例示される。なお、1分子中の窒素原子の数の上限は特に限定されないが、12個以下であることが好ましく、さらに好ましくは6個以下であり、特に好ましくは4個以下である。1分子中の窒素原子の数が上記上限を超えると、架橋剤分子が大きくなり、繊維内に架橋を導入しにくくなる場合がある。   The raw fiber used in the present invention needs to have a crosslinked structure. By having a crosslinked structure, even if the degree of swelling is high, a raw fiber having high fiber strength can be obtained. As the fiber having such a crosslinked structure, a hydrophilic group-containing monomer such as a carboxyl group or an alkali metal base thereof is copolymerized with a hydroxyl group-containing monomer that can react with the carboxyl group to form an ester crosslinked structure, and an ester. After introducing a crosslinked structure into the polyacrylic acid-based crosslinked fiber, maleic anhydride-based crosslinked fiber, alginic acid-based crosslinked fiber, and acrylonitrile-based fiber into which a crosslinking bond has been introduced by a crosslinking agent, the carboxyl group is obtained by hydrolysis. An acrylate-based cross-linked fiber into which is introduced. In particular, acrylate-based crosslinked fibers can be obtained by controlling the crosslinking conditions and hydrolysis conditions with a crosslinking agent, so that fibers having a high degree of swelling and excellent fiber strength can be obtained. Is preferable. As a cross-linking agent for introducing a cross-linked structure into acrylonitrile fiber, any conventionally known cross-linking agent can be used, but the use of a nitrogen-containing compound is effective in the cross-linking reaction and ease of handling. To preferred. This nitrogen-containing compound needs to have two or more nitrogen atoms in one molecule. This is because a crosslinking reaction does not occur when the number of nitrogen atoms in one molecule is less than two. Specific examples of such nitrogen-containing compounds are not particularly limited as long as they can form a crosslinked structure, but amino compounds and hydrazine compounds having two or more primary amino groups are preferred. Examples of amino compounds having two or more primary amino groups include diamine compounds such as ethylenediamine and hexamethylenediamine, diethylenetriamine, 3,3′-iminobis (propylamine), N-methyl-3,3′-iminobis ( Triamine compounds such as propylamine), triethylenetetramine, N, N′-bis (3-aminopropyl) -1,3-propylenediamine, N, N′-bis (3-aminopropyl) -1,4 Examples include tetramine compounds such as butylenediamine, polyamine compounds having two or more primary amino groups such as polyvinylamine and polyallylamine. Examples of the hydrazine-based compound include hydrazine hydrate, hydrazine sulfate, hydrazine hydrochloride, hydrazine bromate, and hydrazine carbonate. The upper limit of the number of nitrogen atoms in one molecule is not particularly limited, but is preferably 12 or less, more preferably 6 or less, and particularly preferably 4 or less. When the number of nitrogen atoms in one molecule exceeds the above upper limit, the cross-linking agent molecule becomes large and it may be difficult to introduce cross-linking into the fiber.

本発明の複合繊維の製造方法においては、原料繊維、過酸化水素、及びモノマーの混合液を用いる。過酸化水素は、モノマーを活性化し重合させるためのラジカルを形成する重合触媒として機能する。特に、アクリレート系架橋体繊維を原料繊維とする場合は、原料繊維に存在するアミノ基との酸化還元反応によるラジカルが形成されるものと思われるが、過酸化水素を重合触媒として使用することにより、過酸化水素単独でも多くの重合体を複合せしめることができる。原料繊維と混合するモノマーとしては、水に溶解するモノマー、又は過酸化水素が溶解しうるアルコール類、エーテル類などの有機溶媒に溶解するモノマーであればよく、原料繊維に複合しようとする目的に応じ適宜選択される。モノマーの例としては、アクリル酸、メタクリル酸、マレイン酸、ヒドロキシエチルメタクリル酸等の不飽和カルボン酸及びこれらの塩類;(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸ブチル、(メタ)アクリル酸エステル類;塩化ビニル、フッ化ビニルなどのハロゲン化ビニル;酢酸ビニル、プロピオン酸ビニル、安息香酸ビニルなどのビニルエステル類;ビニルスルホン酸、p−スチレンスルホン酸、アクリルアミドt−ブチルスルホン酸、メタリルスルホン酸などの不飽和炭化水素スルホン酸およびこれらの塩類;アクリルアミド及びN−イソプロピルアクリルアミド、メタクリルアミド、N−イソプロピルメタクリルアミド、N,N−ジメチルアクリルアミドなどの(メタ)アクリルアミド誘導体;アクリロニトリル、メタクリロニトリルなどのニトリル基を有する不飽和モノマー;メチルビニルケトン、メチルイソプロペニルケトンなどの不飽和ケトン類;メチルビニルエーテル、エチルビニルエーテルなどのビニルエーテル類;アクリル酸アミドおよびそのアルキル置換体;スチレン、α―メチルスチレン、クロロスチレンなどのスチレン及びそのアルキルまたはハロゲン置換体;アリルアルコール及びそのエステルまたはエーテル類;ビニルピリジン;ビニルイミダゾール、ジメチルアミノエチルメタクリレートなどの塩基性化合物類などを挙げることができる。 In the method for producing a composite fiber of the present invention, a mixed solution of raw fiber, hydrogen peroxide, and monomer is used. Hydrogen peroxide functions as a polymerization catalyst that forms radicals for activating and polymerizing monomers. In particular, when an acrylate-based crosslinked fiber is used as a raw material fiber, it is thought that a radical is formed by an oxidation-reduction reaction with an amino group present in the raw material fiber, but by using hydrogen peroxide as a polymerization catalyst. Many polymers can be combined with hydrogen peroxide alone. The monomer mixed with the raw fiber may be a monomer that dissolves in water, or a monomer that dissolves in an organic solvent such as alcohols or ethers in which hydrogen peroxide can be dissolved. It is selected accordingly. Examples of monomers include unsaturated carboxylic acids such as acrylic acid, methacrylic acid, maleic acid, hydroxyethyl methacrylic acid and their salts; methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate , (Meth) acrylic acid esters; vinyl halides such as vinyl chloride and vinyl fluoride; vinyl esters such as vinyl acetate, vinyl propionate and vinyl benzoate; vinyl sulfonic acid, p-styrene sulfonic acid, acrylamide t- Unsaturated hydrocarbon sulfonic acids such as butyl sulfonic acid and methallyl sulfonic acid and salts thereof; (meth) acrylamide derivatives such as acrylamide and N-isopropylacrylamide, methacrylamide, N-isopropylmethacrylamide and N, N-dimethylacrylamide ; Unsaturated monomers having a nitrile group such as acrylonitrile and methacrylonitrile; unsaturated ketones such as methyl vinyl ketone and methyl isopropenyl ketone; vinyl ethers such as methyl vinyl ether and ethyl vinyl ether; acrylic acid amides and alkyl-substituted products thereof; Examples include styrene such as styrene, α-methylstyrene, and chlorostyrene and alkyl or halogen substituted products thereof; allyl alcohol and esters or ethers thereof; vinyl pyridine; basic compounds such as vinyl imidazole and dimethylaminoethyl methacrylate. it can.

また、必要に応じて架橋性モノマーも使用することができる。かかる架橋性モノマーとしては、N,N’−メチレンビスアクリルアミド、N,N’−プロピレンビスアクリルアミド、ジ(アクリルアミドメチル)エーテル、1,2−ジアクリルアミドエチレングリコール、1,3−ジアクリロイルエチレンウレア、エチレンジアクリレート、エチレングリコールジメタクリレート、N,N’−ジアリルタータルジアミド、N,N’−ビスアクリリルシスタミンなどの二官能性化合物や、トリアリルシアヌレート、トリアリルイソシアヌレートなどの三官能性化合物が例示される。   Moreover, a crosslinkable monomer can also be used as needed. Examples of such crosslinkable monomers include N, N′-methylenebisacrylamide, N, N′-propylenebisacrylamide, di (acrylamidomethyl) ether, 1,2-diacrylamide ethylene glycol, 1,3-diacryloylethylene urea, Bifunctional compounds such as ethylene diacrylate, ethylene glycol dimethacrylate, N, N′-diallyl tartardiamide, N, N′-bisacrylylcystamine, and trifunctionals such as triallyl cyanurate and triallyl isocyanurate Examples are sex compounds.

混合液の調整方法は特に限定されるものではなく、例えば、モノマーを、水または有機溶媒またはそれらの混合溶液に溶かし、原料繊維と混合し、その後、過酸化水素をモノマー溶液に含ませる方法、あるいは、過酸化水素をモノマー溶液に含ませた後、原料繊維を混合する方法、原料繊維を水または有機溶媒またはそれらの混合溶液に分散させ、過酸化水素及びモノマーを添加する方法などが挙げられる。なお、有機溶媒を使用する場合は、過酸化水素が溶解しうるような有機溶媒であることが必要である。   The method for preparing the mixed solution is not particularly limited. For example, a method in which a monomer is dissolved in water or an organic solvent or a mixed solution thereof, mixed with raw material fibers, and then hydrogen peroxide is included in the monomer solution. Alternatively, after adding hydrogen peroxide to the monomer solution, a method of mixing the raw material fibers, a method of dispersing the raw material fibers in water or an organic solvent or a mixed solution thereof, and adding hydrogen peroxide and the monomer can be mentioned. . In addition, when using an organic solvent, it is necessary to be an organic solvent in which hydrogen peroxide can be dissolved.

また、混合液中のモノマーの量は、原料繊維に複合させるポリマーの量、言い換えれば原料繊維に付与しようとする機能の能力によって適宜設定すべきものであり、特に限定されるものではないが、原料繊維に複合させるポリマーの量があまりに少ないと付与できる機能も少ないことから、原料繊維に対して10重量%以上添加することが望ましい。また、過酸化水素の添加量は、溶媒の種類、モノマーの種類と濃度、温度により異なるため、一概には言えないが、概ね原料繊維に対して0.01〜50重量%が好適に用いられる。過酸化水素の添加量が、0.01重量%に満たない場合には、重合が起こりにくく原料繊維へのポリマーの複合化が困難になる。また、50重量%を超える場合には、溶媒中での重合が起こりやすくなり、原料繊維への複合量が少なくなる。   The amount of the monomer in the mixed solution should be appropriately set according to the amount of the polymer to be combined with the raw material fiber, in other words, the function ability to be imparted to the raw material fiber, and is not particularly limited. If the amount of the polymer to be combined with the fiber is too small, the function that can be imparted is also small. The amount of hydrogen peroxide added varies depending on the type of solvent, the type and concentration of the monomer, and the temperature. Therefore, it cannot be generally stated, but about 0.01 to 50% by weight with respect to the raw fiber is preferably used. . When the amount of hydrogen peroxide added is less than 0.01% by weight, polymerization hardly occurs and it is difficult to combine the polymer with the raw fiber. On the other hand, when it exceeds 50% by weight, polymerization in a solvent is likely to occur, and the composite amount to the raw fiber is reduced.

本発明の複合繊維の製造方法においては、混合液中のモノマーの重合を行う際に、pH6.0以下にすることが好ましい。pH6.0以下にすることによって、重合が起こり、繊維中にポリマーが複合される。特に、pHが1.0〜4.0の時は、繊維中に多くのポリマーが複合されるので、工業的に好ましい。一方、pHが6.0を越えると、繊維内部での重合が起こりにくく、十分な機能を持った複合繊維が得られない場合がある。pH6.0以下にする方法は特に限定されず、酸を添加するなどして、重合時に系がpH6.0以下になっていればよい。なお、原料繊維として還元アクリレート系架橋体繊維を使用した場合には、pHを調整する必要はない。この還元アクリレート系架橋体繊維は、アクリレート系架橋体繊維を還元剤で還元して調製される。この際の還元処理において使用する還元処理剤としては、特に限定されないが、ハイドロサルファイト塩、チオ硫酸塩、亜硫酸塩、亜硝酸塩、二酸化チオ尿素、アスコルビン酸塩、ヒドラジン系化合物からなる群より選ばれた一種類又は二種類以上を組み合わせた薬剤が好適に使用できる。該還元処理の条件としては、特に限定されないが、概ね薬剤濃度0.1〜5重量%の水溶液に、温度50℃〜120℃で30分間〜5時間被処理繊維を浸漬するといった例が挙げられる。   In the method for producing a conjugate fiber of the present invention, it is preferable to set the pH to 6.0 or less when the monomer in the mixed solution is polymerized. By setting the pH to 6.0 or lower, polymerization occurs and the polymer is combined in the fiber. In particular, when the pH is 1.0 to 4.0, many polymers are complexed in the fiber, which is industrially preferable. On the other hand, if the pH exceeds 6.0, polymerization inside the fiber hardly occurs, and a composite fiber having a sufficient function may not be obtained. The method for adjusting the pH to 6.0 or lower is not particularly limited as long as the system is pH 6.0 or lower during polymerization by adding an acid or the like. In addition, when reducing acrylate type crosslinked body fiber is used as raw material fiber, it is not necessary to adjust pH. The reduced acrylate-based crosslinked fiber is prepared by reducing the acrylate-based crosslinked fiber with a reducing agent. The reducing agent used in the reduction treatment at this time is not particularly limited, but is selected from the group consisting of hydrosulfite salt, thiosulfate, sulfite, nitrite, thiourea dioxide, ascorbate, and hydrazine compounds. One kind or a combination of two or more kinds can be suitably used. The conditions for the reduction treatment are not particularly limited, and examples include immersing the treated fiber in an aqueous solution having a drug concentration of 0.1 to 5% by weight at a temperature of 50 ° C. to 120 ° C. for 30 minutes to 5 hours. .

重合温度は、特に限定されないが、低温で重合し、重合速度を遅くすることで、より多くのポリマーが複合されるが、重合速度が遅すぎると、ポリマーが効率よく複合されない。そのため、40〜80℃が好ましい。また、重合時間は、重合温度やモノマー濃度により異なり、適宜決定すればよく、限定されないが、概ね2時間〜20時間が工業的に好ましい。   The polymerization temperature is not particularly limited, but by polymerizing at a low temperature and slowing the polymerization rate, more polymer is combined, but if the polymerization rate is too slow, the polymer is not combined efficiently. Therefore, 40-80 degreeC is preferable. Further, the polymerization time varies depending on the polymerization temperature and the monomer concentration, and may be appropriately determined, and is not limited, but is generally industrially preferable from 2 hours to 20 hours.

本発明の製造方法によって得られる複合繊維は、酸性溶液やアルカリ性溶液中に浸漬させても、複合させたポリマーの脱落量は極めて小さく、脱落耐久性に優れたものである。   Even if the composite fiber obtained by the production method of the present invention is immersed in an acidic solution or an alkaline solution, the composite polymer has a very small dropout amount and is excellent in dropout durability.

本発明の製造方法において、複合するポリマーを任意に変え、様々な機能を有するポリマーを繊維中に複合することによって、生活用品、医療、農業、土木、工業などの様々な分野で有用である複合繊維を得ることができる。   In the production method of the present invention, a composite that is useful in various fields such as daily necessities, medicine, agriculture, civil engineering, industry, etc., by arbitrarily changing the polymer to be combined and combining the polymer having various functions in the fiber. Fiber can be obtained.

以下、実施例により本発明を具体的に説明するが、本発明は、これらの実施例の記載によってその範囲を何等限定されるものではない。実施例中の部及び百分率は、断りのない限り重量基準で示す。なお、重量増加率、膨潤度、複合繊維中のポリマーの脱落耐久性は、以下の方法により求めた。   EXAMPLES Hereinafter, although an Example demonstrates this invention concretely, this invention is not limited at all by the description of these Examples. Parts and percentages in the examples are on a weight basis unless otherwise indicated. The weight increase rate, the degree of swelling, and the durability of the polymer in the composite fiber falling off were determined by the following methods.

(1)重量増加率(%)
原料繊維を、水に浸漬し、塩酸水溶液を加えて、水溶液のpHを2.0に調整する。その後、該原料繊維を塩酸水溶液から取り出し絶乾し、重量を測定する(X(g))。該原料繊維を用いて複合繊維を作製後、絶乾し、重量をY(g)とする。重量増加率は、以下の式で、表される。
重量増加率(%)={(Y−X)/X}×100
(2)膨潤度
原料繊維を、水に浸漬し、塩酸水溶液を加えて、水溶液のpHを2.0に調整する。その後、該原料繊維を塩酸水溶液から取り出し、水洗後、中心からサンプルまでの距離が11.5cmの遠心分離機に入れ、1200rpmで、5分間脱水する。該原料繊維の脱水後の重量を測定する(Y(g))。その後、該原料繊維を絶乾し、重量を測定する(X(g))。膨潤度は、以下の式で、表される。
膨潤度=(Y−X)/X
(3)複合繊維中のポリマーの脱落耐久性
複合繊維を塩酸(pH0.5)に、60℃2時間浸漬した後、水洗、絶乾し、重量を測定する(X(g))。該繊維を、苛性ソーダ水溶液(pH12.5)に、60℃、1時間浸漬する。その後、塩酸(pH0.5)に、60℃、2時間浸漬した後、絶乾し、重量を測定する(Y(g))。複合繊維中のポリマーの脱落耐久性を、次式の重量保持率で表す。重量保持率が高いと、脱落耐久性が高く、低いと脱落耐久性が低いことを表す。
重量保持率(%)=(Y/X)×100
(1) Weight increase rate (%)
The raw material fibers are immersed in water, and an aqueous hydrochloric acid solution is added to adjust the pH of the aqueous solution to 2.0. Thereafter, the raw fiber is taken out from the aqueous hydrochloric acid solution and dried completely, and the weight is measured (X (g)). A composite fiber is produced using the raw fiber and then dried completely, and the weight is set to Y (g). The weight increase rate is expressed by the following formula.
Weight increase rate (%) = {(Y−X) / X} × 100
(2) Degree of swelling The raw fiber is immersed in water, and an aqueous hydrochloric acid solution is added to adjust the pH of the aqueous solution to 2.0. Thereafter, the raw fiber is taken out from the aqueous hydrochloric acid solution, washed with water, put into a centrifuge having a distance from the center to the sample of 11.5 cm, and dehydrated at 1200 rpm for 5 minutes. The weight of the raw fiber after dehydration is measured (Y (g)). Thereafter, the raw fiber is absolutely dried and the weight is measured (X (g)). The degree of swelling is expressed by the following formula.
Swelling degree = (Y−X) / X
(3) Dropout durability of the polymer in the composite fiber The composite fiber is immersed in hydrochloric acid (pH 0.5) at 60 ° C. for 2 hours, then washed with water and dried completely, and the weight is measured (X (g)). The fibers are immersed in an aqueous caustic soda solution (pH 12.5) at 60 ° C. for 1 hour. Then, after dipping in hydrochloric acid (pH 0.5) at 60 ° C. for 2 hours, it is completely dried and the weight is measured (Y (g)). The drop-off durability of the polymer in the composite fiber is represented by the weight retention rate of the following formula. When the weight retention is high, the drop-out durability is high, and when it is low, the drop-out durability is low.
Weight retention (%) = (Y / X) × 100

(実施例1)
アクリロニトリル90%及びアクリル酸メチル10%からなるアクリロニトリル系重合体10部を48%のロダンソーダ水溶液90部に溶解した紡糸原液を、常法に従って紡糸、延伸、乾燥して1.7dTexのアクリル繊維を得た。
該アクリル繊維を、15%ヒドラジン水溶液中に添加し、100℃で4時間ヒドラジン架橋反応を行った。得られた架橋繊維は水洗、脱水後、さらに5%苛性ソーダ水溶液に添加し、90℃、2時間で加水分解反応を実施した。水洗、脱水後、塩酸でpHを2.0に調整した水溶液中で処理し、水洗、脱水後、乾燥して原料繊維を作製した。原料繊維の膨潤度は、0.8であった。
該原料繊維0.8gを、1mol/lの塩酸を使って、pH2.0に調整したp−スチレンスルホン酸ナトリウム(SPSS)水溶液50gに浸漬した。該水溶液中のSPSS濃度は、原料繊維に対して417重量%となるよう調整した。その後、原料繊維に対して2.7重量%の過酸化水素を添加し、60℃、5時間加熱し、水洗し、脱水乾燥し、本発明の複合繊維を得た。
該複合繊維の重量増加率を測定したところ、74%であり、脱落耐久性に関しては、重量保持率99.7%であり、繊維中のポリマーがほとんど脱落しない高い脱落耐久性を持つ複合繊維であった。
Example 1
A spinning stock solution obtained by dissolving 10 parts of an acrylonitrile-based polymer composed of 90% acrylonitrile and 10% methyl acrylate in 90 parts of a 48% rhodium soda aqueous solution is spun, drawn and dried according to a conventional method to obtain a 1.7 dTex acrylic fiber. It was.
The acrylic fiber was added to a 15% hydrazine aqueous solution and subjected to a hydrazine crosslinking reaction at 100 ° C. for 4 hours. The obtained crosslinked fiber was washed with water, dehydrated, added to a 5% aqueous sodium hydroxide solution, and subjected to a hydrolysis reaction at 90 ° C. for 2 hours. After washing with water and dehydrating, it was treated in an aqueous solution adjusted to pH 2.0 with hydrochloric acid, washed with water, dehydrated, and dried to produce a raw fiber. The degree of swelling of the raw fiber was 0.8.
0.8 g of the raw fiber was immersed in 50 g of an aqueous solution of sodium p-styrenesulfonate (SPSS) adjusted to pH 2.0 using 1 mol / l hydrochloric acid. The SPSS concentration in the aqueous solution was adjusted to be 417% by weight with respect to the raw fiber. Thereafter, 2.7% by weight of hydrogen peroxide was added to the raw fiber, heated at 60 ° C. for 5 hours, washed with water, dehydrated and dried to obtain the composite fiber of the present invention.
The weight increase rate of the composite fiber was measured and found to be 74%. With regard to the drop-off durability, the weight retention rate was 99.7%, and the composite fiber with high drop-off durability with which the polymer in the fiber hardly dropped off. there were.

(実施例2)
ヒドラジン水溶液中でのヒドラジン架橋反応時間を5時間とした以外は、実施例1と同様にして原料繊維を作製した。該原料繊維の膨潤度は0.6であった。該原料繊維を使用する以外は、実施例1と同様にして複合繊維を作製した。その結果、重量増加率は48.4%であり、脱落耐久性に関しては、重量保持率99.7%であった。
(Example 2)
Raw material fibers were produced in the same manner as in Example 1 except that the hydrazine crosslinking reaction time in the hydrazine aqueous solution was 5 hours. The swelling degree of the raw fiber was 0.6. A composite fiber was produced in the same manner as in Example 1 except that the raw material fiber was used. As a result, the weight increase rate was 48.4% and the weight retention rate was 99.7% with respect to the drop-off durability.

(実施例3)
実施例1で得たアクリル繊維を、30%ヒドラジン水溶液中に添加し、98℃で2時間処理し、次いで50%ジメチルアミノプロピルアミンを98℃、120時間で処理し、最後に10%苛性ソーダを98℃24時間で処理した。該繊維を水洗、脱水後、乾燥して原料繊維を作製した。該原料繊維の膨潤度は1.0であった。該原料繊維を使用する以外は、実施例1と同様にして複合繊維を作製した。その結果、重量増加率は、40.9%であり、脱落耐久性に関しては、99.7%であった。
(Example 3)
The acrylic fiber obtained in Example 1 was added to a 30% aqueous hydrazine solution and treated at 98 ° C. for 2 hours, then 50% dimethylaminopropylamine was treated at 98 ° C. for 120 hours, and finally 10% caustic soda was added. Treated at 98 ° C. for 24 hours. The fiber was washed with water, dehydrated, and dried to produce a raw fiber. The swelling degree of the raw fiber was 1.0. A composite fiber was produced in the same manner as in Example 1 except that the raw material fiber was used. As a result, the weight increase rate was 40.9%, and the drop-off durability was 99.7%.

(実施例4)
SPSSを使用する代わりに、N−イソプロピルアクリルアミドを用いる以外は、実施例1と同様にして複合繊維を作製した。その結果、重量増加率は、75.4%であり、脱落耐久性に関しては、99.7%であった。
Example 4
A composite fiber was produced in the same manner as in Example 1 except that N-isopropylacrylamide was used instead of SPSS. As a result, the weight increase rate was 75.4%, and the drop-off durability was 99.7%.

(実施例5)
実施例1で得た原料繊維1.0gを、pH7の0.5%二酸化チオ尿素水溶液50gに浸漬し、80℃で1時間還元処理を行い、水洗、脱水して還元アクリレート系架橋体繊維を作製した。この還元アクリレート系架橋体繊維の膨潤度は0.8であった。その後、pH調整を行わずにp−スチレンスルホン酸ナトリウム水溶液に浸漬した以外は実施例1と同様にして本発明の複合繊維を得た。なお、重合時のpHは7.5であった。得られた複合繊維の重量増加率を測定したところ、73%であり、脱落耐久性に関しては、重量保持率99.5%であった。
(Example 5)
1.0 g of the raw material fiber obtained in Example 1 was immersed in 50 g of a 0.5% aqueous thiourea dioxide solution having a pH of 7, subjected to reduction treatment at 80 ° C. for 1 hour, washed with water and dehydrated to obtain a reduced acrylate-based crosslinked fiber. Produced. The degree of swelling of this reduced acrylate-based crosslinked fiber was 0.8. Thereafter, a composite fiber of the present invention was obtained in the same manner as in Example 1 except that it was immersed in an aqueous solution of sodium p-styrenesulfonate without adjusting the pH. The pH at the time of polymerization was 7.5. When the weight increase rate of the obtained composite fiber was measured, it was 73%, and regarding the drop-off durability, the weight retention rate was 99.5%.

(実施例6)
実施例1で得たアクリル繊維を、15%N−メチル−3,3’−イミノビス(プロピルアミン)水溶液中に添加し、115℃で8時間架橋反応を行なった。得られた架橋繊維は水洗、脱水後、さらに3%苛性ソーダ水溶液に添加し、95℃で2時間加水分解反応を実施した。水洗、脱水後、塩酸でpHを2.0に調整した水溶液中で処理し、水洗、脱水後、乾燥して原料繊維を作製した。原料繊維の膨潤度は、1.0であった。
該原料繊維1.0gを1mol/lの塩酸を使って、pH2.0に調整したSPSS水溶液50gに浸漬した。該水溶液中のSPSS濃度は、原料繊維に対して325重量%となるよう調整した。その後、原料繊維に対して2.7重量%の過酸化水素を添加し、60℃、24時間加熱し、水洗し、脱水乾燥し、本発明の複合繊維を得た。
該複合繊維の重量増加率を測定したところ、65%であり、脱落耐久性に関しては、重量保持率99.9%であり、ほとんど繊維中のポリマーが脱落しない高い脱落耐久性を持つ複合繊維であった。
(Example 6)
The acrylic fiber obtained in Example 1 was added to a 15% N-methyl-3,3′-iminobis (propylamine) aqueous solution, and a crosslinking reaction was performed at 115 ° C. for 8 hours. The obtained crosslinked fiber was washed with water, dehydrated, added to a 3% aqueous sodium hydroxide solution, and subjected to a hydrolysis reaction at 95 ° C. for 2 hours. After washing with water and dehydrating, it was treated in an aqueous solution adjusted to pH 2.0 with hydrochloric acid, washed with water, dehydrated, and dried to produce a raw fiber. The degree of swelling of the raw fiber was 1.0.
1.0 g of the raw fiber was immersed in 50 g of an SPSS aqueous solution adjusted to pH 2.0 using 1 mol / l hydrochloric acid. The SPSS concentration in the aqueous solution was adjusted to 325% by weight with respect to the raw fiber. Thereafter, 2.7% by weight of hydrogen peroxide was added to the raw fiber, heated at 60 ° C. for 24 hours, washed with water, dehydrated and dried to obtain the composite fiber of the present invention.
The weight increase rate of the composite fiber was measured and found to be 65%. With respect to the drop-off durability, the weight retention rate was 99.9%, and the composite fiber with high drop-off durability in which almost no polymer in the fiber dropped off. there were.

(実施例7)
N−メチル−3,3’−イミノビス(プロピルアミン)を用いる代わりに3,3’−イミノビス(プロピルアミン)を用いて架橋反応を行なった以外は実施例6と同様にして原料繊維を作製した。原料繊維の膨潤度は1.3であった。
該原料繊維を用いる以外は実施例6と同様にして複合繊維を得た。該複合繊維の重量増加率を測定したところ、82%であり、脱落耐久性に関しては、重量保持率99.9%であり、ほとんどの繊維中のポリマーが脱落しない高い脱落耐久性を持つ複合繊維であった。
(Example 7)
Raw material fibers were prepared in the same manner as in Example 6 except that 3,3′-iminobis (propylamine) was used instead of N-methyl-3,3′-iminobis (propylamine). . The swelling degree of the raw fiber was 1.3.
A composite fiber was obtained in the same manner as in Example 6 except that the raw material fiber was used. The weight increase rate of the composite fiber was measured and found to be 82%. With respect to the drop-off durability, the weight retention rate was 99.9%, and the composite fiber having high drop-off durability in which most of the polymer in the fiber does not drop off. Met.

(実施例8)
N−メチル−3,3’−イミノビス(プロピルアミン)を用いる代わりにエチレンジアミンを用いて架橋反応を行なった以外は実施例6と同様にして原料繊維を作製した。原料繊維の膨潤度は0.8であった。
該原料繊維を用いる以外は実施例6と同様にして複合繊維を得た。該複合繊維の重量増加率を測定したところ、50%であり、脱落耐久性に関しては、重量保持率99.9%であり、ほとんどの繊維中のポリマーが脱落しない高い脱落耐久性を持つ複合繊維であった。
(Example 8)
Raw material fibers were produced in the same manner as in Example 6 except that ethylenediamine was used for the crosslinking reaction instead of using N-methyl-3,3′-iminobis (propylamine). The degree of swelling of the raw fiber was 0.8.
A composite fiber was obtained in the same manner as in Example 6 except that the raw material fiber was used. The weight increase rate of the composite fiber was measured and found to be 50%. With regard to the dropout durability, the weight retention rate was 99.9%, and the composite fiber having high dropout durability in which most of the polymer in the fiber does not drop off Met.

(比較例1)
実施例1で得たアクリル繊維の膨潤度は、0.3であった。該アクリル繊維を、架橋反応、加水分解反応を行わず、そのまま原料繊維として使用する以外は、実施例1と同様に複合繊維を作製した。その結果、重量増加は無く、複合繊維は作製できなかった。
(Comparative Example 1)
The swelling degree of the acrylic fiber obtained in Example 1 was 0.3. A composite fiber was produced in the same manner as in Example 1 except that the acrylic fiber was used as a raw material fiber as it was without performing a crosslinking reaction and a hydrolysis reaction. As a result, there was no weight increase and composite fibers could not be produced.

(比較例2)
実施例1で得たアクリル繊維を、15%ヒドラジン水溶液中に添加し98℃で3時間ヒドラジン架橋反応を行ったが、加水分解反応は行なわなかった。該繊維は、膨潤度が0.4であった。該繊維を原料繊維として使用する以外は、実施例1と同様に複合繊維を作製した。その結果、重量増加は無く、複合繊維は作製できなかった。
(Comparative Example 2)
The acrylic fiber obtained in Example 1 was added to a 15% hydrazine aqueous solution and subjected to a hydrazine crosslinking reaction at 98 ° C. for 3 hours, but no hydrolysis reaction was performed. The degree of swelling of this fiber was 0.4. A composite fiber was produced in the same manner as in Example 1 except that the fiber was used as a raw material fiber. As a result, there was no weight increase and composite fibers could not be produced.

Claims (4)

水に対する膨潤度が0.5以上であり、かつ架橋構造及びカルボキシル基を有する原料繊維、過酸化水素、及びモノマーを含む混合液において、該混合液中のモノマーを重合せしめることによって、原料繊維にポリマーを複合させることを特徴とする複合繊維の製造方法。  In a mixed solution containing a raw material fiber having a degree of swelling with respect to water of 0.5 or more and having a crosslinked structure and a carboxyl group, hydrogen peroxide, and a monomer, the monomer in the mixed solution is polymerized to form a raw material fiber. A method for producing a composite fiber, comprising combining a polymer. 原料繊維がポリアクリル酸系架橋体繊維、無水マレイン酸系架橋体繊維、アルギン酸系架橋体繊維、又はアクリレート系架橋体繊維であることを特徴とする請求項1に記載の複合繊維の製造方法。  2. The method for producing a composite fiber according to claim 1, wherein the raw fiber is a polyacrylic acid-based crosslinked fiber, a maleic anhydride-based crosslinked fiber, an alginic acid-based crosslinked fiber, or an acrylate-based crosslinked fiber. 原料繊維がアクリレート系架橋体繊維であり、原料繊維の架橋構造が、1分子中に2個以上の窒素原子を有する窒素含有化合物により導入されたものであることを特徴とする請求項2に記載の複合繊維の製造方法。  The raw material fiber is an acrylate-based crosslinked fiber, and the crosslinked structure of the raw material fiber is introduced by a nitrogen-containing compound having two or more nitrogen atoms in one molecule. Manufacturing method of composite fiber. 請求項1〜3のいずれか一項に記載の製造方法によって得られる複合繊維。  The composite fiber obtained by the manufacturing method as described in any one of Claims 1-3.
JP2008514370A 2006-04-28 2007-04-06 Manufacturing method of composite fiber Active JP4968597B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008514370A JP4968597B2 (en) 2006-04-28 2007-04-06 Manufacturing method of composite fiber

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006124681 2006-04-28
JP2006124681 2006-04-28
PCT/JP2007/000372 WO2007129440A1 (en) 2006-04-28 2007-04-06 Process for production of composite fiber
JP2008514370A JP4968597B2 (en) 2006-04-28 2007-04-06 Manufacturing method of composite fiber

Publications (2)

Publication Number Publication Date
JPWO2007129440A1 JPWO2007129440A1 (en) 2009-09-17
JP4968597B2 true JP4968597B2 (en) 2012-07-04

Family

ID=38667553

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008514370A Active JP4968597B2 (en) 2006-04-28 2007-04-06 Manufacturing method of composite fiber

Country Status (5)

Country Link
JP (1) JP4968597B2 (en)
KR (1) KR101317504B1 (en)
CN (1) CN101389803B (en)
ES (1) ES2334320B2 (en)
WO (1) WO2007129440A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5051544B2 (en) * 2007-05-31 2012-10-17 日本エクスラン工業株式会社 Amino group-containing fiber, method for producing the same, and fiber structure containing the fiber
WO2010029664A1 (en) * 2008-09-10 2010-03-18 日本エクスラン工業株式会社 Crosslinked acrylate-based fibers and the production thereof
JP5088581B2 (en) * 2008-11-25 2012-12-05 日本エクスラン工業株式会社 Antiviral fiber and fiber structure containing the fiber
JP7177980B2 (en) * 2018-10-22 2022-11-25 日本エクスラン工業株式会社 Strong anion exchange fibers, fibrous structures containing said fibers, and adsorption products containing said fibrous structures

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5611919A (en) * 1979-07-10 1981-02-05 Keiun Kodo Production of graft copolymer
JP2927871B2 (en) * 1990-03-29 1999-07-28 三菱化学株式会社 Manufacturing method of water-absorbing composite
JP2003171814A (en) * 2001-12-05 2003-06-20 Toray Ind Inc Windbreaker
JP2004218111A (en) * 2003-01-10 2004-08-05 Toyobo Co Ltd Moisture absorbing and releasing fiber
JP2005336631A (en) * 2004-05-25 2005-12-08 Toho Tenax Co Ltd Method for producing colored mixed yarn

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5562740A (en) * 1995-06-15 1996-10-08 The Procter & Gamble Company Process for preparing reduced odor and improved brightness individualized, polycarboxylic acid crosslinked fibers
CN1176263C (en) * 2001-05-11 2004-11-17 东华大学 Chemical process for fining and settling wool

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5611919A (en) * 1979-07-10 1981-02-05 Keiun Kodo Production of graft copolymer
JP2927871B2 (en) * 1990-03-29 1999-07-28 三菱化学株式会社 Manufacturing method of water-absorbing composite
JP2003171814A (en) * 2001-12-05 2003-06-20 Toray Ind Inc Windbreaker
JP2004218111A (en) * 2003-01-10 2004-08-05 Toyobo Co Ltd Moisture absorbing and releasing fiber
JP2005336631A (en) * 2004-05-25 2005-12-08 Toho Tenax Co Ltd Method for producing colored mixed yarn

Also Published As

Publication number Publication date
CN101389803A (en) 2009-03-18
ES2334320B2 (en) 2010-09-20
JPWO2007129440A1 (en) 2009-09-17
CN101389803B (en) 2011-05-04
ES2334320A1 (en) 2010-03-08
WO2007129440A1 (en) 2007-11-15
KR20090005226A (en) 2009-01-12
KR101317504B1 (en) 2013-10-15

Similar Documents

Publication Publication Date Title
EP2399944B2 (en) Polyacrylic acid-based water-absorbing resin powder and method for producing the same
Mahdavinia et al. Modified chitosan 4. Superabsorbent hydrogels from poly (acrylic acid-co-acrylamide) grafted chitosan with salt-and pH-responsiveness properties
CN1039421C (en) Process for the production of highly water absorptive polymers
Kulkarni et al. Microgel-based surface modifying system for stimuli-responsive functional finishing of cotton
JPH11310644A (en) Production of water-absorbing agent
US20090298963A1 (en) Method for production of modified water absorbent resin
Sadeghi Synthesis and swelling behaviors of graftcopolymer based on chitosan-g-poly (AA-co-HEMA)
JPH01207327A (en) Surface treating method of water absorbing resin
CZ303516B6 (en) Process for preparing acrylonitrile copolymers
JP4968597B2 (en) Manufacturing method of composite fiber
WO2007126003A1 (en) Process for production of water-absorbable resin
JP4476822B2 (en) Ammonium salt-containing water-absorbent resin and method for producing the same
CN104448161A (en) Organic composite hydrogel cross-linked by modified gelatin nano-microsphere and preparation method of organic composite hydrogel
JP3259143B2 (en) Method for producing water absorbent resin
TW201705861A (en) Anti-virus material, and anti-viral material-containing anti-virus product
JP4694140B2 (en) Method for producing water absorbent resin
JP2000197818A (en) Water absorbent and its preparation
JP2007327008A (en) Manufacturing process of antibacterial water-absorbing resin
Schröfl 1 Chemical design and synthesis of superabsorbent polymers
JP2007056071A (en) Method for preparing modified water absorbent resin
JP2001200006A (en) Preparation method of water absorbing resin
JP3941111B2 (en) Antibacterial / antifungal polymer particles
JP4958399B2 (en) Water-absorbing resin by radical crosslinking and method for producing the same
JP4739583B2 (en) Highly hygroscopic fiber treatment agent
JP2006169385A (en) Method for producing porous water-absorbing resin

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091109

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110930

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111027

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120309

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120322

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150413

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4968597

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150413

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250