JP4968244B2 - Cellular system, communication control method thereof, and base station used therefor - Google Patents
Cellular system, communication control method thereof, and base station used therefor Download PDFInfo
- Publication number
- JP4968244B2 JP4968244B2 JP2008300281A JP2008300281A JP4968244B2 JP 4968244 B2 JP4968244 B2 JP 4968244B2 JP 2008300281 A JP2008300281 A JP 2008300281A JP 2008300281 A JP2008300281 A JP 2008300281A JP 4968244 B2 JP4968244 B2 JP 4968244B2
- Authority
- JP
- Japan
- Prior art keywords
- base station
- mobile station
- transmission power
- dpch
- signal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Landscapes
- Mobile Radio Communication Systems (AREA)
Description
本発明はセルラシステム及びその通信制御方法並びにそれに用いる基地局に関し、特に高速下りパケット伝送(HSDPA:High-Speed Downlink Packet Access )方式のセルラシステム及びその通信制御方法並びにそれに用いる基地局に関するものである。 The present invention relates to a cellular system, a communication control method thereof, and a base station used therefor, and more particularly to a high-speed downlink packet access (HSDPA) cellular system, a communication control method thereof, and a base station used therefor. .
セルラシステムにおける基地局から移動局への下り回線に高速データを伝送するHSDPAが3GPP(3rd Generation Pertnership Project) により提案されている。このHSDPAでは、基地局から移動局への下り回線の伝送のために高速下り共用チャネル(HS−PDSCH:High-Speed Physical Downlink Shared Channel )が使用される。このHS−PDSCHは、各基地局から複数の移動局へのデータ送信に用いられるものであり、そのために、基地局またはその制御局は複数の移動局の各々に対するデータ送信を行うスケジュールを決定して、移動局毎に異なるタイミング(時分割方式)でデータを送信するものである。 HSDPA that transmits high-speed data on a downlink from a base station to a mobile station in a cellular system has been proposed by 3GPP (3rd Generation Pertnership Project). In this HSDPA, a high-speed physical downlink shared channel (HS-PDSCH) is used for downlink transmission from a base station to a mobile station. This HS-PDSCH is used for data transmission from each base station to a plurality of mobile stations. For this purpose, the base station or its control station determines a schedule for performing data transmission to each of the plurality of mobile stations. Thus, data is transmitted at a different timing (time division method) for each mobile station.
このような基地局から移動局へのテータ送信を制御するために、各基地局は、複数の移動局の各々との間に、個別チャンネルであるDPCH(Dedicated Physical Channel)を設定する。このDPCHは、その下り回線信号により基地局から移動局へ制御情報を送信すると共に、上り回線信号により移動局から基地局へ制御信号を送信するために使用される。 In order to control such data transmission from the base station to the mobile station, each base station sets a DPCH (Dedicated Physical Channel), which is a dedicated channel, with each of the plurality of mobile stations. The DPCH is used to transmit control information from the base station to the mobile station using the downlink signal and to transmit a control signal from the mobile station to the base station using the uplink signal.
各移動局においては、HS−PDSCHを用いてデータを受信する時間の割合は小さいが、データを受信していないデータ待ち受け状態においても、基地局との間でDPCHは継続して設定し、データの送信を要求したときに、データの送信を短時間に開始できるようにしている。このため、各基地局が同時にデータ送信を行う移動局は同時には1つであるが、多数の移動局がデータ待ち受け状態にあり、基地局との間でDPCHを設定することになる。 In each mobile station, the rate of time for receiving data using the HS-PDSCH is small, but the DPCH is continuously set up with the base station even in the data standby state where data is not received, and the data Data transmission can be started in a short time. For this reason, each base station simultaneously transmits one mobile station at a time, but a large number of mobile stations are in a data standby state and set up DPCH with the base station.
また、セルラシステムにおいては、移動局が複数の基地局と同時にチャネルを設定するソフトハンドオーバという技術がある。各基地局は、所定の電力で共通パイロット信号を送信しており、移動局は、共通パイロット信号の受信電力が最大の基地局とDPCHを設定するが、ソフトハンドオーバでは、共通パイロット信号の受信電力の差が小さい別の基地局が存在するときには、その別の基地局ともDPCHを設定し、複数の基地局とDPCHを設定することになる。以下の説明では、このように、ソフトハンドオーバ中にDPCHを設定する基地局を接続基地局と呼ぶ。 In the cellular system, there is a technique called soft handover in which a mobile station sets a channel simultaneously with a plurality of base stations. Each base station transmits a common pilot signal with a predetermined power, and the mobile station sets up a DPCH with a base station having the maximum reception power of the common pilot signal, but in soft handover, the reception power of the common pilot signal is set. When there is another base station having a small difference, the DPCH is set with the other base station, and the DPCH is set with a plurality of base stations. In the following description, a base station that sets DPCH during soft handover is referred to as a connected base station.
また、セルラシステムにおいては、高速閉ループ型の送信電力制御という技術が適用される。この高速閉ループ型の送信電力制御は、DPCHに対して、その上り回線と下り回線の両方に適用される。DPCHの上り回線の送信電力制御では、基地局は上り信号に含まれる個別パイロット信号を用いて、その受信SIR(Signal to Interference Ratio)を測定し、その測定値と所定の目標SIRとを比較する。そして、その測定値が目標SIRより小さい場合には、電力増加を示すTPC(Transmit Power Control)ビット、それ以外の場合は電力減少を示すTPCビットを、DPCHの下り信号に含めて移動局に通知する。そして、移動局は、そのTPCビットを受信して、そのTPCビットに応じて、送信電力を増減する。 In the cellular system, a technique called high-speed closed loop transmission power control is applied. This high-speed closed loop transmission power control is applied to both the uplink and the downlink for the DPCH. In DPCH uplink transmission power control, the base station measures the received SIR (Signal to Interference Ratio) using an individual pilot signal included in the uplink signal, and compares the measured value with a predetermined target SIR. . If the measured value is smaller than the target SIR, a TPC (Transmit Power Control) bit indicating an increase in power is included in the downlink signal of the DPCH in other cases, and a TPC bit indicating a decrease in power is notified to the mobile station. To do. Then, the mobile station receives the TPC bit and increases or decreases the transmission power according to the TPC bit.
この上り回線の送信電力制御をソフトハンドオーバと共に用いる場合には、移動局は、複数の接続基地局の各々からTPCビットを受信し、少なくとも1つのTPCビットが電力減少を示すときには、DPCHの送信電力を減少させ、それ以外の場合(即ち、全てのTPCビットが電力増加の場合)には、DPCHの送信電力を増加させる。このような送信電力制御を行うことにより、少なくとも1つの接続基地局において、上り回線信号の受信品質が目標SIRを満足すると同時に、全ての接続基地局において、上り回線信号の受信品質が目標SIRを超えることを防止し、上り回線の干渉波電力が増加しないようにしている。 When this uplink transmission power control is used together with soft handover, the mobile station receives a TPC bit from each of a plurality of connected base stations, and when at least one TPC bit indicates a power decrease, the transmission power of the DPCH In other cases (that is, when all TPC bits are increased in power), the transmission power of DPCH is increased. By performing such transmission power control, the reception quality of the uplink signal satisfies the target SIR in at least one connected base station, and at the same time, the reception quality of the uplink signal satisfies the target SIR in all the connected base stations. It is prevented that the interference wave power of the uplink is increased.
一方、DPCHの下り回線の送信電力制御では、移動局は下り信号に含まれる個別パイロット信号を用いて、その受信SIRを測定し、その測定値と所定の目標SIRを比較する。そして、その測定値が目標SIRより小さい場合には、電力増加を示すTPCビット、それ以外の場合は電力減少を示すTPCビットを、DPCHの上り信号に含めて基地局に通知する。そして、基地局は、そのTPCビットを受信して、そのTPCビットに応じて、送信電力を増減する。 On the other hand, in downlink transmission power control of DPCH, the mobile station measures the received SIR using an individual pilot signal included in the downlink signal, and compares the measured value with a predetermined target SIR. If the measured value is smaller than the target SIR, a TPC bit indicating an increase in power is included in the uplink signal on the DPCH, and a TPC bit indicating a decrease in power is reported to the base station. Then, the base station receives the TPC bit, and increases or decreases the transmission power according to the TPC bit.
この下り回線の送信電力制御をソフトハンドオーバと共に用いる場合には、移動局は、複数の接続基地局の各々からDPCHの下り回線信号を受信して合成し、合成後の下り回線信号の受信SIRを目標SIRと比較してTPCビットを決定する。そして、複数の接続基地局に共通のTPCビットを送信し、接続基地局の各々は、そのTPCビットに応じて、送信電力を増減する。このように全ての接続基地局が共通のTPCビットに従って送信電力を増減することにより、接続基地局間の送信電力の均衡を保ち、移動局との間の伝搬損失が最小となる接続基地局が送信する下り回線信号が移動局に良好な品質で受信されるようにして、下り回線信号の送信電力が必要以上に増加することを防止し、下り回線の干渉波電力が増加しないようにしている。 When this downlink transmission power control is used together with soft handover, the mobile station receives and synthesizes DPCH downlink signals from each of a plurality of connected base stations, and combines the received downlink signal reception SIR. The TPC bit is determined by comparison with the target SIR. Then, a common TPC bit is transmitted to a plurality of connected base stations, and each of the connected base stations increases or decreases transmission power according to the TPC bit. In this way, all connected base stations increase / decrease the transmission power according to a common TPC bit, thereby maintaining a balance of transmission power between the connected base stations, and a connected base station that minimizes the propagation loss with the mobile station. The downlink signal to be transmitted is received by the mobile station with a good quality to prevent the transmission power of the downlink signal from increasing more than necessary, and the interference signal power of the downlink is not increased. .
以上に説明した送信電力制御とソフトハンドオーバは、無線アクセス方式として、特に、CDMA(Code Division Multiple Access )方式のセルラシステムにおいては、送信電力を低減することにより、干渉波電力を低減して回線容量を増加させるために有効な技術となっている。 The transmission power control and soft handover described above are used as a radio access method, particularly in a CDMA (Code Division Multiple Access) cellular system, by reducing the transmission power to reduce the interference wave power, thereby reducing the line capacity. It is an effective technology for increasing
ここで、ソフトハンドオーバ中においては、図10にシステム概略を示すように、移動局(MS)3は複数の接続基地局(BS)1,2と同時にDPCHを接続していることは前述したが、HS−PDSCHは一つの基地局(図では基地局1)のみとしか接続されていない。また、前述したように、移動局3がこのHS−PDSCHにより送信されてくるパケットを誤りなく受信したか否かを示す受領確認通知(ACK/NACK:Acknowledge/Non-Acknowledge )情報を、基地局へ送信することが必要であるが、この受領確認通知情報は、上り回線のHS−DPCCH(High-Speed Dedicated Physical Control Channel :パケットの送信制御情報を含むHS−PDSCH用個別制御チャネル)を使用して送信される。
Here, during the soft handover, the mobile station (MS) 3 is connected to the DPCH simultaneously with a plurality of connected base stations (BS) 1 and 2, as shown in FIG. HS-PDSCH is connected to only one base station (
この上り回線のHS−DPCCHと上り回線のDPCHとの関係は、図11に示すようになっており、DPCHは、DPCCH(Dedicated Physical Control Channel)とDPDCH(Dedicated Physical Data Channel )とから構成されており、DPCCHは個別パイロットチャネル(Pilot )と、TPCビットと、FBI(Feed Back Information )とを含んでいる。また、DPDCHはデータ(Data)であり、ユーザ情報や制御情報を含む。このDPCCHとDPDCHとは互いに直交変調されて多重化されて送信される。 The relationship between the uplink HS-DPCCH and the uplink DPCH is as shown in FIG. 11, and the DPCH is composed of a DPCCH (Dedicated Physical Control Channel) and a DPDCH (Dedicated Physical Data Channel). The DPCCH includes a dedicated pilot channel (Pilot), a TPC bit, and FBI (Feed Back Information). DPDCH is data and includes user information and control information. The DPCCH and DPDCH are transmitted after being orthogonally modulated and multiplexed.
HS−DPCCHはDPCCHやDPDCHの3スロット分に相当するスロット長が割当てられており、先に説明した受領確認通知(ACK/NACK)情報及び下り回線品質を示すCQI(Channel Quality Indicator )が含まれている。このHS−DPCCHはDPCHとコード多重にて送信されるようになっている。そして、このHS−DPCCHに含まれるACK(受領)/NACK(否)信号の判定は、HS−PDSCHを送信している基地局、すなわちパケット送信基地局のみで行われるために、基地局間のダイバーシチ合成はなされないものである。 HS-DPCCH is assigned slot lengths corresponding to three slots of DPCCH and DPDCH, and includes the above-described acknowledgment (ACK / NACK) information and CQI (Channel Quality Indicator) indicating downlink quality. ing. This HS-DPCCH is transmitted by DPCH and code multiplexing. And since the determination of the ACK (acceptance) / NACK (non-acceptance) signal included in this HS-DPCCH is performed only by the base station transmitting the HS-PDSCH, that is, the packet transmission base station, Diversity synthesis is not performed.
一方、上り回線のDPCHは、図10に示すように、無線ネットワーク制御局(RNC)10において、接続基地局1,2間でのダイバーシチ合成がなされると共に、このDPCHは、上述したように、高速閉ループ型の送信電力制御により所定の受信品質となるように制御されており、またHS−DPCCHの送信電力PH は、このDPCHの送信電力PD に所定のオフセット電力Δを加えた電力で送信されるようになっている。すなわち、
PH =PD +Δ ……(1)
なる関係で送信される。
On the other hand, as shown in FIG. 10, the uplink DPCH undergoes diversity combining between the connected
PH = PD + Δ (1)
Sent in a relationship.
なお、関連する技術として特許文献1及び非特許文献1がある。
このように、HS−PDCCHを用いて、移動局から送信されるACK/NACKを基に、パケット送信基地局は移動局でパケットが正しく受信されたか否かを判断し、NACKと判断されると、それに該当するパケットが移動局で正しく受信できなかったものとみなして、当該パケットの再送を行い、パケットロスを防止するようになっている。 In this way, based on ACK / NACK transmitted from the mobile station using HS-PDCCH, the packet transmission base station determines whether or not the packet has been correctly received by the mobile station. , it is assumed that the packet corresponding thereto can not be received correctly at the mobile station performs a retransmission of the packet, so as to prevent packet loss.
ここで、特に、NACKがACKに誤った場合には、パケットが正しく受信されていないにもかかわらず、当該基地局は次のパケットを送信してしまうことになり、よって、その正しく受信されなかったパケットは再送されることなく、移動局では失われてしまいパケットロスが発生する。従って、NACKに対す受信誤り率は、ACKに対するそれよりも十分に小さくすることが必要となり、換言すれば、パケット送信基地局でのACK/NACK信号の受信品質を十分高くすることが必要となる。 Here, in particular, when NACK is mistaken for ACK, the base station will transmit the next packet even though the packet is not correctly received. Packets are lost without being retransmitted and lost at the mobile station. Therefore, the reception error rate for NACK needs to be sufficiently smaller than that for ACK, in other words, the reception quality of the ACK / NACK signal at the packet transmission base station needs to be sufficiently high. .
しかしながら、何等の対策を施さなければ、以下に述べるような動作により、ACK/NACKの受信品質が低下することになる。 However, if no measures are taken, the reception quality of ACK / NACK is lowered by the operation described below.
ソフトハンドオーバ実行中において、HS−DPCCHの送信電力の基準となるUL(Up−Link:上り回線)DPCHの送信電力は以下のように制御される。接続基地局は、UL DPCHの受信SIRが基準SIRより大きい場合には、電力を減少させるTPC信号を送信し、合成後の受信SIRが基準SIRより小さい場合には、電力を増加させるTPC信号を送信する。 During execution of the soft handover, the transmission power of the UL (Up-Link) DPCH serving as a reference for the transmission power of the HS-DPCCH is controlled as follows. When the reception SIR of the UL DPCH is larger than the reference SIR, the connecting base station transmits a TPC signal that decreases power, and when the combined received SIR is smaller than the reference SIR, the connecting base station transmits a TPC signal that increases power. Send.
また、ソフトハンドオーバ実行中の移動局は、各接続基地局からTPC信号を受信して、全てのTPC信号が電力増加であるときは送信電力を増加させ、少なくとも1つのTPC信号が電力減少であるときには送信電力を減少させる。このとき、パケット送信基地局のUL DPCHの受信SIRが基準SIR未満であっても、それ以外の基地局のUL DPCHの受信SIRが基準SIR以上であれば、移動局に対する少なくとも1つのTPC信号が電力減少となるため、移動局は、UL DPCHの送信電力を減少させることになり、パケット送信基地局のUL DPCHの受信SIRはさらに低下する。従って、HS−DPCCHの受信品質が低下する。 Further, the mobile station that is executing the soft handover receives the TPC signal from each connected base station, increases the transmission power when all the TPC signals are increased in power, and at least one TPC signal is decreased in power. Sometimes the transmission power is reduced. At this time, even if the reception SIR of the UL DPCH of the packet transmission base station is less than the reference SIR, if the reception SIR of the UL DPCH of other base stations is equal to or greater than the reference SIR, at least one TPC signal for the mobile station is Since the power decreases, the mobile station decreases the transmission power of the UL DPCH, and the reception SIR of the UL DPCH of the packet transmission base station further decreases. Accordingly, the reception quality of the HS-DPCCH is degraded.
このように、ソフトハンドオーバ中には、パケット送信基地局以外のTPC信号のために、HS−DPCCHの受信品質が低下し、ACK/NACKの受信誤りが発生しやすくなるという問題がある。 Thus, during soft handover, because of the TPC signal other than the packet transmission base station, there is a problem that the reception quality of the HS-DPCCH deteriorates and the reception error of ACK / NACK is likely to occur.
ソフトハンドオーバ実行中において、UL DPCHの送信電力を制御するためのTPC信号を含むDL(Down−Link:下り回線)DPCHの送信電力は以下のように制御される。ソフトハンドオーバ実行中の移動局は、各接続基地局から送信されるDL DPCHを合成して、合成後の受信SIRが基準SIRより大きい場合には、電力を減少させるTPC信号を送信し、合成後の受信SIRが基準SIRより小さい場合には、電力を増加させるTPC信号を送信し、各基地局は、そのTPC信号に従って送信電力を制御する。 During execution of soft handover, transmission power of DL (Down-Link) DPCH including a TPC signal for controlling transmission power of UL DPCH is controlled as follows. The mobile station executing the soft handover combines the DL DPCHs transmitted from the connected base stations, and when the combined SIR is larger than the reference SIR, transmits a TPC signal for reducing the power. When the received SIR is smaller than the reference SIR, a TPC signal for increasing power is transmitted, and each base station controls transmission power according to the TPC signal.
このとき、パケット送信基地局のDL DPCHの受信SIRが基準SIRに比べて小さくても、それ以外の基地局のDL DPCHの受信SIRが大きければ、合成後の受信SIRは基準SIRよりも大きくなるため、各基地局は、DL DPCHの送信電力を減少させることになり、パケット送信基地局のDL DPCHの受信SIRはさらに低下する。従って、パケット送信基地局から送信されるTPC信号の受信品質が低下し、TPC信号の受信誤りが増えることになる。このとき、パケット送信基地局がUL DPCHの受信SIRを増加させるために、移動局の送信電力を増加させるTPC信号を送信しても、そのTPC信号の誤りのために、UL DPCHの受信SIRが低くなり、それに応じてHS−DPCCHの受信品質が低下し、ACK/NACKの受信誤りが発生しやすくなるという問題がある。 At this time, even if the reception SIR of the DL DPCH of the packet transmission base station is smaller than the reference SIR, if the reception SIR of the DL DPCH of the other base station is large, the combined reception SIR becomes larger than the reference SIR. Therefore, each base station decreases the DL DPCH transmission power, and the DL DPCH reception SIR of the packet transmission base station further decreases. Therefore, the reception quality of the TPC signal transmitted from the packet transmission base station is lowered, and the reception error of the TPC signal is increased. At this time, even if the packet transmission base station transmits the TPC signal for increasing the transmission power of the mobile station in order to increase the reception SIR of the UL DPCH, the reception SIR of the UL DPCH is reduced due to an error in the TPC signal. Accordingly, there is a problem that the reception quality of the HS-DPCCH is lowered accordingly, and reception errors of ACK / NACK are likely to occur.
特に、各基地局において、TPC信号の受信誤りが発生することによって、パケット送信基地局のDL DPCHの送信電力が他の基地局のDL DPCHの送信電力よりも小さくなり、上記の問題が発生しやすくなる。 In particular, in each base station, when a TPC signal reception error occurs, the transmission power of the DL DPCH of the packet transmission base station becomes smaller than the transmission power of the DL DPCH of another base station, and the above problem occurs. It becomes easy.
以上の問題を改善するための従来方式として、以下の2つの方法が考えられる。第一の方法として、移動局がソフトハンドオーバ状態の場合には、非ソフトハンドオーバ状態の場合よりもHS−DPCCHのオフセット電力Δの値を増加させる方法がある。この方法では、適切なΔは、接続基地局の数、パケットを送信しているリンクのUL受信品質等に応じて異なるため、最適なΔの増分を決定するのが困難であるという欠点がある。また、ACK/NACKの受信誤り率を十分小さくするためには、Δの値を余裕をもって大きくする必要があり、上り回線の送信電力が必要以上に大きくなり、移動局の消費電力が増えると共に、上り回線の干渉波電力が増えるという欠点がある。 The following two methods can be considered as conventional methods for improving the above problems. As a first method, when the mobile station is in the soft handover state, there is a method for increasing the value of the offset power Δ of the HS-DPCCH than in the non-soft handover state. In this method, the appropriate Δ differs depending on the number of connected base stations, the UL reception quality of the link transmitting the packet, and the like, so that it is difficult to determine the optimal Δ increment. . Further, in order to sufficiently reduce the reception error rate of ACK / NACK, it is necessary to increase the value of Δ with a margin, the uplink transmission power becomes larger than necessary, and the power consumption of the mobile station increases. There is a disadvantage that the interference power of the uplink increases.
更に、HS−DPCCHの送信電力がDPCCHと比較して大きくなるため、DPCCHのパイロット信号の受信品質が劣化し、チャネル推定精度が劣化するという欠点がある。上述の欠点をクリアするために、HS−DPCCHにパイロット信号を加える事も考えられるが、ソフトハンドオーバ中のみしか使用しないパイロット信号を常に送信するため、リソースの使用効率が減少するという問題がある。 Furthermore, since the transmission power of the HS-DPCCH is larger than that of the DPCCH, there is a disadvantage that the reception quality of the pilot signal of the DPCCH deteriorates and the channel estimation accuracy deteriorates. In order to clear the above-described drawbacks, it is conceivable to add a pilot signal to the HS-DPCCH. However, since a pilot signal that is used only during the soft handover is always transmitted, there is a problem in that resource use efficiency decreases.
第二の方法として、SHO中は、パケット送信基地局はHS−DPCCHの受信品質に対する高速閉ループ制御型送信電力制御用の信号TPC−HSを生成し、通常のTPC信号の代わり、もしくは両方を移動局へ送信するという方法がある。この方法では、パケット送信基地局ではACK信号、NACK信号の両品質が満たされるように、より要求品質の厳しいほうに目標SIRを設定しなければならない。従って、過剰な送信信号を消費してしまうという欠点がある。また、通常のTPCの代わりにTPC−HSを送信する場合、HS−DPCCHの電力が上がって干渉が生じ、結果として、通常のDPCCHのチャネル推定精度が劣化するという欠点もある。更に、通常のTPCと別にTPC−HSを送信する場合、スロットフォーマットの変更が必要となるという欠点がある。 As a second method, during SHO, the packet transmission base station generates a signal TPC-HS for high-speed closed-loop control type transmission power control for the reception quality of HS-DPCCH, and moves either or both of the normal TPC signals. There is a method of transmitting to the station. In this method, the target SIR has to be set to a more demanding quality so that both the quality of the ACK signal and the NACK signal is satisfied in the packet transmission base station. Therefore, there is a drawback that an excessive transmission signal is consumed. Also, when transmitting TPC-HS instead of normal TPC, HS-DPCCH power is increased to cause interference, resulting in a drawback that the normal DPCCH channel estimation accuracy deteriorates. Furthermore, when TPC-HS is transmitted separately from normal TPC, there is a drawback that the slot format needs to be changed.
本発明の目的は、上記の従来の種々の問題点を解決しつつ移動局から基地局へ送信されるパケット受領確認通知のためのACK/NACK信号を、基地局におい高品質で受信することが可能なセルラシステムにおける基地局を提供することである。 An object of the present invention is to receive, at a high quality, an ACK / NACK signal for a packet receipt confirmation notification transmitted from a mobile station to a base station while solving the above-described various conventional problems. It is to provide a base station in a possible cellular system.
本発明によるセルラシステムは、移動局と、この移動局とソフトハンドオーバ状態にあって前記移動局と個別チャネルを設定する複数の基地局とを含み、前記個別チャネルは上り及び下り個別チャネルがあり、これ等個別チャネルには互いに他の個別チャネルのための送信電力制御情報が含まれており、ソフトハンドオーバ状態にある基地局のうち特定基地局のみが前記移動局と共用チャネルを設定してパケット送信を行うようにしたセルラシステムであって、前記パケット送信中に、前記個別チャネルの当該基地局での目標受信品質を第一の値からそれより大なる第二の値に変更制御する手段を有することを特徴とする。 The cellular system according to the present invention includes a mobile station and a plurality of base stations that are in soft handover state with the mobile station and set up dedicated channels with the mobile station, and the dedicated channels include uplink and downlink dedicated channels, These dedicated channels contain transmission power control information for other dedicated channels, and only a specific base station among base stations in soft handover state sets a shared channel with the mobile station and transmits packets. And a means for controlling the target reception quality of the dedicated channel at the base station to be changed from a first value to a second value larger than that during the packet transmission. It is characterized by that.
本発明による通信制御方法は、移動局と、この移動局とソフトハンドオーバ状態にあって前記移動局と個別チャネルを設定する複数の基地局とを含み、前記個別チャネルは上り及び下り個別チャネルがあり、これ等個別チャネルには互いに他の個別チャネルのための送信電力制御情報が含まれており、ソフトハンドオーバ状態にある基地局のうち特定基地局のみが前記移動局と共用チャネルを設定してパケット送信を行うようにしたセルラシステムにおける通信制御方法であって、前記パケット送信中に、前記個別チャネルの当該基地局での目標受信品質を第一の値からそれより大なる第二の値に変更制御するステップを有することを特徴とする。 The communication control method according to the present invention includes a mobile station and a plurality of base stations that are in a soft handover state with the mobile station and set up dedicated channels with the mobile station, and the dedicated channels include uplink and downlink dedicated channels. These dedicated channels contain transmission power control information for other dedicated channels, and only a specific base station among the base stations in the soft handover state sets up a shared channel with the mobile station. A communication control method in a cellular system configured to perform transmission, wherein during the packet transmission, the target reception quality of the dedicated channel at the base station is changed from a first value to a second value higher than the first value. It has the step to control, It is characterized by the above-mentioned.
本発明による基地局は、移動局と、この移動局とソフトハンドオーバ状態にあって前記移動局と個別チャネルを設定する複数の基地局とを含み、前記個別チャネルは上り及び下り個別チャネルがあり、これ等個別チャネルには互いに他の個別チャネルのための送信電力制御情報が含まれており、ソフトハンドオーバ状態にある基地局のうち特定基地局のみが前記移動局と共用チャネルを設定してパケット送信を行うようにしたセルラシステムにおけるパケット送信基地局であって、前記パケット送信中に、前記個別チャネルの当該基地局での目標受信品質を第一の値からそれより大なる第二の値に変更制御する手段を有することを特徴とする。 The base station according to the present invention includes a mobile station and a plurality of base stations that are in a soft handover state with the mobile station and set up dedicated channels with the mobile station, and the dedicated channels include uplink and downlink dedicated channels, These dedicated channels contain transmission power control information for other dedicated channels, and only a specific base station among base stations in soft handover state sets a shared channel with the mobile station and transmits packets. A packet transmission base station in a cellular system adapted to perform the target reception quality of the dedicated channel at the base station during the packet transmission from a first value to a larger second value It has the means to control, It is characterized by the above-mentioned.
本発明によれば、移動局がソフトハンドオーバ状態にあって複数の基地局とDPCHを設定している状態の時にも、パケット送信基地局が十分な品質でHS−DPCCHを受信できるようになり、よって当該HS−DPCCHに含まれているパケット正常受領の可否を示すACK/NACK信号の誤り率が減少して、パケットロスがなくなり、スループットの向上が図れるという効果がある。 According to the present invention, the packet transmission base station can receive the HS-DPCCH with sufficient quality even when the mobile station is in the soft handover state and sets the DPCH with a plurality of base stations. Therefore, there is an effect that the error rate of the ACK / NACK signal indicating whether or not normal reception of the packet included in the HS-DPCCH is reduced, packet loss is eliminated, and throughput can be improved.
また、ソフトハンドオーバ状態にあってかつパケット送受信中においてのみ、上述したACK/NACK信号の誤り率の低減制御を行い、パケット送受信中の時間よりも時間的割合が大きいパケット待ち受け中には、当該制御は行わないのであるから、送信電力の増加を招来することなくACK/NACK信号の誤り率の低減が可能であり、またUL/DL DPCHのソフトハンドオーバ時のダイバーシチ効果は何等損なわれることもない。 In addition, the above-described control for reducing the error rate of the ACK / NACK signal is performed only in the soft handover state and during packet transmission / reception, and the control is performed while waiting for a packet whose time ratio is larger than the time during packet transmission / reception. Therefore, the error rate of the ACK / NACK signal can be reduced without causing an increase in transmission power, and the diversity effect at the time of UL / DL DPCH soft handover is not impaired.
以下に図面を参照しつつ本発明の実施例1〜5について説明する。図1は本発明の実施例1〜5の全てが適用されるセルラシステムの一例を示す概略図である。同図を参照すると、セルラシステムは基地局1と、基地局2と、移動局3,4,5とを含んで構成されている。なお、基地局1と基地局2は異なるセルに設けられているとする。また、本例では、3個の移動局3,4,5に対し2個の基地局1,2が存在する場合について説明するが、これに限定されるものではなく、3個の移動局3,4,5に対し3個以上の基地局が存在する場合にも適用が可能である。一般的に、1個の基地局に対し多数の移動局が存在する。
また、同送信システム内に移動局が4個以上存在する場合にも本発明の適用が可能であり、同図は3個の移動局3,4,5が存在する場合を一例として示している。また、基地局と移動局3,4,5間の無線アクセス方式としてCDMA(Code Division Multiple Access)方式が用いられている。 The present invention can also be applied to the case where there are four or more mobile stations in the transmission system, and the figure shows an example in which three mobile stations 3, 4, and 5 exist. . A CDMA (Code Division Multiple Access) method is used as a wireless access method between the base station and the mobile stations 3, 4, and 5.
同図は、基地局1から移動局3へHS−PDSCHの信号と、DPCH1(DL:Down-Link :基地局から移動局への送信)の信号と、CPICH1(Common Pilot Channel 1)の信号とが送信され、移動局3から基地局1へはDPCH1(UL:Up-Link :移動局から基地局への送信)の信号が送信されることを示している。また、移動局3から基地局1へ、図11に示したHS−DPCCH(UL)の信号が送信されることを示している。
The figure shows an HS-PDSCH signal from the
同様に、基地局2から移動局3へDPCH2(DL)の信号と、CPICH2の信号とが送信され、移動局3から基地局2へはDPCH2(UL)の信号が送信されることを示している。このDPCH2(UL)は、DPCH1(UL)と受信する基地局は異なるが、移動局の送信信号としては、DPCH1(UL)と同一である。即ち、HS−DPSCHの信号及びCPICHの信号は単方向信号であり、DPCHの信号は双方向信号であることを示している。 Similarly, a DPCH2 (DL) signal and a CPICH2 signal are transmitted from the base station 2 to the mobile station 3, and a DPCH2 (UL) signal is transmitted from the mobile station 3 to the base station 2. Yes. This DPCH2 (UL) is the same as DPCH1 (UL) as a transmission signal of the mobile station, although the receiving base station is different from DPCH1 (UL). That is, the HS-DPSCH signal and the CPICH signal are unidirectional signals, and the DPCH signal is a bidirectional signal.
HS−PDSCHは、高速なチャネルであり、動画等の大きなファイルを短時間で送受信するために用いられる。また、CPICHは共通パイロットチャネル(DLのみ)であり、このチャネルを介して基地局1,2から移動局3へ共通パイロット信号が常時送信されている。
HS-PDSCH is a high-speed channel and is used for transmitting and receiving large files such as moving images in a short time. CPICH is a common pilot channel (DL only), and a common pilot signal is constantly transmitted from the
また、DPCHは個別(物理)チャネル(UL及びDL)であり、DPCCHと、DPDCHとから構成されていることは、図11にて説明したとおりである。また、HS−DPCCHにはACK/NACK信号や下り回線の伝搬路の品質を示すCQI等が含まれていることも前述したとおりであり、これ等DPCCHとの送信電力の関係は、先の式(1)に示した如くである。 Further, DPCH is an individual (physical) channel (UL and DL), and is configured by DPCCH and DPDCH, as described in FIG. Further, as described above, the HS-DPCCH includes an ACK / NACK signal and CQI indicating the quality of the downlink propagation path, and the relationship between the transmission power and the DPCCH is expressed by the above equation. As shown in (1).
次に、本実施例1〜5の全てに共通な動作について説明する。各基地局1,2はCPICH1,2をそれぞれ送信しており、このCPICHはセル毎に異なるスクランブル符号により拡散されており、各移動局はスクランブル符号の相違によりセルの識別を行う。各移動局は下りデータを受信する時、1つまたは複数の基地局とDPCH(UL/DL)を設定してデータ受信待ちの状態となる。
Next, operations common to all of the first to fifth embodiments will be described. Each
1つの移動局3は基地局1,2との間でCPICHの受信電力の差が所定値以下の場合には、基地局1のみならず基地局2ともDPCHを設定し、複数の基地局1,2とDPCHを設定している状態(ソフトハンドオーバ)になっている。
When the difference in CPICH received power between the mobile station 3 and the
UL及びDLのDPCHには、所定のビット系列からなる個別パイロット信号(Pilot)が含まれている。ULのDPCH送信電力は、高速閉ループ型の送信電力制御により制御されており、この制御では、基地局はULのDPCHの個別パイロット信号を用いてDPCHの受信SIRを測定し、その測定値とその基地局が有する目標SIRとを比較する。そして、その測定値が目標SIRより小さい場合は「パワ−アップ」のTPCビット、それ以外は「パワ−ダウン」のTPCビットを、DLのDPCH1,2を用いて移動局3に通知する。なお、この目標SIRの値は無線ネットワーク制御局RNC(図10の10)から通知される。
The UL and DL DPCHs include a dedicated pilot signal (Pilot) composed of a predetermined bit sequence. The UL DPCH transmission power is controlled by high-speed closed-loop transmission power control. In this control, the base station measures the DPCH reception SIR using the UL DPCH dedicated pilot signal, and the measured value and The target SIR of the base station is compared. If the measured value is smaller than the target SIR, the TPC bit of “Power Up” is notified to the mobile station 3 using the
各基地局はHS−PDSCHを送信しており、このHS−PDSCHはDPCHよりも高速のチャネルであり、DLのDPCHよりも大きな電力で送信される。各基地局は1つのHS−PDSCHを複数の移動局に対するデータの送信に使用する。RNCまたは基地局は、各移動局にデータ送信を行うスケジュールを決定して、移動局毎に異なるタイミングでデータ送信を行う。すなわち、一例として、まず移動局3に対してHS−PDSCHの送信が行われ、その送信が終了した後に、移動局4に対してHS−PDSCHの送信が行われ、その送信が終了した後に、移動局5に対してHS−PDSCHの送信が行われる。 Each base station transmits HS-PDSCH, which is a higher-speed channel than DPCH and is transmitted with higher power than DL DPCH. Each base station uses one HS-PDSCH for data transmission to a plurality of mobile stations. The RNC or base station determines a schedule for data transmission to each mobile station, and performs data transmission at a different timing for each mobile station. That is, as an example, the HS-PDSCH is first transmitted to the mobile station 3, and after the transmission is finished, the HS-PDSCH is transmitted to the mobile station 4, and after the transmission is finished, HS-PDSCH is transmitted to the mobile station 5.
通信網から移動局3に対して送信するデータがRNCに到着すると、RNCはそのデータを移動局3がDPCHを設定している基地局1または2へ送る。この場合、データは基地局1に送られるものとする。
When data to be transmitted from the communication network to the mobile station 3 arrives at the RNC, the RNC sends the data to the
以上は実施例1〜5の全てに共通な動作であり、以下実施例1について、図2のシーケンス図を用いて解説する。通信網から移動局(MS)3に送信すべきデータがRNCに到着すると、RCNはそのデータを、移動局3がDPCHを設定している基地局(BS)へ送る。この場合、データは基地局1へ送られるものとする(ステップS10)。 The above is the operation common to all of the first to fifth embodiments. Hereinafter, the first embodiment will be described with reference to the sequence diagram of FIG. When data to be transmitted from the communication network to the mobile station (MS) 3 arrives at the RNC, the RCN sends the data to the base station (BS) where the mobile station 3 has set DPCH. In this case, it is assumed that data is sent to the base station 1 (step S10).
基地局1はデータ転送する旨の予告を移動局3に対して行う(ステップS11)。その後、基地局1はUL DPCHの受信品質に対するSIRを所定値だけ上げる(ステップS12)。また、DL DPCHで送信するTPCビットの送信電力を所定値だけ増加させて送信するようにする(ステップS13)。更に、パワーバランシングのための基準電力を所定値だけ上げると共に、DL DPCHの送信電力をも所定値上げる(ステップS14)。
The
このパワーバランシングは、3GPP(3rd Generation Partnership Project)に規定されたものであって、閉ループ型送信電力制御に影響を与えない程度に、ゆっくりとDL DPCHの送信電力を前記基準電力に近づけるようにすることによって、基地局間における前記送信電力をバランスさせるためのものである。そのバランシング調整のために用いられる基準電力をパケット送信基地局1にて所定値上げるものである。
This power balancing is specified in 3GPP (3rd Generation Partnership Project), and the DL DPCH transmission power is slowly brought close to the reference power so as not to affect the closed-loop transmission power control. This is to balance the transmission power between base stations. The reference power used for the balancing adjustment is increased by a predetermined value at the packet
移動局3においては、基地局1からのデータ転送予告受信後、パケット送信基地局1が送信するTPC信号のみに従って自局が送信するUL DPCHの送信電力の制御を行うようにする(ステップS15)。
In the mobile station 3, after receiving the data transfer advance notice from the
以上の状態において、基地局1からデータをブロックに分割した最初のパケット#1が、HS−PDSCHを用いて移動局3へ送信され(ステップS16)、移動局3にてこのパケット#1を正しく受信したとすると、ACKがHS−DPCCHを用いて基地局1へ送信される(ステップS17)。以下、同様にパケット#2が基地局1から送信され(ステップS18)、移動局3からACKが基地局1ヘ送信される(ステップS19)。
In the above state, the
データ送信が終了すると、基地局1は移動局3に対してデータ終了(End of Data )を通知する(ステップS20)。データ送信の終了に応答して、基地局1においては、ステップS12〜S14でそれぞれ変更した各値を元の状態に戻す処理が行われる(ステップS21)。また、移動局3においては、ステップS15でパケット送信基地局1のTPCのみでUL DPCHの送信電力を制御するようにしたのを、ソフトハンドオーバ中の全ての基地局のTPCを用いて、UL DPCHの送信電力を制御する、元の状態に戻す(ステップS22)。なお、データ終了(End of Data )の通知の代わりに、所定の時間、パケットが送信されてこなかった場合に、パケット送信前の元の状態に戻すようにすることもできる。
When the data transmission is completed, the
上述のステップS15に示した様に、パケット送信基局1のTPC信号のみで、移動局3自身が送信するUL DPCHの送信電力制御を行うことにより、パケット送信基地局1におけるUL DPCHが目標品質を満たす様に移動局の送信電力を制御できるために、このUL DPCHに一定のオフセット電力値(式(1)のΔ)を加えた電力で送信されるHS−DPCCHにおけるACK/NACK信号の受信品質も目標品質を満足することになる。その結果、ACK/NACK信号の受信精度が向上し、HS−DPSCHによるデータ送信のスループットが増加するのである。
As shown in step S15 described above, the UL DPCH in the packet
また、パケット送信基地局1がDL DPCHで送信するTPC信号の送信電力を上げたり(ステップS13)、パワーバランシングの基準電力及びDL DPCHの送信電力を上げたり(ステップS14)することにより、パケット送信基地局1が送信するTPC信号の受信誤り率を低減し、移動局3における送信電力制御の精度が向上するために、パケット送信基地局1でのACK/NACK信号の受信品質を更に向上できることになる。また、パケット送信基地局1において、UL DPCHの目標SIRを上げる(ステップS12)ことにより、当該基地局1でのACK/NACK信号の受信品質が向上できる。
Further, the packet
この実施例1によれば、従来の第二の方法のようなスロットフォーマットの変更が不要であり、また、DPCHとHS−DPCCHのオフセット電力値は固定であるために、従来の第一及び第二の方法のようなDPCHのパイロット信号の受信品質が劣化することによるチャネル推定精度の劣化は生じず、よってHS−DPCCHにパイロット信号を入れる必要がない。また、本実施例1では、パケット送受信中のみステップS12〜S15の処理を適用し、パケット送受信中の時間よりも時間的割合が大きい、それ以外の時間は、これ等処理を行わないので、その間における干渉の増加は発生しない。 According to the first embodiment, it is not necessary to change the slot format as in the conventional second method, and the offset power values of DPCH and HS-DPCCH are fixed. The channel estimation accuracy does not deteriorate due to the deterioration of the reception quality of the DPCH pilot signal as in the second method, and therefore it is not necessary to put the pilot signal in the HS-DPCCH. In the first embodiment, the processing in steps S12 to S15 is applied only during packet transmission / reception, and the time ratio is larger than the time during packet transmission / reception. No increase in interference occurs.
なお、ステップS15の移動局3における動作のみでも本発明の目的は達成可能であり、また当該ステップS15の動作とステップS12のパケット送信基地局1における動作とを組合せて実施しても、本発明の目的は達成可能である。また、パケット送信基地局1において、ステップS13の動作やステップS14の動作をそれぞれ独立に実施するだけでも、本発明の目的は達成可能である。更に、ステップS14のパワーバランシングの基準電力を上げるだけでも良いものである。
Note that the object of the present invention can be achieved only by the operation in the mobile station 3 in step S15, and even if the operation in step S15 and the operation in the packet
図3及び図4は上述した実施例1を実現するための基地局及び移動局の概略機能ブロック図をそれぞれ示している。図3を参照すると、基地局においては、アンテナ11からの受信信号はアンテナ共用器(DUP:Duplexer)12を介して受信部13へ入力され、増幅、周波数変換、復調等の処理がなされる。復調出力はチャネル分離器14によりユーザ情報と各種制御情報とに分離される。これ等制御情報は制御部(CPU)15へ入力され、図2のシーケンス図に示したステップS12〜S14やS21等の処理が、メモリ16に予め格納されているプログラム手順に従って実行される。
3 and 4 respectively show schematic functional block diagrams of the base station and the mobile station for realizing the first embodiment. Referring to FIG. 3, in the base station, a received signal from the
一方、移動局に対するユーザ情報や制御情報はチャネル合成部17にて合成され、増幅部18により増幅されて送信部19へ供給され、変調や周波数変換等の処理がなされてアンテナ共用器12及びアンテナ11を介して送信される。
On the other hand, user information and control information for the mobile station are combined by the
図4を参照すると、移動局においては、アンテナ21からの受信信号はアンテナ共用器22を介して受信部23へ供給され、増幅、周波数変換、復調等の処理がなされる。復調出力はチャネル分離器24により、ユーザ情報と制御情報であるTPC信号とに分離される。このTPC信号は制御部(CPU)25へ入力され、図2のシーケンス図に示したステップS15やS22の処理が、メモリ26に予め格納されているプログラム手順に従って実行される。
Referring to FIG. 4, in the mobile station, the received signal from the
一方、基地局に対するユーザ情報や制御情報はチャネル合成部27にて合成され、増幅部28により増幅されて送信部29へ供給され、変調や周波数変換等の処理がなされてアンテナ共用器22及びアンテナ21を介して送信される。
On the other hand, user information and control information for the base station are combined by the
次に、本発明の実施例2について、図5の動作シーケンス図を参照しつつ説明する。通信網から移動局3に送信すべきデータがRNCに到着すると、RNCはそのデータを移動局3がDPCHを設定している基地局へ送る。この場合は、データは基地局1へ送られるものとする(ステップS30)。 Next, Embodiment 2 of the present invention will be described with reference to the operation sequence diagram of FIG. When data to be transmitted from the communication network to the mobile station 3 arrives at the RNC, the RNC sends the data to the base station where the mobile station 3 has set DPCH. In this case, data is sent to the base station 1 (step S30).
基地局1はデータ転送する旨の予告を移動局3に対して行う(ステップS31)。その後、基地局1はUL DPCHの受信品質に対する目標値SIRを所定値だけ上げる(ステップS32)。一方、移動局3は基地局1からデータ転送予告を受けると、パケット通信基地局1が送信するTPC信号のみに従って自局が送信するUL DPCHの送信電力の制御を行うようにする(ステップS33)。また、移動局3は、DL DPCHの目標SIRを所定値だけ増加させる(ステップS34)。
The
更に、移動局3は、自局におけるUL DPCHの送信電力制御の上げ幅を、下げ幅より大きくして、制御ステップの増減が非対称となる様に制御する(ステップS35)。すなわち、増加ステップをΔPupとし、減少ステップをΔPdownとすると、
ΔPup>ΔPdown
となる様にするのである。
Furthermore, the mobile station 3 controls the transmission power control of the UL DPCH in the local station to be larger than the decrease, so that the increase / decrease of the control step is asymmetric (step S35). That is, if the increase step is ΔPup and the decrease step is ΔPdown,
ΔPup> ΔPdown
It is made to become.
更にはまた、移動局3は、パケット送信基地局1から送信されるDL DPCHのみの受信SIRにより、DL DPCHの電力制御のためのTPC信号を生成するようにする(ステップS36)。 Furthermore, the mobile station 3 generates a TPC signal for DL DPCH power control based on the reception SIR of only the DL DPCH transmitted from the packet transmission base station 1 (step S36).
しかる後に、基地局1からデータをブロックに分割した各パケット#1や#2がHS−PDSCHを用いて移動局3へ送信され(ステップS37,S39)、移動局3からは基地局1へ各パケットを受信した旨のACK信号がHS−DPCCHを用いて送信される(ステップS38,S40)。データ送信が終了すると、基地局1は移動局3に対してデータ終了を通知する(ステップS41)。このデータ終了に応答して、基地局1においては、ステップS32で変更した値を元に戻し(ステップS42)、移動局3では、ステップS33〜S36で変更した処理を元に戻す(ステップS43)。なお、本実施例でも、データ終了の通知の代わりに、所定の時間、パケットが送信されてこなかった場合に、パケット送信前の元の状態に戻すようにすることもできる。
Thereafter, the
本実施例2においては、実施例1の図2におけるシーケンス図のステップS12及びS15と同一の処理(S32及びS33)を行うことに加えて、更に、移動局3にて、DL DPCHの目標SIRを増加させることにより(ステップS34)、移動局で受信するTPC信号の受信品質が向上し、ULでの送信電力制御の精度が上がる。よって、パケット送信基地局でのACK/NACK信号の受信品質が向上する。 In the second embodiment, in addition to performing the same processing (S32 and S33) as steps S12 and S15 of the sequence diagram in FIG. 2 of the first embodiment, the mobile station 3 further performs the target SIR of DL DPCH. (Step S34), the reception quality of the TPC signal received by the mobile station is improved, and the accuracy of UL transmission power control is increased. Therefore, the reception quality of the ACK / NACK signal at the packet transmission base station is improved.
また、移動局3でのUL DPCHの送信電力の制御ステップを非対称として、増加ステップを減少ステップより大とすることにより(ステップS35)、即座に所要の受信品質となる様、送信電力を増加させることが可能となる。従って、パケットの様な短い送信時間でも所要品質に保つことができる。更に、パケット送信基地局からのDL DPCHのみの受信SIRにより、TPC信号を生成することにより(ステップS36)、当該DL DPCHの移動局での受信品質が大となり、それに含まれるTPC信号が正確に受信でき、結果として、移動局から送信されるHS−DPCCHが基地局1で正確に受信可能となる。
Further, by making the control step of the UL DPCH transmission power at the mobile station 3 asymmetric, and increasing the increase step greater than the decrease step (step S35), the transmission power is increased so that the required reception quality can be obtained immediately. It becomes possible. Therefore, the required quality can be maintained even in a short transmission time such as a packet. Further, by generating a TPC signal based on the reception SIR of only the DL DPCH from the packet transmission base station (step S36), the reception quality of the DL DPCH at the mobile station is increased, and the TPC signal included in the TPC signal is accurately detected. As a result, the HS-DPCCH transmitted from the mobile station can be accurately received by the
また、本実施例2では、パケット送受信中のみステップS32〜S36の処理を適用し、パケット送受信中の時間よりも時間的割合が大きい、それ以外の時間は、これ等処理を行わないので、その間における干渉の増加は発生しない。 In the second embodiment, the process of steps S32 to S36 is applied only during packet transmission / reception, and the time ratio is larger than the time during packet transmission / reception. No increase in interference occurs.
なお、移動局3において、ステップS34の動作やステップS36の動作は、それぞれ独立に実施するだけでも、本発明の目的は達成可能である。また、パケット送信基地局1におけるステップS32の動作と、移動局3におけるステップS33の動作とを組合わせたうえに、更に移動局3でのステップS35の動作を組合せても、本発明の目的は達成できるものである。
In the mobile station 3, the object of the present invention can be achieved only by performing the operation of step S34 and the operation of step S36 independently of each other. The object of the present invention is to combine the operation of step S32 in the packet
本実施例2を実現するための基地局及び移動局についても、図3及び図4に示した概略機能ブロック図が適用できることは明らかである。 It is obvious that the schematic functional block diagrams shown in FIGS. 3 and 4 can be applied to the base station and the mobile station for realizing the second embodiment.
次に、本発明による実施例3につてい、図6及び図7のフローを参照して説明する。図6は移動局における動作フローであり、パケット送信基地局1からのデータ転送予告に応答して(ステップS51)、移動局3は接続基地局1,2が所定の送信電力で送信しているDLの品質に応じてHS−DPCCHのオフセット電力ΔSHO の増分を決定するものである。具体的には、ソフトハンドオーバ状態の接続基地局1,2からの共通パイロット信号の受信電力RP1,RP2を測定し(ステップS52)、DLの品質を判断するのである。
Next, Embodiment 3 according to the present invention will be described with reference to the flowcharts of FIGS. FIG. 6 is an operation flow in the mobile station. In response to the data transfer advance notice from the packet transmission base station 1 (step S51), the mobile station 3 transmits the
この受信電力RP1,RP2に応じて、HS−DPCCHのオフセット電力ΔSHO の増分を決定するわけであるが(ステップS53)、具体的には、
ΔSHO =ΔNON-SHO +10log10{max (RP1,RP2)/RP1}
(dB)…(2)
なる式により、オフセット電力ΔSHO が算出される。ここに、ΔNON-SHO はソフトハンドオーバ状態でないときのオフセット電力であり、max (RP1,RP2)はRP1、RP2のうちで最大のものを示す。
The increment of the offset power ΔSHO of the HS-DPCCH is determined according to the received powers RP1 and RP2 (step S53). Specifically,
ΔSHO = ΔNON-SHO + 10 log 10 {max (RP1, RP2) / RP1}
(DB) (2)
The offset power ΔSHO is calculated by the following formula. Here, ΔNON-SHO is the offset power when not in the soft handover state, and max (RP1, RP2) indicates the maximum of RP1, RP2.
従って、RP1>RP2であれば、ΔSHO =ΔNON-SHO となり、RP1<RP2であれば、
ΔSHO =ΔNON-SHO +10log10(RP2/RP1)…(3)
となって、右辺の第2項がオフセット電力の増分となるのである。この決定された増分だけオフセット電力を増加させて、HS−DPCCHを送信する(ステップS54)。
Therefore, if RP1> RP2, ΔSHO = ΔNON-SHO, and if RP1 <RP2,
ΔSHO = ΔNON-SHO + 10 log 10 (RP2 / RP1) (3)
Thus, the second term on the right side is the increment of the offset power. The offset power is increased by the determined increment, and the HS-DPCCH is transmitted (step S54).
図7は本実施例3におけるパケット送信基地局の動作フローである。なお、この図7のフローは次の実施例4の基地局の動作にも共通するものである。図7を参照すると、HS−DPCCHの受信に応答して(ステップS61)、ACK/NACKの判定が行われ、“NACK”と判定されれば(ステップS62で“N”)、通常処理が行われる(ステップS63)。すなわち、“NACK”であるから、該当するパケットの再送が行われる。 FIG. 7 is an operation flow of the packet transmission base station according to the third embodiment. The flow of FIG. 7 is common to the operation of the base station of the fourth embodiment. Referring to FIG. 7, in response to reception of the HS-DPCCH (step S61), an ACK / NACK determination is performed, and if it is determined to be “NACK” (“N” in step S62), normal processing is performed. (Step S63). That is, since it is “NACK”, the corresponding packet is retransmitted.
ステップS62で“ACK”と判定されると、HS−DPCCHのACK/NACKの受信判定結果の信頼度に応じてULにおけるパケット送信を決定する様に動作する。すなわち、ACK/NACKの受信判定結果の信頼度を検出し(ステップS64)、この信頼度と所定閾値とを比較する(ステップS65)。信頼度が閾値より高ければ、通常処理へ移行し(ステップS63)、低ければ、ACK/NACK信号に無関係に常にNACKであると判定する(ステップS66)。従って、該当パケットの再送が行われることになる(ステップS67)。 When it is determined as “ACK” in step S62, the packet transmission in the UL is determined according to the reliability of the reception determination result of HS-DPCCH ACK / NACK. That is, the reliability of the ACK / NACK reception determination result is detected (step S64), and this reliability is compared with a predetermined threshold (step S65). If the reliability is higher than the threshold, the process proceeds to normal processing (step S63). If the reliability is low, it is always determined that the signal is NACK regardless of the ACK / NACK signal (step S66). Therefore, the corresponding packet is retransmitted (step S67).
本実施例3によれば、接続基地局のうちの他の基地局と比較して、パケット送信基地局のULの伝搬損(回線品質)に応じて、すなわち伝搬損が大きければ、大きめのオフセット電力(ΔSHO )を、小さければ、小さめのオフセット電力を設定することになるので、伝搬損によるACK/NACK信号の受信品質劣化を補償することができる。また、パケット送信基地局でのACK/NACK判定において、NACKがACKであると誤って判定されると、パケットロスが生じるが、ACKであると判定されたときには、受信判定結果の信頼度に応じて常にNACKと判定することにより、NACKの誤り率が減少してパケットロス率が低減でき、スループットの向上が可能となる。 According to the third embodiment, compared to other base stations among the connected base stations, the offset is larger depending on the UL propagation loss (line quality) of the packet transmission base station, that is, if the propagation loss is large. If the power (ΔSHO) is small, a smaller offset power is set, so that it is possible to compensate for reception quality deterioration of the ACK / NACK signal due to propagation loss. Further, in the ACK / NACK determination at the packet transmission base station, if it is erroneously determined that NACK is ACK, packet loss occurs, but if it is determined that it is ACK, it depends on the reliability of the reception determination result. By always determining NACK, the NACK error rate can be reduced, the packet loss rate can be reduced, and the throughput can be improved.
本実施例では、ソフトハンドオーバ状態にある基地局の数を2としたが、3以上の場合には、上記式(2)におけるmax {PR1,PR2}は、max {PR1,PR2,PR3,……}となることは明らかである。 In this embodiment, the number of base stations in the soft handover state is 2. However, when the number is 3 or more, max {PR1, PR2} in the above formula (2) is max {PR1, PR2, PR3,. It is clear that ...
なお、図6及び図7の動作は、図3及び図4で示した各機能ブロックにより実現できることは勿論である。 6 and 7 can be realized by the functional blocks shown in FIGS. 3 and 4.
本発明の実施例4について説明する。図8は本実施例4の移動局の動作フロー図である。データ転送予告に応答して(ステップS71)、移動局は、ソフトハンドオーバ中の基地局の数Nに応じてHS−DPCCHのオフセット電力ΔSHO の増分を決定する(ステップS72)。具体的には、
ΔSHO =ΔNON-SHO +10log10N(dB)…(4)
なる式に従ってオフセット電力が算出されることになり、よって、オフセット電力の増分は式(4)の右辺の第2項となる。この増分だけ増加させた式(4)のオフセット電力で、HS−DPCCHを送信することになる(ステップS73)。本実施例4におけるパケット送信基地局の動作フローは図7のそれと同一である。
Embodiment 4 of the present invention will be described. FIG. 8 is an operation flowchart of the mobile station according to the fourth embodiment. In response to the data transfer notice (step S71), the mobile station determines the increment of the HS-DPCCH offset power ΔSHO according to the number N of base stations in soft handover (step S72). In particular,
ΔSHO = ΔNON-SHO + 10 log 10 N (dB) (4)
The offset power is calculated according to the following formula, and therefore, the increment of the offset power is the second term on the right side of the formula (4). The HS-DPCCH is transmitted with the offset power of equation (4) increased by this increment (step S73). The operation flow of the packet transmission base station in the fourth embodiment is the same as that in FIG.
本実施例4では、次の様な効果がある。すなわち、ソフトハンドオーバ中の基地局の数Nが大になるとDPCHの受信タイバーシチゲインは大となるためにDPCHの送信電力が低くなるが、移動局では、この数Nが大となれば、それに応じてHS−DPCCHのオフセット電力の増分も大となる様にしているので、HS−DPCCHの受信品質はソフトハンドオーバ中の基地局数にかかわらず、所要値となる様に制御できることになる。 The fourth embodiment has the following effects. That is, if the number N of base stations in soft handover becomes large, the DPCH reception diversity gain becomes large and the transmission power of the DPCH decreases. However, if this number N increases, Accordingly, since the HS-DPCCH offset power increment is also increased, the HS-DPCCH reception quality can be controlled to a required value regardless of the number of base stations during soft handover.
また、基地局において、ACKと判定されたときに、HS−DPCCHのACK/NACKの受信判定結果の信頼度に応じて常にNACKと判定することで、NACKの誤り率が減少し、パケットロス率が低減できると共に、HS−DPCCHのACK/NACKの受信判定結果の信頼度の計算を常に行わずに、ACKと判定したときのみ行うようになっているので、当該計算のための負荷を低減できることになる。 Further, when it is determined as ACK in the base station, the NACK error rate is reduced by always determining NACK according to the reliability of the reception determination result of HS-DPCCH ACK / NACK, and the packet loss rate is reduced. Can be reduced and the reliability of the HS-DPCCH ACK / NACK reception determination result is not always calculated, but only when it is determined as ACK, so that the load for the calculation can be reduced. become.
また、本実施例4では、移動局において、パケット受信中のみ図8の処理を適用し、パケット受信中の時間よりも時間的割合が大きい、それ以外の時間は、これ等処理を行わないので、その間における干渉の増加は発生しない。上記実施例4の動作も、図3及び図4で示した各機能ブロックにより実現可能であることは勿論である。 Further, in the fourth embodiment, the mobile station applies the processing of FIG. 8 only during packet reception, and the time ratio is larger than the time during packet reception. In the meantime, no increase in interference occurs. Of course, the operation of the fourth embodiment can also be realized by the functional blocks shown in FIGS.
本発明の実施例5について説明する。実施例5では、上り回線のDPCHは、図10に示すように、無線ネットワーク制御局(RNC)10において、接続基地局1,2間でのダイバーシチ合成がなされると共に、このDPCHは、通常、高速閉ループ型の送信電力制御により所定の受信品質となるように制御されている。具体的には、移動局は、基地局から送信されるTPCビットに従ってDPCCHの送信電力を増減し、DPDCHの送信電力PDPDCH は、DPCCHの送信電力PDPCCH に所定のオフセット値Δ1 を加えた電力で送信されるようになっている。すなわち、
PDPDCH =PDPCCH +Δ1 (dB) ……(5)
なる関係で送信される。
A fifth embodiment of the present invention will be described. In the fifth embodiment, as shown in FIG. 10, the uplink DPCH is subjected to diversity combining between the connecting
PDDPCH = PDPCCH + Δ1 (dB) (5)
Sent in a relationship.
さらに、HS−DPCCHの送信電力PH は、このDPCCHの送信電力PDPCCH に所定のオフセット値Δ2を加えた電力で送信されるようになっている。すなわち、
PH =PDPCCH +Δ2 (dB) ……(6)
なる関係で送信される。但し、式(5)及び(6)では、各々の値はデシベル値である。
Further, the transmission power PH of the HS-DPCCH is transmitted with a power obtained by adding a predetermined offset value Δ2 to the transmission power PDPCCH of the DPCCH. That is,
PH = PDPCCH + Δ2 (dB) (6)
Sent in a relationship. However, in Equations (5) and (6), each value is a decibel value.
この動作は、実施例1と実質的に同一であるが、本実施例5では、移動局の送信電力が所定の最大値に制限される場合には、HS−DPCCHの送信電力を優先的に確保して、DPDCHの送信電力を抑制する。この点以外は、実施例1と同じである。DPDCHの送信電力を抑制する制御は、図4の移動局の制御部25において行われる。
This operation is substantially the same as that of the first embodiment. However, in the fifth embodiment, when the transmission power of the mobile station is limited to a predetermined maximum value, the HS-DPCCH transmission power is given priority. And transmission power of DPDCH is suppressed. Except this point, the second embodiment is the same as the first embodiment. Control for suppressing the transmission power of the DPDCH is performed in the
図9は本実施例5におけるDPDCHの送信電力抑制のフローである。図9を参照すると、移動局はTPCビットを受信し(ステップS81)、DPCCHとHS−DPCCHの合計送信電力を計算し(ステップS82)、DPDCHに割当可能な最大送信電力を計算する(ステップS83)。このDPDCH最大送信電力は、送信電力の所定の最大値からDPCCHとHS−DPCCHの合計送信電力を減算することによって得られる。 FIG. 9 is a flowchart of transmission power suppression of DPDCH in the fifth embodiment. Referring to FIG. 9, the mobile station receives the TPC bit (step S81), calculates the total transmission power of the DPCCH and HS-DPCCH (step S82), and calculates the maximum transmission power that can be allocated to the DPDCH (step S83). ). This DPDCH maximum transmission power is obtained by subtracting the total transmission power of DPCCH and HS-DPCCH from a predetermined maximum value of transmission power.
そして、式(5)によって計算されるDPDCHの送信電力がDPDCH最大送信電力を超えない場合には、DPDCHの送信電力を式(5)によって計算される値とし(ステップS85)、式(5)によって計算されるDPDCHの送信電力がDPDCH最大送信電力を超える場合には、DPDCHの送信電力を抑制してDPDCH最大送信電力とする(ステップS86)。 If the DPDCH transmission power calculated by equation (5) does not exceed the DPDCH maximum transmission power, the DPDCH transmission power is set to a value calculated by equation (5) (step S85), and equation (5) When the DPDCH transmission power calculated by the above exceeds the DPDCH maximum transmission power, the DPDCH transmission power is suppressed to the DPDCH maximum transmission power (step S86).
なお、DPDCHの送信電力を抑制する方法として、移動局の合計送信電力が所定の最大値に近づいた場合に、式(5)におけるオフセット値Δ1 の値を一時的に小さくするようにしてもよい。 As a method for suppressing the transmission power of DPDCH, the offset value Δ1 in equation (5) may be temporarily reduced when the total transmission power of the mobile station approaches a predetermined maximum value. .
本実施例5では、次の様な効果がある。すなわち、移動局から基地局までの伝搬損失が大きい場合や、パケット送信基地局が受信する干渉波電力が大きい場合には、移動局がHS−DPCCHを大きな送信電力で送信する必要があり、DPCCHとDPDCHの送信電力の比を一定に保ったままでは、移動局の送信電力が所定の最大値に達することで、HS−DPCCHの送信電力を十分に増加させることができず、HS−DPCCHに含まれるACK/NACK信号の受信品質が劣化する可能性がある。 The fifth embodiment has the following effects. That is, when the propagation loss from the mobile station to the base station is large or when the interference wave power received by the packet transmission base station is large, the mobile station needs to transmit the HS-DPCCH with a large transmission power. If the ratio of the transmission power of DPDCH is kept constant, the transmission power of the mobile station reaches a predetermined maximum value, so that the transmission power of HS-DPCCH cannot be increased sufficiently. There is a possibility that the reception quality of the included ACK / NACK signal deteriorates.
しかし、本実施例5では、移動局の送信電力が所定の最大値に制限される場合には、DPDCHの送信電力を抑制するため、HS−DPCCHに対して割当可能な送信電力が大きくなり、ACK/NACK信号の受信品質が劣化する可能性を小さくなる。その結果、パケット送信基地局においてACK/NACK信号の受信品質が向上し、HS−DPSCHによるデータ送信のスループットが増加するのである。 However, in the fifth embodiment, when the transmission power of the mobile station is limited to a predetermined maximum value, the transmission power that can be allocated to the HS-DPCCH is increased to suppress the transmission power of the DPDCH, The possibility that the reception quality of the ACK / NACK signal deteriorates is reduced. As a result, the reception quality of the ACK / NACK signal is improved at the packet transmission base station, and the throughput of data transmission by HS-DPSCH increases.
また、実施例5では、移動局が複数の基地局と個別チャネルを設定するソフトハンドオーバ状態においては、実施例1のステップS15に示した様に、パケット受信中に、パケット送信基地局のTPC信号のみで、移動局が送信するUL DPCHの送信電力制御を行う。このとき、その移動局とソフトハンドオーバ状態にある基地局の中で、パケット送信基地局以外の基地局においてDPCCHとDPDCHの受信品質が所定の品質目標を満足しているにも関わらず、パケット送信基地局におけるDPCCHとDPDCHの受信品質が所定の品質目標を満足しないため、移動局がDPCCHとDPDCHの送信電力を増加させる場合がある。この場合には、DPDCHの送信電力を必要以上に大きくしていることになる。これは、ソフトハンドオーバ状態にある複数の基地局で受信したDPDCHはダイバーシチ合成するためである。従って、ソフトハンドオーバ状態においては移動局の送信電力が所定の最大値に制限される可能性が比較的高くなる。 In the fifth embodiment, in the soft handover state in which the mobile station sets up dedicated channels with a plurality of base stations, the TPC signal of the packet transmitting base station is received during packet reception as shown in step S15 of the first embodiment. Only, the transmission power control of the UL DPCH transmitted by the mobile station is performed. At this time, among the base stations in soft handover state with the mobile station, the packet transmission is performed even though the reception quality of the DPCCH and DPDCH satisfies the predetermined quality target in the base stations other than the packet transmission base station. Since the reception quality of the DPCCH and DPDCH at the base station does not satisfy a predetermined quality target, the mobile station may increase the transmission power of the DPCCH and DPDCH. In this case, the transmission power of DPDCH is increased more than necessary. This is because DPDCH received by a plurality of base stations in the soft handover state is diversity combined. Therefore, in the soft handover state, there is a relatively high possibility that the transmission power of the mobile station is limited to a predetermined maximum value.
しかし、本実施例5では、DPDCHの送信電力を抑制することによって、HS−DPCCHの送信電力が移動局の送信電力の最大値により制限されないようにする。従って、特に、ソフトハンドオーバ状態においては、パケット送信基地局においてACK/NACK信号の受信品質を向上させる効果が大きくなる。 However, in the fifth embodiment, the transmission power of the HS-DPCCH is not limited by the maximum value of the transmission power of the mobile station by suppressing the transmission power of the DPDCH. Therefore, particularly in the soft handover state, the effect of improving the reception quality of the ACK / NACK signal at the packet transmission base station is increased.
1,2 基地局(BS)
3〜5 移動局(MS)
10 RNC
11,21 アンテナ
12,22 アンテナ共用器(DUP)
13,23 受信部
14,24 チャネル分離部
15,25 制御部(CPU)
16,26 メモリ
17,27 チャネル合成部
18,28 増幅器
19,29 送信部
1, 2 Base station (BS)
3-5 Mobile station (MS)
10 RNC
11,21
13, 23
16, 26
Claims (3)
前記パケット送信中に、前記個別チャネルの当該基地局での目標受信品質を第一の値からそれより大なる第二の値に変更制御する手段を有することを特徴とするセルラシステム。 A mobile station and a plurality of base stations that are in a soft handover state with the mobile station and set up dedicated channels with the mobile station, and the dedicated channels include uplink and downlink dedicated channels, and these dedicated channels Cellular system that includes transmission power control information for other dedicated channels, and only a specific base station among base stations in a soft handover state sets a shared channel with the mobile station to perform packet transmission Because
A cellular system comprising: means for controlling to change the target reception quality at the base station of the dedicated channel from a first value to a second value higher than the target value during the packet transmission.
前記パケット送信中に、前記個別チャネルの当該基地局での目標受信品質を第一の値からそれより大なる第二の値に変更制御するステップを有することを特徴とする通信制御方法。 A mobile station and a plurality of base stations that are in a soft handover state with the mobile station and set up dedicated channels with the mobile station, and the dedicated channels include uplink and downlink dedicated channels, and these dedicated channels Cellular system that includes transmission power control information for other dedicated channels, and only a specific base station among base stations in a soft handover state sets a shared channel with the mobile station to perform packet transmission A communication control method in
A communication control method, comprising: a step of changing the target reception quality of the dedicated channel at the base station from the first value to a second value higher than the target value during the packet transmission.
前記パケット送信中に、前記個別チャネルの当該基地局での目標受信品質を第一の値からそれより大なる第二の値に変更制御する手段を有することを特徴とする基地局。 A mobile station and a plurality of base stations that are in a soft handover state with the mobile station and set up dedicated channels with the mobile station, and the dedicated channels include uplink and downlink dedicated channels, and these dedicated channels Cellular system that includes transmission power control information for other dedicated channels, and only a specific base station among base stations in a soft handover state sets a shared channel with the mobile station to perform packet transmission A packet transmission base station in
A base station comprising means for changing and controlling the target reception quality at the base station of the dedicated channel from a first value to a second value larger than that during the packet transmission.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008300281A JP4968244B2 (en) | 2002-04-03 | 2008-11-26 | Cellular system, communication control method thereof, and base station used therefor |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002100701 | 2002-04-03 | ||
JP2002100701 | 2002-04-03 | ||
JP2008300281A JP4968244B2 (en) | 2002-04-03 | 2008-11-26 | Cellular system, communication control method thereof, and base station used therefor |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008269320A Division JP4893724B2 (en) | 2002-04-03 | 2008-10-20 | Cellular system, communication control method, and mobile station used therefor |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2009071865A JP2009071865A (en) | 2009-04-02 |
JP4968244B2 true JP4968244B2 (en) | 2012-07-04 |
Family
ID=38077011
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008269320A Expired - Lifetime JP4893724B2 (en) | 2002-04-03 | 2008-10-20 | Cellular system, communication control method, and mobile station used therefor |
JP2008300281A Expired - Lifetime JP4968244B2 (en) | 2002-04-03 | 2008-11-26 | Cellular system, communication control method thereof, and base station used therefor |
JP2009274028A Expired - Lifetime JP4858601B2 (en) | 2002-04-03 | 2009-12-02 | Cellular system, communication control method, and base station and mobile station used therefor |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008269320A Expired - Lifetime JP4893724B2 (en) | 2002-04-03 | 2008-10-20 | Cellular system, communication control method, and mobile station used therefor |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009274028A Expired - Lifetime JP4858601B2 (en) | 2002-04-03 | 2009-12-02 | Cellular system, communication control method, and base station and mobile station used therefor |
Country Status (2)
Country | Link |
---|---|
JP (3) | JP4893724B2 (en) |
CN (2) | CN1968540B (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8477672B2 (en) * | 2010-02-10 | 2013-07-02 | Qualcomm Incorporated | 4C-HSDPA acknowledgment signaling |
EP2640127B1 (en) * | 2012-03-16 | 2017-05-03 | Alcatel Lucent | Proactive uplink transmit power increase in small cells upon outbound handovers |
JP6458571B2 (en) * | 2015-03-13 | 2019-01-30 | 沖電気工業株式会社 | Wireless communication apparatus and wireless communication program |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1189942A (en) * | 1995-06-02 | 1998-08-05 | Dsc通讯有限公司 | Appts. and method of controlling transmitting power in a subscriberterminal of a wireless teldcommunications system |
JPH1079701A (en) * | 1996-09-03 | 1998-03-24 | Fujitsu Ltd | Mobile communication terminal and its transmission power control system |
FI104683B (en) * | 1997-02-18 | 2000-04-14 | Nokia Networks Oy | Handover in a mobile communication system |
US6539226B1 (en) * | 1998-02-16 | 2003-03-25 | Nec Corporation | Base station transmission power control system mobile station and base station |
JP3343214B2 (en) * | 1998-04-17 | 2002-11-11 | 株式会社日立製作所 | Transmission power control method at the time of executing soft handover and apparatus for implementing the method |
EP1101293B1 (en) * | 1999-05-26 | 2010-11-17 | Koninklijke Philips Electronics N.V. | Closed loop power control in a radio communication system |
JP3276620B2 (en) * | 1999-10-29 | 2002-04-22 | 松下電器産業株式会社 | Base station apparatus and transmission power control method |
JP4240726B2 (en) * | 2000-02-04 | 2009-03-18 | 株式会社日立コミュニケーションテクノロジー | Wireless communication system, base station control station, base station, and transmission power control method |
JP3480710B2 (en) * | 2000-03-28 | 2003-12-22 | 松下電器産業株式会社 | Transmission power control device and transmission power control method |
US6650905B1 (en) * | 2000-06-30 | 2003-11-18 | Nokia Mobile Phones, Ltd. | Universal mobile telecommunications system (UMTS) terrestrial radio access (UTRA) frequency division duplex (FDD) downlink shared channel (DSCH) power control in soft handover |
JP2002026747A (en) * | 2000-07-13 | 2002-01-25 | Matsushita Electric Ind Co Ltd | Wireless communication terminal device and transmission power control method |
CN1210886C (en) * | 2000-08-21 | 2005-07-13 | 皇家菲利浦电子有限公司 | Method for communication of information and apparatus employing method |
-
2003
- 2003-04-03 CN CN200610170652.5A patent/CN1968540B/en not_active Expired - Lifetime
- 2003-04-03 CN CN2008101114555A patent/CN101312598B/en not_active Expired - Lifetime
-
2008
- 2008-10-20 JP JP2008269320A patent/JP4893724B2/en not_active Expired - Lifetime
- 2008-11-26 JP JP2008300281A patent/JP4968244B2/en not_active Expired - Lifetime
-
2009
- 2009-12-02 JP JP2009274028A patent/JP4858601B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2010051034A (en) | 2010-03-04 |
JP2009071865A (en) | 2009-04-02 |
CN1968540A (en) | 2007-05-23 |
CN101312598B (en) | 2013-07-24 |
JP4858601B2 (en) | 2012-01-18 |
CN1968540B (en) | 2015-09-16 |
CN101312598A (en) | 2008-11-26 |
JP4893724B2 (en) | 2012-03-07 |
JP2009065693A (en) | 2009-03-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4423836B2 (en) | Cellular system, communication control method, and mobile station | |
US6950671B2 (en) | Cellular system, base station, mobile station and communication control method therefor | |
US7346034B2 (en) | Cellular system, mobile station, base station and transmission power control method as well as program to be executed for implementing the method | |
US8139523B2 (en) | Mobile communication system, mobile station, and radio base station | |
US7801547B2 (en) | System and method for determining downlink signaling power in a radio communication network | |
US8130694B2 (en) | Method for controlling transmission power of HS-SCCH in UMTS system | |
US8855700B2 (en) | Uplink power control | |
KR101236090B1 (en) | Variable transmit power control strategies for high-speed downlink packet access systems | |
JP4559240B2 (en) | Mobile communication system, radio base station, radio network controller, and power control method | |
JP4485547B2 (en) | Mobile station and transmission power control method in mobile station | |
JP4875153B2 (en) | Method and apparatus for reducing path imbalance in a network using high speed data packet access (HSDPA) | |
JP5646611B2 (en) | Transmission power control of channels transmitted in different frequency regions | |
JPWO2003037027A1 (en) | Mobile communication system and communication method for mobile communication system | |
JP4858601B2 (en) | Cellular system, communication control method, and base station and mobile station used therefor | |
JP4192745B2 (en) | Transmission power control system, base station, transmission power control method used therefor, and program thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20111101 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20111212 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120306 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120319 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150413 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4968244 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
EXPY | Cancellation because of completion of term |