JP4968129B2 - Intercavity filling method for buried double pipes, anticorrosion management method for buried double pipes - Google Patents

Intercavity filling method for buried double pipes, anticorrosion management method for buried double pipes Download PDF

Info

Publication number
JP4968129B2
JP4968129B2 JP2008076452A JP2008076452A JP4968129B2 JP 4968129 B2 JP4968129 B2 JP 4968129B2 JP 2008076452 A JP2008076452 A JP 2008076452A JP 2008076452 A JP2008076452 A JP 2008076452A JP 4968129 B2 JP4968129 B2 JP 4968129B2
Authority
JP
Japan
Prior art keywords
cavity
tube
filling
dry
granular material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008076452A
Other languages
Japanese (ja)
Other versions
JP2009228344A (en
Inventor
省三 畠中
賢一 小嶋
純 足立
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
JFE Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Engineering Corp filed Critical JFE Engineering Corp
Priority to JP2008076452A priority Critical patent/JP4968129B2/en
Publication of JP2009228344A publication Critical patent/JP2009228344A/en
Application granted granted Critical
Publication of JP4968129B2 publication Critical patent/JP4968129B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、埋設二重管の管間空洞を充填する方法、およびその埋設二重管の防食状態を管理する方法に関するものである。   The present invention relates to a method for filling an inter-cavity of an embedded double pipe and a method for managing the anticorrosion state of the embedded double pipe.

従来、地下空洞を充填する方法に関し、『従来の空洞充填方法は主にセメントを含むスラリー材によるもので、土壌汚染。水質汚染が懸念される。また、産業廃棄物の処分の問題がある。』ことを課題とした技術として、『砕石微粉末や石炭灰を主成分とする乾燥粉粒体を空気流を用いて地下空洞に充填するという手段を採用した。具体的には、空洞の一端に配した輸送管を通じて乾燥粉粒体を粉粒体輸送車により空洞内に空気流を用いて流入する一方、空洞の他端に配した排気管を通じてバキューム車により空洞内の空気を吸引するという手段、または、空洞の奥端まで配管した下向きのスリット状開口部を有する輸送管を通じて乾燥粉粒体を粉粒体輸送車により空気流を用いて流入させるという手段を採用した。』というものが提案されている。   Conventionally, regarding the method of filling underground cavities, “The conventional cavities filling method is mainly due to slurry material containing cement, soil contamination. There is concern about water pollution. There is also a problem of disposal of industrial waste. As a technology with the theme of "there was a method of filling the underground cavities with dry powder granules mainly composed of fine crushed stone powder and coal ash using air flow." Specifically, the dry granular material is introduced into the cavity by a particulate transportation vehicle through a transportation pipe disposed at one end of the cavity using an air flow, while the vacuum transportation vehicle is disposed through an exhaust pipe disposed at the other end of the cavity. Means for sucking the air in the cavity, or means for letting the dry granular material flow in by means of air flow by the granular material transportation vehicle through the transport pipe having the downward slit-like opening piped to the inner end of the cavity It was adopted. "Has been proposed.

また、『浮力が働かず、比重差があってもプレミックスが可能である粉体を、空洞に充填することのできる粉体充填工法により充填材を充填した後に加水する方法を開示する。』ことを目的とした技術として、『基本的な工法として、乾燥した粉体を空洞に充填した後、前記粉体に液体を付与し、加湿する。具体的な第1の工法では、空洞には予め液体を滴下させるためのオリフィスを有する給液管を設け、給液を行う。第2の工法では、空洞内の下方部に予め液体を貯留した後に、乾燥した粉体を充填して給液を行う。第3の工法では、乾燥した粉体を地下に存在する空洞に対して充填した後、地下水、または雨水の流入により水分を供給し、粉体を湿潤させる。粉体は、セメント粉と砕石微粉末を混合した粉体、あるいはフライアッシュにセメント粉を混合した粉体を選択的に採用する。』というものが提案されている(特許文献2)。   Further, “a method is disclosed in which a powder that does not have buoyancy and can be premixed even if there is a difference in specific gravity is hydrated after being filled with a filler by a powder filling method that can be filled into a cavity. As a technique for the purpose, “As a basic method, after filling a dry powder into a cavity, a liquid is applied to the powder and humidified. In a specific first method, a liquid supply pipe having an orifice for dripping liquid in advance is provided in the cavity to supply liquid. In the second construction method, liquid is stored in advance in the lower part of the cavity, and then liquid is supplied by filling with dry powder. In the third construction method, after filling dry powder into a cavity existing underground, moisture is supplied by inflow of groundwater or rainwater to wet the powder. As the powder, a powder obtained by mixing cement powder and fine crushed stone powder or a powder obtained by mixing cement powder with fly ash is selectively employed. Is proposed (Patent Document 2).

特開2002−155527号公報(要約)JP 2002-155527 A (summary) 特開2006−97298号公報(要約)JP 2006-97298 A (Summary)

上記特許文献1に記載の技術を用いて埋設二重管の管間空洞を充填した後、埋設二重管に電気防食を施すため、防食電流を供給することがある。この場合、埋設二重管の内管にも防食電流が到達するよう、乾燥粉粒体に所定分量の水分を供給して湿潤させる。
乾燥粉粒体に水分を供給する方法としては、例えば上記特許文献2に記載の技術を用いることができる。
After filling the inter-cavity of the buried double pipe using the technique described in Patent Document 1, an anticorrosion current may be supplied in order to provide an anticorrosion to the buried double pipe. In this case, a predetermined amount of moisture is supplied to the dried granular material so that the anticorrosion current reaches the inner tube of the buried double tube.
As a method for supplying moisture to the dry granular material, for example, the technique described in Patent Document 2 can be used.

一方、埋設二重管を上述の手法で敷設した後、内管に防食電流が到達していることを確認して防食状態を管理するため、内管と電気的に導通したプローブ電極を内管表面に配設して電圧や電流を測定することがある。
このとき、乾燥粉粒体の成分によっては、その成分が水分中にイオンとして溶け出し、防食電流と電気的に反応して、プローブ電極の表面に析出することがある。この電極析出物は、プローブ電極を用いた正確な電流や電圧の測定を妨げるため、防食管理の観点から好ましくない。
On the other hand, after laying the buried double pipe by the above-mentioned method, in order to check that the anticorrosion current has reached the inner pipe and to manage the anticorrosion state, the probe electrode that is electrically connected to the inner pipe is connected to the inner pipe. It may be placed on the surface to measure voltage and current.
At this time, depending on the component of the dry granular material, the component may be dissolved as ions in the moisture, and may be electrically reacted with the anticorrosion current and deposited on the surface of the probe electrode. This electrode deposit is not preferable from the viewpoint of anticorrosion management because it prevents accurate measurement of current and voltage using the probe electrode.

本発明は、上記のような課題を解決するためになされたものであり、プローブ電極に析出物が生じない埋設二重管の管間空洞充填方法を提供することを目的とする。   The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a method for filling an inter-cavity of an embedded double pipe that does not generate deposits on a probe electrode.

本発明に係る埋設二重管の管間空洞充填方法は、乾燥粉粒体を用いて埋設二重管の管間空洞を充填する方法であって、前記埋設二重管の一端から前記管間空洞内に空気流を用いて乾燥粉粒体を流入させることで、前記管間空洞に前記乾燥粉粒体を充填するステップと、前記管間空洞に充填された前記乾燥粉粒体に所定分量の水分を供給して湿潤させるステップと、前記埋設二重管の内管に行う電気防食の防食状態を管理するために、プローブ電極を前記内管表面に配設するステップと、を有し、前記乾燥粉粒体は、重量比61.1%以上のSi成分を有するものである。
An inter-tube cavity filling method for an embedded double pipe according to the present invention is a method of filling an inter-tube cavity of an embedded double pipe using a dry powder, and the gap between the pipes from one end of the embedded double pipe Filling the inter-cavity cavity with the dry powder granule by allowing the dry granule to flow into the cavity using an air flow, and a predetermined amount to the dry granule filled in the inter-tube cavity A step of supplying the moisture of the inner tube and a step of disposing a probe electrode on the inner tube surface in order to manage the anticorrosion state of the anticorrosion performed on the inner tube of the embedded double tube , The dry granular material has a Si component of 61.1% or more by weight.

本発明に係る埋設二重管の管間空洞充填方法によれば、析出物が生じにくいような成分で構成された乾燥粉粒体を用いて埋設二重管の管間空洞を充填するので、内管にプローブ電極を配設して防食管理を継続的に実施しても、プローブ電極に析出物が生じず、正確な防食管理を行うことができる。   According to the inter-tube cavity filling method of the buried double pipe according to the present invention, the inter-pipe cavity of the buried double pipe is filled using a dry granular material composed of components that are difficult to produce precipitates. Even if the probe electrode is disposed on the inner tube and the corrosion prevention management is continuously performed, no deposits are generated on the probe electrode, and accurate corrosion prevention management can be performed.

実施の形態1.
図1は、本発明の実施の形態1に係る埋設二重管の管間空洞充填方法を実施している様子を示す側断面図である。
各種配管敷設工事をする際、鉄道、水路、地下埋設物、その他の構造物が近隣に存在するような場合には、鋼管等を油圧ジャッキで押し込む推進工法が用いられる。この鋼管は、後述の図2で説明する二重構造を有している。
また、土圧の影響や、送電鉄塔近くで地絡電流の影響を受ける可能性がある場所では、内管の防護目的で、二重管構造の配管を用いる場合がある。
Embodiment 1 FIG.
FIG. 1 is a side sectional view showing a state in which the inter-cavity filling method for an embedded double pipe according to Embodiment 1 of the present invention is being carried out.
When various pipes are laid, if there are railways, waterways, underground structures, or other structures in the vicinity, a propulsion method that pushes steel pipes or the like with a hydraulic jack is used. This steel pipe has a double structure which will be described later with reference to FIG.
Also, in places where there is a possibility of being affected by earth pressure or ground fault current near the transmission tower, piping with a double pipe structure may be used for the purpose of protecting the inner pipe.

二重管10は、上述の地下に埋設させる鋼管等の配管である。
ジェットパック車20は、タンク内で乾燥粉粒体40を圧縮空気と混合して二重管10の埋設場所に移送し、二重管10の一方の端部から圧縮空気圧で乾燥粉粒体40を二重管10内に圧送する。
バキューム車30は、二重管10の反対側の端部から負圧で二重管10内の空気を吸引することにより、乾燥粉粒体40が二重管10内に充填することを補助する。
The double pipe 10 is a pipe such as a steel pipe buried in the above-described underground.
The jet pack vehicle 20 mixes the dry granular material 40 with the compressed air in the tank and transfers it to the place where the double pipe 10 is buried, and the dry granular material 40 is compressed by compressed air pressure from one end of the double pipe 10. Is pumped into the double pipe 10.
The vacuum wheel 30 assists the filling of the dry granular material 40 into the double tube 10 by sucking the air in the double tube 10 with negative pressure from the opposite end of the double tube 10. .

図2は、二重管10の断面図である。
二重管10は、外管10aと内管10bの二重構造を有する。内管10bは、流体等の被搬送物を搬送するための配管であり、本管とも呼ぶ。外管10aは、上述の観点から内管10bの外側に設けられた配管である。
外管10aと内管10bの間は空洞になっており、次に説明する電気防食を実施するため、図1で説明した方法で乾燥粉粒体40を充填した上で、例えば特許文献2に記載の技術などを用いて所定量の水分を供給し、湿潤させる。
FIG. 2 is a cross-sectional view of the double tube 10.
The double tube 10 has a double structure of an outer tube 10a and an inner tube 10b. The inner pipe 10b is a pipe for carrying a transported object such as a fluid, and is also called a main pipe. The outer tube 10a is a pipe provided outside the inner tube 10b from the above-described viewpoint.
The space between the outer tube 10a and the inner tube 10b is a cavity, and in order to carry out the electrocorrosion protection described below, after filling the dry granular material 40 by the method described in FIG. A predetermined amount of water is supplied and wetted using the technique described.

図3は、二重管10に電気防食を施している様子を示す図である。
図3において、二重管10の外部に外部電極50を埋設し、直流電源装置60のプラス極を外部電極50に接続し、マイナス極を二重管10の内管10bに接続して、二重管10の内管10bに防食電流を流す。
このとき、外管10aと内管10bの間を充填する乾燥粉粒体40が乾燥したままであると、電気伝導性がほとんど発揮されず、内管10bに防食電流が流入しない。そのため、内管10bにも防食電流が流入するよう、乾燥粉粒体40へ所定分量の水分を供給して湿潤させておく。
FIG. 3 is a diagram illustrating a state in which the double pipe 10 is subjected to electrocorrosion protection.
In FIG. 3, an external electrode 50 is embedded outside the double tube 10, the positive electrode of the DC power supply device 60 is connected to the external electrode 50, and the negative electrode is connected to the inner tube 10 b of the double tube 10. An anticorrosion current is passed through the inner tube 10 b of the heavy tube 10.
At this time, if the dry granular material 40 filling the space between the outer tube 10a and the inner tube 10b remains dry, the electric conductivity is hardly exhibited, and the anticorrosion current does not flow into the inner tube 10b. Therefore, a predetermined amount of moisture is supplied to the dry powder body 40 so that the anticorrosion current also flows into the inner tube 10b.

また、内管10bに防食電流が供給されているか否かを管理するため、内管10bに導通するプローブ電極70を例えば内管10bの表面に配設しておく。
二重管10の防食管理者は、例えば地上に設置した測定装置80で、内管10bに流れる電流や、内管10bの管対地電位を測定し、十分な防食電流が内管10bに供給されているか否かを管理する。
Further, in order to manage whether or not the anticorrosion current is supplied to the inner tube 10b, a probe electrode 70 that is electrically connected to the inner tube 10b is disposed on the surface of the inner tube 10b, for example.
The anticorrosion manager of the double tube 10 measures, for example, the current flowing through the inner tube 10b and the tube-to-ground potential of the inner tube 10b with the measuring device 80 installed on the ground, and sufficient anticorrosion current is supplied to the inner tube 10b. Manage whether or not.

以上、二重管10の管間空洞の充填方法と、二重管10の防食状態の管理方法について、図1〜図3を用いて説明した。   The method for filling the inter-tube cavity of the double tube 10 and the method for managing the anticorrosion state of the double tube 10 have been described above with reference to FIGS.

図3のようにプローブ電極70を配設して防食状態の管理を継続していると、時間経過に伴って、プローブ電極70の表面に析出物が生じる場合がある。
このような析出物は、例えば乾燥粉粒体40中にカルシウム(Ca)が多く含まれる場合に生じやすい。これは、乾燥粉粒体40の水分中にCaがイオンとなって溶け出し、プローブ電極70の表面で結晶化することによる。
When the probe electrode 70 is disposed and the anticorrosion state is continuously managed as shown in FIG. 3, precipitates may be generated on the surface of the probe electrode 70 over time.
Such precipitates are likely to occur when, for example, the dry powder 40 contains a large amount of calcium (Ca). This is because Ca dissolves as ions in the moisture of the dry powder 40 and crystallizes on the surface of the probe electrode 70.

プローブ電極70の表面に析出物が生じると、内管10bに流れる電流や、内管10bの管対地電位を正確に測定することが困難になり、防食状態を管理する観点から好ましくない。
そこで、このような析出物の生じにくい乾燥粉粒体40を用いて、外管10aと内管10bの間を充填することを考える。
If precipitates are generated on the surface of the probe electrode 70, it becomes difficult to accurately measure the current flowing through the inner tube 10b and the tube-to-ground potential of the inner tube 10b, which is not preferable from the viewpoint of managing the anticorrosion state.
Therefore, it is considered that the space between the outer tube 10a and the inner tube 10b is filled with the dry granular material 40 in which such precipitates are not easily generated.

一般に、例えば二酸化ケイ素(SiO2)等のケイ素化合物は、Caと比較して水分中に溶け出しにくい。
したがって、Si成分を多く含む乾燥粉粒体40を用いて外管10aと内管10bの間を充填することにより、上述のような析出物の生成を抑えることができる。
In general, for example, silicon compounds such as silicon dioxide (SiO 2) are less likely to dissolve in moisture than Ca.
Therefore, by filling the space between the outer tube 10a and the inner tube 10b using the dry granular material 40 containing a large amount of Si component, it is possible to suppress the generation of the precipitate as described above.

乾燥粉粒体40は、天然岩石を掘削・切断等する際に生じる粉体を基にすると、効率よく大量に製造することができる。しかし、天然岩石はCa成分を多く含むことがあり、必ずしも上述のように析出物を防ぐ観点からは好ましくない。
そこで、例えばガラスのようにSi成分を多く含む素材を粉砕した粉粒体を用いて乾燥粉粒体40を製造することで、Si成分を多く含み、析出物の生じにくい乾燥粉粒体40を得ることができる。少なくとも、重量比で天然岩石よりもSi成分を多く含む素材を基に製造することが好ましいであろう。
The dry granular material 40 can be efficiently manufactured in large quantities based on powder generated when natural rock is excavated and cut. However, natural rocks may contain a large amount of Ca component, which is not necessarily preferable from the viewpoint of preventing precipitates as described above.
Therefore, for example, by producing a dry granule 40 using a granule obtained by pulverizing a material containing a large amount of Si components such as glass, the dry granule 40 containing a large amount of Si components and hardly causing precipitates is produced. Obtainable. It would be preferable to produce at least a material that contains more Si components than natural rocks by weight.

もっとも、天然岩石中に含まれるSi成分やCa成分は、採掘地によって大きく異なると思われるため、どの程度のSi成分やCa成分を有する乾燥粉粒体40を製造するかについては、個々の環境に応じて適宜定める。
例えば、天然岩石を粉砕して粉粒体を製造し、これにSiを主成分とするガラスを粉砕して製造した粉粒体を混入する、という手法も考えられる。
これによれば、少なくともその天然岩石よりはSi成分の割合が多い乾燥粉粒体40が得られるので、天然岩石を基に製造した乾燥粉粒体40をそのまま使用するよりは、析出物が生じにくくなるものと想定される。
However, since the Si component and the Ca component contained in natural rock are considered to vary greatly depending on the mining site, the degree of the Si component and the Ca component to be produced is determined according to the individual environment. As appropriate, depending on
For example, a method of pulverizing natural rock to produce a granular material, and mixing this with a granular material produced by pulverizing glass containing Si as a main component is also conceivable.
According to this, since the dry granular material 40 having a higher proportion of Si component than that of the natural rock is obtained, precipitates are generated rather than using the dry granular material 40 manufactured based on the natural rock as it is. It is assumed that it will be difficult.

以上のように、本実施の形態1によれば、ガラス素材のように重量比で天然岩石よりもSi成分を多く含む素材を基に乾燥粉粒体40を製造し、これを用いて外管10aと内管10bの間を充填するので、天然岩石を基に乾燥粉粒体40を製造した場合よりも、プローブ電極70の表面に析出物が生じにくくなる。
これにより、内管10bに流れる電流や、内管10bの管対地電位を正確に測定することが容易になり、二重管10の防食状態を適切に管理することができる。
As described above, according to the first embodiment, the dry granular material 40 is manufactured based on a material containing more Si components than natural rocks in a weight ratio, such as a glass material, and this is used as an outer tube. Since the space between 10a and the inner tube 10b is filled, precipitates are less likely to be generated on the surface of the probe electrode 70 than when the dry granular material 40 is produced based on natural rock.
Thereby, it becomes easy to accurately measure the current flowing through the inner tube 10b and the tube-to-ground potential of the inner tube 10b, and the anticorrosion state of the double tube 10 can be appropriately managed.

実施の形態2.
実施の形態1では、Si成分を多く含む素材を基に乾燥粉粒体40を製造し、これを用いて外管10aと内管10bの間を充填することで、プローブ電極70の表面に析出物が生じにくくする手法を説明した。
本発明の実施の形態2では、具体的にどの程度のSi成分やCa成分を含む素材を用いれば、より確実に析出物の生成を防ぐことができるかを検証した結果を説明する。
Embodiment 2. FIG.
In the first embodiment, a dry granular material 40 is manufactured based on a material containing a large amount of Si component, and the space between the outer tube 10a and the inner tube 10b is used to deposit on the surface of the probe electrode 70. We explained the technique to make things difficult to occur.
In the second embodiment of the present invention, the result of verifying how much the generation of precipitates can be more reliably prevented by using a material containing a specific amount of Si component or Ca component will be described.

図4は、乾燥粉粒体40の最適な成分を検証するための検証設備を示す図である。
図4において、土槽100に乾燥粉粒体40を充填し、白金電極110と擬似プローブ120を埋設して、土槽100の外部に設けた直流電源130より直流電流を供給する。
白金電極110は、図3の外部電極50を模擬するものである。
擬似プローブ120は、図3のプローブ電極70を模擬するものであり、二重管10と同一の材質(例えば鋼)で形成する。
図4の環境下で擬似プローブ120の表面に析出物が生じれば、その乾燥粉粒体40を用いて二重管10を充填しても、同様に析出物が生成されるものと想定される。
FIG. 4 is a diagram showing a verification facility for verifying the optimum components of the dry granular material 40.
In FIG. 4, the dry powder particles 40 are filled in the soil tank 100, the platinum electrode 110 and the pseudo probe 120 are embedded, and a direct current is supplied from a DC power supply 130 provided outside the soil tank 100.
The platinum electrode 110 simulates the external electrode 50 of FIG.
The pseudo probe 120 simulates the probe electrode 70 of FIG. 3 and is formed of the same material (for example, steel) as the double tube 10.
If precipitates are generated on the surface of the pseudo probe 120 in the environment of FIG. 4, it is assumed that the precipitates are similarly generated even if the double tube 10 is filled using the dry powder particles 40. The

本実施の形態2における検証条件は、以下の通りである。   The verification conditions in the second embodiment are as follows.

(1)土槽100のサイズは、縦289mm、横439mm、高さ258mmである。
(2)乾燥粉粒体40は、重量比30%の水道水で均一に湿潤させた。
(3)直流電源130より、0.01mA/cm2の直流電流を継続的に供給する。
(4)検証時間は90日間(2160時間)である。
(5)乾燥粉粒体40の組成は、後述の図5の通りである。
(6)擬似プローブ120の表面に析出物が生じているか否かは、目視確認する。わずかでも析出物が生じていれば、析出物有りとする。
(1) The size of the soil tank 100 is 289 mm long, 439 mm wide, and 258 mm high.
(2) The dry granular material 40 was uniformly moistened with 30% by weight tap water.
(3) A direct current of 0.01 mA / cm 2 is continuously supplied from the direct current power source 130.
(4) The verification time is 90 days (2160 hours).
(5) The composition of the dry granular material 40 is as shown in FIG.
(6) It is visually confirmed whether or not precipitates are generated on the surface of the pseudo probe 120. If even a slight amount of precipitate is generated, it is determined that there is a precipitate.

図5は、図4の検証設備の下で、乾燥粉粒体40の組成を様々に変えて、析出物が生じるか否かを検証した結果を示す表である。ここでは、SiとCaの含有率(重量比)に着目し、これらが対比できるように図5を記載した。
図5において、色付きで示した試験No.の検証結果が、擬似プローブ120に析出物が生じなかった際の乾燥粉粒体40の組成を示すものである。
図5に示す検証結果によれば、以下の結果が得られたことが分かる。
FIG. 5 is a table showing the results of verifying whether precipitates are generated by variously changing the composition of the dry granular material 40 under the verification equipment of FIG. Here, focusing on the content ratio (weight ratio) of Si and Ca, FIG. 5 is shown so that these can be compared.
In FIG. These verification results show the composition of the dry granular material 40 when no precipitate is generated in the pseudo probe 120.
According to the verification results shown in FIG. 5, it can be seen that the following results were obtained.

(1)析出物が確実に生じていないと言えるのは、60.7%(試験No.=8)以上のSi含有率を有する検証結果のみである。
(2)析出物が生じていない検証結果のうち、最大のCa含有率を有するものは、18.7%(試験No.=20)である。
(1) Only a verification result having a Si content of 60.7% (test No. = 8) or more can be said to have no precipitate.
(2) Among the verification results in which no precipitate is generated, the one having the maximum Ca content is 18.7% (test No. = 20).

ただし、試験No.8では、Caの含有率が非常に低く、そもそもCaを主成分とする析出物が生じ得ないような組成であった可能性が考えられる。そこで、試験No.8の次にCa含有率が少ない検証結果に着目する。
ここでは、試験No.20に着目し、以下の検証結果が導かれる。
However, test no. In No. 8, it is possible that the content of Ca was very low, and the composition was such that precipitates containing Ca as a main component could not be produced in the first place. Therefore, test no. Next, pay attention to the verification result with the least Ca content.
Here, test no. Focusing on 20, the following verification results are derived.

(3)Si含有率が61.1%以上であれば、析出物は生じていない。 (3) If the Si content is 61.1% or more, no precipitate is generated.

以上の検証結果をまとめると、次のことが導かれる。   Summarizing the above verification results, the following can be derived.

(検証結果1)
析出物を生じさせないためには、少なくとも、乾燥粉粒体40の重量比61.1%以上をSi成分で構成することが必要である。
(検証結果2)
析出物を生じさせないためには、少なくとも、Ca成分の重量比が18.7%以下となるように乾燥粉粒体40を構成することが必要である。
(Verification result 1)
In order to prevent the formation of precipitates, it is necessary that at least 61.1% by weight of the dry granular material 40 is composed of Si components.
(Verification result 2)
In order not to generate precipitates, it is necessary to configure the dry powder body 40 so that at least the weight ratio of the Ca component is 18.7% or less.

以上、本実施の形態2では、具体的にどの程度のSi成分やCa成分を含む素材を用いれば、より確実に析出物の生成を防ぐことができるかを検証した結果を説明した。   As described above, in the second embodiment, the result of verifying whether or not a material containing a specific amount of Si component or Ca component can be used to more reliably prevent the formation of precipitates has been described.

実施の形態1に係る埋設二重管の管間空洞充填方法を実施している様子を示す側断面図である。It is a sectional side view which shows a mode that the inter-tube cavity filling method of the buried double pipe which concerns on Embodiment 1 is implemented. 二重管10の断面図である。1 is a cross-sectional view of a double tube 10. 二重管10に電気防食を施している様子を示す図である。It is a figure which shows a mode that the anticorrosion is given to the double tube. 乾燥粉粒体40の最適な成分を検証するための検証設備を示す図である。It is a figure which shows the verification equipment for verifying the optimal component of the dry granular material 40. FIG. 図4の検証設備の下で、乾燥粉粒体40の組成を様々に変えて、析出物が生じるか否かを検証した結果を示す表である。It is a table | surface which shows the result of having verified whether the composition of the dry granular material 40 was changed variously and the deposit produced under the verification installation of FIG.

符号の説明Explanation of symbols

10 二重管、10a 外管、10b 内管、20 ジェットパック車、30 バキューム車、40 乾燥粉粒体、50 外部電極、60 直流電源装置、70 プローブ電極、80 測定装置、100 土槽、110 白金電極、120 擬似プローブ、130 直流電源。   10 Double tube, 10a Outer tube, 10b Inner tube, 20 Jet pack car, 30 Vacuum car, 40 Dry powder, 50 External electrode, 60 DC power supply, 70 Probe electrode, 80 Measuring device, 100 Earth tank, 110 Platinum electrode, 120 pseudo probe, 130 DC power supply.

Claims (3)

乾燥粉粒体を用いて埋設二重管の管間空洞を充填する方法であって、
前記埋設二重管の一端から前記管間空洞内に空気流を用いて乾燥粉粒体を流入させることで、前記管間空洞に前記乾燥粉粒体を充填するステップと、
前記管間空洞に充填された前記乾燥粉粒体に所定分量の水分を供給して湿潤させるステップと、
前記埋設二重管の内管に行う電気防食の防食状態を管理するために、プローブ電極を前記内管表面に配設するステップと、
を有し、
前記乾燥粉粒体は、重量比61.1%以上のSi成分を有する
ことを特徴とする埋設二重管の管間空洞充填方法。
A method of filling the inter-cavity of an embedded double pipe using dry powder,
Filling the dry intergranular cavity with the dry granular material by flowing the dry granular material into the intertube cavity from one end of the embedded double pipe; and
Supplying a predetermined amount of moisture to the dry powder filled in the inter-tube cavity and moistening; and
In order to manage the anticorrosion state of cathodic protection performed on the inner pipe of the buried double pipe, a step of disposing a probe electrode on the inner pipe surface;
Have
The dry granular material has a Si component with a weight ratio of 61.1% or more.
乾燥粉粒体を用いて埋設二重管の管間空洞を充填する方法であって、
前記埋設二重管の一端から前記管間空洞内に空気流を用いて乾燥粉粒体を流入させることで、前記管間空洞に前記乾燥粉粒体を充填するステップと、
前記管間空洞に充填された前記乾燥粉粒体に所定分量の水分を供給して湿潤させるステップと、
前記埋設二重管の内管に行う電気防食の防食状態を管理するために、プローブ電極を前記内管表面に配設するステップと、
を有し、
前記乾燥粉粒体は、
重量比61.1%以上のSi成分と、
重量比18.7%以下のCa成分と、
を有することを特徴とする埋設二重管の管間空洞充填方法。
A method of filling the inter-cavity of an embedded double pipe using dry powder,
Filling the dry intergranular cavity with the dry granular material by flowing the dry granular material into the intertube cavity from one end of the embedded double pipe; and
Supplying a predetermined amount of moisture to the dry powder filled in the inter-tube cavity and moistening; and
In order to manage the anticorrosion state of cathodic protection performed on the inner pipe of the buried double pipe, a step of disposing a probe electrode on the inner pipe surface;
Have
The dry powder is
Si component with a weight ratio of 61.1% or more,
A Ca component of 18.7% or less by weight,
An inter-tube cavity filling method for embedded double pipes, characterized in that:
埋設二重管の内管の防食状態を管理する方法であって、
請求項1または請求項に記載の埋設二重管の管間空洞充填方法を用いて前記管間空洞を充填するステップと、
前記内管と電気的に導通したプローブ電極を前記内管表面に配設するステップと、
前記内管に防食電流を供給するステップと、
前記プローブ電極に流れる電流または電圧を測定することで前記内管の防食状態を管理するステップと、
を有することを特徴とする埋設二重管の防食管理方法。
A method for managing the anticorrosion state of the inner pipe of an embedded double pipe,
Filling the inter-tube cavities using the inter-tube cavity filling method for embedded double pipes according to claim 1 or 2 ,
Arranging a probe electrode in electrical communication with the inner tube on the inner tube surface;
Supplying an anticorrosive current to the inner tube;
Managing the anticorrosion state of the inner tube by measuring the current or voltage flowing through the probe electrode;
An anticorrosion management method for buried double pipes.
JP2008076452A 2008-03-24 2008-03-24 Intercavity filling method for buried double pipes, anticorrosion management method for buried double pipes Active JP4968129B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008076452A JP4968129B2 (en) 2008-03-24 2008-03-24 Intercavity filling method for buried double pipes, anticorrosion management method for buried double pipes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008076452A JP4968129B2 (en) 2008-03-24 2008-03-24 Intercavity filling method for buried double pipes, anticorrosion management method for buried double pipes

Publications (2)

Publication Number Publication Date
JP2009228344A JP2009228344A (en) 2009-10-08
JP4968129B2 true JP4968129B2 (en) 2012-07-04

Family

ID=41244042

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008076452A Active JP4968129B2 (en) 2008-03-24 2008-03-24 Intercavity filling method for buried double pipes, anticorrosion management method for buried double pipes

Country Status (1)

Country Link
JP (1) JP4968129B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114075991B (en) * 2022-01-19 2022-03-25 北京华路顺工程咨询有限公司 Supporting construction for road construction tunnel

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2967283B2 (en) * 1990-02-06 1999-10-25 大成建設株式会社 Corrosion protection method in double pipe gap
JP4188548B2 (en) * 2000-10-03 2008-11-26 株式会社神戸製鋼所 Method for predicting properties of coal ash and manufacturing method for artificial lightweight aggregate
JP3382219B2 (en) * 2000-11-20 2003-03-04 株式会社淺沼組 Cavity filling with dry powder
JP2003148684A (en) * 2001-11-08 2003-05-21 Nkk Corp Corrosion preventing method for duplex pipe
JP2003238221A (en) * 2002-02-15 2003-08-27 Taiheiyo Cement Corp Method of producing artificial aggregate
JP4095937B2 (en) * 2002-12-27 2008-06-04 東京瓦斯株式会社 Method and apparatus for protecting buried structure
JP4847196B2 (en) * 2006-04-24 2011-12-28 東京瓦斯株式会社 Local cathodic protection method

Also Published As

Publication number Publication date
JP2009228344A (en) 2009-10-08

Similar Documents

Publication Publication Date Title
CN101565964A (en) Construction method for mounting outdoor embedded high-density polyethylene double-wall corrugated drain pipe
CN108708372B (en) One kind having pressure complex cement aeolian accumulation mortar mixing pile pile-formation process
CN111927548B (en) Method for plugging abandoned coal mine well mouth
CN101752684A (en) Grounding electrode of anti-corrosion and adjustable grounding resistor
Stevanović et al. Engineering challenges in karst
Choi et al. Geotechnical investigation on causes and mitigation of ground subsidence during underground structure construction
JP4968129B2 (en) Intercavity filling method for buried double pipes, anticorrosion management method for buried double pipes
CN101696758A (en) Corrosion control method of trenchless construction large diameter pipeline
US20150068919A1 (en) Cathodic protection system
JP3382219B2 (en) Cavity filling with dry powder
CN103629474A (en) Connection aqueduct used for repairing damaged cast iron firefighting pipe and repairing method thereof
CN212272212U (en) Mud water balance mud feeding system for jacking pipe
JP3310246B2 (en) Underground cavity filling method
KR20120134659A (en) Combined type geothermal system and construction method using large aperture punchung
Laksiri et al. A case study of the Samanalawewa reservoir on the Walawe river in an area of Karst in Sri Lanka
CN209066492U (en) A kind of half prefabricated rotation angle well
CN205908311U (en) Prefabricated flexible protection structure of underground pipe gallery
JP4098675B2 (en) Filling the remaining soil
CN214573015U (en) Road pipeline groove layered structure
CN209046220U (en) A kind of coal mine is used for the vertical cable channel of power supply
KR20080098997A (en) Underground cavity carrying out method using aerated concrete including bottom ash
CN108179424B (en) Sacrificial anode and construction method thereof
CN207599246U (en) A kind of protection structure of municipal pipeline
CN205223773U (en) Highway subgrade pipeline reinforcing structure
Diping et al. Stability analysis of a syncline bedded rock slope near a gas station

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100803

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111012

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111018

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120306

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120319

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150413

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4968129

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150