JP4967987B2 - Manufacturing method of heat-resistant tube with high pressure resistant inner groove - Google Patents

Manufacturing method of heat-resistant tube with high pressure resistant inner groove Download PDF

Info

Publication number
JP4967987B2
JP4967987B2 JP2007277569A JP2007277569A JP4967987B2 JP 4967987 B2 JP4967987 B2 JP 4967987B2 JP 2007277569 A JP2007277569 A JP 2007277569A JP 2007277569 A JP2007277569 A JP 2007277569A JP 4967987 B2 JP4967987 B2 JP 4967987B2
Authority
JP
Japan
Prior art keywords
tube
dough
drawing die
pipe
heat transfer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007277569A
Other languages
Japanese (ja)
Other versions
JP2009101405A (en
Inventor
慶 小山
賢 堀口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2007277569A priority Critical patent/JP4967987B2/en
Publication of JP2009101405A publication Critical patent/JP2009101405A/en
Application granted granted Critical
Publication of JP4967987B2 publication Critical patent/JP4967987B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Metal Extraction Processes (AREA)

Description

本発明は、厚肉で内面溝の捩れ角度が高い内面溝付伝熱管を製造できる高耐圧内面溝付伝熱管の製造方法に関する。   The present invention relates to a method for manufacturing a heat-resistant tube with a high pressure resistant inner surface groove that can manufacture a heat-transfer tube with an inner surface groove that is thick and has a high twist angle of the inner surface groove.

CO2給湯器などに用いられる内面溝付伝熱管は、内面に複数のらせん状の内面溝を有する。   An internally grooved heat transfer tube used for a CO2 water heater or the like has a plurality of helical inner grooves on the inner surface.

従来、内面溝付伝熱管の製造方法は、得ようとする管外径より大径の生地管を用意し、生地管の内側にフローティングプラグと溝付プラグを配置する一方、生地管の外側には、生地管の引き抜き方向に沿って引抜ダイスと押圧手段を配置しておき、生地管を一定速度で引き抜くと共に押圧することにより、内面溝の形成と縮管(縮径とも言う)を行うようになっている。   Conventionally, the manufacturing method of the inner surface grooved heat transfer tube is to prepare a dough tube having a diameter larger than the outer diameter of the tube to be obtained, and arrange a floating plug and a grooved plug inside the dough tube, while on the outside of the dough tube. Is arranged with a drawing die and pressing means along the drawing direction of the dough tube, and pulling out the dough tube at a constant speed and pressing it so as to form an inner surface groove and reduce the tube (also referred to as a reduced diameter). It has become.

具体的には、図5に示されるように、従来の製造装置51は、生地管2の引き抜き方向に沿って先頭引抜ダイス3、押圧手段4、中間引抜ダイス5、上がり引抜ダイス7を順に配置してなる。   Specifically, as shown in FIG. 5, the conventional manufacturing apparatus 51 sequentially arranges the leading drawing die 3, the pressing means 4, the intermediate drawing die 5, and the rising drawing die 7 along the drawing direction of the dough tube 2. Do it.

各引抜ダイス3,5,7は、内径が大きい入口と内径が小さい出口を有し、入口出口間が生地管を縮管するためのテーパ状空洞あるいはラッパ状空洞になっている。先頭引抜ダイス3、中間引抜ダイス5、上がり引抜ダイス7は、各々出口の内径が異なり、順次、出口の内径が小さくなるよう配置される。   Each of the drawing dies 3, 5, and 7 has an inlet having a large inner diameter and an outlet having a small inner diameter, and a tapered cavity or a trumpet cavity for contracting the dough pipe is formed between the inlet and outlet. The leading drawing die 3, the intermediate drawing die 5, and the rising drawing die 7 are arranged so that the inner diameters of the outlets are different and the inner diameters of the outlets are sequentially reduced.

押圧手段4は、生地管2の外周を押圧するための複数のボール又はロールを有する。   The pressing means 4 has a plurality of balls or rolls for pressing the outer periphery of the dough tube 2.

フローティングプラグ8は、先頭引抜ダイス3のテーパ状空洞に対抗するテーパ状錐部を有し、そのテーパ状錐部の最大外径は先頭引抜ダイス3の出口より大きい。溝付プラグ9は、円柱の周囲に生地管2に形成させたい内面溝の雌雄逆型となるらせん溝を形成したものである。   The floating plug 8 has a tapered cone portion that opposes the tapered cavity of the leading drawing die 3, and the maximum outer diameter of the tapered cone portion is larger than the outlet of the leading drawing die 3. The grooved plug 9 is formed by forming a spiral groove that is a male and female reverse type of the inner surface groove to be formed on the dough tube 2 around the cylinder.

フローティングプラグ8と溝付プラグ9は、これらよりも径の細いタイロット10で同軸に連結される。フローティングプラグ8と溝付プラグ9をタイロット10で連結した連結体を生地管2内に配置する。この連結体は生地管2内で生地管2の軸周りに回転自在となる。後述するように先頭引抜ダイス3において生地管2内にフローティングプラグ8が係止されるので、そのときの溝付プラグ9の位置に押圧手段4がくるように、タイロット10の長さ又は先頭引抜ダイス押圧手段間距離を調整する。   The floating plug 8 and the grooved plug 9 are coaxially connected by a tie rod 10 having a diameter smaller than these. A connecting body in which the floating plug 8 and the grooved plug 9 are connected by a tie lot 10 is arranged in the dough tube 2. This coupling body is rotatable around the axis of the dough tube 2 in the dough tube 2. As will be described later, since the floating plug 8 is locked in the dough tube 2 in the leading drawing die 3, the length of the tie lot 10 or leading drawing is performed so that the pressing means 4 comes to the position of the grooved plug 9 at that time. Adjust the distance between the die pressing means.

生地管2は、中空で内面が円滑(溝がない)なものであり、材料としては伝熱性に優れる銅管等が用いられる。   The dough tube 2 is hollow and has a smooth inner surface (no grooves), and a material such as a copper tube having excellent heat conductivity is used.

この製造装置51において、フローティングプラグ8と溝付プラグ9をタイロット10で連結した連結体を生地管2内に配置した状態で、生地管2を図中に矢印で示す引き抜き方向に引き抜くと、先頭引抜ダイス3によって生地管2が縮管される。このとき、テーパ状錐部が先頭引抜ダイス3の出口より径が大きいため、テーパ状錐部が先頭引抜ダイス3内の位置で係止され、フローティングプラグ8は、引き抜き方向の位置が固定される。   In this manufacturing apparatus 51, when the dough tube 2 is pulled out in the drawing direction indicated by an arrow in the drawing in a state where the connecting body in which the floating plug 8 and the grooved plug 9 are connected by the tylot 10 is arranged in the dough tube 2, The dough tube 2 is contracted by the drawing die 3. At this time, since the tapered cone portion has a larger diameter than the outlet of the leading drawing die 3, the tapered cone portion is locked at a position in the leading drawing die 3, and the position of the floating plug 8 in the drawing direction is fixed. .

フローティングプラグ8の引き抜き方向の位置が固定されたことにより、溝付プラグ9も引き抜き方向の位置が固定される。その溝付プラグ9の位置において、押圧手段4が生地管2の周りを公転しつつ生地管を径方向内方に押圧する。この押圧力によって、生地管2の内面には、溝付プラグ9の溝が転写され、内面溝(又はフィン)が形成される。   By fixing the position of the floating plug 8 in the pulling direction, the grooved plug 9 is also fixed in the pulling direction. At the position of the grooved plug 9, the pressing means 4 revolves around the dough tube 2 and presses the dough tube radially inward. By this pressing force, the groove of the grooved plug 9 is transferred to the inner surface of the dough tube 2 to form an inner surface groove (or fin).

その後、生地管2は、中間引抜ダイス5、上がり引抜ダイス7を順次通過することにより、段階的に縮管される。   Thereafter, the dough pipe 2 is gradually contracted by sequentially passing through the intermediate drawing die 5 and the upward drawing die 7.

以上の工程により、内面溝付伝熱管が製造される。   Through the above steps, the internally grooved heat transfer tube is manufactured.

ここで、図6により、内面溝付伝熱管の諸元を内面溝付伝熱管の構造と共に説明しておく。   Here, with reference to FIG. 6, the specifications of the internally grooved heat transfer tube will be described together with the structure of the internally grooved heat transfer tube.

図6(a)に示されるように、内面溝付伝熱管61は、内面に複数のらせん状の内面溝62を有する。内面溝62は、中空部の径が大きい、いわゆる谷の部分を言う。これに対して伝熱管本体(肉の部分)63の厚みが厚い山の部分はフィン64と呼ぶ。図6(a)は簡略化した図であり、内面溝62が直線的に描かれている。この内面溝62が管軸Sに対してなす角度βを捩れ角度と言う。   As shown in FIG. 6A, the inner surface grooved heat transfer tube 61 has a plurality of spiral inner surface grooves 62 on the inner surface. The inner surface groove 62 refers to a so-called valley portion where the diameter of the hollow portion is large. On the other hand, the thick mountain portion of the heat transfer tube main body (meat portion) 63 is called a fin 64. FIG. 6A is a simplified diagram, in which the inner groove 62 is drawn linearly. An angle β formed by the inner surface groove 62 with respect to the tube axis S is referred to as a twist angle.

内面溝62の底からフィン64の頂部までの径方向距離を溝の深さHと言い、隣り合うフィン64の側面間の距離を内面溝62の幅Wと言う。   The radial distance from the bottom of the inner surface groove 62 to the top of the fin 64 is referred to as the groove depth H, and the distance between the side surfaces of the adjacent fins 64 is referred to as the width W of the inner surface groove 62.

特開平5−007920号公報JP-A-5-007920 特開平5−329529号公報JP-A-5-329529 特開平6−015345号公報JP-A-6-015345 「塑性加工技術シリーズ11 回転加工」コロナ社218頁〜222頁"Plastic processing technology series 11 rotary processing" pages 218-222

内面溝付伝熱管を高耐圧とするには、内面溝付伝熱管を厚肉にするのがよい。   In order to increase the pressure resistance of the internally grooved heat transfer tube, it is preferable to thicken the internally grooved heat transfer tube.

従来の内面溝付伝熱管の製造方法において、厚肉な内面溝付伝熱管を製造する場合、生地管に肉厚の厚い生地管を用いる。あるいは、いったん製造した内面溝付伝熱管を円弧ダイスにより縮径して増肉する方法もある。   In the conventional method for manufacturing an internally grooved heat transfer tube, when a thick internal grooved heat transfer tube is manufactured, a thick fabric tube is used as the fabric tube. Alternatively, there is also a method of increasing the thickness by reducing the diameter of the internally grooved heat transfer tube once manufactured by an arc die.

しかしながら、図5に示した従来の製造装置において、肉厚の厚い生地管2を用いて厚肉な内面溝付伝熱管を製造しようとすると、押圧手段4からの押圧力が生地管2の内面まで伝わりにくく、深い内面溝が形成できず、また、高捩れ角度の内面溝が形成できない。   However, in the conventional manufacturing apparatus shown in FIG. 5, when an attempt is made to manufacture a thick inner surface grooved heat transfer tube using the thick dough tube 2, the pressing force from the pressing means 4 is applied to the inner surface of the dough tube 2. It is difficult to form a deep inner groove, and an inner groove with a high twist angle cannot be formed.

一方、内面溝付伝熱管を円弧ダイスにより縮径して増肉する方法では、肉厚の増加量が僅かであるため、高耐圧化の効果は極めて低い。また、生地管が長手方向に大きく伸びるため、内面溝の捩れ角度が減少し、内面溝付伝熱管の伝熱性能を悪化させてしまう。   On the other hand, in the method of reducing the diameter of the internally grooved heat transfer tube with an arc die and increasing the thickness, the amount of increase in the thickness is small, so the effect of increasing the pressure resistance is extremely low. Moreover, since the dough tube extends greatly in the longitudinal direction, the twist angle of the inner surface groove decreases, and the heat transfer performance of the inner surface grooved heat transfer tube is deteriorated.

そこで、本発明の目的は、上記課題を解決し、厚肉で内面溝の捩れ角度が高い内面溝付伝熱管を製造できる高耐圧内面溝付伝熱管の製造方法を提供することにある。   Then, the objective of this invention is providing the manufacturing method of the heat-resistant tube | pipe with a high pressure | voltage resistant inner surface groove | channel which can manufacture the inner surface grooved heat exchanger tube which solves the said subject and the twist angle of an inner surface groove | channel is high.

上記目的を達成するために本発明は、得ようとする管外径より大径の生地管の内側にフローティングプラグと該フローティングプラグに連結された溝付プラグを配し、生地管の外側には生地管の引き抜き方向に沿って引抜ダイスと押圧手段とロータリスエージャを順に配し、生地管を引き抜くことにより、上記引抜ダイスで生地管を縮管すると共に該縮管された生地管内に上記フローティングプラグを係止させ、上記溝付プラグの位置で上記押圧手段により生地管を押圧して生地管の内面に溝を転写し、その生地管を上記ロータリスエージャで増肉縮管するものである。   In order to achieve the above object, according to the present invention, a floating plug and a grooved plug connected to the floating plug are arranged inside a dough pipe having a diameter larger than the outer diameter of the pipe to be obtained. A drawing die, a pressing means and a rotary agitator are arranged in this order along the drawing direction of the dough tube, and the dough tube is pulled out, whereby the dough tube is contracted with the drawing die and the floating tube is placed in the contracted dough tube. The plug is locked, the dough pipe is pressed by the pressing means at the position of the grooved plug, the groove is transferred to the inner surface of the dough pipe, and the dough pipe is increased in thickness and reduced by the rotary agitator. .

上記押圧手段と上記ロータリスエージャの間に中間引抜ダイスを配し、上記押圧手段を出た生地管を上記中間引抜ダイスで縮管してから上記ロータリスエージャに通してもよい。   An intermediate drawing die may be arranged between the pressing means and the rotary agitator, and the dough pipe exiting the pressing means may be contracted by the intermediate drawing die and then passed through the rotary agitator.

上記ロータリスエージャよりも引き抜き方向に上がり引抜ダイスを配し、上記ロータリスエージャを出た生地管を上がり引抜ダイスで縮管してもよい。   A pulling die may be arranged so as to rise in the pulling direction from the rotary agitator, and the dough pipe exiting the rotary agitator may be lifted and contracted by the pulling die.

本発明は次の如き優れた効果を発揮する。   The present invention exhibits the following excellent effects.

(1)厚肉な内面溝付伝熱管を製造できる。   (1) A thick inner-surface grooved heat transfer tube can be manufactured.

(2)内面溝の捩れ角度が高い内面溝付伝熱管を製造できる。   (2) An internally grooved heat transfer tube having a high twist angle of the internal groove can be manufactured.

以下、本発明の一実施形態を添付図面に基づいて詳述する。   Hereinafter, an embodiment of the present invention will be described in detail with reference to the accompanying drawings.

図1に示されるように、本発明の高耐圧内面溝付伝熱管の製造方法を実施する製造装置1は、生地管2の引き抜き方向に沿って先頭引抜ダイス3、押圧手段4、中間引抜ダイス5、ロータリスエージャ6、上がり引抜ダイス7を順に配置してなる。   As shown in FIG. 1, a manufacturing apparatus 1 for carrying out the manufacturing method of a heat-resistant tube with a high pressure resistant inner groove according to the present invention includes a leading drawing die 3, a pressing means 4, an intermediate drawing die along the drawing direction of the dough tube 2. 5, a rotary agitator 6 and an upward pulling die 7 are arranged in this order.

各引抜ダイス3,5,7と押圧手段4は、図5に示した従来のものと同じなので説明は省略する。フローティングプラグ8、溝付プラグ9、タイロット10についても、図5に示した従来のものと同じなので説明は省略する。生地管2も図5に示した従来のものと同じ肉厚の薄いものである。   The drawing dies 3, 5, and 7 and the pressing means 4 are the same as the conventional one shown in FIG. The floating plug 8, the grooved plug 9, and the tie lot 10 are also the same as the conventional one shown in FIG. The dough tube 2 is also thin with the same thickness as the conventional one shown in FIG.

ロータリスエージャ6は、周方向に分割形成された複数の分割ダイスをその周囲に配置された複数のローラで交互に押すことにより、生地管を縮管するものである。ロータリスエージャ6は、従来公知のものであり、例えば、非特許文献1に開示されたものを用いることができる。   The rotary agitator 6 contracts the dough tube by alternately pushing a plurality of divided dies formed in the circumferential direction with a plurality of rollers arranged around the dies. The rotary agent 6 is a conventionally known one, and for example, the one disclosed in Non-Patent Document 1 can be used.

図1の製造装置1によれば、得ようとする管外径より大径の生地管2の内側にフローティングプラグ8とフローティングプラグ8に連結された溝付プラグ9とを配し、生地管2の外側には生地管2の引き抜き方向に沿って先頭引抜ダイス3と押圧手段4と中間引抜ダイス5とロータリスエージャ6と上がり引抜ダイス7を順に配する。   According to the manufacturing apparatus 1 of FIG. 1, the floating plug 8 and the grooved plug 9 connected to the floating plug 8 are arranged inside the dough pipe 2 having a diameter larger than the outer diameter of the pipe to be obtained. A leading drawing die 3, a pressing means 4, an intermediate drawing die 5, a rotary agitator 6, and a rising drawing die 7 are arranged in this order along the drawing direction of the dough tube 2.

生地管2を引き抜くことにより、先頭引抜ダイス3で生地管2を縮管すると共に該縮管された生地管2内にフローティングプラグ8を係止させる。この状態で、溝付プラグ9の位置で押圧手段4により生地管2を径方向に押圧して生地管2の内面に溝を転写する溝転写工程と、この溝転写工程により内面溝が形成された生地管2を中間引抜ダイス5と上がり引抜ダイス7に通して所定の外形寸法にまで縮管(空引き)する縮管工程と、その縮管工程中の中間引抜ダイス5と上がり引抜ダイス7との間にあるロータリスエージャ6で生地管2を増肉縮管する増肉縮管工程(スエージング)とを行う。これにより、厚肉な内面溝付伝熱管、すなわち高耐圧内面溝付伝熱管が製造される。   By pulling out the dough tube 2, the dough tube 2 is contracted with the leading drawing die 3 and the floating plug 8 is locked in the contracted dough tube 2. In this state, a groove transfer step in which the dough pipe 2 is pressed in the radial direction by the pressing means 4 at the position of the grooved plug 9 to transfer the groove to the inner surface of the dough tube 2, and an inner groove is formed by this groove transfer step. The dough tube 2 is passed through the intermediate drawing die 5 and the upward drawing die 7 to be contracted (empty drawing) to a predetermined external dimension, and the intermediate drawing die 5 and the upward drawing die 7 in the contracting step And a thickening / shrinking step (swaging) of increasing the thickness of the dough tube 2 with the rotary agitator 6 between the two. Thereby, a thick inner-surface grooved heat transfer tube, that is, a high pressure resistant inner-surface grooved heat transfer tube is manufactured.

ここで、増肉縮管とは、外径を小さくしつつ肉厚を厚くすることを言う。図1の矢印Aの箇所に着目すると、ロータリスエージャ6の入口における生地管2の外径に比べ、ロータリスエージャ6の出口における生地管2の外径は、小さくなっている。また、ロータリスエージャ6の入口における生地管2の肉厚に比べ、ロータリスエージャ6の出口における生地管2の肉厚は厚くなっている。   Here, the thickening contraction means increasing the thickness while reducing the outer diameter. When attention is paid to the position of the arrow A in FIG. 1, the outer diameter of the dough tube 2 at the outlet of the rotary agitator 6 is smaller than the outer diameter of the dough tube 2 at the inlet of the rotary agitator 6. Further, the thickness of the dough tube 2 at the outlet of the rotary agitator 6 is thicker than the thickness of the dough tube 2 at the entrance of the rotary agitator 6.

非特許文献1に記載されたロータリスエージャにあっては、バッカーの頂面に形成されたカム面がローラーと転がり接触することによって、ダイスが被加工材方向に前進運動して被加工材を半径方向に圧縮するもので、ダイスによる加圧力が解除されている間に微少量ずつ被加工材を軸方向に送る。   In the rotary agitator described in Non-Patent Document 1, when the cam surface formed on the top surface of the backer is in rolling contact with the roller, the die moves forward in the direction of the workpiece, and the workpiece is removed. It compresses in the radial direction, and feeds the work piece in the axial direction little by little while the pressure applied by the die is released.

本発明者は、このロータリスエージャにおいて、圧縮変形時の材料流れを素材入口に向かって生じないよう条件を設定して加工を行うことにより、増肉縮管を実現させた。   The inventor of the present invention realized a wall-thickening contraction tube by setting the conditions so that the material flow at the time of compressive deformation does not occur toward the material inlet in this rotary aisle.

次に、本発明の効果を説明する。   Next, the effect of the present invention will be described.

図2及び図3に、あらかじめ外径がφ7mmで肉厚0.31mmに形成されている高耐圧内面溝付伝熱管を試料とし、この試料を従来技術の空引きと本発明の製造方法によりスエージングで縮管あるいは増肉縮管した場合の内面形状の変化を表すグラフを示す。図2は、横軸を内面溝付伝熱管あるいは高耐圧内面溝付伝熱管の外径、縦軸を断面寸法(肉厚と溝深さ)としたグラフであり、このグラフは縮管時あるいは増肉縮管時の断面寸法の変化を表す。図3は、横軸を内面溝付伝熱管あるいは高耐圧内面溝付伝熱管の外径、縦軸を内面溝の捩れ角度としたグラフであり、このグラフは縮管時あるいは増肉縮管時の捩れ角度の変化を表す。   2 and 3, a high pressure internal grooved heat transfer tube having an outer diameter of φ7 mm and a wall thickness of 0.31 mm is used as a sample, and this sample is scanned by the prior art emptying and the manufacturing method of the present invention. The graph showing the change of an inner surface shape when shrinking | reducing pipe | tube or a wall-thickening shrinkage | contraction by aging is shown. FIG. 2 is a graph in which the horizontal axis indicates the outer diameter of the internally grooved heat transfer tube or the high pressure resistant internal grooved heat transfer tube, and the vertical axis indicates the cross-sectional dimensions (wall thickness and groove depth). Represents the change in cross-sectional dimensions during tube expansion. FIG. 3 is a graph in which the horizontal axis represents the outer diameter of the internally grooved heat transfer tube or the high pressure resistant internal grooved heat transfer tube, and the vertical axis represents the twist angle of the inner surface groove. Represents the change in the twist angle.

図2において、●と▲は、本発明の製造方法による結果を示し、○と△は従来の製造方法による結果を示す。これによると、本発明の製造方法で増肉縮管を行うと、肉厚が厚くなることが分かる。   In FIG. 2, ● and ▲ indicate the results of the manufacturing method of the present invention, and ◯ and Δ indicate the results of the conventional manufacturing method. According to this, it can be seen that when the thickness increase and contraction is performed by the manufacturing method of the present invention, the thickness increases.

図3において、●は、本発明の製造方法による結果を示し、○は従来の製造方法による結果を示す。これによると、本発明の製造方法で増肉縮管を行うと、捩れ角度の減少の度合いが小さくなることが分かる。   In FIG. 3, ● represents the result of the production method of the present invention, and ○ represents the result of the conventional production method. According to this, it is understood that the degree of decrease in the twist angle becomes small when the wall thickness expansion and contraction is performed by the manufacturing method of the present invention.

図4に、従来と本発明の製造方法による内面溝付伝熱管あるいは高耐圧内面溝付伝熱管の断面写真を示すと共に、図7にこれらの写真の模写を示す。すなわち、図4(a)、図7(a)は加工前の内面溝付伝熱管の断面を示し、図2,3の外径7mmの●,○,▲,△に対応する。図4(b)、図7(b)、図4(c)、図7(c)は、本発明の製造方法により、ロータリスエージャ6を用いる縮管工程を行って製造した高耐圧内面溝付伝熱管の断面を示し、図2,3の外径6mm,5mmの●,▲に対応する。図4(d)、図7(d)、図4(e)、図7(e)は、従来の製造方法により、ロータリスエージャ6を用いる縮管工程を行わずに製造した内面溝付伝熱管の断面を示し図2,3の外径6mm,5mmの○,△に対応する。   FIG. 4 shows a cross-sectional photograph of a conventional internally grooved heat transfer tube or a high pressure resistant internally grooved heat transfer tube according to the manufacturing method of the present invention, and FIG. 7 shows a copy of these photographs. That is, FIGS. 4A and 7A show cross sections of the internally grooved heat transfer tube before processing, and correspond to ●, ○, ▲, and Δ of 7 mm in outer diameter in FIGS. 4 (b), FIG. 7 (b), FIG. 4 (c), and FIG. 7 (c) are high-pressure-resistant inner surface grooves that are manufactured by performing the contraction process using the rotary agitator 6 by the manufacturing method of the present invention. The cross section of an attached heat transfer tube is shown, and corresponds to ● and ▲ in FIGS. 4 (d), FIG. 7 (d), FIG. 4 (e), and FIG. 7 (e) show an internally grooved transmission manufactured by a conventional manufacturing method without performing the contraction tube process using the rotary agitator 6. The cross section of the heat tube is shown and corresponds to the circles 6 and 5 in FIGS.

図4、図7から分かるように、本発明で製造した高耐圧内面溝付伝熱管は、従来のものに比べて肉厚が厚い。   As can be seen from FIGS. 4 and 7, the heat-resistant tube with a high pressure resistant inner groove manufactured according to the present invention is thicker than the conventional one.

以上説明したように、本発明によれば、内面溝を転写形成した生地管をロータリスエージャで増肉縮管するようにしたので、肉厚の薄い生地管を使用して厚肉な内面溝付伝熱管を製造できる。このように、本発明では肉厚の薄い生地管を使用するので、溝付プラグからの溝の転写が容易となり、かつ、増肉縮管においては生地管が長手方向に伸びないので、内面溝の捩れ角度が高い内面溝付伝熱管を製造できる。   As described above, according to the present invention, the dough pipe formed by transferring the inner surface groove is increased in thickness by the rotary agitator, so that the thick inner surface groove is formed using the thin dough pipe. Attached heat transfer tubes can be manufactured. Thus, in the present invention, since the thin dough tube is used, the transfer of the groove from the grooved plug becomes easy, and the dough tube does not extend in the longitudinal direction in the increased thickness reduced tube, so that the inner surface groove An internally grooved heat transfer tube having a high twist angle can be manufactured.

なお、図1の製造装置では、中間引抜ダイス、上がり引抜ダイスを用いたが、得ようとする管外径と元の生地管の外径との差に応じてこれらの引抜ダイスを適宜省略あるいは増やすことができる。   In the manufacturing apparatus of FIG. 1, an intermediate drawing die and a rising drawing die are used, but these drawing dies are appropriately omitted depending on the difference between the outer diameter of the tube to be obtained and the outer diameter of the original fabric tube. Can be increased.

本発明の高耐圧内面溝付伝熱管の製造方法を実施する製造装置を示す側面図である。It is a side view which shows the manufacturing apparatus which enforces the manufacturing method of the heat-resistant tube | pipe with a high pressure | voltage resistant inside groove | channel of this invention. 縮管時あるいは増肉縮管時の断面寸法の変化を表すグラフである。It is a graph showing the change of the cross-sectional dimension at the time of a contraction pipe or a thickness expansion contraction. 縮管時あるいは増肉縮管時の捩れ角度の変化を表すグラフである。It is a graph showing the change of the twist angle at the time of a contraction pipe or an increase in thickness contraction. 従来と本発明の製造方法による内面溝付伝熱管あるいは高耐圧内面溝付伝熱管の断面図であり、図4(a)は縮管加工をしない内面溝付伝熱管の断面、図4(b)、図4(c)は本発明により加工をした高耐圧内面溝付伝熱管の断面、図4(d)、図4(e)は従来技術により加工をした内面溝付伝熱管の断面を示す。FIG. 4A is a cross-sectional view of a conventional internally grooved heat transfer tube or a high pressure resistant internal grooved heat transfer tube according to the manufacturing method of the present invention. FIG. 4A is a cross-sectional view of an internally grooved heat transfer tube that is not contracted, and FIG. 4 (c) is a cross section of a heat resistant tube with a high pressure resistant inner surface groove processed according to the present invention, and FIGS. 4 (d) and 4 (e) are cross sections of an internally grooved heat transfer tube processed according to the prior art. Show. 従来の内面溝付伝熱管の製造装置を示す側面図である。It is a side view which shows the manufacturing apparatus of the conventional inner surface grooved heat exchanger tube. 内面溝付伝熱管の諸元を示す図であり、(a)は側断面図、(b)は横断面図、(c)は横断面部分図である。It is a figure which shows the item of an internally grooved heat exchanger tube, (a) is a sectional side view, (b) is a cross-sectional view, (c) is a partial cross-sectional view. 図7(a)〜図7(e)は、図4(a)〜図4(e)の模写図である。FIGS. 7A to 7E are copy diagrams of FIGS. 4A to 4E.

符号の説明Explanation of symbols

1 製造装置
2 生地管
3 先頭引抜ダイス
4 押圧手段
5 中間引抜ダイス
6 ロータリスエージャ
7 上がり引抜ダイス
8 フローティングプラグ
9 溝付プラグ
10 タイロット
DESCRIPTION OF SYMBOLS 1 Manufacturing apparatus 2 Dough pipe 3 Leading drawing die 4 Pressing means 5 Intermediate drawing die 6 Rotating agent 7 Lifting drawing die 8 Floating plug 9 Grooved plug 10 Tylot

Claims (3)

得ようとする管外径より大径の生地管の内側にフローティングプラグと該フローティングプラグに連結された溝付プラグを配し、生地管の外側には生地管の引き抜き方向に沿って引抜ダイスと押圧手段とロータリスエージャを順に配し、生地管を引き抜くことにより、上記引抜ダイスで生地管を縮管すると共に該縮管された生地管内に上記フローティングプラグを係止させ、上記溝付プラグの位置で上記押圧手段により生地管を押圧して生地管の内面に溝を転写し、その生地管を上記ロータリスエージャで増肉縮管することを特徴とする高耐圧内面溝付伝熱管の製造方法。   A floating plug and a grooved plug connected to the floating plug are arranged inside the dough pipe having a diameter larger than the outer diameter of the pipe to be obtained, and a drawing die is formed on the outside of the dough pipe along the drawing direction of the dough pipe. By sequentially arranging the pressing means and the rotary agitator and pulling out the dough pipe, the dough pipe is contracted with the drawing die, and the floating plug is locked in the contracted dough pipe, and the grooved plug The dough pipe is pressed at the position by the pressing means, the groove is transferred to the inner surface of the dough pipe, and the dough pipe is increased in thickness and contracted by the rotary adjuster. Method. 上記押圧手段と上記ロータリスエージャの間に中間引抜ダイスを配し、上記押圧手段を出た生地管を上記中間引抜ダイスで縮管してから上記ロータリスエージャに通すことを特徴とする請求項1記載の高耐圧内面溝付伝熱管の製造方法。   2. An intermediate drawing die is arranged between the pressing means and the rotary agitator, and the dough pipe exiting the pressing means is contracted by the intermediate drawing die and then passed through the rotary agitator. A manufacturing method of the heat-resistant tube with a high pressure-resistant inner surface groove according to 1. 上記ロータリスエージャよりも引き抜き方向に上がり引抜ダイスを配し、上記ロータリスエージャを出た生地管を上がり引抜ダイスで縮管することを特徴とする請求項1又は2記載の高耐圧内面溝付伝熱管の製造方法。   3. A high pressure-resistant inner surface groove according to claim 1 or 2, wherein a drawing die is arranged in a drawing direction from said rotary agitator, and a dough pipe coming out of said rotary agitator is raised and contracted by a drawing die. Manufacturing method of heat transfer tube.
JP2007277569A 2007-10-25 2007-10-25 Manufacturing method of heat-resistant tube with high pressure resistant inner groove Expired - Fee Related JP4967987B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007277569A JP4967987B2 (en) 2007-10-25 2007-10-25 Manufacturing method of heat-resistant tube with high pressure resistant inner groove

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007277569A JP4967987B2 (en) 2007-10-25 2007-10-25 Manufacturing method of heat-resistant tube with high pressure resistant inner groove

Publications (2)

Publication Number Publication Date
JP2009101405A JP2009101405A (en) 2009-05-14
JP4967987B2 true JP4967987B2 (en) 2012-07-04

Family

ID=40703723

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007277569A Expired - Fee Related JP4967987B2 (en) 2007-10-25 2007-10-25 Manufacturing method of heat-resistant tube with high pressure resistant inner groove

Country Status (1)

Country Link
JP (1) JP4967987B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107350302A (en) * 2017-08-31 2017-11-17 西京学院 A kind of tubing shear extrusion device and its manufacturing process

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61286018A (en) * 1985-06-11 1986-12-16 Kobe Steel Ltd Method and device for manufacturing inner surface grooved tube
JPS6363524A (en) * 1986-09-02 1988-03-19 Furukawa Electric Co Ltd:The Manufacture of pipe with grooved inner surface
JPH02263513A (en) * 1989-03-31 1990-10-26 Furukawa Electric Co Ltd:The Manufacture of heat transfer tube having worked inside surface
JP2638199B2 (en) * 1989-05-29 1997-08-06 住友金属工業株式会社 Manufacturing method of pipe with upset inside pipe end
JP2002102916A (en) * 2000-10-02 2002-04-09 Hitachi Cable Ltd Method for manufacturing inside grooved tube
JP3829727B2 (en) * 2002-02-05 2006-10-04 日立電線株式会社 Manufacturing method of internally grooved tube

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107350302A (en) * 2017-08-31 2017-11-17 西京学院 A kind of tubing shear extrusion device and its manufacturing process
CN107350302B (en) * 2017-08-31 2019-11-19 西京学院 A kind of tubing shear extrusion method

Also Published As

Publication number Publication date
JP2009101405A (en) 2009-05-14

Similar Documents

Publication Publication Date Title
CN112718867B (en) Three-roller skew rolling forming method for metal composite pipe with corrugated joint surface
US3750444A (en) Method of continuous production of tubing with helical or annular ribs
CN102626734B (en) Spiral flat pipe roll forming machine for heat exchanging equipment
US1909005A (en) Method of making corrugated wall tubing
JP4967987B2 (en) Manufacturing method of heat-resistant tube with high pressure resistant inner groove
JP2008036640A (en) Apparatus and method for manufacturing internally grooved tube
JP5871269B2 (en) Spiral tube extrusion molding method and spiral tube extrusion molding machine
WO2015186695A1 (en) Apparatus for manufacturing pipe, method for manufacturing pipe, and pipe
US5709029A (en) Manufacture of helically corrugated conduit
CN206325957U (en) A kind of rectangular mould structure
JP5404589B2 (en) Twisted tube heat exchanger
JP2001113329A (en) Inner surface expansion tool, and method for expanding steel tube
JP3780432B2 (en) Internal grooved tube processing method
CN206551299U (en) A kind of Pipe making mold for producing the anti-skidding tubing of inwall
US3580026A (en) Method and apparatus for manufacturing finned pipes
CN104785564B (en) Large-sized heavy-wall tube extrusion molding hollow casting blank method for determining dimension
JP3908974B2 (en) Internal grooved tube and manufacturing method thereof
JPS61125592A (en) Heat transfer tube and manufacturing device therefor
Tangsri et al. Influences of total reduction of area on drawing stress and tube dimension in inner spiral ribbed copper tube sinking
EP0664862B1 (en) Manufacture of helically corrugated conduit
JP3933083B2 (en) Manufacturing method of leak detection tube
JPH02241613A (en) Integral forming method for fin tube
JP2007218566A (en) Tube with grooves on inner surface and its manufacturing method, and fluted plug
JP3747302B2 (en) Internal grooved tube processing method
JP6358720B2 (en) Manufacturing method and manufacturing apparatus of internally spiral grooved tube

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090828

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120306

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120319

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150413

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees