JP4964908B2 - Cleaning the reaction tube - Google Patents

Cleaning the reaction tube Download PDF

Info

Publication number
JP4964908B2
JP4964908B2 JP2009039750A JP2009039750A JP4964908B2 JP 4964908 B2 JP4964908 B2 JP 4964908B2 JP 2009039750 A JP2009039750 A JP 2009039750A JP 2009039750 A JP2009039750 A JP 2009039750A JP 4964908 B2 JP4964908 B2 JP 4964908B2
Authority
JP
Japan
Prior art keywords
flange
reaction tube
gas
reaction
seal groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2009039750A
Other languages
Japanese (ja)
Other versions
JP2009152628A (en
Inventor
智志 谷山
幸二 遠目塚
秀樹 開発
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Kokusai Electric Inc
Original Assignee
Hitachi Kokusai Electric Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Kokusai Electric Inc filed Critical Hitachi Kokusai Electric Inc
Priority to JP2009039750A priority Critical patent/JP4964908B2/en
Publication of JP2009152628A publication Critical patent/JP2009152628A/en
Application granted granted Critical
Publication of JP4964908B2 publication Critical patent/JP4964908B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Drying Of Semiconductors (AREA)

Description

本発明は縦型炉を有する半導体製造装置の、特に高温酸化処理等高温処理を行う炉口部の改良に関するものである。   The present invention relates to improvement of a semiconductor manufacturing apparatus having a vertical furnace, in particular, a furnace port portion for performing high temperature processing such as high temperature oxidation processing.

図4に於いて従来の半導体製造装置の高温酸化処理用縦型炉を説明する。尚、図4は縦型炉の炉口部分を示している。   Referring to FIG. 4, a conventional vertical furnace for high-temperature oxidation treatment of a semiconductor manufacturing apparatus will be described. FIG. 4 shows a furnace port portion of the vertical furnace.

上端が閉塞された筒状のヒータユニット1はヒータベース3に断熱材2を介して立設され、前記ヒータベース3の下側には該ヒータユニット1の下面に取付けられた支持ブロック4を介して反応管ベース5が設けられている。該反応管ベース5にはフランジアダプタ6が設けられ、該フランジアダプタ6に上端が閉塞された筒状の反応管7が立設されている。該反応管7は下端がヒータベース3より下方に延出している。前記反応管7にはボート(図示せず)が装入される様になっており、該ボートはボートキャップ8を介してボート受台9に載置される様になっている。   A cylindrical heater unit 1 whose upper end is closed is erected on a heater base 3 via a heat insulating material 2, and below the heater base 3 is a support block 4 attached to the lower surface of the heater unit 1. A reaction tube base 5 is provided. The reaction tube base 5 is provided with a flange adapter 6, and a cylindrical reaction tube 7 whose upper end is closed is erected on the flange adapter 6. The lower end of the reaction tube 7 extends below the heater base 3. A boat (not shown) is inserted into the reaction tube 7, and the boat is placed on a boat cradle 9 through a boat cap 8.

前記断熱材2と前記反応管7の下端近傍との間隙を閉塞する様に炉口断熱材10が設けられ、更に前記反応管7の下端部には断熱クロス11が巻設され、炉口部の温度低下を抑制している。   A furnace port heat insulating material 10 is provided so as to close a gap between the heat insulating material 2 and the vicinity of the lower end of the reaction tube 7, and a heat insulating cloth 11 is wound around the lower end portion of the reaction tube 7. The temperature drop is suppressed.

高温、1200℃以上では石英は耐熱性に問題があるので炭化硅素(Si C)が用いられる。従来の半導体製造装置の縦型炉に於いても、反応管7は炭化硅素で製作され、フランジアダプタ6は石英製で製作されている。   Since quartz has a problem in heat resistance at a high temperature of 1200 ° C. or higher, silicon carbide (SiC) is used. Even in a vertical furnace of a conventional semiconductor manufacturing apparatus, the reaction tube 7 is made of silicon carbide, and the flange adapter 6 is made of quartz.

上記した様に、反応管7の下端部はヒータユニット1に囲繞される加熱域から下方に突出している為、下端部と加熱域にある部分とは大きな温度差が生じる。反応管7の下端にフランジを設けた場合、前記温度差に起因する熱応力がフランジ部に集中する。又、反応管7の材料である炭化硅素は脆い材料であるので、大きな熱応力が生じると破損してしまう。この為前記反応管7の下端にはフランジを設けることができず、図4で示した従来例では反応管7の下端にはフランジが形成されていない。更に、前記反応管7とフランジアダプタ6との間には、耐熱性の問題からシール材が設けられてなく、前記反応管7とフランジアダプタ6との間のシールは反応管7下端面と反応管フランジアダプタ6上端面との面接触のみである。   As described above, since the lower end portion of the reaction tube 7 protrudes downward from the heating region surrounded by the heater unit 1, a large temperature difference occurs between the lower end portion and the portion in the heating region. When a flange is provided at the lower end of the reaction tube 7, thermal stress due to the temperature difference is concentrated on the flange portion. Further, since silicon carbide, which is a material for the reaction tube 7, is a brittle material, it is damaged when a large thermal stress is generated. For this reason, a flange cannot be provided at the lower end of the reaction tube 7. In the conventional example shown in FIG. 4, no flange is formed at the lower end of the reaction tube 7. Further, no sealing material is provided between the reaction tube 7 and the flange adapter 6 due to heat resistance, and the seal between the reaction tube 7 and the flange adapter 6 reacts with the lower end surface of the reaction tube 7. It is only surface contact with the upper end surface of the pipe flange adapter 6.

その為、クリーニングガスとして塩化水素(HCl)ガスを反応管7内に流すと、前記反応管7とフランジアダプタ6との接触面からHClガスが漏出し、装置の金属部を腐食させてしまうという問題があった。   Therefore, if hydrogen chloride (HCl) gas is flowed into the reaction tube 7 as a cleaning gas, the HCl gas leaks from the contact surface between the reaction tube 7 and the flange adapter 6 and corrodes the metal part of the apparatus. There was a problem.

本発明は斯かる実情に鑑み、高温処理用縦型炉に於いてクリーニングガスが反応炉より漏出することを防止し、クリーニングガスとしてHClガスの使用を可能としたものである。   In view of such circumstances, the present invention prevents the cleaning gas from leaking from the reaction furnace in the vertical furnace for high-temperature treatment, and enables the use of HCl gas as the cleaning gas.

本発明は、反応管の下端にフランジを形成し、フランジアダプタの上フランジと前記フランジ間にシール溝を形成し、前記フランジと前記上フランジとを重合させ、前記シール溝にシールガスを供給し、前記シール溝内の圧力は反応管内外の圧力よりも高くする工程と、前記反応管内にクリーニングガスを導入する工程とを具備した反応管のクリーニング方法に係るものである。 In the present invention , a flange is formed at the lower end of the reaction tube, a seal groove is formed between the upper flange of the flange adapter and the flange, the flange and the upper flange are overlapped, and a seal gas is supplied to the seal groove. Further, the present invention relates to a method for cleaning a reaction tube comprising a step of making the pressure in the seal groove higher than the pressure inside and outside the reaction tube and a step of introducing a cleaning gas into the reaction tube .

発明によれば、反応管の下端にフランジを形成し、フランジアダプタの上フランジと前記フランジ間にシール溝を形成し、前記フランジと前記上フランジとを重合させ、前記シール溝にシールガスを供給し、前記シール溝内の圧力は反応管内外の圧力よりも高くする工程と、前記反応管内にクリーニングガスを導入する工程とを具備したので、反応管内部への外部雰囲気の浸入、及び反応管内部からのガスの漏出が防止できるという優れた効果を発揮する。 According to the present invention, a flange is formed at the lower end of the reaction tube, a seal groove is formed between the upper flange of the flange adapter and the flange, the flange and the upper flange are overlapped, and seal gas is supplied to the seal groove. And supplying a pressure in the seal groove higher than the pressure inside and outside the reaction tube and a step of introducing a cleaning gas into the reaction tube. Excellent effect of preventing gas leakage from inside the tube.

本発明の実施を示す炉口部の部分断面図であり、図3のA−O−B断面図である。It is a fragmentary sectional view of the furnace port part which shows the Example of this invention, and is AA-B sectional drawing of FIG. 本発明の実施を示す炉口部の部分断面図であり、図3のC−O−D断面図である。It is a fragmentary sectional view of the furnace port part which shows the Example of this invention, and is COD sectional drawing of FIG. 本発明の実施を示す炉口部の平断面図であり、図1のE−E断面図である。It is a plane sectional view of a furnace mouth part showing an example of the present invention, and is an EE sectional view of FIG. 従来例の炉口部の断面図である。It is sectional drawing of the furnace port part of a prior art example.

以下、図面を参照しつつ本発明の実施を説明する。 Hereinafter, an embodiment of the present invention with reference to the drawings.

図1〜図3中、図4中で示したものと同様の構成要素には同符号を付してある。   1 to 3, the same components as those shown in FIG. 4 are denoted by the same reference numerals.

上下に上フランジ13a,下フランジ13bを有する石英製のフランジアダプタ13を反応管ベース5上に載設する。該フランジアダプタ13の上フランジ13aの上端はヒータユニット1の加熱域の下端と一致、又は略一致しており、前記上フランジ13aに炭化硅素製の反応管7のフランジ7aが重合され、反応管7が立設される。前記フランジアダプタ13のヒータベース3より下方に露出する部分には断熱クロス11が巻設されている。   A quartz flange adapter 13 having an upper flange 13 a and a lower flange 13 b on the upper and lower sides is mounted on the reaction tube base 5. The upper end of the upper flange 13a of the flange adapter 13 coincides with or substantially coincides with the lower end of the heating area of the heater unit 1, and the flange 7a of the reaction tube 7 made of silicon carbide is superposed on the upper flange 13a. 7 is erected. A heat insulating cloth 11 is wound around a portion of the flange adapter 13 exposed below the heater base 3.

前記断熱クロス11、前記フランジアダプタ13の円筒側壁を貫通して反応ガス導入ポート14が設けられる。該反応ガス導入ポート14は先端が閉塞され、先端部上面に反応ガス導入ノズル15が連通している。該反応ガス導入ノズル15は反応管7の上端部迄延び、反応ガス導入ポート14の上端、及び適宜箇所に穿設された導入孔(図示せず)より反応ガスを導入する様になっている。又、前記フランジアダプタ13の円筒側壁には排気ポート16が連通され、外端部は断熱クロス11を貫通して外部に突出している。 A reaction gas introduction port 14 is provided through the heat insulating cloth 11 and the cylindrical side wall of the flange adapter 13. The reaction gas introduction port 14 is closed at the tip, and a reaction gas introduction nozzle 15 communicates with the upper surface of the tip. The reaction gas introduction nozzle 15 extends to the upper end of the reaction tube 7 and introduces the reaction gas from the upper end of the reaction gas introduction port 14 and an introduction hole (not shown) drilled at an appropriate location. . An exhaust port 16 communicates with the cylindrical side wall of the flange adapter 13, and an outer end projects through the heat insulating cloth 11 and protrudes to the outside.

前記反応ガス導入ポート14には給気配管17が接続され、反応ガス導入ポート14のフランジ、給気配管17のフランジ間にOリング18が介設され、両フランジはフランジクランプ19により結合される。又、前記排気ポート16には排気配管20が接続され、排気ポート16のフランジ、排気配管20のフランジ間にOリング18が介設され、両フランジはフランジクランプ19により結合される。   An air supply pipe 17 is connected to the reaction gas introduction port 14, an O-ring 18 is interposed between the flange of the reaction gas introduction port 14 and the flange of the air supply pipe 17, and both flanges are connected by a flange clamp 19. . An exhaust pipe 20 is connected to the exhaust port 16, an O-ring 18 is interposed between the flange of the exhaust port 16 and the flange of the exhaust pipe 20, and both flanges are coupled by a flange clamp 19.

前記反応ガス導入ポート14、排気ポート16と干渉しない位置にシールガス導入ポート21を固着する。該シールガス導入ポート21と図示しないシールガス源とは配管22により接続する。又、前記上フランジ13aの上面にシール溝23が刻設され該シール溝23と前記シールガス導入ポート21とは給気連絡管24により連通され、前記シール溝23と前記排気ポート16とは排気連絡管25により連通されている。   A seal gas introduction port 21 is fixed at a position where it does not interfere with the reaction gas introduction port 14 and the exhaust port 16. The seal gas introduction port 21 and a seal gas source (not shown) are connected by a pipe 22. Also, a seal groove 23 is formed on the upper surface of the upper flange 13a, the seal groove 23 and the seal gas introduction port 21 are communicated with each other by an air supply communication pipe 24, and the seal groove 23 and the exhaust port 16 are exhausted. The communication pipe 25 communicates.

前記断熱クロス11の周面から挿入し、断熱クロス11の上端面から突出するL字状の窒素ガスパージノズル26、ガス検知ノズル27を各々設け、前記窒素ガスパージノズル26は図示しない窒素ガス供給源に接続し、前記ガス検知ノズル27は図示しないガス検出器にそれぞれ接続する。   An L-shaped nitrogen gas purge nozzle 26 and a gas detection nozzle 27 which are inserted from the peripheral surface of the heat insulation cloth 11 and protrude from the upper end surface of the heat insulation cloth 11 are provided, respectively. The nitrogen gas purge nozzle 26 serves as a nitrogen gas supply source (not shown). The gas detection nozzle 27 is connected to a gas detector (not shown).

尚、図中28はボートキャップ8のフランジと下フランジ13b間とをシールするOリングであり、29はボート受台9の下面に埋設され前記Oリング28を冷却する為の冷却管、30は下フランジ13bを固定するフランジ押え31に形成された冷却路32に冷却水を給排する為のノズルである。   In the figure, 28 is an O-ring that seals between the flange of the boat cap 8 and the lower flange 13b, 29 is a cooling pipe embedded in the lower surface of the boat cradle 9 to cool the O-ring 28, and 30 This is a nozzle for supplying and discharging cooling water to and from the cooling passage 32 formed in the flange presser 31 for fixing the lower flange 13b.

以下、作用を説明する。   The operation will be described below.

ヒータユニット1により加熱した状態で、図示しないボートにウェーハを装填し、ボートを反応管7内に装入し、前記給気配管17、反応ガス導入ポート14、反応ガス導入ノズル15を介して反応管7内に反応ガスを導入し、ウェーハに所要の処理、例えば酸化処理を行う。処理後のガスは前記排気ポート16、排気配管20を介して排出される。処理が完了したウェーハは図示しないボートと共に引出される。   In a state heated by the heater unit 1, a wafer is loaded into a boat (not shown), the boat is loaded into the reaction tube 7, and the reaction is performed through the air supply pipe 17, the reaction gas introduction port 14, and the reaction gas introduction nozzle 15. A reactive gas is introduced into the tube 7 and a required process, for example, an oxidation process is performed on the wafer. The treated gas is discharged through the exhaust port 16 and the exhaust pipe 20. The processed wafer is pulled out together with a boat (not shown).

次に、反応管7内をHClガスによるクリーニングを行う場合、ウェーハが装填されていないボートを反応管7内に装入し、前記給気配管17、反応ガス導入ポート14、反応ガス導入ノズル15を介して反応管7内にHClガスを導入し、更にHClガスを前記排気ポート16、排気配管20を介して排出する。   Next, when cleaning the inside of the reaction tube 7 with HCl gas, a boat on which no wafer is loaded is loaded into the reaction tube 7, and the air supply pipe 17, the reaction gas introduction port 14, the reaction gas introduction nozzle 15. Then, HCl gas is introduced into the reaction tube 7, and the HCl gas is further discharged through the exhaust port 16 and the exhaust pipe 20.

前記配管22、給気連絡管24を介して前記シール溝23にシールガス、例えば窒素ガスを供給する。シール溝23内の圧力は反応管7内外の圧力よりも高くしておき、該反応管7内のHClガスが上フランジ13aと反応管7のフランジ間より外部へリークするのをシールする。前記シール溝23内のガスは前記排気連絡管25を介して排気ポート16に排気される為、反応管内部からシール溝23へのHClガスのリークがあったとしても窒素ガスにより希釈された状態で排気ポート16に排出される。   A seal gas, such as nitrogen gas, is supplied to the seal groove 23 through the pipe 22 and the air supply communication pipe 24. The pressure in the seal groove 23 is set higher than the pressure inside and outside the reaction tube 7, and the HCl gas in the reaction tube 7 is sealed from leaking outside between the upper flange 13 a and the flange of the reaction tube 7. Since the gas in the seal groove 23 is exhausted to the exhaust port 16 through the exhaust communication pipe 25, even if there is a leak of HCl gas from the inside of the reaction pipe to the seal groove 23, the gas is diluted with nitrogen gas. Is discharged to the exhaust port 16.

又、前記窒素ガスパージノズル26から窒素ガスを上フランジ13a近傍に供給する。上フランジ13a近傍を窒素ガスで希釈し、前記ガス検知ノズル27によりHClガスのリークを監視する。HClガスのリークがあると前記ガス検知ノズル27を介して図示しないガス検知器が直ちにHClガスのリークを検出し、警報器を作動し、或は制御装置にフィードバックし反応管7のHClガスの供給を停止する等の処置を行う。   Further, nitrogen gas is supplied from the nitrogen gas purge nozzle 26 to the vicinity of the upper flange 13a. The vicinity of the upper flange 13a is diluted with nitrogen gas, and the leak of HCl gas is monitored by the gas detection nozzle 27. If there is a leak of HCl gas, a gas detector (not shown) immediately detects the leak of HCl gas via the gas detection nozzle 27 and activates an alarm or feeds back to the control device to supply the HCl gas in the reaction tube 7. Take measures such as stopping the supply.

前記した様に、酸化炉或は拡散炉では高温(1200℃)処理となり、炉口部の温度も又高温となる。前記反応管7の下端はヒータユニット1の下端と一致、或は略一致しており、本実施の様に炭化硅素製の反応管7下端にフランジ7aを形成したとしてもフランジ近傍で大きな温度差が生じることがない。従って、反応管7のフランジ7aが熱応力により破損することがない。更に、石英製のフランジアダプタ13はヒータユニット1内の加熱域に含まれる部分がないので、耐熱性が問題となることはない。 As described above, high temperature (1200 ° C.) treatment is performed in the oxidation furnace or diffusion furnace, and the temperature of the furnace opening is also high. Coincides with the lower end lower end of the heater unit 1 of the reaction tube 7, or has substantially coincide, large temperature in the flange near even to form a flange 7a to the reaction tube 7 the lower end of the silicon carbide as in this embodiment There is no difference. Therefore, the flange 7a of the reaction tube 7 is not damaged by thermal stress. Furthermore, since the quartz flange adapter 13 has no portion included in the heating region in the heater unit 1, heat resistance does not become a problem.

而して、炉口部が高温である縦型炉に於いてHClガスを用いて装置の洗浄が安全に行える。   Thus, the apparatus can be safely cleaned using HCl gas in a vertical furnace having a high furnace port portion.

尚、上記窒素ガスパージノズル26による窒素ガスのパージはガス検知ノズル27でHClガス等有害ガスのリークを検出した時点で開始してもよい。又、パージガス、或はシール溝23に供給するガスは窒素ガス以外の不活性ガス、例えばアルゴンガス、ヘリウムガスであってもよい。又、シール溝23は反応管7のフランジ7aに設けてもよく、或は上フランジ13a、フランジ7aの両方に形成してもよい。   The purge of nitrogen gas by the nitrogen gas purge nozzle 26 may be started when a leak of harmful gas such as HCl gas is detected by the gas detection nozzle 27. The purge gas or the gas supplied to the seal groove 23 may be an inert gas other than nitrogen gas, such as argon gas or helium gas. The seal groove 23 may be provided in the flange 7a of the reaction tube 7, or may be formed in both the upper flange 13a and the flange 7a.

(付記)(Appendix)
又、本発明は以下の実施の態様を含む。The present invention includes the following embodiments.

(付記1)石英製のフランジアダプタに立設した炭化珪素製の反応管の下端を、該反応管を囲繞するヒータユニット加熱域の下端に一致させたことを特徴とする半導体製造装置。(Additional remark 1) The semiconductor manufacturing apparatus characterized by making the lower end of the reaction tube made from silicon carbide standing upright on the quartz flange adapter correspond with the lower end of the heater unit heating area surrounding the reaction tube.

(付記2)石英製のフランジアダプタに立設した炭化珪素製の反応管と、ヒータベースに断熱材を介して立設されたヒータユニットとを有し、前記反応管の下端を前記断熱材の上端に一致させたことを特徴とする半導体製造装置。(Supplementary Note 2) A silicon carbide reaction tube erected on a quartz flange adapter and a heater unit erected on a heater base via a heat insulating material, the lower end of the reaction tube being connected to the heat insulating material A semiconductor manufacturing apparatus characterized by being aligned with the upper end.

(付記3)ウェーハを収容し処理する炭化珪素製の反応管と、ヒータユニットが立設されるヒータベースとを有し、前記反応管の下端を前記ヒータベースよりも上側に設けることを特徴とする半導体製造装置。(Additional remark 3) It has the reaction tube made from silicon carbide which accommodates and processes a wafer, and the heater base by which a heater unit is standingly arranged, The lower end of the said reaction tube is provided above the said heater base, It is characterized by the above-mentioned. Semiconductor manufacturing equipment.

(付記4)前記反応管の下端にフランジを形成し、前記フランジアダプタの上フランジと前記フランジ間にシール溝を形成し、前記フランジと前記上フランジとを重合させ、前記シール溝にシールガスを供給した付記1又は付記2の半導体製造装置。(Appendix 4) A flange is formed at the lower end of the reaction tube, a seal groove is formed between the upper flange and the flange of the flange adapter, the flange and the upper flange are polymerized, and a seal gas is supplied to the seal groove. The semiconductor manufacturing apparatus according to Supplementary Note 1 or Supplementary Note 2 supplied.

(付記5)前記反応管の前記フランジと前記フランジアダプタの前記上フランジとの重合位置近傍にガス検知ノズルを設けた付記4の半導体製造装置。(Additional remark 5) The semiconductor manufacturing apparatus of Additional remark 4 which provided the gas detection nozzle in the vicinity of the superposition | polymerization position of the said flange of the said reaction tube, and the said upper flange of the said flange adapter.

(付記6)前記反応管の前記フランジと前記フランジアダプタの前記上フランジとの重合位置付近に不活性パージガス供給用のガスパージノズルを設けた付記4の半導体製造装置。(Additional remark 6) The semiconductor manufacturing apparatus of additional remark 4 which provided the gas purge nozzle for inert purge gas supply in the vicinity of the superposition | polymerization position of the said flange of the said reaction tube, and the said upper flange of the said flange adapter.

付記7)1200℃以上の高温処理を行う付記1〜付記3のうちいずれか1つの半導体製造装置。 ( Supplementary note 7) The semiconductor manufacturing apparatus according to any one of supplementary notes 1 to 3, which performs high-temperature processing at 1200 ° C. or higher.

(付記8)ウェーハを収容し処理する炭化珪素製の反応管と、ヒータユニットが立設されるヒータベースとを有し、前記反応管の下端を前記ヒータベースよりも上側に設けた半導体製造装置を用いたウェーハ処理方法であって、前記反応管にウェーハを装入し、前記反応管に反応ガスを導入してウェーハに所要の処理を行うことを特徴とするウェーハ処理方法。(Additional remark 8) The semiconductor manufacturing apparatus which has the reaction tube made from silicon carbide which accommodates and processes a wafer, and the heater base by which a heater unit is erected, and provided the lower end of the reaction tube above the heater base A wafer processing method using a wafer, wherein a wafer is charged into the reaction tube, a reaction gas is introduced into the reaction tube, and a required process is performed on the wafer.

1 ヒータユニット
7 反応管
13 フランジアダプタ
13a 上フランジ
21 シールガス導入ポート
23 シール溝
24 給気連絡管
25 排気連絡管
26 窒素ガスパージノズル
27 ガス検知ノズル
DESCRIPTION OF SYMBOLS 1 Heater unit 7 Reaction pipe 13 Flange adapter 13a Upper flange 21 Seal gas introduction port 23 Seal groove 24 Supply communication pipe 25 Exhaust communication pipe 26 Nitrogen gas purge nozzle 27 Gas detection nozzle

Claims (1)

酸化炉或は拡散炉の様な高温処理炉に於ける反応管のクリーニング方法であって、反応管の下端にフランジを形成し、フランジアダプタの上フランジと前記フランジ間にシール溝を形成し、前記フランジと前記上フランジとを重合させ、前記シール溝にシールガスを供給し、前記シール溝内の圧力は反応管内外の圧力よりも高くする工程と、前記反応管内にクリーニングガスとしてHClガスを導入する工程と、前記シール溝内のシールガスを排気連絡管を介してクリーニングガスと合流させ共に排気する工程とを具備したことを特徴とする反応管のクリーニング方法。 A method of cleaning a reaction tube in a high-temperature treatment furnace such as an oxidation furnace or a diffusion furnace, wherein a flange is formed at the lower end of the reaction tube, a seal groove is formed between the upper flange of the flange adapter and the flange, The flange and the upper flange are polymerized, a seal gas is supplied to the seal groove, and the pressure in the seal groove is made higher than the pressure inside and outside the reaction tube, and HCl gas is used as a cleaning gas in the reaction tube. A method for cleaning a reaction tube , comprising the steps of introducing, and evacuating the seal gas in the seal groove with a cleaning gas through an exhaust communication tube .
JP2009039750A 2009-02-23 2009-02-23 Cleaning the reaction tube Expired - Lifetime JP4964908B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009039750A JP4964908B2 (en) 2009-02-23 2009-02-23 Cleaning the reaction tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009039750A JP4964908B2 (en) 2009-02-23 2009-02-23 Cleaning the reaction tube

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP27477695A Division JPH0997767A (en) 1995-09-28 1995-09-28 Vertical oven of semiconductor processing equipment

Publications (2)

Publication Number Publication Date
JP2009152628A JP2009152628A (en) 2009-07-09
JP4964908B2 true JP4964908B2 (en) 2012-07-04

Family

ID=40921320

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009039750A Expired - Lifetime JP4964908B2 (en) 2009-02-23 2009-02-23 Cleaning the reaction tube

Country Status (1)

Country Link
JP (1) JP4964908B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3129480B2 (en) * 1991-09-18 2001-01-29 東京エレクトロン株式会社 Gas shield device and heat treatment device
JP3050354B2 (en) * 1993-09-20 2000-06-12 東京エレクトロン株式会社 Processing method
JP3450033B2 (en) * 1993-09-22 2003-09-22 株式会社日立国際電気 Heat treatment equipment

Also Published As

Publication number Publication date
JP2009152628A (en) 2009-07-09

Similar Documents

Publication Publication Date Title
US5484484A (en) Thermal processing method and apparatus therefor
TWI495836B (en) Vertical heat treatment apparatus and assembly of pressure detection system and temperature sensor
US6482753B1 (en) Substrate processing apparatus and method for manufacturing semiconductor device
WO2007111351A1 (en) Semiconductor device manufacturing method
JP3468577B2 (en) Heat treatment equipment
JP4964908B2 (en) Cleaning the reaction tube
JP2007073746A (en) Substrate processing device
JP2012054393A (en) Substrate processing apparatus and semiconductor manufacturing method
KR20070024806A (en) Heating jacket
JPH0997767A (en) Vertical oven of semiconductor processing equipment
JP4361668B2 (en) Heat treatment apparatus and method
JP2009088346A (en) Substrate processing apparatus
JP4167280B2 (en) Semiconductor manufacturing apparatus and semiconductor manufacturing method
KR20070023406A (en) apparatus for manufacturing semiconductor having a thermal exaust duct
JP2009129925A (en) Device and method for treating substrate
JP3578258B2 (en) Heat treatment equipment
JP6817911B2 (en) Cleaning method for wafer boat support, heat treatment equipment and heat treatment equipment
US6485297B2 (en) Thermal treatment furnace having gas leakage preventing function
JP5109588B2 (en) Heat treatment equipment
KR100614641B1 (en) Apparatus for manufacturing semiconductor devices
JP2003209064A (en) Semiconductor device manufacturing apparatus
JP5457654B2 (en) Semiconductor device manufacturing method and heat treatment furnace cleaning method
TW202335086A (en) Leakage detection device, method for manufacturing semiconductor device, substrate treatment method, and program
KR100648330B1 (en) The Vacuum-Exhaust Head of a Frit Seal and Exhaust Device for Plasma Display Panel
JP2007027427A (en) Substrate processing device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111213

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120306

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120328

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150406

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term