JP4964760B2 - Bisphosphite and method for producing aldehyde compound using the bisphosphite and Group 8-10 metal compound - Google Patents

Bisphosphite and method for producing aldehyde compound using the bisphosphite and Group 8-10 metal compound Download PDF

Info

Publication number
JP4964760B2
JP4964760B2 JP2007504808A JP2007504808A JP4964760B2 JP 4964760 B2 JP4964760 B2 JP 4964760B2 JP 2007504808 A JP2007504808 A JP 2007504808A JP 2007504808 A JP2007504808 A JP 2007504808A JP 4964760 B2 JP4964760 B2 JP 4964760B2
Authority
JP
Japan
Prior art keywords
group
carbon atoms
atom
halogen atom
substituent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007504808A
Other languages
Japanese (ja)
Other versions
JPWO2006090832A1 (en
Inventor
尚 杉岡
仁 徳安
秀治 岩崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP2007504808A priority Critical patent/JP4964760B2/en
Publication of JPWO2006090832A1 publication Critical patent/JPWO2006090832A1/en
Application granted granted Critical
Publication of JP4964760B2 publication Critical patent/JP4964760B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/18Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms
    • B01J31/1845Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms the ligands containing phosphorus
    • B01J31/185Phosphites ((RO)3P), their isomeric phosphonates (R(RO)2P=O) and RO-substitution derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/49Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reaction with carbon monoxide
    • C07C45/50Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reaction with carbon monoxide by oxo-reactions
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/547Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
    • C07F9/6564Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms
    • C07F9/6571Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms having phosphorus and oxygen atoms as the only ring hetero atoms
    • C07F9/6574Esters of oxyacids of phosphorus
    • C07F9/65746Esters of oxyacids of phosphorus the molecule containing more than one cyclic phosphorus atom
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/30Addition reactions at carbon centres, i.e. to either C-C or C-X multiple bonds
    • B01J2231/32Addition reactions to C=C or C-C triple bonds
    • B01J2231/321Hydroformylation, metalformylation, carbonylation or hydroaminomethylation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/82Metals of the platinum group
    • B01J2531/822Rhodium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

本発明は、新規なビスホスファイトに関する。また、該ビスホスファイトおよび第8〜10族金属化合物を含有する組成物に関する。さらに、該ビスホスファイトおよび第8〜10族金属化合物を用いたアルデヒド化合物の製造方法に関する。かかる製造方法により得られるアルデヒド化合物は、医農薬中間体、各種化学品の原料などとして有用である。   The present invention relates to a novel bisphosphite. Moreover, it is related with the composition containing this bisphosphite and a group 8-10 metal compound. Furthermore, it is related with the manufacturing method of the aldehyde compound using this bisphosphite and a group 8-10 metal compound. Aldehyde compounds obtained by such production methods are useful as intermediates for pharmaceuticals and agricultural chemicals, as raw materials for various chemicals, and the like.

第8〜10族金属化合物もしくは第8〜10族金属化合物およびリン化合物の存在下、オレフィン性化合物を一酸化炭素および水素と反応させてアルデヒド化合物を製造する方法は「ヒドロホルミル化反応」または「オキソ反応」と称されており、アルデヒド化合物の製造方法として工業的に極めて価値が高いことは広く知られている。   A method for producing an aldehyde compound by reacting an olefinic compound with carbon monoxide and hydrogen in the presence of a Group 8-10 metal compound or a Group 8-10 metal compound and a phosphorus compound is referred to as “hydroformylation reaction” or “oxo”. It is widely known that it is industrially extremely valuable as a method for producing aldehyde compounds.

かかるヒドロホルミル化反応には、一般的に、ロジウム化合物もしくはロジウム化合物およびリン化合物が触媒として工業的に使用されている。従来、かかるリン化合物としては、例えばトリブチルホスフィン、トリオクチルホスフィン、トリシクロヘキシルホスフィン、トリフェニルホスフィン、トリ(p−トリル)ホスフィンなどのホスフィン(例えば、特許文献1参照);トリフェニルホスファイト、トリ−n−ブチルホスファイト、トリス(2−t−ブチル−4−メチルフェニル)ホスファイトなどのモノホスファイト(例えば、非特許文献1および2参照);ビス[3,3’,5,5’−テトラ−t−ブチル(1,1’−ビフェニル)−2,2’−ジイル]−1,2−エチルビスホスファイト、ビス[3,3’,5,5’−テトラ−t−ブチル(1,1’−ビフェニル)−2,2’−ジイル]−2,7,9,9−テトラメチル−9H−キサンチン−4,5−ジイルビスホスファイト、ビス[3,3’−ジ−t−ブチル−5,5’−ジメトキシ(1,1’−ビフェニル)−2,2’−ジイル]−2,7,9,9−テトラメチル−9H−キサンチン−4,5−ジイルビスホスファイトおよび下記式   In the hydroformylation reaction, a rhodium compound or a rhodium compound and a phosphorus compound are generally used industrially as a catalyst. Conventionally, examples of such phosphorus compounds include phosphines such as tributylphosphine, trioctylphosphine, tricyclohexylphosphine, triphenylphosphine, and tri (p-tolyl) phosphine (see, for example, Patent Document 1); triphenylphosphite, tri- monophosphites such as n-butyl phosphite and tris (2-t-butyl-4-methylphenyl) phosphite (see, for example, Non-Patent Documents 1 and 2); bis [3,3 ′, 5,5′- Tetra-t-butyl (1,1′-biphenyl) -2,2′-diyl] -1,2-ethylbisphosphite, bis [3,3 ′, 5,5′-tetra-t-butyl (1 , 1′-biphenyl) -2,2′-diyl] -2,7,9,9-tetramethyl-9H-xanthine-4,5-diylbisphosphine And bis [3,3′-di-t-butyl-5,5′-dimethoxy (1,1′-biphenyl) -2,2′-diyl] -2,7,9,9-tetramethyl-9H -Xanthine-4,5-diylbisphosphite and the following formula

Figure 0004964760
Figure 0004964760

で示されるビスホスファイトなどのビスホスファイト(例えば、非特許文献3、非特許文献4、特許文献2および特許文献3参照)などが知られており、これらを用いたヒドロホルミル化反応が開発されてきた。 Bisphosphites such as bisphosphite (for example, see Non-patent Document 3, Non-patent Document 4, Patent Document 2, and Patent Document 3) are known, and hydroformylation reactions using these have been developed. I came.

特開平8−10624号公報JP-A-8-10624 特開平6−184036号公報JP-A-6-184036 国際公開第04/035595号パンフレットInternational Publication No. 04/035955 Pamphlet ザ ジャーナル オブ オーガニック ケミストリー(The Journal of Organic Chemistry)、1969年、第34巻、第2号、p.327〜330The Journal of Organic Chemistry, 1969, Vol. 34, No. 2, p. 327-330 ジャーナル オブ ザ ケミカル ソサエティー、ケミカル コミュニケーションズ(Journal of the Chemical Society,Chemical Communications)、1991年、p.1096〜1097Journal of the Chemical Society, Chemical Communications, 1991, p. 1096-1097 オルガノメタリクス(Organometallics)、1996年、第15巻、p.835〜847Organometallics, 1996, Vol. 15, p. 835-847 ヘルベチカ キミカ アクタ(Helvetica Chimica Acta)、2001年、第84巻、p.3269〜3280Helvetica Chimica Acta, 2001, 84, p. 3269-3280

上記した特許文献1および非特許文献1〜3に記載のリン化合物を用いたヒドロホルミル化反応の場合、高圧・高温下(例えば10MPa・150℃)では反応の進行に伴い触媒が失活してしまうという問題がある。また、温和な条件下(例えば3MPa・80℃)では、触媒活性が低いなどの問題があり、これを回避するには、ロジウム化合物およびホスフィン、モノホスファイトまたはビスホスファイトなどのリン化合物の使用量を多くしなければならず、アルデヒド化合物の製造コストが増大するという問題がある。
一方、特許文献2に具体的に記載されているビスホスファイトを用いたヒドロホルミル化反応では、比較的温和な条件下[例えば、特許文献2の実施例1では、ロジウム原子300ppm(質量比)、反応温度95℃、反応圧力約3.5MPaの条件下]でも反応が進行する。ところが、ロジウム化合物を始め、ヒドロホルミル化反応に使用し得る第8〜10族金属化合物は比較的高価であるため、反応系における第8〜10族金属化合物の使用量を少なく[例えば、第8〜10族金属原子濃度50ppm(質量比)以下]するか、または第8〜10族金属化合物を回収・再使用しながらヒドロホルミル化反応を行なうことが、アルデヒド化合物の製造コスト削減の観点から好ましい。しかし、かかる第8〜10族金属化合物の回収・再使用には煩雑な製造設備が必要になるという問題がある。このため、触媒活性を高く保ちつつ、第8〜10族金属化合物の濃度を小さくする方法がより求められている。
本発明者等は、前記特許文献2に記載のビスホスファイトを用いて、3MPa・120℃の条件下、且つ反応系におけるロジウム化合物の濃度を小さく[ロジウム原子濃度5ppm(質量比)]して7−オクテナールのヒドロホルミル化反応を実施したところ、オレフィン性化合物の炭素−炭素二重結合の異性化が生じる割合(以下、異性化率と称する。)が増大して目的化合物の選択率が低下するという問題が生じることを確認した(本願明細書の比較例1参照)。
よって、従来のヒドロホルミル化反応において使用するリン化合物には、さらなる改良の余地があり、第8〜10族金属化合物の濃度を小さくしても、生産性を低下させず、且つ異性化率を抑制できるビスホスファイトが望まれている。
しかして、本発明の目的は、上記問題点を解決したビスホスファイト、該ビスホスファイトおよび第8〜10族金属化合物を含有する組成物、並びに該ビスホスファイトおよび第8〜10族金属化合物を用いたアルデヒド化合物の製造方法を提供することにある。
本発明者等は、上記目的を達成するために種々のビスホスファイトについて検討を行ない、鋭意検討の結果、後述する特定の構造を有するビスホスファイトが、第8〜10族金属化合物の濃度を小さくしても、高い異性化率抑制効果および高いヒドロホルミル化反応活性を有することを見い出し、本発明を完成した。なお、本発明で詳細に説明する特定のビスホスファイトは、特許文献3に記載されている一般式(I)のビスホスファイトに形式上包含されている(Wが式(II)である場合に相当する。)が、かかる特許文献3に具体的に記載されているのは、該特許文献3の第7頁以降に記載されている式(VI)タイプのビスホスファイトのみであり、本発明のビスホスファイトの構造については具体的には記載されておらず、実施例で実際に製造していないため、物性データも示されていない。さらには、本発明のビスホスファイトを用いたヒドロホルミル化反応について全く記載されておらず、どのような効果が得られるかも不明である。
In the case of the hydroformylation reaction using the phosphorus compounds described in Patent Document 1 and Non-Patent Documents 1 to 3, the catalyst is deactivated as the reaction proceeds under high pressure and high temperature (for example, 10 MPa · 150 ° C.). There is a problem. Moreover, under mild conditions (for example, 3 MPa · 80 ° C.), there are problems such as low catalytic activity. To avoid this, use of rhodium compounds and phosphorus compounds such as phosphines, monophosphites or bisphosphites There is a problem that the production amount of the aldehyde compound increases because the amount must be increased.
On the other hand, in the hydroformylation reaction using bisphosphite specifically described in Patent Document 2, the conditions are relatively mild [for example, in Example 1 of Patent Document 2, rhodium atoms are 300 ppm (mass ratio), The reaction proceeds even under a reaction temperature of 95 ° C. and a reaction pressure of about 3.5 MPa. However, since the Group 8-10 metal compounds that can be used in the hydroformylation reaction, including rhodium compounds, are relatively expensive, the amount of the Group 8-10 metal compound used in the reaction system is small [eg, It is preferable from the viewpoint of reducing the production cost of the aldehyde compound that the group 10 metal atom concentration is 50 ppm (mass ratio or less)] or that the hydroformylation reaction is performed while collecting and reusing the group 8-10 metal compound. However, there is a problem that complicated production facilities are required for the collection and reuse of the Group 8-10 metal compounds. For this reason, the method of reducing the density | concentration of a 8th-10th group metal compound, keeping a catalyst activity high is calculated | required more.
The present inventors reduced the concentration of rhodium compound in the reaction system under the conditions of 3 MPa · 120 ° C. [rhodium atom concentration 5 ppm (mass ratio)] using the bisphosphite described in Patent Document 2. When the hydroformylation reaction of 7-octenal was carried out, the rate of isomerization of the carbon-carbon double bond of the olefinic compound (hereinafter referred to as isomerization rate) increased and the selectivity of the target compound decreased. (See Comparative Example 1 in the present specification).
Therefore, there is room for further improvement in the phosphorus compounds used in the conventional hydroformylation reaction. Even if the concentration of the Group 8-10 metal compound is reduced, the productivity is not lowered and the isomerization rate is suppressed. Bisphosphites that can be produced are desired.
Accordingly, an object of the present invention is to provide a bisphosphite, a composition containing the bisphosphite and a Group 8-10 metal compound, and the bisphosphite and a Group 8-10 metal compound, which have solved the above problems. It is providing the manufacturing method of the aldehyde compound using this.
In order to achieve the above object, the present inventors have studied various bisphosphites. As a result of intensive studies, the bisphosphites having a specific structure to be described later have a concentration of the group 8-10 metal compound. Even if it was made smaller, it was found that it has a high isomerization rate suppressing effect and a high hydroformylation reaction activity, and the present invention has been completed. The specific bisphosphite described in detail in the present invention is formally included in the bisphosphite of the general formula (I) described in Patent Document 3 (when W is the formula (II)) However, only the bisphosphite of the formula (VI) type described on page 7 and after of this patent document 3 is specifically described in this patent document 3. The structure of the bisphosphite of the invention is not specifically described, and physical properties data are not shown because it is not actually manufactured in the examples. Furthermore, the hydroformylation reaction using the bisphosphite of the present invention is not described at all, and it is also unclear what effect can be obtained.

すなわち、本発明は、
(1)下記一般式(I)
That is, the present invention
(1) The following general formula (I)

Figure 0004964760
Figure 0004964760

[式中、Aは、置換基として炭素数1〜5のアルキル基、炭素数1〜3のフルオロアルキル基、ハロゲン原子、炭素数1〜4のアルコキシル基から選択される基を有していてもよいアルキレン基置換基として炭素数1〜5のアルキル基、炭素数1〜3のフルオロアルキル基、ハロゲン原子、炭素数1〜4のアルコキシル基から選択される基を有していてもよいシクロアルキレン基置換基として炭素数1〜5のアルキル基、炭素数1〜3のフルオロアルキル基、ハロゲン原子、炭素数1〜4のアルコキシル基から選択される基を有していてもよいアリーレン基式−Z−Z’−(式中、ZおよびZ’は同一または異なっていてもよく、それぞれ置換基として炭素数1〜5のアルキル基、炭素数1〜3のフルオロアルキル基、ハロゲン原子、炭素数1〜4のアルコキシル基から選択される基を有していてもよいアリーレン基を表わす。)で示される基;または式−Z−Q−Z’−(式中、ZおよびZ’は前記定義の通りであり、Qは酸素原子または置換基として炭素数1〜5のアルキル基、炭素数1〜3のフルオロアルキル基、ハロゲン原子、炭素数1〜4のアルコキシル基から選択される基を有していてもよいアルキレン基を表わす。)で示される基を表し、アルキレン基およびシクロアルキレン基は、いずれもその少なくとも1つの炭素原子が酸素原子で置換されていてもよい。
また、R、R、R、R、R、R、R、R、R、R10、R11およびR12は同一または異なっていてもよく、それぞれ水素原子ハロゲン原子置換基としてハロゲン原子、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、ブトキシ基、イソブトキシ基、s−ブトキシ基、t−ブトキシ基から選択される基を有していてもよいアルキル基置換基としてハロゲン原子、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、s−ブチル基、t−ブチル基、シクロヘキシル基、ジフルオロメチル基、トリフルオロメチル基、1,1−ジフルオロエチル基、2,2−ジフルオロエチル基、1−フルオロプロピル基、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、ブトキシ基、イソブトキシ基、s−ブトキシ基、t−ブトキシ基から選択される基を有していてもよいアリール基またはアルコキシル基を表す。]
で示されるビスホスファイト(以下、ビスホスファイト(I)と略称する。)、
(2)オレフィン性化合物を、ビスホスファイト(I)およびロジウム化合物、コバルト化合物、ルテニウム化合物、鉄化合物から選択される第8〜10族金属化合物の存在下に一酸化炭素および水素と反応させることを特徴とするアルデヒド化合物の製造方法、および
(3)ビスホスファイト(I)およびロジウム化合物、コバルト化合物、ルテニウム化合物、鉄化合物から選択される第8〜10族金属化合物を含有する、オレフィン性化合物のヒドロホルミル化反応、不飽和結合の水素化反応、炭素−炭素結合形成反応の触媒として用いる組成物(以下、組成物(II)と略称する。)、
である。

[In the formula, A has a group selected from an alkyl group having 1 to 5 carbon atoms, a fluoroalkyl group having 1 to 3 carbon atoms, a halogen atom, and an alkoxyl group having 1 to 4 carbon atoms as a substituent. also an alkylene group; an alkyl group having 1 to 5 carbon atoms as a substituent, fluoroalkyl group having 1 to 3 carbon atoms, a halogen atom, may have a group selected from alkoxyl groups having 1 to 4 carbon atoms A cycloalkylene group ; an arylene which may have a substituent selected from an alkyl group having 1 to 5 carbon atoms, a fluoroalkyl group having 1 to 3 carbon atoms, a halogen atom, and an alkoxyl group having 1 to 4 carbon atoms as a substituent Group : Formula -Z-Z'- (wherein Z and Z 'may be the same or different, each having 1 to 5 carbon atoms, 1 to 3 fluoroalkyl groups, or halogen as substituents ; Atom, charcoal . Which may have a group selected from alkoxyl groups having 1 to 4 represent an arylene group group represented by); or formula -Z-Q-Z '- (wherein, Z and Z' are the Q is an oxygen atom or a substituent selected from an alkyl group having 1 to 5 carbon atoms, a fluoroalkyl group having 1 to 3 carbon atoms, a halogen atom, and an alkoxyl group having 1 to 4 carbon atoms. Represents an alkylene group which may be present.) In the alkylene group and the cycloalkylene group, at least one carbon atom thereof may be substituted with an oxygen atom.
R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , R 10 , R 11 and R 12 may be the same or different, and each is a hydrogen atom ; A halogen atom ; an alkyl optionally having a group selected from a halogen atom, a methoxy group, an ethoxy group, a propoxy group, an isopropoxy group, a butoxy group, an isobutoxy group, an s-butoxy group and a t-butoxy group as a substituent Group : a halogen atom, methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, s-butyl group, t-butyl group, cyclohexyl group, difluoromethyl group, trifluoromethyl group, 1, 1-difluoroethyl group, 2,2-difluoroethyl group, 1-fluoropropyl group, methoxy group, ethoxy group, propoxy group, isopropoxy An aryl group which may have a group selected from a cis group, a butoxy group, an isobutoxy group, an s-butoxy group and a t-butoxy group ; or an alkoxyl group. ]
Bisphosphite (hereinafter abbreviated as bisphosphite (I)),
(2) Reacting an olefinic compound with carbon monoxide and hydrogen in the presence of a bisphosphite (I) and a group 8-10 metal compound selected from rhodium compounds, cobalt compounds, ruthenium compounds, and iron compounds. And (3) an olefinic compound containing a group 8-10 metal compound selected from bisphosphite (I) and a rhodium compound, a cobalt compound, a ruthenium compound, and an iron compound A composition used as a catalyst for hydroformylation reaction, hydrogenation reaction of unsaturated bond, carbon-carbon bond formation reaction (hereinafter abbreviated as composition (II)),
It is.

本発明の新規なビスホスファイト(I)は、例えばオレフィン性化合物のヒドロホルミル化反応に触媒成分として使用すると、第8〜10族金属化合物の濃度が小さくても、比較的高温条件下(例えば3MPa・100℃)においても異性化率を抑制できる。   When the novel bisphosphite (I) of the present invention is used as a catalyst component in a hydroformylation reaction of an olefinic compound, for example, even if the concentration of the Group 8-10 metal compound is small, it is under relatively high temperature conditions (for example, 3 MPa). -The isomerization rate can be suppressed even at 100 ° C.

上記一般式中、AおよびQがそれぞれ独立して表わすアルキレン基としては、例えばメチレン基、エチレン基、トリメチレン基、テトラメチレン基、ペンタメチレン基、ヘキサメチレン基、ヘプタメチレン基、ノナメチレン基、デカメチレン基、下記式   In the above general formula, as the alkylene groups each independently represented by A and Q, for example, methylene group, ethylene group, trimethylene group, tetramethylene group, pentamethylene group, hexamethylene group, heptamethylene group, nonamethylene group, decamethylene group , The following formula

Figure 0004964760
(式中、波線は置換部位を表わす。)
Figure 0004964760
(In the formula, the wavy line represents the substitution site.)

で表わされる基などが挙げられる。Aが表わすシクロアルキレン基としては、例えばシクロプロピレン基、1,2−シクロペンチレン基、1,3−シクロペンチレン基、1,2−シクロヘキシレン基、1,3−シクロへキシレン基、1,4−シクロへキシレン基などが挙げられる。A、Z、Z’がそれぞれ独立して表わすアリーレン基としては、例えば1,2−フェニレン基、1,3−フェニレン基、1,4−フェニレン基、1,2−ナフチレン基、1,8−ナフチレン基などが挙げられる。式−Z−Z’−で示される基の具体例としては、例えば下記式 And the group represented by Examples of the cycloalkylene group represented by A include a cyclopropylene group, 1,2-cyclopentylene group, 1,3-cyclopentylene group, 1,2-cyclohexylene group, 1,3-cyclohexylene group, 1 , 4-cyclohexylene group and the like. Examples of the arylene group that A, Z, and Z ′ represent independently are 1,2-phenylene group, 1,3-phenylene group, 1,4-phenylene group, 1,2-naphthylene group, 1,8- And a naphthylene group. Specific examples of the group represented by the formula -Z-Z'- include, for example, the following formula

Figure 0004964760
Figure 0004964760

(式中、波線は置換部位を示す。)
で表わされる基などが挙げられる。式−Z−Q−Z’−で示される基の具体例としては、例えば下記式
(In the formula, a wavy line indicates a substitution site.)
And the group represented by Specific examples of the group represented by the formula -ZQZ'- include, for example, the following formula

Figure 0004964760
Figure 0004964760

(式中、波線は置換部位を示す。)
で表わされる基などが挙げられる。
これらの基はいずれも置換基を有していてもよく、かかる置換基としては、例えばメチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、s−ブチル基、t−ブチル基、n−ペンチル基などの好ましくは炭素数1〜5のアルキル基;ジフルオロメチル基、トリフルオロメチル基、1,1−ジフルオロエチル基、2,2−ジフルオロエチル基、1−フルオロプロピル基などの好ましくは炭素数1〜3のフルオロアルキル基;フッ素原子、塩素原子、臭素原子、ヨウ素原子などのハロゲン原子;メトキシ基、エトキシ基、n−プロポキシ基、イソプロポキシ基、n−ブトキシ基、イソブトキシ基、s−ブトキシ基、t−ブトキシ基などの好ましくは炭素数1〜4のアルコキシル基などが挙げられる。
また、前記したアルキレン基およびシクロアルキレン基は、いずれもその少なくとも1つの炭素原子が酸素原子で置換されていてもよい。
(In the formula, a wavy line indicates a substitution site.)
And the group represented by
Any of these groups may have a substituent, such as a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, an s-butyl group, Preferably an alkyl group having 1 to 5 carbon atoms such as t-butyl group and n-pentyl group; difluoromethyl group, trifluoromethyl group, 1,1-difluoroethyl group, 2,2-difluoroethyl group, 1-fluoro Preferably a fluoroalkyl group having 1 to 3 carbon atoms such as propyl group; halogen atom such as fluorine atom, chlorine atom, bromine atom and iodine atom; methoxy group, ethoxy group, n-propoxy group, isopropoxy group, n-butoxy Preferably, an alkoxyl group having 1 to 4 carbon atoms such as a group, an isobutoxy group, an s-butoxy group, and a t-butoxy group is used.
In any of the above-described alkylene group and cycloalkylene group, at least one carbon atom may be substituted with an oxygen atom.

、R、R、R、R、R、R、R、R、R10、R11およびR12がそれぞれ独立して表わすアルキル基としては、例えばメチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、s−ブチル基、t−ブチル基、n−ペンチル基などが挙げられる。かかるアルキル基は置換基を有していてもよく、置換基としては、例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子などのハロゲン原子;メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、ブトキシ基、イソブトキシ基、s−ブトキシ基、t−ブトキシ基などのアルコキシル基などが挙げられる。Examples of the alkyl group independently represented by R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , R 10 , R 11 and R 12 include a methyl group, Examples include ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, s-butyl group, t-butyl group, n-pentyl group and the like. Such an alkyl group may have a substituent. Examples of the substituent include halogen atoms such as fluorine atom, chlorine atom, bromine atom and iodine atom; methoxy group, ethoxy group, propoxy group, isopropoxy group, butoxy Groups, alkoxyl groups such as isobutoxy group, s-butoxy group and t-butoxy group.

、R、R、R、R、R、R、R、R、R10、R11およびR12がそれぞれ独立して表わすアリール基としては、例えばフェニル基、ナフチル基などが挙げられる。かかるアリール基は置換基を有していてもよく、置換基としては、例えばメチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、s−ブチル基、t−ブチル基、シクロヘキシル基などのアルキル基;ジフルオロメチル基、トリフルオロメチル基、1,1−ジフルオロエチル基、2,2−ジフルオロエチル基、1−フルオロプロピル基などのフルオロアルキル基;メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、ブトキシ基、イソブトキシ基、s−ブトキシ基、t−ブトキシ基などのアルコキシル基;フッ素原子、塩素原子、臭素原子、ヨウ素原子などのハロゲン原子などが挙げられる。Examples of the aryl group represented by R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , R 10 , R 11 and R 12 independently include a phenyl group, And a naphthyl group. Such an aryl group may have a substituent. Examples of the substituent include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a s-butyl group, a t-butyl group, and a cyclohexyl group. Alkyl groups such as difluoromethyl group, trifluoromethyl group, 1,1-difluoroethyl group, 2,2-difluoroethyl group, 1-fluoropropyl group, etc .; methoxy group, ethoxy group, propoxy group, Examples thereof include alkoxyl groups such as isopropoxy group, butoxy group, isobutoxy group, s-butoxy group and t-butoxy group; halogen atoms such as fluorine atom, chlorine atom, bromine atom and iodine atom.

、R、R、R、R、R、R、R、R、R10、R11およびR12がそれぞれ独立して表わすアルコキシル基としては、例えばメトキシ基、エトキシ基、n−プロポキシ基、イソプロポキシ基、n−ブトキシ基、イソブトキシ基、s−ブトキシ基、t−ブトキシ基などが挙げられ、ハロゲン原子としては、例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子などが挙げられる。Examples of the alkoxyl group independently represented by R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , R 10 , R 11 and R 12 include a methoxy group, An ethoxy group, an n-propoxy group, an isopropoxy group, an n-butoxy group, an isobutoxy group, an s-butoxy group, a t-butoxy group, and the like. Examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and iodine. An atom etc. are mentioned.

まず、本発明のビスホスファイト(I)について説明する。
ビスホスファイト(I)の製造方法に特に制限はないが、例えば下記一般式(III)
First, the bisphosphite (I) of the present invention will be described.
Although there is no restriction | limiting in particular in the manufacturing method of bisphosphite (I), For example, following general formula (III)

[化6] MO−A−OM (III)[Chemical Formula 6] M 1 O-A-OM 2 (III)

(式中、Aは前記定義の通りであり、MおよびMは水素原子またはアルカリ金属を表す。)
で示されるジオール化合物またはジオール誘導体(以下、これらをジオール(III)と総称する。)、下記一般式(IV)
(In the formula, A is as defined above, and M 1 and M 2 represent a hydrogen atom or an alkali metal.)
A diol compound or a diol derivative (hereinafter collectively referred to as diol (III)), represented by the following general formula (IV)

Figure 0004964760
Figure 0004964760

(式中、R、R、R、R、RおよびRは前記定義の通りであり、Xは塩素原子、臭素原子またはヨウ素原子を表す。)
で示されるハロゲン化ホスファイト(以下、ハロゲン化ホスファイト(IV)と略称する。)および一般式(V)
(Wherein R 1 , R 2 , R 3 , R 4 , R 5 and R 6 are as defined above, and X represents a chlorine atom, a bromine atom or an iodine atom.)
A halogenated phosphite (hereinafter abbreviated as a halogenated phosphite (IV)) and a general formula (V)

Figure 0004964760
Figure 0004964760

(式中、R、R、R、R10、R11、R12およびXは前記定義の通りである。)
で示されるハロゲン化ホスファイト(以下、これをハロゲン化ホスファイト(V)と略称する。かかるハロゲン化ホスファイト(V)は、ハロゲン化ホスファイト(IV)と同一構造であってもよい。)を、不活性ガス雰囲気下、溶媒および、ジオール(III)におけるMおよび/またはMが水素原子の場合にはさらに塩基性物質の存在下、同時に、または順次反応させる(以下、「ビスホスファイト製造反応A」と称する。)ことにより製造することができる[例えば、オルガノメタリクス(Organometallics)、1996年、第15巻、p.835〜847参照]。以下、この方法について説明する。
(Wherein R 7 , R 8 , R 9 , R 10 , R 11 , R 12 and X are as defined above.)
(Hereinafter, this is abbreviated as a halogenated phosphite (V). The halogenated phosphite (V) may have the same structure as the halogenated phosphite (IV).) Are reacted simultaneously or sequentially in the presence of a solvent and a basic substance when M 1 and / or M 2 in the diol (III) are hydrogen atoms in an inert gas atmosphere (hereinafter referred to as “bisphosphine”). (For example, Organometallics, 1996, Vol. 15, p. 15). 835-847]. Hereinafter, this method will be described.

まず、ビスホスファイト(I)の原料であるジオール(III)は、例えば下記式   First, diol (III) which is a raw material of bisphosphite (I) is, for example, the following formula

Figure 0004964760
Figure 0004964760

で表わされるジオール化合物の場合は、少なくとも片方のオルト位が無置換であるフェノール誘導体2分子とホルムアルデヒド1分子との縮合反応(例えば、有機合成化学協会誌、1970年、第28巻、第11号、p.1133参照)などによって製造できる。下記式 In the case of the diol compound represented by the formula (1), a condensation reaction of two molecules of a phenol derivative having at least one ortho position unsubstituted and one molecule of formaldehyde (for example, Journal of Synthetic Organic Chemistry, 1970, Vol. 28, No. 11) , P. 1133). Following formula

Figure 0004964760
Figure 0004964760

で表わされるジオール化合物の場合は、2−ハロゲノフェノール誘導体を加水分解してカテコール誘導体を合成する際の蒸留残渣中に副生成物として含まれるジオールを精製する方法などによって製造できる(例えば、特開昭50−111030号公報参照)。また、下記式 Can be produced by a method of purifying a diol contained as a by-product in a distillation residue when hydrolyzing a 2-halogenophenol derivative to synthesize a catechol derivative (for example, JP (See Japanese Laid-Open Patent Publication No. 50-1111030). Also, the following formula

Figure 0004964760
Figure 0004964760

で表わされるジオール化合物の場合は、フェノール誘導体2分子を銅触媒の存在下に反応させる方法(例えば、「実験化学講座」、丸善株式会社、2004年、第5版、第17巻、p.137参照)などによって製造できる。 In the presence of a copper catalyst (for example, “Experimental Chemistry Course”, Maruzen Co., Ltd., 2004, 5th Edition, Volume 17, p.137). For example).

ジオール(III)の具体例としては、例えば下記式   Specific examples of the diol (III) include, for example, the following formula

Figure 0004964760
Figure 0004964760

などが挙げられる。 Etc.

また、MおよびMが表わすアルカリ金属としては、例えばリチウム原子、ナトリウム原子などが挙げられる。MおよびMがアルカリ金属であるジオール(III)の製造方法に特に制限はなく、例えばMおよびMが水素原子であるジオール(III)とヘキサンやテトラヒドロフランなどの溶媒の存在下、−80℃〜25℃および常圧下に、水素化ナトリウム、水素化カリウムなどの金属水素化物、またはメチルリチウム、n−ブチルリチウムなどのアルキルリチウムなどを、かかるジオール(III)1モルに対して1.8〜4モルの範囲で作用させる方法などが挙げられる。Examples of the alkali metal represented by M 1 and M 2 include a lithium atom and a sodium atom. There is no particular limitation on the method for producing diol (III) in which M 1 and M 2 are alkali metals. For example, in the presence of diol (III) in which M 1 and M 2 are hydrogen atoms and a solvent such as hexane or tetrahydrofuran, Metal hydrides such as sodium hydride and potassium hydride, or alkyllithiums such as methyllithium and n-butyllithium are used in an amount of 1. The method of making it act in the range of 8-4 mol is mentioned.

また、同じくビスホスファイト(I)の原料であるハロゲン化ホスファイト(IV)およびハロゲン化ホスファイト(V)は、例えば、一般式PX(式中、Xは前記定義の通りである。)で示される三ハロゲン化リン化合物と種々のオルトヒドロキシメチルフェノール類を、窒素、アルゴンなどの不活性ガス雰囲気下、必要に応じて塩基性物質および溶媒の存在下に反応温度−100〜100℃、反応圧力0.05〜3MPaで反応させることにより製造できる[例えば、ジャーナル オブ ケミカル ソサエティー(Journal of Chemical Society)、1953年、p.1920〜1926参照]。以下、かかる原料の製造方法(以下、原料製造1と称する。)について説明する。Similarly, the halogenated phosphite (IV) and the halogenated phosphite (V), which are the raw materials of bisphosphite (I), are represented by, for example, the general formula PX 3 (wherein X is as defined above). And a reaction temperature of −100 to 100 ° C. in an inert gas atmosphere such as nitrogen and argon, and optionally in the presence of a basic substance and a solvent, It can be produced by reacting at a reaction pressure of 0.05 to 3 MPa [e.g., Journal of Chemical Society, 1953, p. 1920-1926]. Hereinafter, a method for producing the raw material (hereinafter referred to as raw material production 1) will be described.

原料製造1において、一般式PX(式中、Xは前記定義の通りである。)で示される三ハロゲン化リン化合物としては、三塩化リン、三臭化リン、三ヨウ化リンが挙げられる。In the raw material production 1, examples of the phosphorus trihalide compound represented by the general formula PX 3 (wherein X is as defined above) include phosphorus trichloride, phosphorus tribromide, and phosphorus triiodide. .

原料製造1で使用するオルトヒドロキシメチルフェノール類とは、下記一般式   The orthohydroxymethylphenols used in the raw material production 1 are the following general formulas

Figure 0004964760
Figure 0004964760

(式中、R、R、R、R、R、R、R、R、R、R10、R11およびR12は前記定義の通りである。)
で示される化合物であり、具体的にはサリゲニン(サリシルアルコール)、4,6−ジメチル−2−ヒドロキシメチルフェノール、4,6−ジ−t−ブチル−2−ヒドロキシメチルフェノール、4,6−ジメチル−2−(α−ヒドロキシエチル)フェノール、4,6−ジメチル−2−(α−ヒドロキシ−α−メチルエチル)フェノール、4,6−ジメチル−2−(α−ヒドロキシ−α−フェニルエチル)フェノール、2−(β,β−ジメチル−α−ヒドロキシプロピル)フェノールなどが挙げられる。オルトヒドロキシメチルフェノール類の使用量は、三ハロゲン化リン化合物1モルに対して0.1〜1モルの範囲であるのが好ましい。
(Wherein R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , R 10 , R 11 and R 12 are as defined above.)
Specifically, saligenin (salicylic alcohol), 4,6-dimethyl-2-hydroxymethylphenol, 4,6-di-t-butyl-2-hydroxymethylphenol, 4,6- Dimethyl-2- (α-hydroxyethyl) phenol, 4,6-dimethyl-2- (α-hydroxy-α-methylethyl) phenol, 4,6-dimethyl-2- (α-hydroxy-α-phenylethyl) Examples thereof include phenol and 2- (β, β-dimethyl-α-hydroxypropyl) phenol. The amount of orthohydroxymethylphenol used is preferably in the range of 0.1 to 1 mole per mole of phosphorus trihalide compound.

原料製造1において、必要に応じて使用する塩基性物質としては、例えばトリメチルアミン、トリエチルアミン、トリ−n−ブチルアミン、トリ−n−オクチルアミン、ジエチルイソプロピルアミン、N,N−ジメチルアニリン、ピリジン、ピコリン、コリジン、ルチジン、キノリンなどの含窒素化合物が挙げられる。これらは1つを単独で使用してもよいし、2つ以上を併用してもよい。かかる塩基性物質を使用する場合、その使用量は、オルトヒドロキシメチルフェノール類1モルに対して2〜10モルの範囲であるのが好ましい。   In the raw material production 1, as basic substances used as necessary, for example, trimethylamine, triethylamine, tri-n-butylamine, tri-n-octylamine, diethylisopropylamine, N, N-dimethylaniline, pyridine, picoline, Nitrogen-containing compounds such as collidine, lutidine, quinoline and the like can be mentioned. These may be used alone or in combination of two or more. When using such a basic substance, the amount used is preferably in the range of 2 to 10 moles per mole of orthohydroxymethylphenol.

原料製造1において、必要に応じて使用する溶媒としては、例えばペンタン、ヘキサン、ヘプタン、オクタン、ノナン、デカン、シクロヘキサンなどの飽和脂肪族炭化水素;ベンゼン、トルエン、エチルベンゼン、プロピルベンゼン、o−キシレン、m−キシレン、p−キシレン、o−エチルトルエン、m−エチルトルエン、p−エチルトルエンなどの芳香族炭化水素;ジメチルエーテル、エチルメチルエーテル、ジエチルエーテル、ジプロピルエーテル、ブチルメチルエーテル、t−ブチルメチルエーテル、ジブチルエーテルなどのエーテルなどが挙げられる。これらは1つを単独で使用してもよいし、2つ以上を併用してもよい。溶媒を使用する場合、その使用量は、オルトヒドロキシメチルフェノール類1質量部に対して1〜100質量部の範囲であるのが好ましく、2〜40質量部の範囲であるのがより好ましい。   In the raw material production 1, as a solvent to be used as necessary, saturated aliphatic hydrocarbons such as pentane, hexane, heptane, octane, nonane, decane, and cyclohexane; benzene, toluene, ethylbenzene, propylbenzene, o-xylene, Aromatic hydrocarbons such as m-xylene, p-xylene, o-ethyltoluene, m-ethyltoluene, p-ethyltoluene; dimethyl ether, ethyl methyl ether, diethyl ether, dipropyl ether, butyl methyl ether, t-butyl methyl And ethers such as ether and dibutyl ether. These may be used alone or in combination of two or more. When using a solvent, the amount used is preferably in the range of 1 to 100 parts by weight, more preferably in the range of 2 to 40 parts by weight, based on 1 part by weight of the orthohydroxymethylphenols.

原料製造1の実施方法としては、例えば、反応器に塩基性物質および三ハロゲン化リン化合物を仕込み、オルトヒドロキシメチルフェノール類を所定温度で添加し、撹拌する方法などが挙げられる。   Examples of a method for performing the raw material production 1 include a method in which a basic substance and a phosphorus trihalide compound are charged into a reactor, and orthohydroxymethylphenols are added at a predetermined temperature and stirred.

このようにして得られたハロゲン化ホスファイト(IV)およびハロゲン化ホスファイト(V)は、反応終了後、副生した塩を反応混合液からろ過により除去し、ろ液から溶媒を留去し、得られる粗生成物をそのままビスホスファイト製造反応Aに用いてもよいし、必要に応じてさらに蒸留などにより純度の高いハロゲン化ホスファイト(IV)またはハロゲン化ホスファイト(V)を得てからビスホスファイト製造反応Aに用いてもよい。   In the halogenated phosphite (IV) and the halogenated phosphite (V) thus obtained, by-product salts are removed by filtration from the reaction mixture after completion of the reaction, and the solvent is distilled off from the filtrate. The obtained crude product may be used as it is in the bisphosphite production reaction A, and if necessary, a highly purified halogenated phosphite (IV) or halogenated phosphite (V) is obtained by distillation or the like. To bisphosphite production reaction A.

ビスホスファイト製造反応Aにおいて、ジオール(III)におけるMおよび/またはMが水素原子の場合に使用する塩基性物質としては、例えばトリメチルアミン、トリエチルアミン、トリ−n−ブチルアミン、トリ−n−オクチルアミン、ジエチルイソプロピルアミン、N−メチルピロリジン、N−メチルピペリジン、N−メチルモルホリン、N,N−ジメチルアニリン、ピリジン、ピコリン、コリジン、ルチジン、キノリンなどの含窒素化合物;炭酸リチウム、炭酸ナトリウム、炭酸カリウム、炭酸水素リチウム、炭酸水素ナトリウム、炭酸水素カリウムなどの炭酸塩または炭酸水素塩などが挙げられる。かかる塩基性物質を使用する場合、その使用量は、ジオール(III)1モルに対して、1〜100モルの範囲であるのが好ましく、経済性および除去の効率の観点からは、1〜10モルの範囲であるのがより好ましい。In the bisphosphite production reaction A, the basic substance used when M 1 and / or M 2 in the diol (III) is a hydrogen atom is, for example, trimethylamine, triethylamine, tri-n-butylamine, tri-n-octyl. Nitrogen-containing compounds such as amine, diethylisopropylamine, N-methylpyrrolidine, N-methylpiperidine, N-methylmorpholine, N, N-dimethylaniline, pyridine, picoline, collidine, lutidine, quinoline; lithium carbonate, sodium carbonate, carbonic acid Examples thereof include carbonates or hydrogen carbonates such as potassium, lithium hydrogen carbonate, sodium hydrogen carbonate, and potassium hydrogen carbonate. When such a basic substance is used, the amount used is preferably in the range of 1 to 100 mol per 1 mol of diol (III). From the viewpoint of economy and removal efficiency, it is 1 to 10 mol. More preferred is the molar range.

ビスホスファイト製造反応Aにおいて、ハロゲン化ホスファイト(IV)およびハロゲン化ホスファイト(V)の使用量は、それぞれ、ジオール(III)に対して、0.4〜1.2倍モルの範囲であるのが好ましい。但し、ハロゲン化ホスファイト(IV)とハロゲン化ホスファイト(V)が同一構造の場合、それらの総量が、ジオール(III)1モルに対して、0.8〜2.4モルの範囲であるのが好ましい。
溶媒としては、例えばペンタン、ヘキサン、ヘプタン、オクタン、ノナン、デカン、シクロヘキサンなどの飽和脂肪族炭化水素;ベンゼン、トルエン、エチルベンゼン、プロピルベンゼン、o−キシレン、m−キシレン、p−キシレン、o−エチルトルエン、m−エチルトルエン、p−エチルトルエンなどの芳香族炭化水素;ジメチルエーテル、エチルメチルエーテル、ジエチルエーテル、ジプロピルエーテル、ブチルメチルエーテル、t−ブチルメチルエーテル、ジブチルエーテルなどのエーテルなどが挙げられる。また、不活性ガスとしては、例えば窒素、アルゴンなどが挙げられる。反応温度は、通常、−100〜100℃の範囲であり、反応圧力は、通常、0.05〜3MPa(ゲージ圧)の範囲である。
In the bisphosphite production reaction A, the amount of the halogenated phosphite (IV) and the halogenated phosphite (V) used is in the range of 0.4 to 1.2 times the mole of the diol (III), respectively. Preferably there is. However, when the halogenated phosphite (IV) and the halogenated phosphite (V) have the same structure, the total amount thereof is in the range of 0.8 to 2.4 mol with respect to 1 mol of the diol (III). Is preferred.
Examples of the solvent include saturated aliphatic hydrocarbons such as pentane, hexane, heptane, octane, nonane, decane, and cyclohexane; benzene, toluene, ethylbenzene, propylbenzene, o-xylene, m-xylene, p-xylene, and o-ethyl. Aromatic hydrocarbons such as toluene, m-ethyltoluene and p-ethyltoluene; ethers such as dimethyl ether, ethyl methyl ether, diethyl ether, dipropyl ether, butyl methyl ether, t-butyl methyl ether and dibutyl ether . Examples of the inert gas include nitrogen and argon. The reaction temperature is usually in the range of −100 to 100 ° C., and the reaction pressure is usually in the range of 0.05 to 3 MPa (gauge pressure).

ジオール(III)、ハロゲン化ホスファイト(IV)およびハロゲン化ホスファイト(V)を反応させる方法に特に制限はなく、例えばジオール(III)を、MおよびMが水素原子の場合には塩基性物質の存在下、ハロゲン化ホスファイト(IV)およびハロゲン化ホスファイト(V)に添加する方法、並びにハロゲン化ホスファイト(IV)およびハロゲン化ホスファイト(V)を、塩基性物質の存在下、同時にまたは順次、ジオール(III)に添加する方法などが挙げられる。There is no particular limitation on the method of reacting diol (III), halogenated phosphite (IV) and halogenated phosphite (V). For example, diol (III) is a base when M 1 and M 2 are hydrogen atoms. In the presence of a basic substance, a method of adding to a halogenated phosphite (IV) and a halogenated phosphite (V), and a halogenated phosphite (IV) and a halogenated phosphite (V) in the presence of a basic substance. And a method of adding to the diol (III) simultaneously or sequentially.

上記方法により得られた反応混合物からのビスホスファイト(I)の分離・精製は、通常の有機化合物の分離・精製に用いられる方法で実施できる。例えば、反応終了後、反応混合液から、ろ過などの手段により副生した塩を除去した後、反応混合液から溶媒を留去し、得られる粗生成物をカラムクロマトグラフィー、蒸留、再結晶などに付すことにより、純度の高いビスホスファイト(I)を得ることができる。   Separation / purification of bisphosphite (I) from the reaction mixture obtained by the above method can be carried out by a method used for separation / purification of ordinary organic compounds. For example, after completion of the reaction, by-product salts are removed from the reaction mixture by means such as filtration, the solvent is distilled off from the reaction mixture, and the resulting crude product is subjected to column chromatography, distillation, recrystallization, etc. By attaching to bisphosphite (I) with high purity can be obtained.

次に、オレフィン性化合物を、ビスホスファイト(I)および第8〜10族金属化合物の存在下に一酸化炭素および水素と反応(ヒドロホルミル化反応)させることを特徴とするアルデヒド化合物の製造方法(以下、「反応1」と称する)について詳細に説明する。   Next, the olefinic compound is reacted with carbon monoxide and hydrogen (hydroformylation reaction) in the presence of bisphosphite (I) and a group 8-10 metal compound (hydroformylation reaction) ( Hereinafter, “reaction 1”) will be described in detail.

反応1で用いるオレフィン性化合物に特に制限はなく、例えばエチレン、プロピレン、1−ブテン、イソブテン、1−ペンテン、1−ヘキセン、1−ヘプテン、1−オクテン、1−ノネン、ブタジエン、1,7−オクタジエン、シクロオクタジエン、ジシクロペンタジエン、シクロペンテン、シクロヘキセン、1−メチルシクロヘキセン、シクロオクテン、リモネン、2−ペンテン−1−オール、2−メチル−2−プロペン−1−オール、3−メチル−3−ブテン−1−オール、7−オクテン−1−オール、2,7−オクタジエン−1−オール、酢酸ビニル、酢酸アリル、アクリル酸メチル、アクリル酸エチル、アクリル酸アリル、メタクリル酸メチル、ビニルメチルエーテル、アリルエチルエーテル、5−ヘキセンアミド、アクリロニトリル、7−オクテン−1−アール、1−メトキシ−2,7−オクタジエン、1−エトキシ−2,7−オクタジエン、1−プロポキシ−2,7−オクタジエン、1−イソプロポキシ−2,7−オクタジエン、スチレン、α−メチルスチレン、β−メチルスチレン、ジビニルベンゼンなどが挙げられる。   There is no restriction | limiting in particular in the olefinic compound used by reaction 1, For example, ethylene, propylene, 1-butene, isobutene, 1-pentene, 1-hexene, 1-heptene, 1-octene, 1-nonene, butadiene, 1,7- Octadiene, cyclooctadiene, dicyclopentadiene, cyclopentene, cyclohexene, 1-methylcyclohexene, cyclooctene, limonene, 2-penten-1-ol, 2-methyl-2-propen-1-ol, 3-methyl-3- Buten-1-ol, 7-octen-1-ol, 2,7-octadien-1-ol, vinyl acetate, allyl acetate, methyl acrylate, ethyl acrylate, allyl acrylate, methyl methacrylate, vinyl methyl ether, Allyl ethyl ether, 5-hexenamide, acrylonitrile 7-octen-1-al, 1-methoxy-2,7-octadiene, 1-ethoxy-2,7-octadiene, 1-propoxy-2,7-octadiene, 1-isopropoxy-2,7-octadiene, Examples include styrene, α-methylstyrene, β-methylstyrene, divinylbenzene, and the like.

第8〜10族金属化合物としては、例えばロジウム化合物、コバルト化合物、ルテニウム化合物、鉄化合物などが挙げられる。ロジウム化合物としては、例えばRh(acac)(CO)、RhCl(CO)(PPh、RhCl(PPh、RhBr(CO)(PPh、Rh(CO)12、Rh(CO)16などが挙げられる。コバルト化合物としては、例えばHCo(CO)、HCo(CO)、Co(CO)、HCo(CO)などが挙げられる。ルテニウム化合物としては、例えばRu(CO)(PPh、RuCl(PPh、RuCl(PPh、Ru(CO)12などが挙げられる。また、鉄化合物としては、例えばFe(CO)、Fe(CO)PPh、Fe(CO)(PPhなどが挙げられる。これらの中でも、特に反応1に使用する場合、比較的温和な反応条件を選択し易いロジウム化合物を使用するのが好ましく、Rh(acac)(CO)を使用するのが特に好ましい。第8〜10族金属化合物の使用量は、反応混合液に対する第8〜10族金属原子の濃度に換算して、1〜50ppm(質量比)の範囲であるのが好ましく、1〜10ppm(質量比)の範囲であるのがより好ましい。第8〜10族金属化合物の濃度が、反応混合液に対して10ppm未満であると反応速度が極めて遅くなる傾向にあり、また50ppmを超えると触媒の費用が高くなり、アルデヒド化合物の製造コストを低減しながら反応を実施するという目的に合わない。Examples of Group 8-10 metal compounds include rhodium compounds, cobalt compounds, ruthenium compounds, iron compounds and the like. Examples of rhodium compounds include Rh (acac) (CO) 2 , RhCl (CO) (PPh 3 ) 2 , RhCl (PPh 3 ) 3 , RhBr (CO) (PPh 3 ) 2 , Rh 4 (CO) 12 , Rh. 6 (CO) 16 or the like. Examples of the cobalt compound include HCo (CO) 3 , HCo (CO) 4 , Co 2 (CO) 8 , HCo 3 (CO) 9, and the like. Examples of the ruthenium compound include Ru (CO) 3 (PPh 3 ) 2 , RuCl 2 (PPh 3 ) 3 , RuCl 3 (PPh 3 ) 3 , Ru 3 (CO) 12 and the like. As the iron compounds, for example, Fe (CO) 5, Fe ( CO) 4 PPh 3, Fe (CO) 4 (PPh 3) 2 and the like. Among these, in particular, when used in the reaction 1, it is preferable to use a rhodium compound that allows easy selection of relatively mild reaction conditions, and it is particularly preferable to use Rh (acac) (CO) 2 . The amount of the Group 8-10 metal compound used is preferably in the range of 1-50 ppm (mass ratio) in terms of the concentration of the Group 8-10 metal atoms relative to the reaction mixture, and preferably 1-10 ppm (mass). Ratio) is more preferable. If the concentration of the Group 8-10 metal compound is less than 10 ppm with respect to the reaction mixture, the reaction rate tends to be extremely slow, and if it exceeds 50 ppm, the cost of the catalyst increases and the production cost of the aldehyde compound is reduced. It does not meet the purpose of carrying out the reaction while reducing.

反応1において、ビスホスファイト(I)は1つを単独で使用してもよいし、2つ以上を併用してもよい。かかるビスホスファイト(I)の使用量は、第8〜10族金属化合物中の金属原子1モルに対して、リン原子換算で2〜1000モルの範囲であるのが好ましく、5〜500モルの範囲であるのがより好ましく、反応速度の観点からは、10〜200モルの範囲であるのがさらに好ましい。ビスホスファイト(I)の使用量が第8〜10族金属化合物中の金属原子1モルに対して2モル未満の場合、触媒の安定性が損なわれ、また、1000モルを超える場合、反応速度が極めて小さくなる傾向にある。   In Reaction 1, one bisphosphite (I) may be used alone, or two or more may be used in combination. The amount of the bisphosphite (I) used is preferably in the range of 2 to 1000 mol in terms of phosphorus atom, with respect to 1 mol of the metal atom in the Group 8-10 metal compound, The range is more preferable, and the range of 10 to 200 mol is more preferable from the viewpoint of the reaction rate. When the amount of bisphosphite (I) used is less than 2 moles relative to 1 mole of metal atoms in the Group 8-10 metal compound, the stability of the catalyst is impaired, and when it exceeds 1000 moles, the reaction rate Tends to be extremely small.

ビスホスファイト(I)と第8〜10族金属化合物を含有する組成物、すなわち組成物(II)を反応1に使用する際、組成物(II)の調製方法には特に制限はなく、例えば、予めビスホスファイト(I)および第8〜10族金属化合物を、必要に応じて後述する溶媒の存在下に混合して組成物(II)を製造してから反応1に供するために調製した混合液に添加する形態でもよいし、オレフィン性化合物および必要に応じて後述する溶媒からなる混合液に、ビスホスファイト(I)および第8〜10族金属化合物を同時に添加し、反応系内で組成物(II)を得る形態をとってもよい。
上記方法により得られる、ビスホスファイト(I)および第8〜10族金属化合物を含有する組成物(II)は、第8〜10族金属化合物の使用量が少なくても、オレフィン性化合物のヒドロホルミル化反応(反応1)において生産性を低下させず、且つ異性化率を抑制できる。
また、この組成物(II)は、ここで説明している反応1(ヒドロホルミル化反応)の触媒としてのみならず、不飽和結合の水素化反応や、炭素−炭素結合形成反応などの触媒として用いることも可能である。
When the composition containing the bisphosphite (I) and the Group 8-10 metal compound, that is, the composition (II) is used in the reaction 1, there is no particular limitation on the preparation method of the composition (II). A bisphosphite (I) and a Group 8-10 metal compound were mixed in the presence of a solvent described later as necessary to prepare a composition (II), and then prepared for use in Reaction 1. It may be added to the mixed solution, or bisphosphite (I) and the Group 8-10 metal compound are added simultaneously to the mixed solution composed of the olefinic compound and, if necessary, the solvent described later, in the reaction system. The form which obtains composition (II) may be taken.
The composition (II) containing the bisphosphite (I) and the Group 8-10 metal compound obtained by the above method is a hydroformyl olefinic compound even if the amount of the Group 8-10 metal compound is small. In the isomerization reaction (reaction 1), productivity is not lowered and the isomerization rate can be suppressed.
The composition (II) is used not only as a catalyst for the reaction 1 (hydroformylation reaction) described herein but also as a catalyst for a hydrogenation reaction of an unsaturated bond, a carbon-carbon bond formation reaction, or the like. It is also possible.

なお、反応1では、ビスホスファイト(I)と共に、リン化合物を使用してもよい。かかるリン化合物としては、例えばトリイソプロピルホスフィン、トリ−n−ブチルホスフィン、トリ−t−ブチルホスフィン、トリベンジルホスフィン、トリフェニルホスフィン、トリス(p−メトキシフェニル)ホスフィン、トリス(p−N,N−ジメチルアミノフェニル)ホスフィン、トリス(p−フルオロフェニル)ホスフィン、トリス(p−クロロフェニル)ホスフィン、トリ−o−トルイルホスフィン、トリ−m−トルイルホスフィン、トリ−p−トルイルホスフィン、トリス(ペンタフルオロフェニル)ホスフィン、ビス(ペンタフルオロフェニル)フェニルホスフィン、ジフェニル(ペンタフルオロフェニル)ホスフィン、メチルジフェニルホスフィン、エチルジフェニルホスフィン、シクロヘキシルジフェニルホスフィン、ジメチルフェニルホスフィン、ジエチルフェニルホスフィン、2−フリルジフェニルホスフィン、2−ピリジルジフェニルホスフィン、4−ピリジルジフェニルホスフィン、m−ジフェニルホスフィノベンゼンスルホン酸またはその金属塩、p−ジフェニルホスフィノ安息香酸またはその金属塩、p−ジフェニルホスフィノフェニルホスホン酸またはその金属塩などのホスフィン;トリエチルホスファイト、トリフェニルホスファイト、トリス(p−メトキシフェニル)ホスファイト、トリス(o−メチルフェニル)ホスファイト、トリス(m−メチルフェニル)ホスファイト、トリス(p−メチルフェニル)ホスファイト、トリス(o−エチルフェニル)ホスファイト、トリス(m−エチルフェニル)ホスファイト、トリス(p−エチルフェニル)ホスファイト、トリス(o−プロピルフェニル)ホスファイト、トリス(m−プロピルフェニル)ホスファイト、トリス(p−プロピルフェニル)ホスファイト、トリス(o−イソプロピルフェニル)ホスファイト、トリス(m−イソプロピルフェニル)ホスファイト、トリス(p−イソプロピルフェニル)ホスファイト、トリス(o−t−ブチルフェニル)ホスファイト、トリス(p−t−ブチルフェニル)ホスファイト、トリス(p−トリフルオロメチルフェニル)ホスファイト、トリス(2,4−ジメチルフェニル)ホスファイト、トリス(2,4−ジ−t−ブチルフェニル)ホスファイト、トリス(2−t−ブチル−4−メチルフェニル)ホスファイトなどのホスファイトなどが挙げられる。
かかるリン化合物を使用する場合、反応1において異性化率が増大しない程度であるのが好ましく、例えば、ビスホスファイト(I)1モルに対して5モル以下の範囲であるのが好ましく、0.5〜3モルの範囲であるのがより好ましい。
In Reaction 1, a phosphorus compound may be used together with bisphosphite (I). Examples of such phosphorus compounds include triisopropylphosphine, tri-n-butylphosphine, tri-t-butylphosphine, tribenzylphosphine, triphenylphosphine, tris (p-methoxyphenyl) phosphine, tris (p-N, N--). Dimethylaminophenyl) phosphine, tris (p-fluorophenyl) phosphine, tris (p-chlorophenyl) phosphine, tri-o-toluylphosphine, tri-m-tolylphosphine, tri-p-toluylphosphine, tris (pentafluorophenyl) Phosphine, bis (pentafluorophenyl) phenylphosphine, diphenyl (pentafluorophenyl) phosphine, methyldiphenylphosphine, ethyldiphenylphosphine, cyclohexyldiphenylphosphine Dimethylphenylphosphine, diethylphenylphosphine, 2-furyldiphenylphosphine, 2-pyridyldiphenylphosphine, 4-pyridyldiphenylphosphine, m-diphenylphosphinobenzenesulfonic acid or its metal salt, p-diphenylphosphinobenzoic acid or its metal salt Phosphines such as p-diphenylphosphinophenylphosphonic acid or metal salts thereof; triethyl phosphite, triphenyl phosphite, tris (p-methoxyphenyl) phosphite, tris (o-methylphenyl) phosphite, tris (m- Methylphenyl) phosphite, tris (p-methylphenyl) phosphite, tris (o-ethylphenyl) phosphite, tris (m-ethylphenyl) phosphite, tris (p-ethyl) Phenyl) phosphite, tris (o-propylphenyl) phosphite, tris (m-propylphenyl) phosphite, tris (p-propylphenyl) phosphite, tris (o-isopropylphenyl) phosphite, tris (m-isopropyl) Phenyl) phosphite, Tris (p-isopropylphenyl) phosphite, Tris (ot-butylphenyl) phosphite, Tris (pt-butylphenyl) phosphite, Tris (p-trifluoromethylphenyl) phosphite Phosphites such as tris (2,4-dimethylphenyl) phosphite, tris (2,4-di-t-butylphenyl) phosphite, tris (2-t-butyl-4-methylphenyl) phosphite Can be mentioned.
When such a phosphorus compound is used, it is preferable that the isomerization rate does not increase in Reaction 1, for example, it is preferably in the range of 5 mol or less relative to 1 mol of bisphosphite (I). The range of 5 to 3 mol is more preferable.

反応1は、溶媒の存在下または不存在下に行なう。かかる溶媒としては、例えばペンタン、ヘキサン、ヘプタン、オクタン、ノナン、デカン、シクロヘキサンなどの飽和脂肪族炭化水素;ベンゼン、トルエン、エチルベンゼン、プロピルベンゼン、o−キシレン、m−キシレン、p−キシレン、o−エチルトルエン、m−エチルトルエン、p−エチルトルエンなどの芳香族炭化水素;イソプロピルアルコール、イソブチルアルコール、イソペンチルアルコール、ネオペンチルアルコールなどのアルコール;ジメチルエーテル、エチルメチルエーテル、ジエチルエーテル、ジプロピルエーテル、ブチルメチルエーテル、t−ブチルメチルエーテル、ジブチルエーテル、エチルフェニルエーテル、ジフェニルエーテル、テトラヒドロフラン、1,4−ジオキサンなどのエーテル;アセトン、エチルメチルケトン、メチルプロピルケトン、ジエチルケトン、エチルプロピルケトン、ジプロピルケトンなどのケトンなどが挙げられる。これらの溶媒は1つを単独で用いてもよいし、2つ以上を併用してもよい。溶媒を使用する場合、溶媒の使用量に特に制限はないが、反応混合液全体に対して、通常、1〜90質量%の範囲であるのが好ましい。   Reaction 1 is performed in the presence or absence of a solvent. Examples of such solvents include saturated aliphatic hydrocarbons such as pentane, hexane, heptane, octane, nonane, decane, and cyclohexane; benzene, toluene, ethylbenzene, propylbenzene, o-xylene, m-xylene, p-xylene, o- Aromatic hydrocarbons such as ethyltoluene, m-ethyltoluene and p-ethyltoluene; alcohols such as isopropyl alcohol, isobutyl alcohol, isopentyl alcohol and neopentyl alcohol; dimethyl ether, ethyl methyl ether, diethyl ether, dipropyl ether and butyl Ethers such as methyl ether, t-butyl methyl ether, dibutyl ether, ethyl phenyl ether, diphenyl ether, tetrahydrofuran, 1,4-dioxane; acetone, ethyl Ethyl ketone, methyl propyl ketone, diethyl ketone, ethyl propyl ketone, ketones such as dipropyl ketone. One of these solvents may be used alone, or two or more thereof may be used in combination. When a solvent is used, the amount of the solvent used is not particularly limited, but it is usually preferably in the range of 1 to 90% by mass with respect to the entire reaction mixture.

反応1において、反応系内に導入する一酸化炭素および水素の混合ガスの混合割合は、モル比で、一酸化炭素:水素=10:1〜1:10の範囲であるのが好ましく、2:1〜1:2の範囲であるのがより好ましい。反応温度は、通常、40〜150℃の範囲であるのが好ましく、50〜130℃の範囲であるのがより好ましく、少量の触媒で高活性を維持する観点からは、80〜130℃の範囲であるのがさらに好ましい。反応圧力は、0.01〜10MPa(ゲージ圧)の範囲であるのが好ましく、0.5〜5MPa(ゲージ圧)の範囲であるのがより好ましい。反応1は、攪拌型反応槽、循環型反応槽、気泡塔型反応槽などを用いて、連続方式またはバッチ方式で行なうことができる。   In Reaction 1, the mixing ratio of the mixed gas of carbon monoxide and hydrogen introduced into the reaction system is preferably in the range of carbon monoxide: hydrogen = 10: 1 to 1:10 in terms of molar ratio. A range of 1-1: 2 is more preferred. Usually, the reaction temperature is preferably in the range of 40 to 150 ° C, more preferably in the range of 50 to 130 ° C, and from the viewpoint of maintaining high activity with a small amount of catalyst, the range of 80 to 130 ° C. More preferably. The reaction pressure is preferably in the range of 0.01 to 10 MPa (gauge pressure), and more preferably in the range of 0.5 to 5 MPa (gauge pressure). Reaction 1 can be performed by a continuous method or a batch method using a stirring reaction vessel, a circulation reaction vessel, a bubble column reaction vessel, or the like.

反応1では、生成するアルデヒド化合物の副反応による高沸化抑制のために、必要に応じて、さらにトリエチルアミン、トリブチルアミン、トリ−n−オクチルアミン、N,N,N’,N’−テトラメチル−1,2−ジアミノエタン、N,N,N’,N’−テトラメチル−1,3−ジアミノプロパン、N,N,N’,N’−テトラメチル−1,4−ジアミノブタン、N,N−ジエチルエタノールアミン、トリエタノールアミン、N−メチルピペリジン、N−メチルピロリジン、N−メチルモルホリン、ピリジン、ピコリン、ルチジン、コリジン、キノリンなどの添加剤を加えることができる。該添加剤を加える場合、その使用量は、第8〜10族金属化合物中の金属原子1モルに対して、通常、200〜3000モルの範囲であるのが好ましく、800〜2000モルの範囲であるのがより好ましい。   In reaction 1, in order to suppress the high boiling point by side reaction of the aldehyde compound to be generated, triethylamine, tributylamine, tri-n-octylamine, N, N, N ′, N′-tetramethyl is further added as necessary. -1,2-diaminoethane, N, N, N ′, N′-tetramethyl-1,3-diaminopropane, N, N, N ′, N′-tetramethyl-1,4-diaminobutane, N, Additives such as N-diethylethanolamine, triethanolamine, N-methylpiperidine, N-methylpyrrolidine, N-methylmorpholine, pyridine, picoline, lutidine, collidine, quinoline and the like can be added. When the additive is added, the amount used is usually preferably in the range of 200 to 3000 moles and in the range of 800 to 2000 moles per mole of metal atoms in the Group 8-10 metal compound. More preferably.

反応1の実施方法に特に制限はないが、例えば、一酸化炭素と水素の混合ガスの存在下、オレフィン性化合物を仕込み、所定温度で攪拌しつつ、そこにビスホスファイト(I)および第8〜10族金属化合物と溶媒の混合溶液(組成物(II))を供給することにより実施することができる。   The method for carrying out reaction 1 is not particularly limited. For example, an olefinic compound is charged in the presence of a mixed gas of carbon monoxide and hydrogen and stirred at a predetermined temperature, and then bisphosphite (I) and the It can implement by supplying the mixed solution (composition (II)) of a group-10 metal compound and a solvent.

上記方法により得られた反応混合液からのアルデヒド化合物の分離・精製方法に特に制限はなく、公知の方法により行なうことができる。例えば、反応混合液から溶媒などの低沸点成分を減圧下に留去した後、残留物をさらに蒸留精製することにより、高純度のアルデヒドを取得することができる。また、蒸留分離に先立ち、残留物を蒸発、抽出、吸着などの方法に付すことによって組成物(II)を予め分離してもよい。分離した組成物(II)は、再度ヒドロホルミル化反応(反応1)に使用することができる。   The method for separating and purifying the aldehyde compound from the reaction mixture obtained by the above method is not particularly limited and can be carried out by a known method. For example, a high-purity aldehyde can be obtained by distilling off a low-boiling component such as a solvent from the reaction mixture under reduced pressure and further purifying the residue by distillation. Prior to distillation separation, the composition (II) may be separated in advance by subjecting the residue to a method such as evaporation, extraction or adsorption. The separated composition (II) can be used again for the hydroformylation reaction (reaction 1).

以下、実施例により本発明を更に詳しく説明するが、本発明はかかる実施例により何ら制限されるものではない。なお、以下の実施例において、特に断りのない限り、ハロゲン化ホスファイト(IV)または(V)並びにビスホスファイト(I)の製造は、窒素雰囲気下またはアルゴン雰囲気下で行ない、また、ヒドロホルミル化反応は、全て一酸化炭素:水素=1:1(モル比)の混合ガス雰囲気下で行なった。   EXAMPLES Hereinafter, although an Example demonstrates this invention in more detail, this invention is not restrict | limited at all by this Example. In the following examples, unless otherwise specified, the halogenated phosphite (IV) or (V) and the bisphosphite (I) are produced in a nitrogen atmosphere or an argon atmosphere, and hydroformylation is performed. All the reactions were carried out in a mixed gas atmosphere of carbon monoxide: hydrogen = 1: 1 (molar ratio).

<実施例1>
温度計および滴下漏斗を備えた100ml三口フラスコに、三塩化リン5.60g(40.8mmol)とトルエン50mlを加え、ピリジン10.76g(136mmol)を加えて、系内を窒素置換した。系内を−70℃に冷却させた後、サリゲニン3.38g(27.2mmol)をトルエン20mlに溶解した溶液を、内温が−70〜−60℃の範囲に保たれるように滴下した。滴下終了後、約1時間かけて室温に戻し、副生したピリジン塩酸塩をろ過により除去し、ろ液から低沸点成分を減圧下(0.01MPa)に留去することにより、粗ハロゲン化ホスファイト7.88gを得た。
続いて、温度計および滴下漏斗を備えた100ml三口フラスコに、2,2’−メチレンビス(4,6−ジメチルフェノール)3.49g(13.6mmol)、ピリジン2.69g(34.0mmol)およびトルエン30mlを加え、系内を窒素置換した。これに上記で得られた粗ハロゲン化ホスファイト7.88gをトルエン20mlに溶解させた溶液を、内温が20〜30℃に保たれるように滴下した。滴下終了後、同温度でさらに2時間攪拌した。反応混合液から、副生したピリジン塩酸塩をろ過により除去し、ろ液を減圧下(0.01MPa)に濃縮して残留物4.66gを得た。この残留物をアルミナカラムクロマトグラフィー(展開液;ヘキサン/トルエン=2/1(容量比))により精製した後、濃縮することにより、下記のビスホスファイト(以下、ビスホスファイト(I)−1と称する)3.05g[2,2’−メチレンビス(4,6−ジメチルフェノール)基準の収率:40%]を得た。以下に、得られたビスホスファイト(I)−1のH−NMRデータを示す。
<Example 1>
To a 100 ml three-necked flask equipped with a thermometer and a dropping funnel, 5.60 g (40.8 mmol) of phosphorus trichloride and 50 ml of toluene were added, and 10.76 g (136 mmol) of pyridine was added, and the inside of the system was purged with nitrogen. After the system was cooled to -70 ° C, a solution prepared by dissolving 3.38 g (27.2 mmol) of saligenin in 20 ml of toluene was added dropwise so that the internal temperature was kept in the range of -70 to -60 ° C. After completion of the dropwise addition, the temperature is returned to room temperature over about 1 hour, pyridine hydrochloride formed as a by-product is removed by filtration, and low-boiling components are distilled off from the filtrate under reduced pressure (0.01 MPa). 7.88 g of fight was obtained.
Subsequently, in a 100 ml three-necked flask equipped with a thermometer and a dropping funnel, 2.49 g (13.6 mmol) of 2,2′-methylenebis (4,6-dimethylphenol), 2.69 g (34.0 mmol) of pyridine and toluene were added. 30 ml was added, and the system was purged with nitrogen. A solution prepared by dissolving 7.88 g of the crude halogenated phosphite obtained above in 20 ml of toluene was added dropwise thereto so that the internal temperature was maintained at 20 to 30 ° C. After completion of dropping, the mixture was further stirred at the same temperature for 2 hours. By-product pyridine hydrochloride was removed from the reaction mixture by filtration, and the filtrate was concentrated under reduced pressure (0.01 MPa) to obtain 4.66 g of a residue. The residue was purified by alumina column chromatography (developing solution; hexane / toluene = 2/1 (volume ratio)) and then concentrated to obtain the following bisphosphite (hereinafter referred to as bisphosphite (I) -1). 3.05 g [yield based on 2,2′-methylenebis (4,6-dimethylphenol): 40%]. The 1 H-NMR data of the obtained bisphosphite (I) -1 are shown below.

Figure 0004964760
Figure 0004964760

H−NMR(270MHz、CDCl、TMS)δ:7.01−6.89(m,8H)、6.60(bs,2H)、5.41−5.29(m,2H)、4.83−4.70(m,2H)、2.32(s,6H)、2.16(d,6H,J=6.0Hz) 1 H-NMR (270 MHz, CDCl 3 , TMS) δ: 7.01-6.89 (m, 8H), 6.60 (bs, 2H), 5.41-5.29 (m, 2H), 4 .83-4.70 (m, 2H), 2.32 (s, 6H), 2.16 (d, 6H, J = 6.0 Hz)

<実施例2>
実施例1において、サリゲニン3.38g(27.2mmol)の代わりに4,6−ジメチル−2−ヒドロキシメチルフェノール4.14g(27.2mmol)を用いた以外は実施例1と同様に反応および単離精製操作を実施し、下記のビスホスファイト(以下、ビスホスファイト(I)−2と称する)3.77g[2,2’−メチレンビス(4,6−ジメチルフェノール)基準の収率:45%]を得た。得られたビスホスファイト(I)−2のH−NMRデータを示す。
<Example 2>
In Example 1, the reaction and simple reaction were carried out in the same manner as in Example 1 except that 4.14 g (27.2 mmol) of 4,6-dimethyl-2-hydroxymethylphenol was used instead of 3.38 g (27.2 mmol) of saligenin. Separation and purification operations were carried out, and 3.77 g of the following bisphosphite (hereinafter referred to as bisphosphite (I) -2) [yield based on 2,2′-methylenebis (4,6-dimethylphenol): 45 %]. 1 H-NMR data of the obtained bisphosphite (I) -2 are shown.

Figure 0004964760
Figure 0004964760

H−NMR(270MHz、CDCl、TMS)δ:6.87(d,4H,J=4.8Hz)、6.58(d,4H,J=8.0Hz)、5.32−5.21(m,2H)、4.75−4.65(m,2H)、4.13−3.92(m,2H)、2.31−2.14(m,24H) 1 H-NMR (270 MHz, CDCl 3 , TMS) δ: 6.87 (d, 4H, J = 4.8 Hz), 6.58 (d, 4H, J = 8.0 Hz), 5.32-5. 21 (m, 2H), 4.75-4.65 (m, 2H), 4.13-3.92 (m, 2H), 2.31-2.14 (m, 24H)

<実施例3>
実施例1において、2,2’−メチレンビス(4,6−ジメチルフェノール)3.49g(13.6mmol)の代わりに2,2’−メチレンビス(6−t−ブチル−p−クレゾール)4.63g(13.6mmol)を用いた以外は実施例1と同様に反応および単離精製操作を実施し、下記のビスホスファイト(以下、ビスホスファイト(I)−3と称する)を3.86g[2,2’−メチレンビス(6−t−ブチル−p−クレゾール)基準の収率44%]得た。得られたビスホスファイト(I)−3のH−NMRデータを示す。
<Example 3>
In Example 1, 4.63 g of 2,2′-methylenebis (6-tert-butyl-p-cresol) instead of 3.49 g (13.6 mmol) of 2,2′-methylenebis (4,6-dimethylphenol) Except that (13.6 mmol) was used, the reaction and the isolation and purification operation were carried out in the same manner as in Example 1, and 3.86 g of the following bisphosphite (hereinafter referred to as bisphosphite (I) -3) [ 44% yield based on 2,2′-methylenebis (6-t-butyl-p-cresol)]. 1 H-NMR data of the obtained bisphosphite (I) -3 are shown.

Figure 0004964760
Figure 0004964760

H−NMR(270MHz、CDCl、TMS)δ:7.22−6.87(m,10H)、6.60(s,2H)、5.29−5.15(m,2H)、4.83−4.65(m,2H)、4.54−4.07(m,2H)、2.21(s,3H)、2.19(bs,3H)、1.43(bs,9H)、1.41(s,9H) 1 H-NMR (270 MHz, CDCl 3 , TMS) δ: 7.22-6.87 (m, 10H), 6.60 (s, 2H), 5.29-5.15 (m, 2H), 4 .83-4.65 (m, 2H), 4.54-4.07 (m, 2H), 2.21 (s, 3H), 2.19 (bs, 3H), 1.43 (bs, 9H) ), 1.41 (s, 9H)

<実施例4>
実施例1において、サリゲニン3.38g(27.2mmol)の代わりに4,6−ジメチル−2−(α−ヒドロキシエチル)フェノール4.52g(27.2mmol)を用いた以外は実施例1と同様に反応および単離精製操作を実施し、下記のビスホスファイト(以下、ビスホスファイト(I)−4と称する)3.86g[2,2’−メチレンビス(4,6−ジメチルフェノール)基準の収率32%]を得た。得られたビスホスファイト(I)−4のH−NMRデータを示す。
<Example 4>
Example 1 was the same as Example 1 except that 4.56 g (27.2 mmol) of 4,6-dimethyl-2- (α-hydroxyethyl) phenol was used instead of 3.38 g (27.2 mmol) of saligenin. The following bisphosphite (hereinafter referred to as bisphosphite (I) -4) 3.86 g [2,2′-methylenebis (4,6-dimethylphenol) standard] Yield 32%]. 1 H-NMR data of the obtained bisphosphite (I) -4 are shown.

Figure 0004964760
Figure 0004964760

H−NMR(270MHz、CDCl、TMS)δ:6.88−6.54(m,8H)、5.24−5.10(m,2H)、4.12−3.90(m,2H)、2.32−2.03(m,24H)、1.73(t,6H,J=7.8Hz) 1 H-NMR (270 MHz, CDCl 3 , TMS) δ: 6.88-6.54 (m, 8H), 5.24-5.10 (m, 2H), 4.12-3.90 (m, 2H), 2.32-2.03 (m, 24H), 1.73 (t, 6H, J = 7.8 Hz)

<実施例5>
実施例1において、サリゲニン3.38g(27.2mmol)の代わりに4,6−ジメチル−2−(α−ヒドロキシ−α−メチルエチル)フェノール4.90g(27.2mmol)を用いた以外は実施例1と同様に反応および単離精製操作を実施し、下記のビスホスファイト(以下、ビスホスファイト(I)−5と称する)3.48g[2,2’−メチレンビス(4,6−ジメチルフェノール)基準の収率38%]を得た。得られたビスホスファイト(I)−5のH−NMRデータを示す。
<Example 5>
In Example 1, except that 4.90 g (27.2 mmol) of 4,6-dimethyl-2- (α-hydroxy-α-methylethyl) phenol was used instead of 3.38 g (27.2 mmol) of saligenin. The reaction and isolation / purification operation were carried out in the same manner as in Example 1, and 3.48 g of the following bisphosphite (hereinafter referred to as bisphosphite (I) -5) [2,2′-methylenebis (4,6-dimethyl). Phenol) based yield 38%]. 1 H-NMR data of the obtained bisphosphite (I) -5 are shown.

Figure 0004964760
Figure 0004964760

H−NMR(270MHz、CDCl、TMS)δ:6.90−6.46(m,4H)、4.10−3.74(m,2H),2.40−1.53(m,36H) 1 H-NMR (270 MHz, CDCl 3 , TMS) δ: 6.90-6.46 (m, 4H), 4.10-3.74 (m, 2H), 2.40-1.53 (m, 36H)

<実施例6>
実施例1において、サリゲニン3.38g(27.2mmol)の代わりに4,6−ジメチル−2−(α−ヒドロキシ−α−フェニルエチル)フェノール6.59g(27.2mmol)を用いた以外は実施例1と同様に反応および単離精製操作を実施し、下記のビスホスファイト(以下、ビスホスファイト(I)−6と称する)3.36g[2,2’−メチレンビス(4,6−ジメチルフェノール)基準の収率31%]を得た。得られたビスホスファイト(I)−6のH−NMRデータを示す。
<Example 6>
In Example 1, except that 6.59 g (27.2 mmol) of 4,6-dimethyl-2- (α-hydroxy-α-phenylethyl) phenol was used instead of 3.38 g (27.2 mmol) of saligenin. The reaction and isolation / purification operation were carried out in the same manner as in Example 1, and 3.36 g of the following bisphosphite (hereinafter referred to as bisphosphite (I) -6) [2,2′-methylenebis (4,6-dimethyl) Phenol) standard yield 31%]. 1 H-NMR data of the obtained bisphosphite (I) -6 are shown.

Figure 0004964760
Figure 0004964760

H−NMR(270MHz、CDCl、TMS)δ:7.51−6.40(m,18H)、3.97−3.55(m,2H)、2.35−2.00(m,30H) 1 H-NMR (270 MHz, CDCl 3 , TMS) δ: 7.51-6.40 (m, 18H), 3.97-3.55 (m, 2H), 2.35-2.00 (m, 30H)

<実施例7>
実施例1において、サリゲニン3.38g(27.2mmol)の代わりに4,6−ジ−t−ブチル−2−ヒドロキシメチルフェノール4.14g(27.2mmol)を用いた以外は実施例1と同様に反応および単離精製操作を実施し、下記のビスホスファイト(以下、ビスホスファイト(I)−7と称する)4.88g[2,2’−メチレンビス(4,6−ジメチルフェノール)基準の収率68%]を得た。得られたビスホスファイト(I)−7のH−NMRデータを示す。
<Example 7>
In Example 1, the same as Example 1 except that 4.14 g (27.2 mmol) of 4,6-di-t-butyl-2-hydroxymethylphenol was used instead of 3.38 g (27.2 mmol) of saligenin. The following bisphosphite (hereinafter referred to as bisphosphite (I) -7) 4.88 g [2,2′-methylenebis (4,6-dimethylphenol) standard Yield 68%]. 1 H-NMR data of the obtained bisphosphite (I) -7 are shown.

Figure 0004964760
Figure 0004964760

H−NMR(270MHz、CDCl、TMS)δ:7.31(d,2H,J=2.0Hz)、6.89−6.86(m,4H)、6.64(bs,2H)、5.27(dd,2H,J=4.0Hz、12.9Hz)、4.76−4.65(m,2H)、4.28−4.04(m,2H)、2.40(s,6H)、2.18(d,6H,J=3.0Hz)、1.42(s,18H)、1.28(s,18H) 1 H-NMR (270 MHz, CDCl 3 , TMS) δ: 7.31 (d, 2H, J = 2.0 Hz), 6.89-6.86 (m, 4H), 6.64 (bs, 2H) 5.27 (dd, 2H, J = 4.0 Hz, 12.9 Hz), 4.76-4.65 (m, 2H), 4.28-4.04 (m, 2H), 2.40 ( s, 6H), 2.18 (d, 6H, J = 3.0 Hz), 1.42 (s, 18H), 1.28 (s, 18H)

<実施例8>
温度計および滴下漏斗を備えた300mlの三口フラスコに、三塩化リン10.3g(75mmol)とトルエン100mlを加え、ピリジン11.87g(150mmol)を加えて系内を窒素置換した。系内を−70℃に冷却した後、4,6−ジ−t−ブチル−2−ヒドロキシメチルフェノール11.82g(50mmol)をトルエン50mlに溶解した溶液を、内温が−70〜−60℃以下に保たれるようにして滴下した。滴下終了後、約1時間かけて系内を室温に戻した後、副生したピリジン塩酸塩をろ過により除去し、ろ液から低沸点成分を減圧下(0.01MPa)に留去することにより、粗ハロゲン化ホスファイト12.55gを得た。
続いて、温度計および滴下漏斗を備えた300mlの三口フラスコに4,4’,6,6’−テトラ−t−ブチル−2,2’−ビフェノール10.27g(25mmol)およびテトラヒドロフラン100mlを添加し、系内を窒素置換した。系内を−70℃に冷却した後、n−ブチルリチウムの1.6Mヘキサン溶液33ml(n−ブチルリチウム50mmol相当)を内温が−60℃以下に保たれるように滴下し、滴下終了後さらに30分攪拌した。得られた混合溶液に、上記操作で得られた粗ハロゲン化ホスファイト12.55gをトルエン30mlに溶解させた溶液を内温が−60℃以下に保たれるようにして滴下した。滴下終了後、同温度でさらに2時間攪拌した後、0℃まで徐々に昇温した。反応混合液から、副生した塩化リチウムをろ過により除去し、ろ液を減圧下(0.01MPa)に濃縮して残留物24.01gを得た。この残留物をシリカゲルカラムクロマトグラフィー(展開液;ヘキサン/トルエン=5/1(容量比))により精製し、下記のビスホスファイト(以下、ビスホスファイト(I)−8と称する)17.61g[4,4’,6,6’−テトラ−t−ブチル−2,2’−ビフェノール基準の収率:75%]を得た。以下に、得られたビスホスファイト(I)−8のH−NMRデータを示す。
<Example 8>
To a 300 ml three-necked flask equipped with a thermometer and a dropping funnel, 10.3 g (75 mmol) of phosphorus trichloride and 100 ml of toluene were added, and 11.87 g (150 mmol) of pyridine was added to purge the system with nitrogen. After cooling the inside of the system to -70 ° C, a solution in which 11.82 g (50 mmol) of 4,6-di-t-butyl-2-hydroxymethylphenol was dissolved in 50 ml of toluene, the internal temperature was -70 to -60 ° C. It was dripped so that it might be kept below. After completion of the dropwise addition, the system was returned to room temperature over about 1 hour, and pyridine hydrochloride formed as a by-product was removed by filtration, and low-boiling components were removed from the filtrate under reduced pressure (0.01 MPa). To obtain 12.55 g of a crude halogenated phosphite.
Subsequently, 10.27 g (25 mmol) of 4,4 ′, 6,6′-tetra-t-butyl-2,2′-biphenol and 100 ml of tetrahydrofuran were added to a 300 ml three-necked flask equipped with a thermometer and a dropping funnel. The inside of the system was replaced with nitrogen. After cooling the system to -70 ° C, 33 ml of 1.6M hexane solution of n-butyllithium (equivalent to 50 mmol of n-butyllithium) was added dropwise so that the internal temperature was kept at -60 ° C or lower, and after completion of the addition The mixture was further stirred for 30 minutes. A solution obtained by dissolving 12.55 g of the crude halogenated phosphite obtained by the above operation in 30 ml of toluene was added dropwise to the obtained mixed solution so that the internal temperature was kept at −60 ° C. or lower. After completion of dropping, the mixture was further stirred at the same temperature for 2 hours, and then gradually heated to 0 ° C. By-product lithium chloride was removed from the reaction mixture by filtration, and the filtrate was concentrated under reduced pressure (0.01 MPa) to obtain 24.01 g of a residue. This residue was purified by silica gel column chromatography (developing solution; hexane / toluene = 5/1 (volume ratio)), and 17.61 g of the following bisphosphite (hereinafter referred to as bisphosphite (I) -8). [Yield based on 4,4 ′, 6,6′-tetra-t-butyl-2,2′-biphenol: 75%] was obtained. The 1 H-NMR data of the obtained bisphosphite (I) -8 are shown below.

Figure 0004964760
Figure 0004964760

H−NMR(270MHz、CDCl、TMS)δ:7.46(d,2H,J=3.0Hz)、7.16(d,4H,J=7.8Hz)、6.76(d,2H,J=3.0Hz)、4.85(dd,2H,J=4.9Hz、13.0Hz)、4.13(dd,2H,J=10.0Hz、13.0Hz)、1.58(s,9H)、1.39(s,9H)、1.31(s,9H)、1.25(s,9H) 1 H-NMR (270 MHz, CDCl 3 , TMS) δ: 7.46 (d, 2H, J = 3.0 Hz), 7.16 (d, 4H, J = 7.8 Hz), 6.76 (d, 2H, J = 3.0 Hz), 4.85 (dd, 2H, J = 4.9 Hz, 13.0 Hz), 4.13 (dd, 2H, J = 10.0 Hz, 13.0 Hz), 1.58 (S, 9H), 1.39 (s, 9H), 1.31 (s, 9H), 1.25 (s, 9H)

<実施例9>
実施例8において、4,6−ジ−t−ブチル−2−ヒドロキシメチルフェノール11.82g(50mmol)の代わりに4,6−ジメチル−2−ヒドロキシメチルフェノール7.61g(50mmol)を用いた以外は実施例8と同様に反応および単離精製操作を実施し、下記のビスホスファイト(以下、ビスホスファイト(I)−9と称する)13.30g(4,4’,6,6’−テトラ−t−ブチル−2,2’−ビフェノール基準の収率69%)を得た。得られたビスホスファイト(I)−9のH−NMRデータを示す。
<Example 9>
In Example 8, except that 11.61 g (50 mmol) of 4,6-dimethyl-2-hydroxymethylphenol was used instead of 11.82 g (50 mmol) of 4,6-di-t-butyl-2-hydroxymethylphenol. In the same manner as in Example 8, the reaction and the isolation and purification operation were performed, and 13.30 g (4,4 ′, 6,6′-) of the following bisphosphite (hereinafter referred to as bisphosphite (I) -9) was used. A yield of 69% based on tetra-t-butyl-2,2′-biphenol) was obtained. 1 H-NMR data of the obtained bisphosphite (I) -9 are shown.

Figure 0004964760
Figure 0004964760

H−NMR(270MHz、CDCl、TMS)δ:7.44(d,2H,J=3.0Hz)、7.16(d,2H,J=7.8Hz)、6.85(s,2H)、6.37(s,2H)、4.83(d,2H,J=13.7Hz)、2.20(s,6H)、2.16(s,6H)、1.38(s,18H)、1.31(s,18H)
<実施例10>
実施例8において、4,4’,6,6’−テトラ−t−ブチル−2,2’−ビフェノール10.27g(25mmol)の代わりに6,6’−ジ−t−ブチル−4,4’−ジメトキシ−2,2’−ビフェノール8.96g(25mmol)を用いた以外は実施例8と同様に反応および単離精製操作を実施し、下記のビスホスファイト(以下、ビスホスファイト(I)−10と称する)16.19g(6,6’−ジ−t−ブチル−4,4’−ジメトキシ−2,2’−ビフェノール基準の収率73%)を得た。得られたビスホスファイト(I)−10のH−NMRデータを示す。
1 H-NMR (270 MHz, CDCl 3 , TMS) δ: 7.44 (d, 2H, J = 3.0 Hz), 7.16 (d, 2H, J = 7.8 Hz), 6.85 (s, 2H), 6.37 (s, 2H), 4.83 (d, 2H, J = 13.7 Hz), 2.20 (s, 6H), 2.16 (s, 6H), 1.38 (s) , 18H), 1.31 (s, 18H)
<Example 10>
In Example 8, instead of 10.27 g (25 mmol) of 4,4 ′, 6,6′-tetra-t-butyl-2,2′-biphenol, 6,6′-di-t-butyl-4,4 Except for using 8.96 g (25 mmol) of '-dimethoxy-2,2'-biphenol, the reaction and isolation and purification operations were carried out in the same manner as in Example 8, and the following bisphosphite (hereinafter referred to as bisphosphite (I ) -10) 16.19 g (6,6′-di-t-butyl-4,4′-dimethoxy-2,2′-biphenol based yield 73%). 1 H-NMR data of the obtained bisphosphite (I) -10 are shown.

Figure 0004964760
Figure 0004964760

H−NMR(270MHz、CDCl、TMS)δ:7.27(s,2H)、7.05(d,2H,J=3.0Hz)、6.86−6.36(m,4H)、4.90−4.56(m,2H)、4.26−3.94(m,2H)、3.81(s,3H)、3.67(s,3H)、1.53(s,18H)、1.39(s,18H)、1.26(s,9H)、1.25(s,9H) 1 H-NMR (270 MHz, CDCl 3 , TMS) δ: 7.27 (s, 2H), 7.05 (d, 2H, J = 3.0 Hz), 6.86-6.36 (m, 4H) 4.90-4.56 (m, 2H), 4.26-3.94 (m, 2H), 3.81 (s, 3H), 3.67 (s, 3H), 1.53 (s , 18H), 1.39 (s, 18H), 1.26 (s, 9H), 1.25 (s, 9H)

<実施例11> 1−オクテンのヒドロホルミル化反応
一酸化炭素:水素=1:1(モル比)の混合ガス雰囲気下、「ビスホスファイト(I)−8」100mg(0.106mmol)およびRh(acac)(CO)41.3mg(0.16mmol)をトルエン20mlに溶解させた混合溶液を調製し、かかる混合溶液から1mlを抜き取り、「ビスホスファイト(I)−8」145mg(0.154mmol)をトルエン9mlに溶解させた溶液に25℃で添加し、ロジウム原子:リン原子=1:20(モル比)の混合溶液を得た(以下、これを「触媒液A」と称する)。ガス導入口およびサンプリング口を備えた内容積100mlの電磁攪拌式オートクレーブに、窒素雰囲気下、触媒液A2.5ml[Rh(acac)(CO)0.002mmol;ロジウム金属原子濃度=5.8ppm(質量比)、ビスホスファイト0.04mmol相当]、1−オクテン47.5ml(303mmol)およびトリエタノールアミン224mg(1.5mmol)を加え、オートクレーブ内を一酸化炭素:水素=1:1(モル比)の混合ガスで3MPa(ゲージ圧)とした後、攪拌しながらオートクレーブ内の温度を120℃に昇温し、5時間反応させた。反応中、一酸化炭素:水素=1:1(モル比)の混合ガスを常時供給し、反応系内の圧力を一定に保った。得られた反応混合液をガスクロマトグラフィー(分析機器:株式会社島津製作所製GC−17A、使用カラム:J&W Scientific社製DB−1(60m)、分析条件:injection temp.280℃、detection temp.280℃、昇温条件:160℃(5分保持)→(10℃/分で昇温)→260℃(20分保持))で分析したところ、1−オクテンの転化率は99%、アルデヒド化合物の選択率は98%[n−ノナナール/2−メチルオクタナール=88/12(モル比)]、2−オクテンの選択率(異性化率)は2%、Turn Over Frequency(以下、「TOF」と略称する)は約30000であった。
<Example 11> Hydroformylation reaction of 1-octene Under a mixed gas atmosphere of carbon monoxide: hydrogen = 1: 1 (molar ratio), 100 mg (0.106 mmol) of “bisphosphite (I) -8” and Rh ( Acac) (CO) 2 41.3 mg (0.16 mmol) was prepared in 20 ml of toluene to prepare a mixed solution, 1 ml was extracted from the mixed solution, and “bisphosphite (I) -8” 145 mg (0.154 mmol) ) Was added to a solution of 9 ml of toluene at 25 ° C. to obtain a mixed solution of rhodium atom: phosphorus atom = 1: 20 (molar ratio) (hereinafter referred to as “catalyst solution A”). Under a nitrogen atmosphere, 2.5 ml of catalyst solution A [Rh (acac) (CO) 2 0.002 mmol; rhodium metal atom concentration = 5.8 ppm (100 mg) in a 100 ml electromagnetic stirring autoclave equipped with a gas inlet and a sampling port Mass ratio), bisphosphite 0.04 mmol equivalent], 17.5-octene 47.5 ml (303 mmol) and triethanolamine 224 mg (1.5 mmol) were added, and the inside of the autoclave was carbon monoxide: hydrogen = 1: 1 (molar ratio). ) Was set to 3 MPa (gauge pressure), and the temperature in the autoclave was raised to 120 ° C. while stirring and reacted for 5 hours. During the reaction, a mixed gas of carbon monoxide: hydrogen = 1: 1 (molar ratio) was constantly supplied to keep the pressure in the reaction system constant. The obtained reaction mixture was subjected to gas chromatography (analytical instrument: GC-17A manufactured by Shimadzu Corporation, column used: DB-1 (60 m) manufactured by J & W Scientific, analysis conditions: injection temp. 280 ° C., detection temp. 280. C., temperature rising condition: 160.degree. C. (5 minutes hold) .fwdarw. (Temperature rise at 10.degree. C./minute).fwdarw.260.degree. C. (20 minutes hold)). The conversion of 1-octene was 99%. Selectivity is 98% [n-nonanal / 2-methyloctanal = 88/12 (molar ratio)], 2-octene selectivity (isomerization rate) is 2%, Turn Over Frequency (hereinafter referred to as “TOF”) (Abbreviated) was about 30000.

<実施例12> 7−オクテナールのヒドロホルミル化反応
実施例11において、1−オクテン47.5mlを7−オクテナール47.5mlに代えた以外は実施例11と同様にして反応および分析操作を実施したところ[ロジウム金属原子濃度=5.0ppm(質量比)]、7−オクテナールの転化率は99%、アルデヒド化合物の選択率は98%[1,9−ノナンジアール/2−メチル−1,8−オクタンジアール=88/12(モル比)]、6−オクテナールの選択率(異性化率)は2%、TOFは約30900であった。
<Example 12> Hydroformylation reaction of 7-octenal Reaction and analysis operations were performed in the same manner as in Example 11 except that 47.5 ml of 1-octene was replaced with 47.5 ml of 7-octenal in Example 11. [Rhodium metal atom concentration = 5.0 ppm (mass ratio)], conversion rate of 7-octenal is 99%, selectivity of aldehyde compound is 98% [1,9-nonanediar / 2-methyl-1,8-octane R = 88/12 (molar ratio)], the selectivity (isomerization rate) of 6-octenal was 2%, and the TOF was about 30900.

<比較例1> 7−オクテナールのヒドロホルミル化反応
実施例11において、1−オクテン47.5mlを7−オクテナール47.5mlに代え、「ビスホスファイト(I)−8」を下記式
<Comparative Example 1> Hydroformylation reaction of 7-octenal In Example 11, 47.5 ml of 1-octene was replaced with 47.5 ml of 7-octenal, and “bisphosphite (I) -8” was replaced by the following formula:

Figure 0004964760
Figure 0004964760

で示されるビスホスファイトに代えた以外は実施例11と同様にして反応[ロジウム金属原子濃度=5.0ppm(質量比)]および分析操作を実施したところ、7−オクテナールの転化率は95%、アルデヒド化合物の選択率は85%[1,9−ノナンジアール/2−メチル−1,8−オクタンジアール=98/2(モル比)]、6−オクテナールの選択率(異性化率)は15%、TOFは約29700であった。 The reaction [rhodium metal atom concentration = 5.0 ppm (mass ratio)] and the analytical operation were carried out in the same manner as in Example 11 except that the bisphosphite represented by the formula (2) was replaced. The conversion of 7-octenal was 95%. The selectivity of the aldehyde compound is 85% [1,9-nonanediar / 2-methyl-1,8-octanediar = 98/2 (molar ratio)], and the selectivity (isomerization rate) of 6-octenal is 15. %, TOF was about 29,700.

<実施例13> 1−メトキシ−2,7−オクタジエンのヒドロホルミル化反応
一酸化炭素:水素=1:1(モル比)の混合ガス雰囲気下、「ビスホスファイト(I)−10」50mg(0.056mmol)およびRh(acac)(CO)20.6mg(0.08mmol)をトルエン20mlに溶解させた混合溶液を調製し、かかる混合溶液から1mlを抜き取り、「ビスホスファイト(I)−10」139.4mg(0.157mmol)をトルエン4mlに溶解させた溶液に25℃で添加し、ロジウム原子:リン原子=1:40(モル比)の混合溶液を得た(以下、これを「触媒液B」と称する)。
実施例11において、1−オクテン47.5mlを1−メトキシ−2,7−オクタジエン47.5mlに、そして触媒液A2.5mlを触媒液B2.5mlに代えた以外は実施例11と同様に反応および分析操作を実施した[ロジウム金属原子濃度=5.0ppm(質量比)]。得られた反応混合液をガスクロマトグラフィーで分析したところ、1−メトキシ−2,7−オクタジエンの転化率は93%、末端の炭素−炭素二重結合のみがヒドロホルミル化されたアルデヒド化合物の選択率は93%[9−メトキシ−7−ノネナール/8−メトキシ−2−メチル−6−オクテナール=93/7(モル比)]、1−メトキシ−2,6−オクタジエンの選択率(異性化率)は4%、TOFは約28200であった。
<Example 13> Hydroformylation reaction of 1-methoxy-2,7-octadiene 50 mg (0 of "bisphosphite (I) -10" in a mixed gas atmosphere of carbon monoxide: hydrogen = 1: 1 (molar ratio) 0.056 mmol) and 20.6 mg (0.08 mmol) of Rh (acac) (CO) 2 in 20 ml of toluene were prepared, and 1 ml was extracted from the mixed solution, and “bisphosphite (I) -10” was extracted. 139.4 mg (0.157 mmol) was added to a solution of 4 ml of toluene at 25 ° C. to obtain a mixed solution of rhodium atom: phosphorus atom = 1: 40 (molar ratio) (hereinafter referred to as “catalyst”). Referred to as “Liquid B”).
In Example 11, the reaction was conducted in the same manner as in Example 11 except that 47.5 ml of 1-octene was replaced with 47.5 ml of 1-methoxy-2,7-octadiene and 2.5 ml of catalyst solution A was replaced with 2.5 ml of catalyst solution B. And analytical operation was carried out [rhodium metal atom concentration = 5.0 ppm (mass ratio)]. The obtained reaction mixture was analyzed by gas chromatography. The conversion of 1-methoxy-2,7-octadiene was 93%, and the selectivity for the aldehyde compound in which only the terminal carbon-carbon double bond was hydroformylated. Is 93% [9-methoxy-7-nonenal / 8-methoxy-2-methyl-6-octenal = 93/7 (molar ratio)], selectivity of 1-methoxy-2,6-octadiene (isomerization rate) Was 4% and TOF was about 28200.

実施例11〜13から、オレフィン性化合物のヒドロホルミル化反応において、本発明のビスホスファイト(I)および第8〜10族金属化合物の存在下に実施することにより、第8〜10族金属化合物の濃度が小さくても、高い反応活性、すなわち高い転化率および高いアルデヒド化合物の選択率が得られ、且つ異性化率を大きく抑制することができた。
From Examples 11 to 13, by carrying out the hydroformylation reaction of an olefinic compound in the presence of the bisphosphite (I) of the present invention and the Group 8 to 10 metal compound, Even when the concentration was small, high reaction activity, that is, high conversion rate and high selectivity of aldehyde compound was obtained, and the isomerization rate could be greatly suppressed.

Claims (3)

下記一般式(I)
Figure 0004964760
[式中、Aは、置換基として炭素数1〜5のアルキル基、炭素数1〜3のフルオロアルキル基、ハロゲン原子、炭素数1〜4のアルコキシル基から選択される基を有していてもよいアルキレン基置換基として炭素数1〜5のアルキル基、炭素数1〜3のフルオロアルキル基、ハロゲン原子、炭素数1〜4のアルコキシル基から選択される基を有していてもよいシクロアルキレン基置換基として炭素数1〜5のアルキル基、炭素数1〜3のフルオロアルキル基、ハロゲン原子、炭素数1〜4のアルコキシル基から選択される基を有していてもよいアリーレン基式−Z−Z’−(式中、ZおよびZ’は同一または異なっていてもよく、それぞれ置換基として炭素数1〜5のアルキル基、炭素数1〜3のフルオロアルキル基、ハロゲン原子、炭素数1〜4のアルコキシル基から選択される基を有していてもよいアリーレン基を表わす。)で示される下式(II)
Figure 0004964760
(式中、破線は置換部位を示す。)
から選択されるまたは式−Z−Q−Z’−(式中、ZおよびZ’は前記定義の通りであり、Qは酸素原子または置換基として炭素数1〜5のアルキル基、炭素数1〜3のフルオロアルキル基、ハロゲン原子、炭素数1〜4のアルコキシル基から選択される基を有していてもよいアルキレン基を表わす。)で示される下式(III)
Figure 0004964760
(式中、破線は置換部位を示す。)
から選択される基を表し、アルキレン基およびシクロアルキレン基は、いずれもその少なくとも1つの炭素原子が酸素原子で置換されていてもよい。また、R、R、R、R、R、R、R、R、R、R10、R11およびR12は同一または異なっていてもよく、それぞれ水素原子ハロゲン原子置換基としてハロゲン原子、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、ブトキシ基、イソブトキシ基、s−ブトキシ基、t−ブトキシ基から選択される基を有していてもよいアルキル基置換基としてハロゲン原子、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、s−ブチル基、t−ブチル基、シクロヘキシル基、ジフルオロメチル基、トリフルオロメチル基、1,1−ジフルオロエチル基、2,2−ジフルオロエチル基、1−フルオロプロピル基、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、ブトキシ基、イソブトキシ基、s−ブトキシ基、t−ブトキシ基から選択される基を有していてもよいアリール基またはアルコキシル基を表す。]
で示されるビスホスファイト。
The following general formula (I)
Figure 0004964760
[In the formula, A has a group selected from an alkyl group having 1 to 5 carbon atoms, a fluoroalkyl group having 1 to 3 carbon atoms, a halogen atom, and an alkoxyl group having 1 to 4 carbon atoms as a substituent. also an alkylene group; an alkyl group having 1 to 5 carbon atoms as a substituent, fluoroalkyl group having 1 to 3 carbon atoms, a halogen atom, may have a group selected from alkoxyl groups having 1 to 4 carbon atoms A cycloalkylene group ; an arylene which may have a substituent selected from an alkyl group having 1 to 5 carbon atoms, a fluoroalkyl group having 1 to 3 carbon atoms, a halogen atom, and an alkoxyl group having 1 to 4 carbon atoms as a substituent Group : Formula -Z-Z'- (wherein Z and Z 'may be the same or different, each having 1 to 5 carbon atoms, 1 to 3 fluoroalkyl groups, or halogen as substituents ; Atom, charcoal Represents an arylene group which may have a group selected from alkoxyl groups having 1 to 4.) The formula represented by (II)
Figure 0004964760
(In the formula, a broken line indicates a substitution site.)
Or a group selected from : -ZQZ'- (wherein Z and Z 'are as defined above, Q is an oxygen atom or an alkyl group having 1 to 5 carbon atoms as a substituent , carbon An alkylene group which may have a group selected from a fluoroalkyl group having 1 to 3 carbon atoms, a halogen atom, and an alkoxyl group having 1 to 4 carbon atoms .) (III)
Figure 0004964760
(In the formula, a broken line indicates a substitution site.)
In the alkylene group and the cycloalkylene group, at least one carbon atom thereof may be substituted with an oxygen atom. R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , R 10 , R 11 and R 12 may be the same or different, and each is a hydrogen atom ; A halogen atom ; an alkyl optionally having a group selected from a halogen atom, a methoxy group, an ethoxy group, a propoxy group, an isopropoxy group, a butoxy group, an isobutoxy group, an s-butoxy group and a t-butoxy group as a substituent Group : a halogen atom, methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, s-butyl group, t-butyl group, cyclohexyl group, difluoromethyl group, trifluoromethyl group, 1, 1-difluoroethyl group, 2,2-difluoroethyl group, 1-fluoropropyl group, methoxy group, ethoxy group, propoxy group, isopropoxy An aryl group which may have a group selected from a cis group, a butoxy group, an isobutoxy group, an s-butoxy group and a t-butoxy group ; or an alkoxyl group. ]
Bisphosphite represented by
オレフィン性化合物を、下記一般式(I)
Figure 0004964760
[式中、Aは、置換基として炭素数1〜5のアルキル基、炭素数1〜3のフルオロアルキル基、ハロゲン原子、炭素数1〜4のアルコキシル基から選択される基を有していてもよいアルキレン基置換基として炭素数1〜5のアルキル基、炭素数1〜3のフルオロアルキル基、ハロゲン原子、炭素数1〜4のアルコキシル基から選択される基を有していてもよいシクロアルキレン基置換基として炭素数1〜5のアルキル基、炭素数1〜3のフルオロアルキル基、ハロゲン原子、炭素数1〜4のアルコキシル基から選択される基を有していてもよいアリーレン基式−Z−Z’−(式中、ZおよびZ’は同一または異なっていてもよく、それぞれ置換基として炭素数1〜5のアルキル基、炭素数1〜3のフルオロアルキル基、ハロゲン原子、炭素数1〜4のアルコキシル基から選択される基を有していてもよいアリーレン基を表わす。)で示される下式(II)
Figure 0004964760
(式中、破線は置換部位を示す。)
から選択されるまたは式−Z−Q−Z’−(式中、ZおよびZ’は前記定義の通りであり、Qは酸素原子または置換基として炭素数1〜5のアルキル基、炭素数1〜3のフルオロアルキル基、ハロゲン原子、炭素数1〜4のアルコキシル基から選択される基を有していてもよいアルキレン基を表わす。)で示される下式(III)
Figure 0004964760
(式中、破線は置換部位を示す。)
から選択される基を表し、アルキレン基およびシクロアルキレン基は、いずれもその少なくとも1つの炭素原子が酸素原子で置換されていてもよい。また、R、R、R、R、R、R、R、R、R、R10、R11およびR12は同一または異なっていてもよく、それぞれ水素原子ハロゲン原子置換基としてハロゲン原子、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、ブトキシ基、イソブトキシ基、s−ブトキシ基、t−ブトキシ基から選択される基を有していてもよいアルキル基置換基としてハロゲン原子、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、s−ブチル基、t−ブチル基、シクロヘキシル基、ジフルオロメチル基、トリフルオロメチル基、1,1−ジフルオロエチル基、2,2−ジフルオロエチル基、1−フルオロプロピル基、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、ブトキシ基、イソブトキシ基、s−ブトキシ基、t−ブトキシ基から選択される基を有していてもよいアリール基またはアルコキシル基を表す。]
で示されるビスホスファイトおよびロジウム化合物、コバルト化合物、ルテニウム化合物、鉄化合物から選択される第8〜10族金属化合物の存在下に一酸化炭素および水素と反応させることを特徴とするアルデヒド化合物の製造方法。
The olefinic compound is represented by the following general formula (I)
Figure 0004964760
[In the formula, A has a group selected from an alkyl group having 1 to 5 carbon atoms, a fluoroalkyl group having 1 to 3 carbon atoms, a halogen atom, and an alkoxyl group having 1 to 4 carbon atoms as a substituent. also an alkylene group; an alkyl group having 1 to 5 carbon atoms as a substituent, fluoroalkyl group having 1 to 3 carbon atoms, a halogen atom, may have a group selected from alkoxyl groups having 1 to 4 carbon atoms A cycloalkylene group ; an arylene which may have a substituent selected from an alkyl group having 1 to 5 carbon atoms, a fluoroalkyl group having 1 to 3 carbon atoms, a halogen atom, and an alkoxyl group having 1 to 4 carbon atoms as a substituent Group : Formula -Z-Z'- (wherein Z and Z 'may be the same or different, each having 1 to 5 carbon atoms, 1 to 3 fluoroalkyl groups, or halogen as substituents ; Atom, charcoal Represents an arylene group which may have a group selected from alkoxyl groups having 1 to 4.) The formula represented by (II)
Figure 0004964760
(In the formula, a broken line indicates a substitution site.)
Or a group selected from : -ZQZ'- (wherein Z and Z 'are as defined above, Q is an oxygen atom or an alkyl group having 1 to 5 carbon atoms as a substituent , carbon An alkylene group which may have a group selected from a fluoroalkyl group having 1 to 3 carbon atoms, a halogen atom, and an alkoxyl group having 1 to 4 carbon atoms .) (III)
Figure 0004964760
(In the formula, a broken line indicates a substitution site.)
In the alkylene group and the cycloalkylene group, at least one carbon atom thereof may be substituted with an oxygen atom. R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , R 10 , R 11 and R 12 may be the same or different, and each is a hydrogen atom ; A halogen atom ; an alkyl optionally having a group selected from a halogen atom, a methoxy group, an ethoxy group, a propoxy group, an isopropoxy group, a butoxy group, an isobutoxy group, an s-butoxy group and a t-butoxy group as a substituent Group : a halogen atom, methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, s-butyl group, t-butyl group, cyclohexyl group, difluoromethyl group, trifluoromethyl group, 1, 1-difluoroethyl group, 2,2-difluoroethyl group, 1-fluoropropyl group, methoxy group, ethoxy group, propoxy group, isopropoxy An aryl group which may have a group selected from a cis group, a butoxy group, an isobutoxy group, an s-butoxy group and a t-butoxy group ; or an alkoxyl group. ]
Production of an aldehyde compound characterized by reacting with carbon monoxide and hydrogen in the presence of a group 8-10 metal compound selected from bisphosphites and rhodium compounds, cobalt compounds, ruthenium compounds and iron compounds Method.
下記一般式(I)
Figure 0004964760
[式中、Aは、置換基として炭素数1〜5のアルキル基、炭素数1〜3のフルオロアルキル基、ハロゲン原子、炭素数1〜4のアルコキシル基から選択される基を有していてもよいアルキレン基置換基として炭素数1〜5のアルキル基、炭素数1〜3のフルオロアルキル基、ハロゲン原子、炭素数1〜4のアルコキシル基から選択される基を有していてもよいシクロアルキレン基置換基として炭素数1〜5のアルキル基、炭素数1〜3のフルオロアルキル基、ハロゲン原子、炭素数1〜4のアルコキシル基から選択される基を有していてもよいアリーレン基式−Z−Z’−(式中、ZおよびZ’は同一または異なっていてもよく、それぞれ置換基として炭素数1〜5のアルキル基、炭素数1〜3のフルオロアルキル基、ハロゲン原子、炭素数1〜4のアルコキシル基から選択される基を有していてもよいアリーレン基を表わす。)で示される下式(II)
Figure 0004964760
(式中、破線は置換部位を示す。)
から選択されるまたは式−Z−Q−Z’−(式中、ZおよびZ’は前記定義の通りであり、Qは酸素原子または置換基として炭素数1〜5のアルキル基、炭素数1〜3のフルオロアルキル基、ハロゲン原子、炭素数1〜4のアルコキシル基から選択される基を有していてもよいアルキレン基を表わす。)で示される下式(III)
Figure 0004964760
(式中、破線は置換部位を示す。)
から選択される基を表し、アルキレン基およびシクロアルキレン基は、いずれもその少なくとも1つの炭素原子が酸素原子で置換されていてもよい。また、R、R、R、R、R、R、R、R、R、R10、R11およびR12は同一または異なっていてもよく、それぞれ水素原子ハロゲン原子置換基としてハロゲン原子、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、ブトキシ基、イソブトキシ基、s−ブトキシ基、t−ブトキシ基から選択される基を有していてもよいアルキル基置換基としてハロゲン原子、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、s−ブチル基、t−ブチル基、シクロヘキシル基、ジフルオロメチル基、トリフルオロメチル基、1,1−ジフルオロエチル基、2,2−ジフルオロエチル基、1−フルオロプロピル基、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、ブトキシ基、イソブトキシ基、s−ブトキシ基、t−ブトキシ基から選択される基を有していてもよいアリール基またはアルコキシル基を表す。]
で示されるビスホスファイトおよびロジウム化合物、コバルト化合物、ルテニウム化合物、鉄化合物から選択される第8〜10族金属化合物を含有する、オレフィン性化合物のヒドロホルミル化反応、不飽和結合の水素化反応、炭素−炭素結合形成反応の触媒として用いる組成物。
The following general formula (I)
Figure 0004964760
[In the formula, A has a group selected from an alkyl group having 1 to 5 carbon atoms, a fluoroalkyl group having 1 to 3 carbon atoms, a halogen atom, and an alkoxyl group having 1 to 4 carbon atoms as a substituent. also an alkylene group; an alkyl group having 1 to 5 carbon atoms as a substituent, fluoroalkyl group having 1 to 3 carbon atoms, a halogen atom, may have a group selected from alkoxyl groups having 1 to 4 carbon atoms A cycloalkylene group ; an arylene which may have a substituent selected from an alkyl group having 1 to 5 carbon atoms, a fluoroalkyl group having 1 to 3 carbon atoms, a halogen atom, and an alkoxyl group having 1 to 4 carbon atoms as a substituent Group : Formula -Z-Z'- (wherein Z and Z 'may be the same or different, each having 1 to 5 carbon atoms, 1 to 3 fluoroalkyl groups, or halogen as substituents ; Atom, charcoal Represents an arylene group which may have a group selected from alkoxyl groups having 1 to 4.) The formula represented by (II)
Figure 0004964760
(In the formula, a broken line indicates a substitution site.)
Or a group selected from : -ZQZ'- (wherein Z and Z 'are as defined above, Q is an oxygen atom or an alkyl group having 1 to 5 carbon atoms as a substituent , carbon An alkylene group which may have a group selected from a fluoroalkyl group having 1 to 3 carbon atoms, a halogen atom, and an alkoxyl group having 1 to 4 carbon atoms .) (III)
Figure 0004964760
(In the formula, a broken line indicates a substitution site.)
In the alkylene group and the cycloalkylene group, at least one carbon atom thereof may be substituted with an oxygen atom. R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , R 10 , R 11 and R 12 may be the same or different, and each is a hydrogen atom ; A halogen atom ; an alkyl optionally having a group selected from a halogen atom, a methoxy group, an ethoxy group, a propoxy group, an isopropoxy group, a butoxy group, an isobutoxy group, an s-butoxy group and a t-butoxy group as a substituent Group : a halogen atom, methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, s-butyl group, t-butyl group, cyclohexyl group, difluoromethyl group, trifluoromethyl group, 1, 1-difluoroethyl group, 2,2-difluoroethyl group, 1-fluoropropyl group, methoxy group, ethoxy group, propoxy group, isopropoxy An aryl group which may have a group selected from a cis group, a butoxy group, an isobutoxy group, an s-butoxy group and a t-butoxy group ; or an alkoxyl group. ]
A hydroformylation reaction of an olefinic compound, a hydrogenation reaction of an unsaturated bond, a carbon compound containing a group 8-10 metal compound selected from bisphosphite and rhodium compounds, cobalt compounds, ruthenium compounds and iron compounds -A composition used as a catalyst for a carbon bond forming reaction .
JP2007504808A 2005-02-25 2006-02-24 Bisphosphite and method for producing aldehyde compound using the bisphosphite and Group 8-10 metal compound Expired - Fee Related JP4964760B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007504808A JP4964760B2 (en) 2005-02-25 2006-02-24 Bisphosphite and method for producing aldehyde compound using the bisphosphite and Group 8-10 metal compound

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005051284 2005-02-25
JP2005051284 2005-02-25
PCT/JP2006/303405 WO2006090832A1 (en) 2005-02-25 2006-02-24 Bisphosphite, and process for production of aldehyde compound using the bisphosphite and compound of metal in group viii to group x
JP2007504808A JP4964760B2 (en) 2005-02-25 2006-02-24 Bisphosphite and method for producing aldehyde compound using the bisphosphite and Group 8-10 metal compound

Publications (2)

Publication Number Publication Date
JPWO2006090832A1 JPWO2006090832A1 (en) 2008-07-24
JP4964760B2 true JP4964760B2 (en) 2012-07-04

Family

ID=36927465

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007504808A Expired - Fee Related JP4964760B2 (en) 2005-02-25 2006-02-24 Bisphosphite and method for producing aldehyde compound using the bisphosphite and Group 8-10 metal compound

Country Status (2)

Country Link
JP (1) JP4964760B2 (en)
WO (1) WO2006090832A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014189525A (en) * 2013-03-27 2014-10-06 Kuraray Co Ltd Method for producing linear dialdehyde
CN108129515A (en) * 2017-12-05 2018-06-08 中海油天津化工研究设计院有限公司 A kind of synthetic method of bis-phosphite
EP4180439A1 (en) * 2021-11-15 2023-05-17 Evonik Operations GmbH Method for reducing the chlorine content of organobisphosphites by means of inert gas frit

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004501927A (en) * 2000-06-28 2004-01-22 オクセノ オレフィンヒェミー ゲゼルシャフト ミット ベシュレンクテル ハフツング Bisphosphite compounds, their metal complexes and their use in hydroformylation of olefins
JP2005500384A (en) * 2001-08-16 2005-01-06 オクセノ オレフィンヒェミー ゲゼルシャフト ミット ベシュレンクテル ハフツング Novel phosphite compounds and their metal complexes

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004501927A (en) * 2000-06-28 2004-01-22 オクセノ オレフィンヒェミー ゲゼルシャフト ミット ベシュレンクテル ハフツング Bisphosphite compounds, their metal complexes and their use in hydroformylation of olefins
JP2005500384A (en) * 2001-08-16 2005-01-06 オクセノ オレフィンヒェミー ゲゼルシャフト ミット ベシュレンクテル ハフツング Novel phosphite compounds and their metal complexes

Also Published As

Publication number Publication date
JPWO2006090832A1 (en) 2008-07-24
WO2006090832A1 (en) 2006-08-31

Similar Documents

Publication Publication Date Title
JP5180819B2 (en) Method for producing aldehyde using bisphosphite and Group 8-10 metal compound, and bisphosphite
EP0518241B1 (en) Hydroformylation process and bisphosphite compound used therein
KR101468754B1 (en) Bisphosphite ligands for hydroformylation catalyzed by transition metals
JP5400760B2 (en) Calixarene bisphosphite ligand for hydroformylation process
JP5823967B2 (en) Gas-phase hydroformylation process
KR20090092281A (en) Phosphonite-containing catalysts for hydroformylation processes
MX2011010379A (en) Hydroformylation process with a doubly open-ended bisphosphite ligand.
EP2445920B1 (en) Phosphite containing catalysts for hydroformylation processes
JP2008031125A (en) Method for producing aldehyde
JP4964760B2 (en) Bisphosphite and method for producing aldehyde compound using the bisphosphite and Group 8-10 metal compound
KR20160067771A (en) Bisphosphites having an unsymmetric outer biphenol unit
JP4994836B2 (en) Bisphosphite and method for producing aldehyde compound using the bisphosphite
JP6255007B2 (en) Method for producing dialdehyde
US7160835B2 (en) Bisphosphine process for producing the same and use thereof
JP2014189525A (en) Method for producing linear dialdehyde
JP6835403B2 (en) Method for producing dialdehyde compound
JP2893929B2 (en) Method for producing aldehyde
JP3291421B2 (en) Stabilization of phosphite ligands in hydroformylation process
JPH07278040A (en) Production of aldehyde from inner olefinic compound
NO174622B (en) Carbonylation Procedure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080904

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080904

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111206

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120313

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120328

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150406

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees