JP4963507B2 - Capacity control method of multistage centrifugal compressor - Google Patents

Capacity control method of multistage centrifugal compressor Download PDF

Info

Publication number
JP4963507B2
JP4963507B2 JP2009267745A JP2009267745A JP4963507B2 JP 4963507 B2 JP4963507 B2 JP 4963507B2 JP 2009267745 A JP2009267745 A JP 2009267745A JP 2009267745 A JP2009267745 A JP 2009267745A JP 4963507 B2 JP4963507 B2 JP 4963507B2
Authority
JP
Japan
Prior art keywords
stage
compressor
centrifugal compressor
guide vane
multistage centrifugal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009267745A
Other languages
Japanese (ja)
Other versions
JP2011111950A (en
Inventor
利秋 馬場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2009267745A priority Critical patent/JP4963507B2/en
Priority to CN 201010568000 priority patent/CN102072186B/en
Publication of JP2011111950A publication Critical patent/JP2011111950A/en
Application granted granted Critical
Publication of JP4963507B2 publication Critical patent/JP4963507B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Positive-Displacement Air Blowers (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Description

本発明は、多段遠心圧縮機の各段吸込部に設けられた入口ガイドベーンを有する多段遠心圧縮機の容量制御方法に関し、より詳しくは、前記入口ガイドベーンの簡単な制御により、サージングを回避して運転範囲を拡張し得る多段遠心圧縮機の容量制御方法に関するものである。   The present invention relates to a capacity control method for a multistage centrifugal compressor having an inlet guide vane provided in each stage suction section of the multistage centrifugal compressor, and more specifically, avoids surging by simple control of the inlet guide vane. The present invention relates to a capacity control method for a multistage centrifugal compressor capable of extending the operating range.

化学プラント等の各種プラントにおいて、原料空気圧縮用や工場空気源或いは各種高圧気体源等多量の高圧気体を製造する用途に、多段遠心圧縮機が用いられている。圧縮機本体の吸込側に気体を吸い込む吸込管を備えた多段遠心圧縮機では、従来から、羽根車の回転数を変化させないで、流量、圧力を変化させる容量制御手段として吸込管入口に入口ガイドベーンが設けられている。   In various plants such as chemical plants, multistage centrifugal compressors are used for producing large amounts of high-pressure gas such as raw material air compression, factory air sources or various high-pressure gas sources. In a multi-stage centrifugal compressor equipped with a suction pipe that sucks gas on the suction side of the compressor body, an inlet guide is provided at the inlet of the suction pipe as a capacity control means that changes the flow rate and pressure without changing the rotation speed of the impeller. A vane is provided.

ところが、遠心圧縮機には、通常サージング現象があり、そのために容量調整範囲は限られる。従って、より幅の広い容量調整範囲を有することが望まれている。一方、部分負荷における効率は少しでも向上する様に工夫する必要がある。先ず、前者の様な要望に対する従来技術1に係る遠心圧縮機の容量制御方法につき、以下説明する。   However, a centrifugal compressor usually has a surging phenomenon, and therefore the capacity adjustment range is limited. Therefore, it is desired to have a wider capacity adjustment range. On the other hand, it is necessary to devise so that the efficiency at the partial load is improved as much as possible. First, the capacity control method of the centrifugal compressor according to the related art 1 for the former demand will be described below.

従来技術1に係る遠心圧縮機の容量制御方法では、入口ガイドベーン及びデイフューザベーンの角度により決まるベーン角度平面上において、サージング領域を規定するサージングラインを予め設定して記憶しておいてから、上記の入口ガイドベーン及びデイフューザベーンの現在角度を測定し、これらの現在角度が上記サージングラインにより規定された上記サージング領域内に入っている場合は、上記サージングラインの法線方向ベクトルであり上記サージング領域外へ向かうもので、サージング領域から出るのに必要な入口ガイドベーン及びデイフューザベーンの角度の操作量を調整したものを、サージング解消用ベーン角度操作量ベクトルとして求める。   In the capacity control method of the centrifugal compressor according to the related art 1, on the vane angle plane determined by the angles of the inlet guide vane and the diffuser vane, a surging line that defines the surging area is set and stored in advance. When the current angles of the inlet guide vane and the diffuser vane are measured and these current angles are within the surging area defined by the surging line, the normal direction vector of the surging line is A value obtained by adjusting the amount of operation of the inlet guide vane and diffuser vane angle necessary for exiting from the surging region and going out of the surging region is obtained as a surging elimination vane angle operation amount vector.

その一方、測定された上記現在角度が上記サージング領域外における上記サージングライン近傍にあり、且つ目標流量に向かうべく決定されたベーン角度操作量ベクトルが上記サージング領域内に向かう場合は、上記サージングラインに基づいて上記ベーン角度操作量ベクトルから上記サージングラインの法線方向成分を除去して、上記サージングラインに沿う方向のサージング回避用ベーン角度操作量ベクトルを求め、上記のサージング解消用ベーン角度操作量ベクトルまたはサージング回避用ベーン角度操作量ベクトルによって決定される上記の入口ガイドベーン及びデイフューザベーンの角度に基づき、上記遠心圧縮機の流量を制御するものである(特許文献1参照)。   On the other hand, if the measured current angle is in the vicinity of the surging line outside the surging area, and the vane angle manipulated variable vector determined to go to the target flow rate goes into the surging area, the surging line Based on the vane angle manipulated variable vector, the normal direction component of the surging line is removed to obtain a surging avoiding vane angle manipulated variable vector in the direction along the surging line, and the surging elimination vane angle manipulated variable vector is obtained. Alternatively, the flow rate of the centrifugal compressor is controlled based on the angles of the inlet guide vane and the diffuser vane determined by the surging avoiding vane angle manipulated variable vector (see Patent Document 1).

しかしながら、上記の様な制御を行うには高級な演算装置と、この演算装置の入力値となる各種計測値を測定するための計測器が多数必要となり、多大な費用がかかる。また、制御に試行錯誤の動作が入るため、安定状態に移行するまでに時間を要する。   However, in order to perform the control as described above, a high-level arithmetic device and a large number of measuring instruments for measuring various measurement values as input values of the arithmetic device are required, which is very expensive. Further, since trial and error operations are included in the control, it takes time to shift to a stable state.

次に、上述した後者の様な要望に対する従来技術2に係る多段遠心圧縮機の容量制御方法につき、添付図9を参照しながら以下説明する。図9は、従来技術2に係る冷凍機用多段圧縮機の構造例を示す断面図である。   Next, the capacity control method of the multistage centrifugal compressor according to the prior art 2 for the latter demand described above will be described below with reference to FIG. FIG. 9 is a cross-sectional view showing an example of the structure of a multistage compressor for a refrigerator according to Prior Art 2.

従来技術2に係る冷凍機用多段圧縮機における容量制御装置は、効率の低下が著しいホットガスバイパス装置を取り付けることなく、高い省エネルギー性を有しながら幅広い容量制御が可能な冷凍機用多段圧縮機における容量制御装置を提供するために以下の機能を備えている。即ち、この冷凍機用多段圧縮機は、電動機18を中心にその両端に夫々1枚以上の羽根車22,23,32を具備する低段側圧縮ユニット20と、高段側圧縮ユニット30を配置すると共に、該両圧縮ユニット20,30の羽根車の回転軸は該電動機18の回転軸19に直結した構造を有している。   The capacity control device in the multistage compressor for a refrigerator according to the prior art 2 is a multistage compressor for a refrigerator that can perform a wide capacity control while having high energy savings without attaching a hot gas bypass device whose efficiency is significantly reduced. The following functions are provided in order to provide a capacity control apparatus. That is, this multistage compressor for a refrigerator has a low-stage compression unit 20 and a high-stage compression unit 30 each having one or more impellers 22, 23, 32 at both ends of the electric motor 18. In addition, the rotating shafts of the impellers of the compression units 20 and 30 have a structure directly connected to the rotating shaft 19 of the electric motor 18.

そして、従来技術2に係る冷凍機用多段圧縮機における容量制御装置は、低段側圧縮ユニット20の吸込み口21a及び高段側圧縮ユニット30の吸込み口31aに夫々サクションベーン24,33を取り付け、サクションベーン24,33の開閉をコントロールモータ27,36を介して制御盤44からの制御信号で制御する。前記制御盤44内に具備された温度コントローラは、温度検出端からの検出温度により、低段側のコントロールモータ27に開閉信号を出力する。また、低段側のコントロールモータ27内のポテンショメータは、前記制御盤44内に具備された平衡調整機構に開度信号を出力する。前記平衡調整機構は、低段側の開度信号と同じ開度となる様に、高段側のコントロールモータ36へ開閉信号を出力する(特許文献2参照)。   And the capacity control apparatus in the multistage compressor for refrigerators which concerns on the prior art 2 attaches the suction vanes 24 and 33 to the suction inlet 21a of the low stage compression unit 20, and the suction inlet 31a of the high stage compression unit 30, respectively. The opening and closing of the suction vanes 24 and 33 are controlled by control signals from the control panel 44 via the control motors 27 and 36. The temperature controller provided in the control panel 44 outputs an open / close signal to the control motor 27 on the lower stage side according to the detected temperature from the temperature detecting end. Further, the potentiometer in the low-stage control motor 27 outputs an opening degree signal to the balance adjustment mechanism provided in the control panel 44. The balance adjusting mechanism outputs an open / close signal to the high-stage control motor 36 so that the opening degree is the same as the low-stage side opening signal (see Patent Document 2).

上記従来技術2に係る冷凍機用多段圧縮機における容量制御装置は、圧縮機の流量調整を行う際に、低圧段と高圧段のサクションベーン24,33を同一開度となる様に制御しているが、この方法では流量を減らす制御を行おうとする際に、片側の段だけが先にサージング領域に入ってしまい、流量の減少幅が狭くなってしまう場合が発生するという問題点がある。   The capacity control device in the multistage compressor for a refrigerator according to the above-described prior art 2 controls the suction vanes 24 and 33 of the low pressure stage and the high pressure stage so as to have the same opening degree when adjusting the flow rate of the compressor. However, in this method, there is a problem that when the control for reducing the flow rate is performed, only one stage enters the surging region first, and the reduction amount of the flow rate becomes narrow.

特公平8−14279号公報Japanese Patent Publication No. 8-14279 特開2000−291597号公報JP 2000-291597 A

従って、本発明の目的は、多段遠心圧縮機の各段吸込部に設けられた入口ガイドベーンを有する多段遠心圧縮機の容量制御方法において、前記入口ガイドベーンを簡単かつ有効に制御することによりサージングを回避し、容量の絞り領域を広げて運転範囲をより広くできる多段遠心圧縮機の容量制御方法を提供することにある。   Accordingly, an object of the present invention is to provide a surging by simply and effectively controlling the inlet guide vane in a capacity control method for a multi-stage centrifugal compressor having an inlet guide vane provided in each stage suction section of the multi-stage centrifugal compressor. It is an object of the present invention to provide a capacity control method for a multi-stage centrifugal compressor that can expand the operating range by expanding the throttle area of the capacity.

前記目的を達成するために、本発明の請求項1に係る多段遠心圧縮機の容量制御方法が採用した手段は、多段遠心圧縮機の各段吸込部に設けられた入口ガイドベーンを有する多段遠心圧縮機の容量制御方法において、前記入口ガイドベーンの角度の各段ごとの相対的な比率が一定比率となる様に制御し、且つ、前記比率が下流側の後段に向かうにつれて小さくなる様に設定することを特徴とするものである。 In order to achieve the above object, the means adopted by the capacity control method of the multistage centrifugal compressor according to claim 1 of the present invention is a multistage centrifugal system having inlet guide vanes provided in each stage suction section of the multistage centrifugal compressor. In the compressor capacity control method, the relative ratio of each stage of the inlet guide vane angle is controlled to be a constant ratio , and the ratio is set to become smaller toward the downstream downstream stage. It is characterized by doing.

本発明の請求項1に係る多段遠心圧縮機の容量制御方法によれば、入口ガイドベーンの角度の各段ごとの相対的な比率が一定比率となる様に制御し、且つ、前記比率が下流側の後段に向かうにつれて小さくなる様に設定するので、各段共に、サージングラインから同レベルの余裕を持った運転が可能となり、特定の段だけが先にサージングラインに接近することを防止できると共に、容量の絞り領域を増加することが可能となる。また、前記圧縮機の容量制御の設定を行う際に効果的にかつ確実に調整が行える様になる。 According to the capacity control method of a multistage centrifugal compressor according to claim 1 of the present invention, the relative ratio of the angle of the inlet guide vane for each stage is controlled to be a constant ratio , and the ratio is set downstream. Since it is set to become smaller as it goes to the rear stage on the side , each stage can be operated with the same level of margin from the surging line, and only a specific stage can be prevented from approaching the surging line first. It is possible to increase the aperture area of the capacity. In addition, when setting the capacity control of the compressor, the adjustment can be performed effectively and reliably.

本発明の実施の形態1または3に係る4段遠心圧縮機の構造を模式的に示す模式的構造図である。It is a typical structure figure showing typically the structure of the 4-stage centrifugal compressor concerning Embodiment 1 or 3 of the present invention. 本発明の実施例に係り、一般的な多段遠心圧縮機においてガイドベーンの角度をパラメータとして流量−圧力特性の変化を示す性能曲線図である。It is a performance curve figure which shows the change of a flow-pressure characteristic by using the angle of a guide vane as a parameter in the general multistage centrifugal compressor in the Example of this invention. 図2に示す多段遠心圧縮機が供給するプラントにおける圧縮気体の流量−圧力特性の一例を示す図である。It is a figure which shows an example of the flow volume-pressure characteristic of the compressed gas in the plant which the multistage centrifugal compressor shown in FIG. 2 supplies. 本発明の比較例に係り、図2の性能を有する多段遠心圧縮機において容量制御を行った場合の各段の運転点を示し、図(a)は第1段圧縮機の運転点、図(b)は第2段圧縮機の運転点を夫々示す。FIG. 2 shows operating points of each stage when capacity control is performed in a multistage centrifugal compressor having the performance of FIG. 2 according to a comparative example of the present invention. FIG. b) shows the operating point of the second stage compressor, respectively. 本発明の比較例に係り、図2の性能を有する多段遠心圧縮機において容量制御を行った場合の各段の運転点を示し、図(c)は第3段圧縮機の運転点、図(d)は第4段圧縮機の運転点を夫々示す。In the comparative example of the present invention, the operating point of each stage when capacity control is performed in the multistage centrifugal compressor having the performance of FIG. 2 is shown. FIG. (C) is the operating point of the third stage compressor, FIG. d) shows the operating point of the fourth stage compressor, respectively. 本発明の実施例に係り、図2の性能を有する多段遠心圧縮機において容量制御を行った場合の各段の運転点を示し、図(a)は第1段圧縮機の運転点、図(b)は第2段圧縮機の運転点を夫々示す。FIG. 2 shows operating points of each stage when capacity control is performed in the multistage centrifugal compressor having the performance of FIG. 2 according to the embodiment of the present invention. FIG. b) shows the operating point of the second stage compressor, respectively. 本発明の実施例に係り、図2の性能を有する多段遠心圧縮機において容量制御を行った場合の各段の運転点を示し、図(c)は第3段圧縮機の運転点、図(d)は第4段圧縮機の運転点を夫々示す。FIG. 2C shows operating points of each stage when capacity control is performed in the multistage centrifugal compressor having the performance of FIG. 2 according to the embodiment of the present invention. FIG. d) shows the operating point of the fourth stage compressor, respectively. 本発明の実施の形態2に係る4段遠心圧縮機の構造を模式的に示す模式的構造図である。It is a typical structure figure showing typically the structure of the 4-stage centrifugal compressor concerning Embodiment 2 of the present invention. 従来技術2に係る冷凍機用多段圧縮機の構造例を示す断面図である。It is sectional drawing which shows the structural example of the multistage compressor for refrigerators which concerns on the prior art 2. FIG.

先ず、本発明の実施の形態1に係る多段遠心圧縮機の容量制御方法を、増速機内蔵型の4段遠心圧縮機に適用した例として、添付図1を参照しながら以下説明する。図1は本発明の実施の形態1に係る4段遠心圧縮機の構造を模式的に示す模式的構造図である。   First, an example in which the capacity control method for a multistage centrifugal compressor according to Embodiment 1 of the present invention is applied to a four-stage centrifugal compressor with a built-in speed increaser will be described below with reference to FIG. FIG. 1 is a schematic structural diagram schematically showing the structure of a four-stage centrifugal compressor according to Embodiment 1 of the present invention.

本発明の実施の形態1に係る4段遠心圧縮機では、電動機6によって入力軸5が駆動され、増速機16を介して動力が伝達され、第1段圧縮機1、第2段圧縮機2、第3段圧縮機3及び第4段圧縮機4が増速される。前記第1〜第4段圧縮機1〜4の吸込口には、入口ガイドベーン7〜10とこれらを操作するためのガイドベーン操作器11〜14が夫々設けられている。   In the four-stage centrifugal compressor according to the first embodiment of the present invention, the input shaft 5 is driven by the electric motor 6 and the power is transmitted through the speed increaser 16, and the first-stage compressor 1 and the second-stage compressor. 2, the third stage compressor 3 and the fourth stage compressor 4 are increased in speed. Inlet ports of the first to fourth stage compressors 1 to 4 are respectively provided with inlet guide vanes 7 to 10 and guide vane operating devices 11 to 14 for operating them.

前記第1段圧縮機1の吸込部に設けられた入口ガイドベーン7を介して吸込まれた気体は、前記第1段圧縮機1により圧縮された後、図示しない第1段吐出流路に吐出され、次いで、第2段圧縮機2の吸込部に設けられた入口ガイドベーン8を介して第2段圧縮機2に導入される。そして、前記入口ガイドベーン8を介して吸込まれた気体は、前記第2段圧縮機2により更に圧縮された後、図示しない第2段吐出流路に吐出され、入口ガイドベーン9を介して第3段圧縮機3に導入される。   The gas sucked through the inlet guide vane 7 provided in the suction portion of the first stage compressor 1 is compressed by the first stage compressor 1 and then discharged to a first stage discharge passage (not shown). Then, it is introduced into the second stage compressor 2 through the inlet guide vane 8 provided in the suction portion of the second stage compressor 2. Then, the gas sucked through the inlet guide vane 8 is further compressed by the second stage compressor 2 and then discharged into a second stage discharge passage (not shown), and the first stage vane 9 through the inlet guide vane 9. Introduced into the three-stage compressor 3.

更に、前記第3段圧縮機3及び第4段圧縮機4において、上記同様の圧縮過程を連続的に繰り返して高圧に圧縮された気体は、第4段圧縮機4の図示しない第4段吐出流路に吐出され、この第4段吐出流路に連通された需要先(プラント等)に最終的には供給される。   Further, in the third-stage compressor 3 and the fourth-stage compressor 4, the gas compressed to a high pressure by continuously repeating the same compression process is discharged from a fourth-stage compressor 4 (not shown). It is discharged to the flow path, and finally supplied to a customer (plant or the like) communicated with this fourth stage discharge flow path.

一方、この4段遠心圧縮機には制御器15が備えられ、この制御器15には予め、指令信号に基づき、前記入口ガイドベーン7〜10の角度を演算可能な複数のプログラムパターンからなる演算手段と、この演算手段の演算結果に基づいて、前記ガイドベーン操作器11〜14に夫々制御信号を出力可能な制御手段とが収納されている。   On the other hand, the four-stage centrifugal compressor is provided with a controller 15, and the controller 15 is pre-calculated with a plurality of program patterns capable of calculating the angles of the inlet guide vanes 7 to 10 based on a command signal. And a control means capable of outputting a control signal to each of the guide vane operation devices 11 to 14 based on the calculation result of the calculation means.

そして、プラント側からこの制御器15に、「圧力幾らの気体を幾らの流量送れ」という指令信号が入力されると、この指令信号に基づいて、前記演算手段により入口ガイドベーン7〜10の角度の各段ごとの相対的な比率が、指令信号が変更されない限り、常に一定比率となるプログラムパターンを選択してこのプログラムによる演算を行う。次いで、この演算結果を前記制御手段に入力し、この制御手段が、ガイドベーン操作器11〜14に夫々制御信号を出力して制御する。   Then, when a command signal that “a gas of a certain amount of pressure and a flow rate of some amount” is input to the controller 15 from the plant side, the angle of the inlet guide vanes 7 to 10 is calculated by the calculation means based on this command signal. As long as the command signal is not changed, a program pattern in which the relative ratio of each stage is always a constant ratio is selected, and calculation is performed by this program. Next, the calculation result is input to the control means, and the control means outputs a control signal to each of the guide vane operation devices 11 to 14 for control.

即ち、本発明の実施の形態1に係る多段遠心圧縮機の容量制御方法では、制御器15内に収納された前記演算手段により、前記入口ガイドベーン7〜10の角度が演算されると共に、この演算結果を基に、前記制御手段からガイドベーン操作器11〜14に夫々制御信号が出力され、この制御信号によって、ガイドベーン操作器11〜14を夫々操作する。   That is, in the capacity control method for the multistage centrifugal compressor according to the first embodiment of the present invention, the calculation means stored in the controller 15 calculates the angles of the inlet guide vanes 7 to 10, and Based on the calculation results, control signals are output from the control means to the guide vane operation devices 11 to 14, respectively, and the guide vane operation devices 11 to 14 are operated by the control signals.

そして、前記ガイドベーン操作器11〜14の操作により、入口ガイドベーン7〜10を夫々制御して圧縮機各段の容量調整がなされる。この結果、各段共にサージングラインから同レベルの余裕を持った運転が可能となり、特定の段だけが先にサージングラインに接近することを防止できると共に、容量の絞り領域を増加することが可能となる。   Then, the operation of the guide vane operation devices 11 to 14 controls the inlet guide vanes 7 to 10 to adjust the capacity of each stage of the compressor. As a result, each stage can be operated with the same level of margin from the surging line, and only a specific stage can be prevented from approaching the surging line first, and the capacity restriction area can be increased. Become.

尚、上記本発明の実施の形態1に係る多段遠心圧縮機の容量制御方法においては、4段の遠心圧縮機の場合について説明したが、2段以上の複数段を有する多段遠心圧縮機であれば、何れも本発明は適用可能である。また、多段遠心圧縮機の全段にガイドベーン及びガイドベーン操作器が設けられた態様例で説明したが、前記ガイドベーン及びガイドベーン操作器は必ずしも全段に設けられなくても良い。   In the capacity control method for the multi-stage centrifugal compressor according to the first embodiment of the present invention, the case of the 4-stage centrifugal compressor has been described. However, the multi-stage centrifugal compressor having two or more stages may be used. In any case, the present invention is applicable. Moreover, although the example in which the guide vane and the guide vane manipulator are provided in all stages of the multistage centrifugal compressor has been described, the guide vane and the guide vane manipulator need not necessarily be provided in all stages.

次に、入口ガイドベーンを備え、添付図2,3に示す様な圧縮機特性を有する一般的な多段遠心圧縮機において、前述の従来技術2を適用した比較例と本発明を適用した実施例について以下説明する。図2は本発明の実施例に係り、一般的な多段遠心圧縮機においてガイドベーンの角度をパラメータとして流量−圧力特性の変化を示す性能曲線図、図3は図2に示す多段遠心圧縮機が供給するプラントにおける圧縮気体の流量−圧力特性の一例を示す図である。   Next, in a general multi-stage centrifugal compressor having an inlet guide vane and having compressor characteristics as shown in FIGS. 2 and 3, a comparative example to which the above-described conventional technique 2 is applied and an embodiment to which the present invention is applied. Is described below. FIG. 2 relates to an embodiment of the present invention, and FIG. 3 is a performance curve diagram showing changes in flow rate-pressure characteristics using a guide vane angle as a parameter in a general multistage centrifugal compressor, and FIG. 3 is a diagram of the multistage centrifugal compressor shown in FIG. It is a figure which shows an example of the flow volume-pressure characteristic of the compressed gas in the plant to supply.

この多段遠心圧縮機の性能は、図2に示す如く、ガイドベーンの角度が−30度から60度に大きくなるに従って、吐出流量、吐出圧力共に低下して行く。また、各ガイドベーン角度において、吐出流量を絞っていくと、図中の一点鎖線で示すサージングラインに至りサージング現象を生じる。また、一般的に、プラントで使用される圧縮気体の流量が減少すると、図3に示す様に、求められる圧縮機の吐出圧力は若干減少する傾向にある。また、定格運転条件の吐出流量Qに対して、部分負荷の運転条件Q,Qで運用する場合がある。 As shown in FIG. 2, the performance of this multistage centrifugal compressor decreases both the discharge flow rate and the discharge pressure as the guide vane angle increases from -30 degrees to 60 degrees. Further, if the discharge flow rate is reduced at each guide vane angle, the surging line shown by the alternate long and short dash line in the figure is reached and a surging phenomenon occurs. In general, when the flow rate of the compressed gas used in the plant decreases, the required compressor discharge pressure tends to slightly decrease as shown in FIG. Further, there are cases where operation is performed under partial load operation conditions Q 1 and Q 2 with respect to the discharge flow rate Q d of the rated operation condition.

<比較例>
先ず、従来技術2を上記多段遠心圧縮機に適用した比較例を、添付図4,5を参照しながら説明する。図4,5は本発明の比較例に係り、図2の性能を有する多段遠心圧縮機において容量制御を行った場合の各段の運転点を示し、図4(a)は第1段圧縮機の運転点、図4(b)は第2段圧縮機の運転点、図5(c)は第3段圧縮機の運転点、図5(d)は第4段圧縮機の運転点を夫々示す。
<Comparative example>
First, a comparative example in which the prior art 2 is applied to the multistage centrifugal compressor will be described with reference to FIGS. 4 and 5 relate to a comparative example of the present invention, and show operating points of each stage when capacity control is performed in the multistage centrifugal compressor having the performance of FIG. 2, and FIG. 4 (a) is the first stage compressor. 4 (b) shows the operating point of the second stage compressor, FIG. 5 (c) shows the operating point of the third stage compressor, and FIG. 5 (d) shows the operating point of the fourth stage compressor. Show.

即ち、図4,5は、上記特性を有する多段遠心圧縮機において、ガイドベーンの角度が全段とも30度となる様に制御された場合を示している。第1段圧縮機の運転点は、図4(a)に示す如く、一点鎖線で示すサージライン近傍に位置し、サージラインまでの流量余裕sm1は非常に小さい。つまり、流量Q1より少ない吐出流量ではサージングを生じてしまい、運転できない。   That is, FIGS. 4 and 5 show a case where the guide vane angle is controlled to be 30 degrees in all stages in the multistage centrifugal compressor having the above characteristics. As shown in FIG. 4A, the operating point of the first stage compressor is located in the vicinity of the surge line indicated by the alternate long and short dash line, and the flow rate margin sm1 to the surge line is very small. That is, surging occurs at a discharge flow rate smaller than the flow rate Q1, and operation is impossible.

他方、第2〜第4段圧縮機では、サージラインまでの各流量余裕sm2〜sm4は、何れも第1段圧縮機の流量余裕sm1よりも大きく、より小流量の運転に対してまだ尤度があることが分かる。即ち、サージラインまでの流量余裕は、後段になるほど大きくなる傾向にあり、第1段圧縮機がサージラインに至る吐出流量においても、第4段圧縮機の流量余裕sm4にはまだ十分余裕があることを示している。   On the other hand, in the second to fourth stage compressors, each of the flow margins sm2 to sm4 up to the surge line is larger than the flow margin sm1 of the first stage compressor, and is still likely to operate with a smaller flow rate. I understand that there is. That is, the flow rate margin to the surge line tends to increase as the latter stage is reached, and the flow rate margin sm4 of the fourth stage compressor still has sufficient margin even at the discharge flow rate at which the first stage compressor reaches the surge line. It is shown that.

<実施例>
次に、本発明を適用した実施例を、添付図6,7を参照しながら説明する。図6,7は本発明の実施例に係り、図2の性能を有する多段遠心圧縮機において容量制御を行った場合の各段の運転点を示し、図6(a)は第1段圧縮機の運転点、図6(b)は第2段圧縮機の運転点、図7(c)は第3段圧縮機の運転点、図7(d)は第4段圧縮機の運転点を夫々示す。
<Example>
Next, an embodiment to which the present invention is applied will be described with reference to FIGS. FIGS. 6 and 7 relate to the embodiment of the present invention, and show operating points of each stage when capacity control is performed in the multistage centrifugal compressor having the performance of FIG. 2, and FIG. 6A shows the first stage compressor. FIG. 6B shows the operating point of the second stage compressor, FIG. 7C shows the operating point of the third stage compressor, and FIG. 7D shows the operating point of the fourth stage compressor. Show.

即ち、本発明を適用した実施例では、上記特性を有する多段遠心圧縮機において、入口ガイドベーン7〜10の設定角度を、各段ごとの相対的な比率を常に一定比率となる様に、次式(1)〜(4)で示される値に制御する。
f(1st)=a×f(base) (1)
f(2nd)=b×f(base) (2)
f(3rd)=c×f(base) (3)
f(4th)=d×f(base) (4)
That is, in the embodiment to which the present invention is applied, in the multistage centrifugal compressor having the above characteristics, the setting angle of the inlet guide vanes 7 to 10 is set so that the relative ratio of each stage is always a constant ratio. Control is performed to the values indicated by the equations (1) to (4).
f (1st) = a × f (base) (1)
f (2nd) = b × f (base) (2)
f (3rd) = c × f (base) (3)
f (4th) = d × f (base) (4)

ここで、
f(base):ガイドベーン基準設定角度
f(1st) :第1段圧縮機ガイドベーン設定角度
f(2nd) :第2段圧縮機ガイドベーン設定角度
f(3rd) :第3段圧縮機ガイドベーン設定角度
f(4th) :第4段圧縮機ガイドベーン設定角度
a,b,c,d:比例定数
here,
f (base): guide vane reference setting angle
f (1st): First stage compressor guide vane setting angle
f (2nd): Second stage compressor guide vane setting angle
f (3rd): Third stage compressor guide vane setting angle
f (4th): 4th stage compressor guide vane setting angle
a, b, c, d: proportionality constant

プラントからの指令信号が制御器15に入力され、この指令信号に基づいて前記制御器15に収納された演算手段によって、上記f(base)が算出され、次いで前式(1)〜(4)から圧縮機各段のガイドベーンの角度が算出され、前記制御器15に収納された制御手段によって、各段のガイドベーン操作器11〜14に制御信号が出力される。   A command signal from the plant is input to the controller 15, and the above f (base) is calculated by the arithmetic means housed in the controller 15 based on this command signal, and then the above equations (1) to (4) Then, the angle of the guide vane at each stage of the compressor is calculated, and a control signal is output to the guide vane operating units 11 to 14 at each stage by the control means housed in the controller 15.

図6,7における運転点Qの場合、a=1.15,b=1.05,c=0.95,d=0.85と設定されていたとすれば、f(base)=30[度]のとき、
f(1st)=34.5[度]
f(2nd)=31.5[度]
f(3rd)=28.5[度]
f(4th)=25.5[度]
となる。
In the case of the operating point Q 1 in FIGS. 6 and 7, assuming that a = 1.15, b = 1.05, c = 0.95, and d = 0.85, f (base) = 30 [ Degree]
f (1st) = 34.5 [degree]
f (2nd) = 31.5 [degree]
f (3rd) = 28.5 [degrees]
f (4th) = 25.5 [degrees]
It becomes.

図6,7に示されている様に、運転点Qの各段におけるサージラインまでの流量余裕sm1〜sm4は同一レベルとなっており、この運転点Qでもサージラインまでまだ余裕があり、更に流量を絞った運転点Qでも運転可能となっている。即ち、本発明により、圧縮機の流量制御範囲の増加が図られていることが分かる。 As shown in FIGS. 6 and 7, the flow rate margin sm1~sm4 up surge line at each stage of the operating point Q 1 is has a same level, there is still a margin to the surge line even in this operating point Q 1 , and can operated even operating point Q 2 to which targeted further flow. That is, it can be seen that the flow rate control range of the compressor is increased by the present invention.

また、本発明に係る多段遠心圧縮機の容量制御方法は、前述した従来技術1に示された様な複雑な制御を用いずとも十分な流量制御を行うことができる。一般的に、図2に示した様な流量−圧力特性が要求される場合は、前記定数a〜dは次式(5)を満足する様に設定した方が、より有効に流量制御することが可能となる。
a>b>c>d (5)
In addition, the capacity control method of the multistage centrifugal compressor according to the present invention can perform sufficient flow rate control without using complicated control as shown in the prior art 1 described above. In general, when the flow rate-pressure characteristics as shown in FIG. 2 are required, the flow rate can be controlled more effectively by setting the constants a to d so as to satisfy the following equation (5). Is possible.
a>b>c> d (5)

一般的に、本発明に係る多段遠心圧縮機では、その第1段圧縮機の入口圧力は、吐出流量が変化しても殆ど変化しない場合が多い。但し、求められる吐出圧力は、図3に示した通り、吐出流量の減少に伴い低下する。従って、プラントで使用される圧縮気体の流量が減少すると、各段の圧縮機の吐出圧力も低下する。その場合の第2段圧縮機の入口側の体積流量の、定格時の体積流量との比の値は、第1段圧縮機のそれよりも大きくなる。上記比の値が前段より後段の方が大きくなるのは、第3段以降の高圧段(下流側の後段)の圧縮機でも同様である。即ち、後段になる程サージングラインから運転点が遠ざかる傾向にあるといえる。以上のことを踏まえると、上記式(5)を満足する様に設定することがより効果的である。   In general, in the multistage centrifugal compressor according to the present invention, the inlet pressure of the first stage compressor is often hardly changed even when the discharge flow rate is changed. However, the required discharge pressure decreases as the discharge flow rate decreases, as shown in FIG. Therefore, when the flow rate of the compressed gas used in the plant is reduced, the discharge pressure of the compressor at each stage is also reduced. In this case, the ratio of the volume flow rate on the inlet side of the second stage compressor to the volume flow rate at the time of rating is larger than that of the first stage compressor. The value of the ratio in the rear stage is larger than that in the front stage as well in the compressors in the third and subsequent high pressure stages (downstream downstream stage). In other words, it can be said that the operating point tends to move away from the surging line as the latter stage. In view of the above, it is more effective to set so as to satisfy the above formula (5).

次に、本発明の実施の形態2に係る多段遠心圧縮機の容量制御方法を、添付図8を参照しながら説明する。
但し、本発明の実施の形態2が上記実施の形態1と相違するところは、本発明の実施の形態1が増速機内蔵型の多段遠心圧縮機であったのに対し、実施の形態2では1軸型の多段遠心圧縮機であり、また後述する様に、前記実施の形態1が、各段のガイドベーンを全て異なる独立したガイドベーン操作器にて制御する構成を有していたのに対し、実施の形態2では、多段のガイドベーンの一部を共通のガイドベーン操作器にて制御する構成を有するものであり、これらの相違以外は上記実施の形態1と全く同構成であるから、上記実施の形態1と同一のものに同一符号を付して、以下その相違する点について説明する。
Next, a capacity control method for a multistage centrifugal compressor according to Embodiment 2 of the present invention will be described with reference to FIG.
However, the second embodiment of the present invention differs from the first embodiment in that the first embodiment of the present invention is a multistage centrifugal compressor with a built-in speed increaser, whereas the second embodiment of the present invention is different from the first embodiment. In the single-shaft multistage centrifugal compressor, as described later, the first embodiment has a configuration in which the guide vanes of each stage are all controlled by different independent guide vane operating devices. On the other hand, the second embodiment has a configuration in which a part of the multistage guide vanes is controlled by a common guide vane operating device. Except for these differences, the second embodiment is exactly the same as the first embodiment. Therefore, the same components as those in the first embodiment are denoted by the same reference numerals, and different points will be described below.

即ち、上記実施の形態1においては、各段のガイドベーン7〜10が、ガイドベーン操作器11〜14によって独立して制御される構成を有していたのに対し、実施の形態2においては、リンク機構等により、第1,3段圧縮機1,3のガイドベーン7,9が、共通のガイドベーン操作器50によって、第2,4段圧縮機2,4のガイドベーン8,10が、他の共通のガイドベーン操作器51によって操作される様に構成されている。   That is, in the first embodiment, the guide vanes 7 to 10 at each stage are controlled independently by the guide vane operating devices 11 to 14, whereas in the second embodiment, the guide vanes 7 to 10 are controlled independently. The guide vanes 7 and 9 of the first and third stage compressors 1 and 3 are connected by the link mechanism and the like, and the guide vanes 8 and 10 of the second and fourth stage compressors 2 and 4 are connected by the common guide vane operating unit 50. It is configured to be operated by another common guide vane operating device 51.

そして、本発明の実施の形態2に係る多段遠心圧縮機の容量制御方法は、この様に連結されたガイドベーン7〜10の角度が、前記リンク機構により同一角度になる様に、次式(6),(7)で示す値に制御するものである。
f(1st)=f(3rd)=a×f(base) (6)
f(2nd)=f(4th)=b×f(base) (7)
従って、本発明の実施の形態2に係る多段遠心圧縮機の容量制御方法によれば、上記実施の形態2以外のより広範囲な多段遠心圧縮機にも、本発明の容量制御方法が適用可能となる。
And the capacity | capacitance control method of the multistage centrifugal compressor which concerns on Embodiment 2 of this invention is given by following Formula (in order that the angle of the guide vanes 7-10 connected in this way may become the same angle by the said link mechanism. Control to the values shown in 6) and (7).
f (1st) = f (3rd) = a × f (base) (6)
f (2nd) = f (4th) = b × f (base) (7)
Therefore, according to the capacity control method for a multistage centrifugal compressor according to the second embodiment of the present invention, the capacity control method of the present invention can be applied to a wider range of multistage centrifugal compressors than the second embodiment. Become.

次に、本発明の実施の形態3に係る多段遠心圧縮機の容量制御方法を、前図1を参照しながら説明する。
但し、本発明の実施の形態3が上記実施の形態1と相違するところは、本発明の実施の形態1が、入口ガイドベーン7〜10の設定角度の算出に前式(1)〜(4)を用いたのに対し、実施の形態3では、次式(8)〜(11)に示す様に角度の値を三角関数tanに変換した後、定数を乗じて、それを逆三角関数atanで再変換して算出する。三角関数としては、tanの外、sinやcosでも良い。
Next, a capacity control method for a multistage centrifugal compressor according to Embodiment 3 of the present invention will be described with reference to FIG.
However, the third embodiment of the present invention differs from the first embodiment described above in that the first embodiment of the present invention calculates the set angles of the inlet guide vanes 7 to 10 by the expressions (1) to (4). In the third embodiment, the angle value is converted into a trigonometric function tan as shown in the following formulas (8) to (11), and then multiplied by a constant to obtain the inverse trigonometric function atan. Recalculate and calculate. The trigonometric function may be sin or cos in addition to tan.

f(1st)=atan[a×tan{f(base)}] (8)
f(2nd)=atan[b×tan{f(base)}] (9)
f(3rd)=atan[c×tan{f(base)}] (10)
f(4th)=atan[d×tan{f(base)}] (11)
f (1st) = atan [a × tan {f (base)}] (8)
f (2nd) = atan [b × tan {f (base)}] (9)
f (3rd) = atan [c × tan {f (base)}] (10)
f (4th) = atan [d × tan {f (base)}] (11)

演算はやや複雑になるものの、圧縮機の特性によっては上記実施の形態3に係る容量制御方法の方が、多段遠心圧縮機の流量範囲をより拡張可能な場合がある。この様な圧縮機特性について以下説明する。
先ず、遠心圧縮機のヘッド(吐出圧と密接に関係する)Hは、次式(12)の通り右辺と比例関係にある。
H∝U2・Cu2−U1・Cu1 (12)
Although the calculation is slightly complicated, depending on the characteristics of the compressor, the capacity control method according to the third embodiment may expand the flow range of the multistage centrifugal compressor more. Such compressor characteristics will be described below.
First, the head (which is closely related to the discharge pressure) H of the centrifugal compressor is proportional to the right side as shown in the following equation (12).
H∝U2 / Cu2-U1 / Cu1 (12)

ここで、U2とU1は、羽根車入口と出口の周速を示し、回転数が一定であればガイドベーンの角度にはよらず同一となる。Cu2は、羽根車出口の気体の絶対速度の周方向成分で、流量条件等により若干変化はあるが余り大きな変化はしない。他方、Cu1は、羽根車入口の気体の絶対速度の周方向成分で、ガイドベーンの角度が0度であれば0となる。ガイドベーンによる流量制御は、このガイドベーンによって前記Cu1の値を制御するもので、Cu1の値が大きくなれば、上式(12)から分かる様にHの値は小さくなり、吐出圧が低下することとなる。このことにより、運転点を変化させて流量調整を行うのがガイドベーン制御である。   Here, U2 and U1 indicate the peripheral speeds of the impeller inlet and outlet, and are the same regardless of the angle of the guide vanes if the rotational speed is constant. Cu2 is a circumferential component of the absolute velocity of the gas at the exit of the impeller, and there is little change depending on the flow rate condition but not so much. On the other hand, Cu1 is a circumferential component of the absolute velocity of the gas at the impeller inlet, and becomes 0 if the guide vane angle is 0 degrees. The flow rate control by the guide vane is to control the value of Cu1 by this guide vane. When the value of Cu1 increases, the value of H decreases and the discharge pressure decreases as can be seen from the above equation (12). It will be. In this way, guide vane control performs flow rate adjustment by changing the operating point.

仮に、流入速度が同一だとすると、周方向成分はtan{f(base)}に比例することとなるが、ガイドベーンの角度が0〜45度程度までは、角度とtan{f(base)}の変化割合は同等であるが、前記角度が60度程度となると、tan{f(base)}の増加量が、角度そのものの増加量に比して大きくなる。この様な角度における、角度の微妙な変化が運転点に大きく影響を与える圧縮機特性を有する多段遠心圧縮機の場合には、上式(8)〜(11)を用いる本発明の実施の形態3に係る容量制御方法が有効になる場合がある。   If the inflow velocities are the same, the circumferential component is proportional to tan {f (base)}. However, when the guide vane angle is about 0 to 45 degrees, the angle and tan {f (base)} Although the rate of change is the same, when the angle is about 60 degrees, the increase amount of tan {f (base)} is larger than the increase amount of the angle itself. In the case of a multistage centrifugal compressor having compressor characteristics in which a slight change in angle at such an angle greatly affects the operating point, the embodiment of the present invention using the above equations (8) to (11) 3 may be effective.

以上説明した様に、本発明に係る多段遠心圧縮機の容量制御方法によれば、入口ガイドベーンの角度の各段ごとの相対的な比率が一定比率となる様に制御するので、各段共に、サージングラインから同レベルの余裕を持った運転が可能となり、特定の段だけが先にサージングラインに接近することを防止できると共に、容量の絞り領域を増加可能となる。また、本発明に係る他の多段遠心圧縮機の容量制御方法によれば、前記角度の各段ごとの相対的な比率を、下流側の後段に向かうにつれて小さくなる様に設定するので、前記圧縮機の容量制御の設定を行う際に効果的にかつ確実に調整が行える様になる。   As described above, according to the capacity control method of the multistage centrifugal compressor according to the present invention, the relative ratio of the angle of the inlet guide vane to each stage is controlled to be a constant ratio. Therefore, it is possible to operate from the surging line with a margin of the same level, and it is possible to prevent only a specific stage from approaching the surging line first, and to increase the capacity throttle region. Further, according to the capacity control method of another multistage centrifugal compressor according to the present invention, the relative ratio of each angle of each stage is set so as to become smaller toward the downstream downstream stage. When setting the capacity control of the machine, the adjustment can be performed effectively and reliably.

1:第1段圧縮機, 2:第2段圧縮機,
3:第3段圧縮機, 4:第4段圧縮機,
5:入力軸, 6:電動機,
7〜10:入口ガイドベーン,
11〜14,50,51:ガイドベーン操作器,
15:制御器,
16:増速機
1: First stage compressor, 2: Second stage compressor,
3: Third stage compressor, 4: Fourth stage compressor,
5: Input shaft, 6: Electric motor,
7-10: Entrance guide vanes,
11-14, 50, 51: Guide vane operating device,
15: Controller,
16: Gearbox

Claims (1)

多段遠心圧縮機の各段吸込部に設けられた入口ガイドベーンを有する多段遠心圧縮機の容量制御方法において、前記入口ガイドベーンの角度の各段ごとの相対的な比率が一定比率となる様に制御し、且つ、前記比率が下流側の後段に向かうにつれて小さくなる様に設定することを特徴とする多段遠心圧縮機の容量制御方法。 In the capacity control method of a multistage centrifugal compressor having an inlet guide vane provided in each stage suction portion of the multistage centrifugal compressor, the relative ratio of each stage of the angle of the inlet guide vane is a constant ratio. A capacity control method for a multistage centrifugal compressor, characterized in that the control is performed and the ratio is set so as to decrease as it goes downstream .
JP2009267745A 2009-11-25 2009-11-25 Capacity control method of multistage centrifugal compressor Active JP4963507B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2009267745A JP4963507B2 (en) 2009-11-25 2009-11-25 Capacity control method of multistage centrifugal compressor
CN 201010568000 CN102072186B (en) 2009-11-25 2010-11-24 Volume control method for multistage centrifugal compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009267745A JP4963507B2 (en) 2009-11-25 2009-11-25 Capacity control method of multistage centrifugal compressor

Publications (2)

Publication Number Publication Date
JP2011111950A JP2011111950A (en) 2011-06-09
JP4963507B2 true JP4963507B2 (en) 2012-06-27

Family

ID=44030870

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009267745A Active JP4963507B2 (en) 2009-11-25 2009-11-25 Capacity control method of multistage centrifugal compressor

Country Status (2)

Country Link
JP (1) JP4963507B2 (en)
CN (1) CN102072186B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI507606B (en) 2012-01-20 2015-11-11 Ind Tech Res Inst Multiple capacity centrifugal compressor and control method thereof
JP5611253B2 (en) * 2012-02-23 2014-10-22 三菱重工業株式会社 Compressor control device, control method therefor, and compressor system
JP7157589B2 (en) * 2018-08-13 2022-10-20 三菱重工サーマルシステムズ株式会社 Control device, refrigerator, control method and abnormality detection method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3658415B2 (en) * 1993-12-28 2005-06-08 株式会社 日立インダストリイズ Gas turbine equipment
JP4069675B2 (en) * 2002-05-22 2008-04-02 株式会社日立プラントテクノロジー Turbo compressor and capacity control method thereof
WO2004016951A1 (en) * 2002-08-12 2004-02-26 Hitachi Industries Co., Ltd. Turbo compressor and method of operating the turbo compressor
EP1473463B1 (en) * 2003-04-30 2006-08-16 Holset Engineering Co. Limited Compressor
JP2008121451A (en) * 2006-11-09 2008-05-29 Mitsubishi Heavy Ind Ltd Turbo refrigeration device and method of controlling the same

Also Published As

Publication number Publication date
JP2011111950A (en) 2011-06-09
CN102072186A (en) 2011-05-25
CN102072186B (en) 2013-11-06

Similar Documents

Publication Publication Date Title
JP5863320B2 (en) Centrifugal compressor
JP5465673B2 (en) Control system
JP4940755B2 (en) Single-shaft multistage centrifugal compressor
JP5634907B2 (en) Compressor control device and control method
US20100263391A1 (en) Control Device for HVAC Systems with Inlet and Outlet Flow Control Devices
US10989211B2 (en) Methods and systems for antisurge control of turbo compressors with side stream
CN105308329A (en) Methods and systems for controlling turbocompressors
US20140352320A1 (en) Two-Shaft Gas Turbine
JP2011043130A (en) Centrifugal compressor and refrigeration equipment
JP4963507B2 (en) Capacity control method of multistage centrifugal compressor
JPWO2004016951A1 (en) Turbo compressor and its operating method
JP5649388B2 (en) Vapor compression heat pump and control method thereof
JP2010236401A (en) Centrifugal fluid machine
KR20240144122A (en) System and method for extending the operating range of a dynamic compressor
JP3581139B2 (en) Flow control method for fluid machinery
JP3583115B2 (en) Flow control method for fluid machinery
EP3129657B1 (en) Improved scroll for a turbomachine, turbomachine comprising said scroll, and method of operation
RU2246045C1 (en) Method of control of air flow rate of centrifugal compressor and device for realization of this method
JP2002061594A (en) Optimum load control system for compressor
JP2655431B2 (en) Constant flow control device for centrifugal compressor
JP6049807B2 (en) Centrifugal compressor
JP3679858B2 (en) Compressor control device
JP6466129B2 (en) Fluid machine control device and fluid machine control method
EP2505849A1 (en) Method and system for energy optimization of a centrifugal compressor
JPH10122184A (en) Multistage centrifugal compressor

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20110526

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120117

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120305

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120321

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120323

R150 Certificate of patent or registration of utility model

Ref document number: 4963507

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150406

Year of fee payment: 3