JP4961293B2 - Vibration welding structure of resin molded products - Google Patents

Vibration welding structure of resin molded products Download PDF

Info

Publication number
JP4961293B2
JP4961293B2 JP2007195965A JP2007195965A JP4961293B2 JP 4961293 B2 JP4961293 B2 JP 4961293B2 JP 2007195965 A JP2007195965 A JP 2007195965A JP 2007195965 A JP2007195965 A JP 2007195965A JP 4961293 B2 JP4961293 B2 JP 4961293B2
Authority
JP
Japan
Prior art keywords
vibration
welding
resin panel
resin
thin solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007195965A
Other languages
Japanese (ja)
Other versions
JP2009029030A (en
Inventor
修也 上瀧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikyo Nishikawa Corp
Original Assignee
Daikyo Nishikawa Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikyo Nishikawa Corp filed Critical Daikyo Nishikawa Corp
Priority to JP2007195965A priority Critical patent/JP4961293B2/en
Publication of JP2009029030A publication Critical patent/JP2009029030A/en
Application granted granted Critical
Publication of JP4961293B2 publication Critical patent/JP4961293B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/06Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using friction, e.g. spin welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/112Single lapped joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/114Single butt joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/51Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
    • B29C66/54Joining several hollow-preforms, e.g. half-shells, to form hollow articles, e.g. for making balls, containers; Joining several hollow-preforms, e.g. half-cylinders, to form tubular articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/72General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined
    • B29C66/723General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined being multi-layered
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/72General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined
    • B29C66/727General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined being porous, e.g. foam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/81General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps
    • B29C66/814General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps
    • B29C66/8141General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps characterised by the surface geometry of the part of the pressing elements, e.g. welding jaws or clamps, coming into contact with the parts to be joined
    • B29C66/81427General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps characterised by the surface geometry of the part of the pressing elements, e.g. welding jaws or clamps, coming into contact with the parts to be joined comprising a single ridge, e.g. for making a weakening line; comprising a single tooth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/83General aspects of machine operations or constructions and parts thereof characterised by the movement of the joining or pressing tools
    • B29C66/832Reciprocating joining or pressing tools
    • B29C66/8322Joining or pressing tools reciprocating along one axis

Description

この発明は、第1樹脂パネルと第2樹脂パネルとを圧接させた状態で振動させることにより溶着一体化してなる樹脂成形品の振動溶着構造の改良に関するものである。   The present invention relates to an improvement in a vibration welded structure of a resin molded product obtained by welding and integrating a first resin panel and a second resin panel by vibrating them in a pressure contact state.

特許文献1には、樹脂成形品の振動溶着構造として、自動車のインストルメントパネルに装着されるグローブボックスのリッドが挙げられている。このリッドは、リッドインナパネルとリッドアウタパネルとからなり、リッドインナパネルのリッドアウタパネルとの合わせ面側に複数個の溶着リブを振動方向に延びるように一体に突設し、これら溶着リブ先端面をリッドアウタパネル裏面に圧接させた状態で振動させることにより、リッドインナパネルとリッドアウタパネルとを溶着一体化している。
特開2004−58468号公報(段落0028欄、図1,4)
Patent Document 1 discloses a lid of a glove box that is attached to an instrument panel of an automobile as a vibration welded structure of a resin molded product. The lid is composed of a lid inner panel and a lid outer panel. A plurality of welding ribs are integrally projected on the mating surface side of the lid inner panel with the lid outer panel so as to extend in the vibration direction, and the front end surfaces of these welding ribs are provided. The lid inner panel and the lid outer panel are welded and integrated by vibrating in a state of being pressed against the back surface of the lid outer panel.
JP 2004-58468 A (paragraph 0028 column, FIGS. 1 and 4)

ところで、樹脂成形品においては、外面はソリッド層で堅いが、内部を発泡層にして軽量化を図ることが行われることがある。   By the way, in the resin molded product, the outer surface is hard with a solid layer, but there are cases where the inside is a foamed layer to reduce the weight.

振動溶着により2個の樹脂パネルを一体化する際に、一方の樹脂パネルが上述の如く内部に発泡層を有している場合、他方の樹脂パネル裏面に突設された溶着リブ先端面を、上記発泡層を有する一方の樹脂パネル裏面に圧接させた状態で振動溶着させようとすると、発泡層はソリッド層に比べて剛性が低く、かつソリッド層は薄くて面剛性が十分に得られず撓み易いため、薄肉ソリッド層が振動溶着時の圧接力に抗しきれず、溶着リブ先端が薄肉ソリッド層を突き抜けて発泡層に入り込んでしまうことがある。   When two resin panels are integrated by vibration welding, when one resin panel has a foam layer inside as described above, the front end surface of the welding rib projecting from the other resin panel back surface, If vibration welding is attempted in a state where it is pressed against the back of one of the resin panels having the foam layer, the foam layer has a lower rigidity than the solid layer, and the solid layer is thin and does not have sufficient surface rigidity to bend. Therefore, the thin solid layer cannot resist the pressure contact force during vibration welding, and the tip of the welding rib may penetrate the thin solid layer and enter the foamed layer.

その状態を図14に示す。図14は後述する実施形態1の図1(b),(c)に相当し、図14中、aは樹脂成形品の表側を構成する第1樹脂パネルであり、該第1樹脂パネルa外面には樹脂密度が高くて堅い薄肉ソリッド層bが形成されるとともに、内部には該薄肉ソリッド層bよりも樹脂密度が低い発泡層cが形成されている。dは第1樹脂パネルa表面に被着された不織布からなる表皮である。eは樹脂成形品の裏側を構成する第2樹脂パネル裏面に一体に突設された溶着リブであり、該溶着リブe先端は振動溶着により溶融して第1樹脂パネルa裏面に一体に溶着され、かつ薄肉ソリッド層bを突き抜けて発泡層cに入り込んでいる。fは振動溶着時に溶着リブe先端及び薄肉ソリッド層bが溶融して盛り上がった溶融樹脂部である。gは第1樹脂パネルaが裏面を上に向けた状態でセットされる振動溶着治具である。   The state is shown in FIG. FIG. 14 corresponds to FIGS. 1B and 1C of the first embodiment to be described later. In FIG. 14, a is a first resin panel constituting the front side of the resin molded product, and the outer surface of the first resin panel a A thin solid layer b having a high resin density and a high density is formed, and a foam layer c having a resin density lower than that of the thin solid layer b is formed inside. d is a skin made of a non-woven fabric applied to the surface of the first resin panel a. e is a welding rib integrally protruding on the back surface of the second resin panel constituting the back side of the resin molded product, and the tip of the welding rib e is melted by vibration welding and integrally welded to the back surface of the first resin panel a. And penetrates through the thin solid layer b into the foam layer c. Reference numeral f denotes a molten resin portion in which the tip of the welding rib e and the thin solid layer b are melted and raised during vibration welding. g is a vibration welding jig that is set with the first resin panel a facing the back side up.

このように、溶着リブe先端が発泡層cに入り込むと、薄肉ソリッド層bに比べて低剛性の発泡層cは溶着リブeを十分に支えることができず、また、溶着リブe先端と第1樹脂パネルaとの溶着強度も低下気味になり、2個の樹脂パネルを振動溶着により強固に一体化させた樹脂成形品を得ることができなくなる。   As described above, when the tip of the welding rib e enters the foam layer c, the foam layer c having a lower rigidity than the thin solid layer b cannot sufficiently support the welding rib e. The welding strength with one resin panel a also seems to be lowered, and it becomes impossible to obtain a resin molded product in which two resin panels are firmly integrated by vibration welding.

この発明はかかる点に鑑みてなされたものであり、その目的とするところは、溶着リブ先端が振動溶着時に発泡層に入り込まないようにして2個の樹脂パネルが強固に一体化された樹脂成形品を得ることである。   The present invention has been made in view of the above points, and an object of the present invention is to provide a resin molding in which two resin panels are firmly integrated so that the tip of the welding rib does not enter the foam layer during vibration welding. Is to get the goods.

上記の目的を達成するため、この発明は、振動溶着箇所の薄肉ソリッド層を補強したことを特徴とする。   In order to achieve the above object, the present invention is characterized in that a thin solid layer at a vibration welding location is reinforced.

具体的には、この発明は、第1樹脂パネルと第2樹脂パネルとを圧接させた状態で振動させることにより溶着一体化してなる樹脂成形品の振動溶着構造を前提とし、次のような解決手段を講じた。   Specifically, the present invention presupposes a vibration welded structure of a resin molded product obtained by welding and integrating the first resin panel and the second resin panel in a state where they are in pressure contact with each other. Measures were taken.

すなわち、請求項1に記載の発明は、上記第1樹脂パネルは、外面に薄肉ソリッド層が形成され、かつ内部に発泡層と、振動方向に連続又は断続して延び表裏両面の上記薄肉ソリッド層を連結する厚肉ソリッド部とが形成されてなり、上記第2樹脂パネル裏面には、溶着リブが上記厚肉ソリッド部に対応して振動方向に延びるように一体に突設され、振動溶着時、上記厚肉ソリッド部は上記溶着リブ先端面に対向位置し、該溶着リブ先端は、上記厚肉ソリッド部に対応する薄肉ソリッド層との圧接振動により該薄肉ソリッド層を溶融させつつ自身も溶融してソリッド部分のみと溶着されていることを特徴とする。   That is, according to the first aspect of the present invention, the first resin panel has a thin solid layer formed on the outer surface, and a foam layer inside, and the thin solid layer on both the front and back surfaces extending continuously or intermittently in the vibration direction. A thick solid portion connecting the two, and a welding rib is integrally provided on the back surface of the second resin panel so as to extend in the vibration direction corresponding to the thick solid portion. The thick solid portion is opposed to the front end surface of the weld rib, and the front end of the weld rib melts itself while melting the thin solid layer by pressure contact vibration with the thin solid layer corresponding to the thick solid portion. It is characterized by being welded only to the solid part.

請求項2に記載の発明は、上記前提において、上記第1樹脂パネルは、外面に薄肉ソリッド層が形成されるとともに内部に発泡層が形成され、かつ振動方向に連続又は断続して延び底面及び縦壁を有する凹部が上記薄肉ソリッド層に形成されてなり、上記第2樹脂パネル裏面には、溶着リブが上記凹部の縦壁の一部に対応して振動方向に延びるように一体に突設され、振動溶着時、上記凹部の縦壁の一部は上記溶着リブ先端面に対向位置し、該溶着リブ先端は、上記縦壁の一部に対応する薄肉ソリッド層との圧接振動により該薄肉ソリッド層及び縦壁の一部を溶融させつつ自身も溶融してソリッド部分のみと溶着されていることを特徴とする。 According to a second aspect of the present invention, in the above premise, the first resin panel has a bottom surface that has a thin solid layer formed on the outer surface and a foamed layer formed on the inside, and extends continuously or intermittently in the vibration direction. recess that having a vertical wall is formed on the thin solid layer, above the second resin panel back surface, integrally so as to extend in the vibrating direction welding rib in correspondence with the portion of the vertical wall of the recess At the time of vibration welding, a part of the vertical wall of the concave portion is positioned opposite to the front end surface of the welding rib, and the front end of the welding rib is pressed against the thin solid layer corresponding to a part of the vertical wall. Thus, the thin solid layer and a part of the vertical wall are melted while themselves are melted to be welded only to the solid part.

請求項3に記載の発明は、請求項2に記載の発明において、凹部は、振動方向に断続して延び、かつ溶着リブ先端が圧接する縦壁の一部が一直線状に並ぶように振動方向と交差する方向に交互に変位して配置されていることを特徴とする。   According to a third aspect of the present invention, in the second aspect of the present invention, the concave portion extends intermittently in the vibration direction, and the vibration direction is such that a part of the vertical wall with which the weld rib tip is pressed is aligned. It is characterized by being alternately displaced in the direction intersecting with.

請求項1に係る発明によれば、第1樹脂パネル裏面の薄肉ソリッド層が、振動方向に連続又は断続して延びる厚肉ソリッド部により補強されてその面剛性が高くなっている。また、第1樹脂パネルの厚肉ソリッド部形成箇所は、薄肉ソリッド層と厚肉ソリッド部だけで堅くて圧縮荷重に対して強くなっている。このため、振動溶着時に溶着リブ先端面が上記厚肉ソリッド部形成箇所に圧接しても、当該厚肉ソリッド部形成箇所はこの圧接力に十分に抗し得て撓まず、しかも、厚肉ソリッド部形成箇所には発泡層はなく、溶着リブ先端が発泡層に入り込む事態は生じない。   According to the first aspect of the present invention, the thin solid layer on the back surface of the first resin panel is reinforced by the thick solid portion extending continuously or intermittently in the vibration direction, and the surface rigidity is increased. Moreover, the thick solid part formation location of the 1st resin panel is hard only with a thin solid layer and a thick solid part, and is strong with respect to a compressive load. For this reason, even if the tip end surface of the weld rib is in pressure contact with the thick solid portion forming portion at the time of vibration welding, the thick solid portion forming portion can sufficiently resist this pressure contact force and does not flex, and the thick solid portion There is no foam layer in the part forming portion, and the situation where the tip of the weld rib enters the foam layer does not occur.

したがって、溶着リブを堅くて圧縮荷重に対して強くなっている厚肉ソリッド部形成箇所で安定支持するとともに、溶着リブと第1樹脂パネルとの溶着強度を高めて、第1樹脂パネルと第2樹脂パネルとを振動溶着により強固に一体化させた樹脂成形品を得ることができる。特に、厚肉ソリッド部が振動方向に連続して延びて1個で構成されている場合には、厚肉ソリッド部の第1樹脂パネルに占める量が増大して溶着リブの支持剛性及び溶着強度をさらに高めることができる。   Accordingly, the welding rib is stably supported at the thick solid portion forming portion which is hard and strong against the compressive load, and the welding strength between the welding rib and the first resin panel is increased, so that the first resin panel and the second resin A resin molded product in which the resin panel is firmly integrated by vibration welding can be obtained. In particular, when the thick solid portion continuously extends in the vibration direction and is composed of one piece, the amount of the thick solid portion in the first resin panel increases, and the supporting rigidity and welding strength of the welding ribs increase. Can be further enhanced.

また、厚肉ソリッド部が振動方向に断続して延びて複数個形成されている場合には、連続した厚肉ソリッド部に比べて重量を軽減することができる。この場合、溶着リブ先端は隣り合う厚肉ソリッド部で支えられているため、仮に溶着リブが隣り合う厚肉ソリッド部間で薄肉ソリッド層を突き抜けて発泡層に入り込んだとしても、溶着リブを安定支持することができる。   Further, when a plurality of thick solid portions are formed extending intermittently in the vibration direction, the weight can be reduced as compared with the continuous thick solid portions. In this case, the weld rib tip is supported by the adjacent thick solid part, so even if the weld rib penetrates the thin solid layer between adjacent thick solid parts and enters the foam layer, the weld rib is stable. Can be supported.

請求項2に係る発明によれば、第1樹脂パネル外面の薄肉ソリッド層が、振動方向に連続又は断続して延びる凹部の縦壁により補強されてその面剛性が高くなっている。また、第1樹脂パネルの凹部の縦壁を構成する薄肉ソリッド層は、溶着リブの第1樹脂パネルに対する圧接方向に沿っていて圧縮荷重に対して強くなっている。このため、振動溶着時に溶着リブ先端面が上記縦壁の一部に対応する薄肉ソリッド層に圧接しても、当該縦壁の一部はこの圧接力に十分に抗し得て撓まない。   According to the invention which concerns on Claim 2, the thin solid layer of the 1st resin panel outer surface is reinforced by the vertical wall of the recessed part extended continuously or intermittently in a vibration direction, and the surface rigidity is high. Moreover, the thin solid layer which comprises the vertical wall of the recessed part of a 1st resin panel is along the press-contact direction with respect to the 1st resin panel of a welding rib, and is strong with respect to a compressive load. For this reason, even when the welding rib tip surface is pressed against the thin solid layer corresponding to a part of the vertical wall during vibration welding, a part of the vertical wall can sufficiently resist the pressure and does not bend.

したがって、溶着リブを堅くて圧縮荷重に対して強くなっている凹部の縦壁の一部で安定支持するとともに、溶着リブと第1樹脂パネルとの溶着強度を高めて、第1樹脂パネルと第2樹脂パネルとを振動溶着により強固に一体化させた樹脂成形品を得ることができる。また、凹部が形成されていることにより、第1樹脂パネル、ひいては樹脂成形品の重量を軽減することができる。特に、凹部が振動方向に連続して延びて1個で構成されている場合には、凹部が振動方向に断続して延びて複数個形成されている場合に比べて凹部の空間容積が増大し、重量軽減効果が顕著となる。   Therefore, the welding rib is firmly supported by a part of the vertical wall of the recess which is hard and strong against the compressive load, and the welding strength between the welding rib and the first resin panel is increased, so that the first resin panel and the first resin panel A resin molded product in which two resin panels are firmly integrated by vibration welding can be obtained. Moreover, the weight of a 1st resin panel and by extension, a resin molded product can be reduced by forming the recessed part. In particular, in the case where the concave portion continuously extends in the vibration direction and is constituted by one piece, the spatial volume of the concave portion increases as compared with the case where a plurality of the concave portions extend intermittently in the vibration direction. The weight reduction effect becomes remarkable.

また、凹部が振動方向に断続して延びて複数個形成されている場合、溶着リブ先端は隣り合う凹部の縦壁で支えられているため、仮に溶着リブが隣り合う凹部間で薄肉ソリッド層を突き抜けて発泡層に入り込んだとしても、溶着リブを安定支持することができる。   In addition, when a plurality of recesses are formed extending intermittently in the vibration direction, the weld rib tip is supported by the vertical wall of the adjacent recess, so that a thin solid layer is temporarily formed between the adjacent recesses. Even if it penetrates into the foamed layer, the welding rib can be stably supported.

請求項3に係る発明によれば、凹部形成領域、つまり圧縮荷重に対して強い縦壁が振動方向と交差する方向に広がって位置しているため、第1樹脂パネル、ひいては樹脂成形品の剛性を高めることができる。   According to the invention of claim 3, since the recess forming region, that is, the vertical wall that is strong against the compressive load is located so as to extend in the direction intersecting with the vibration direction, the rigidity of the first resin panel and thus the resin molded product Can be increased.

以下、この発明の実施形態について図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

(実施形態1)
図2及び図3は、この発明の実施形態1に係る振動溶着構造が適用された樹脂成形品としての略矩形のパッケージトレイ1を示す。このパッケージトレイ1は、射出成形品である第1樹脂パネル3と第2樹脂パネル5とからなり、これら両者を圧接させた状態で振動させることにより溶着一体化して構成されている。図3中、符号Lを付して示す破線は溶着ラインであり、本例では、この溶着ラインLがパッケージトレイ1の長手方向に沿うように平行に5箇所設けられている。
(Embodiment 1)
2 and 3 show a substantially rectangular package tray 1 as a resin molded product to which the vibration welding structure according to Embodiment 1 of the present invention is applied. The package tray 1 includes a first resin panel 3 and a second resin panel 5 that are injection-molded products, and is configured to be welded and integrated by vibrating both of them in a pressure-contacted state. In FIG. 3, broken lines indicated by reference sign L are welding lines, and in this example, five welding lines L are provided in parallel along the longitudinal direction of the package tray 1.

上記第1樹脂パネル3表面には、見栄えを良くする等の観点から不織布からなる表皮7が一体に被着されている(図2参照)とともに、一方の長辺側中央には把持用の凹部9が形成されている。上記第2樹脂パネル5の両短辺側には嵌合凹部11が形成され、該嵌合凹部11を例えばハッチバック車の車体後部の荷室のサイドトリムに形成された支持ピンに着脱自在に嵌合させることにより、荷室をパッケージトレイ1で上下に区分するようになっている。なお、図3では、便宜上、表皮7を図示していない。   A skin 7 made of non-woven fabric is integrally attached to the surface of the first resin panel 3 from the standpoint of improving appearance (see FIG. 2), and a holding recess is provided at the center of one long side. 9 is formed. A fitting recess 11 is formed on both short sides of the second resin panel 5, and the fitting recess 11 is detachably fitted to a support pin formed on a side trim of a cargo compartment at the rear of the hatchback vehicle body, for example. By combining them, the cargo compartment is divided into upper and lower parts by the package tray 1. In FIG. 3, the skin 7 is not shown for convenience.

上記第1樹脂パネル3は、図1(a)及び図4に示すように、外面に樹脂密度が高くて堅い薄肉ソリッド層13が形成され、かつ内部に該薄肉ソリッド層13よりも樹脂密度が低い発泡層15が形成されている。また、上記第1樹脂パネル3の内部には、上記薄肉ソリッド層13と同質の複数個の横断面楕円形の厚肉ソリッド部17が、表裏両面の上記薄肉ソリッド層13を連結するように、かつ振動方向(パッケージトレイ1の長手方向)に一直線状に断続して延びるように一体に形成されている。これにより、第1樹脂パネル3裏面の薄肉ソリッド層13がこれら厚肉ソリッド部17により補強されて面剛性が高くなっている。これら厚肉ソリッド部17が形成されている厚肉ソリッド部形成領域が、振動溶着後の上記溶着ラインLに対応している。図4では溶着ラインLに相当する箇所を一点鎖線で示している。   As shown in FIGS. 1A and 4, the first resin panel 3 has a thin solid layer 13 having a high resin density on the outer surface, and a resin density higher than that of the thin solid layer 13. A low foam layer 15 is formed. Further, inside the first resin panel 3, a plurality of elliptical thick solid portions 17 having the same cross section as the thin solid layer 13 are connected to the thin solid layers 13 on both sides. And it is integrally formed so as to extend intermittently in a straight line in the vibration direction (longitudinal direction of the package tray 1). Thereby, the thin solid layer 13 on the back surface of the first resin panel 3 is reinforced by these thick solid portions 17 and the surface rigidity is increased. The thick solid portion forming region where the thick solid portion 17 is formed corresponds to the welding line L after vibration welding. In FIG. 4, a portion corresponding to the welding line L is indicated by a one-dot chain line.

上記のように、外面に薄肉ソリッド層13が形成され、内部に発泡層15と厚肉ソリッド部17とが形成された第1樹脂パネル3は、例えば次のようにして成形される。   As described above, the first resin panel 3 in which the thin solid layer 13 is formed on the outer surface and the foamed layer 15 and the thick solid portion 17 are formed inside is molded as follows, for example.

成形に際し、図5に示すような成形型101と、熱可塑性樹脂(例えばポリプロピレン)Rと、不織布からなる表皮7とを用意する。上記成形型101は、第1樹脂パネル3の表面側を成形する固定型103と、該固定型103に対向配置され第1樹脂パネル3の裏面側を成形する可動型105と、複数個の厚肉ソリッド部17に対応するように図外の固定側に支持されて上記可動型105側に配置された固定ブロック107とを備えている。また、上記熱可塑性樹脂Rとしては、例えば、化学反応によりガスを発生させる化学的発泡材や二酸化炭素ガス及び窒素ガス等の不活性ガス(物理的発泡材)等の発泡促進物質と、ガラス繊維等の繊維とが混入された熱可塑性樹脂である。   At the time of molding, a mold 101 as shown in FIG. 5, a thermoplastic resin (for example, polypropylene) R, and a skin 7 made of a nonwoven fabric are prepared. The mold 101 includes a fixed mold 103 that molds the front surface side of the first resin panel 3, a movable mold 105 that is disposed opposite to the fixed mold 103 and molds the back surface side of the first resin panel 3, and a plurality of thicknesses. A fixed block 107 that is supported on the fixed side (not shown) and disposed on the movable mold 105 side so as to correspond to the meat solid portion 17 is provided. Examples of the thermoplastic resin R include, for example, a chemical foam material that generates gas by a chemical reaction, a foam promoting substance such as an inert gas (physical foam material) such as carbon dioxide gas and nitrogen gas, and glass fiber. It is a thermoplastic resin mixed with fibers such as.

まず、図5(a)に示すように、固定型103の成形面103aに表皮7をセットして成形型101を型閉じし、上述の如き発泡促進物質及びガラス繊維等の繊維が混入された熱可塑性樹脂R(例えばポリプロピレン樹脂)を成形型101のキャビティ109内に射出機(図示せず)から射出充填する。可動型105の成形面105aは、成形型101の型閉じ状態で固定ブロック107の先端面107aよりも固定型103側に接近位置していて、上記固定ブロック107対応箇所には厚肉ソリッド部17形成用の凹部111が形成されている。キャビティ109内では、上記熱可塑性樹脂Rが固化進行することにより、成形型101の成形面103a,105a近傍にスキン層(図示せず)が生成される。このスキン層は未だ完全に固化しきっていない。   First, as shown in FIG. 5A, the skin 7 is set on the molding surface 103a of the fixed mold 103 and the mold 101 is closed, and the foam-promoting substance and fibers such as glass fibers are mixed. A thermoplastic resin R (for example, polypropylene resin) is injected and filled into the cavity 109 of the mold 101 from an injection machine (not shown). The molding surface 105a of the movable mold 105 is located closer to the fixed mold 103 side than the front end surface 107a of the fixed block 107 in the mold closed state of the mold 101, and the thick solid portion 17 is located at the position corresponding to the fixed block 107. A forming recess 111 is formed. In the cavity 109, the thermoplastic resin R solidifies and a skin layer (not shown) is generated in the vicinity of the molding surfaces 103a and 105a of the molding die 101. This skin layer has not yet fully solidified.

次に、上記熱可塑性樹脂Rが固化する過程で、図5(b)に示すように、可動型105をキャビティ109の容積が拡大する方向(型開き方向)に後退させる。つまり、可動型105を固定型103から僅かに離れさせ、キャビティ109の容積を例えば2倍もしくはそれ以上に拡大させる。これにより、可動型105の成形面105aと固定ブロック107の先端面107aとが面一になる。固定ブロック107は後退しないので、当該箇所のキャビティ109の容積は拡大しない。この段階で、熱可塑性樹脂Rは、成形型101(固定型103、可動型105)の成形面103a,105a及び固定ブロック107の先端面107aと接触する部分が型温の影響により早期に冷却されているため、樹脂密度が高くて空隙がなく堅い薄肉ソリッド層13となって外面層を構成する。一方、熱可塑性樹脂Rの内側部分は型温の影響を受け難く、粘度の高いゲル状態になっている。   Next, in the process of solidifying the thermoplastic resin R, as shown in FIG. 5B, the movable mold 105 is retracted in the direction in which the volume of the cavity 109 is increased (the mold opening direction). In other words, the movable mold 105 is slightly separated from the fixed mold 103, and the volume of the cavity 109 is enlarged by, for example, twice or more. Thereby, the molding surface 105a of the movable mold 105 and the tip surface 107a of the fixed block 107 are flush with each other. Since the fixed block 107 does not retreat, the volume of the cavity 109 at that location does not increase. At this stage, the portion of the thermoplastic resin R that contacts the molding surfaces 103a and 105a of the molding die 101 (the stationary die 103 and the movable die 105) and the tip surface 107a of the stationary block 107 is cooled early due to the influence of the die temperature. Therefore, the outer surface layer is formed as a thin solid layer 13 having a high resin density and no voids. On the other hand, the inner part of the thermoplastic resin R is hardly affected by the mold temperature and is in a gel state with high viscosity.

したがって、キャビティ109の容積拡大により、それまで固定型103及び可動型105で圧縮されている熱可塑性樹脂Rが可動型105の成形面105aに引っ張られるとともに、熱可塑性樹脂R中の化学反応により発生したガスや不活性ガス等により発泡膨張する。この際、熱可塑性樹脂R中のガラス繊維等の繊維も上記圧縮が軽減されて弾性的に復元し、この弾性復元力(スプリングバック現象)によっても熱可塑性樹脂Rが膨張する。   Therefore, as the volume of the cavity 109 increases, the thermoplastic resin R that has been compressed by the fixed mold 103 and the movable mold 105 is pulled to the molding surface 105a of the movable mold 105 and is generated by a chemical reaction in the thermoplastic resin R. The foam expands due to the gas or inert gas. At this time, the fibers such as glass fibers in the thermoplastic resin R are also elastically restored by reducing the compression, and the thermoplastic resin R expands also by this elastic restoring force (spring back phenomenon).

これにより、樹脂密度が高くて空隙がなく堅い薄肉ソリッド層13が外面に形成されるとともに、内部に多数の空隙(図示せず)を有し上記薄肉ソリッド層13に比べて樹脂密度が低い発泡層15が形成された第1樹脂パネル3が成形される。また、この第1樹脂パネル3の内部には、複数個の厚肉ソリッド部17が表裏両面の上記薄肉ソリッド層13を連結するように、かつ振動方向(パッケージトレイ1の長手方向)に一直線状に断続して延びるように固定ブロック107に対応して一体に形成されている。そして、この第1樹脂パネル3は、発泡層15がなく樹脂密度が高いソリッド層13のみからなる場合に比べて軽量化を図ることができる。なお、熱可塑性樹脂Rにはガラス繊維等の繊維は必ずしも混入させなくてもよい。また、熱可塑性樹脂Rの発泡膨張は、ガラス繊維等の繊維による弾性復元力のみで行ってもよい。   As a result, a thin solid layer 13 having a high resin density and no voids is formed on the outer surface, and a foam having a large number of voids (not shown) inside and having a lower resin density than the thin solid layer 13. The first resin panel 3 on which the layer 15 is formed is molded. In addition, a plurality of thick solid portions 17 are connected to the inside of the first resin panel 3 so as to connect the thin solid layers 13 on both the front and back surfaces, and in a straight line in the vibration direction (longitudinal direction of the package tray 1). It is integrally formed corresponding to the fixed block 107 so as to extend intermittently. And this 1st resin panel 3 can achieve weight reduction compared with the case where it does not have the foaming layer 15 but consists only of the solid layer 13 with high resin density. The thermoplastic resin R may not necessarily contain fibers such as glass fibers. Moreover, you may perform foaming expansion of the thermoplastic resin R only by the elastic restoring force by fibers, such as glass fiber.

一方、上記第2樹脂パネル5裏面には、5個の溶着リブ19が上記第1樹脂パネル3の5箇所の厚肉ソリッド部形成領域に対応して振動方向に延びるようにそれぞれ一体に平行突設されている。該溶着リブ19は、振動溶着時に横ブレしないように両側から複数個の補強リブ21で安定支持されている(図2参照)。   On the other hand, on the back surface of the second resin panel 5, five welding ribs 19 are integrally projected in parallel so as to extend in the vibration direction corresponding to the five thick solid portion forming regions of the first resin panel 3. It is installed. The welding rib 19 is stably supported by a plurality of reinforcing ribs 21 from both sides so as not to laterally shake during vibration welding (see FIG. 2).

このように構成された第1樹脂パネル3と第2樹脂パネル5とを振動溶着する。この時、図1(a)に示すように、第1樹脂パネル3を裏面が上を向くように下側の振動溶着治具23にセットするとともに、第2樹脂パネル5を溶着リブ19が下を向くように図示しない上側の振動溶着治具にセットし、振動方向に並ぶ複数個の厚肉ソリッド部17を溶着リブ19先端面に対向位置させる。この状態から、上側の振動溶着治具を上方から下側の振動溶着治具23に押し付けて第2樹脂パネル5の溶着リブ19先端面を第1樹脂パネル3の各厚肉ソリッド部17に圧接させながら、上側の振動溶着治具をパッケージトレイ1の長手方向に振動させる。   The first resin panel 3 and the second resin panel 5 thus configured are vibration welded. At this time, as shown in FIG. 1A, the first resin panel 3 is set on the vibration welding jig 23 on the lower side so that the back surface faces upward, and the second resin panel 5 is lowered with the welding rib 19. Is set on the upper vibration welding jig (not shown) so as to face, and a plurality of thick solid portions 17 arranged in the vibration direction are opposed to the front end surface of the welding rib 19. From this state, the upper vibration welding jig is pressed against the lower vibration welding jig 23 from above, and the front end surface of the welding rib 19 of the second resin panel 5 is pressed against each thick solid portion 17 of the first resin panel 3. Then, the upper vibration welding jig is vibrated in the longitudinal direction of the package tray 1.

これにより、上記溶着リブ19先端が、図1(b)に示すように、上記厚肉ソリッド部17の中央に対応する薄肉ソリッド層13との圧接振動により該薄肉ソリッド層13を溶融させつつ自身も溶融してソリッド部分のみと溶着される。隣り合う厚肉ソリッド部17間においても、図1(c)に示すように、薄肉ソリッド層13との圧接振動により該薄肉ソリッド層13を溶融させつつ自身も溶融してソリッド部分のみと溶着される。そして、溶着リブ19が一直線状に並んだ複数個の厚肉ソリッド部17の中央を横切るように第1樹脂パネル3裏面に振動溶着されて、第1樹脂パネル3と第2樹脂パネル5とが溶着一体化する。   As a result, as shown in FIG. 1B, the tip of the welding rib 19 is melted by the thin solid layer 13 corresponding to the center of the thick solid portion 17 and melts the thin solid layer 13 itself. Also melts and is welded only to the solid part. As shown in FIG. 1 (c), between the adjacent thick solid portions 17, the thin solid layer 13 is melted by the pressure contact vibration with the thin solid layer 13 and melts itself, so that only the solid portion is welded. The Then, the first resin panel 3 and the second resin panel 5 are vibrated and welded to the back surface of the first resin panel 3 so as to cross the center of the plurality of thick solid portions 17 in which the welding ribs 19 are aligned. Weld and integrate.

図1(b),(c)中、25は、振動溶着時に溶着リブ19先端及び薄肉ソリッド層13が溶融して盛り上がった溶融樹脂部である。   In FIGS. 1B and 1C, reference numeral 25 denotes a molten resin portion in which the tip of the welding rib 19 and the thin solid layer 13 are melted and raised during vibration welding.

このように、この実施形態1では、第1樹脂パネル3裏面の薄肉ソリッド層13を、振動方向に断続して延びる複数個の厚肉ソリッド部17により補強してその面剛性を高めている。また、第1樹脂パネル3の厚肉ソリッド部形成箇所を、薄肉ソリッド層13と厚肉ソリッド部17だけにして堅くて圧縮荷重に対して強くしている。これにより、振動溶着時に溶着リブ19先端面を上記厚肉ソリッド部形成箇所に圧接させても、この圧接力に十分に抗して当該厚肉ソリッド部形成箇所を撓まないようにすることができる。しかも、厚肉ソリッド部形成箇所に発泡層15がないため、溶着リブ19先端の発泡層15への入り込みを解消することができる。   Thus, in the first embodiment, the thin solid layer 13 on the back surface of the first resin panel 3 is reinforced by the plurality of thick solid portions 17 extending intermittently in the vibration direction to increase the surface rigidity. Moreover, the thick solid part formation location of the 1st resin panel 3 is made into only the thin solid layer 13 and the thick solid part 17, and it is hard and strong with respect to a compressive load. Thereby, even when the front end surface of the welding rib 19 is pressed against the thick solid portion forming portion at the time of vibration welding, the thick solid portion forming portion can be prevented from flexing sufficiently against the pressing force. it can. In addition, since the foamed layer 15 is not present at the thick solid portion forming portion, it is possible to eliminate the entry of the tip of the welding rib 19 into the foamed layer 15.

したがって、溶着リブ19を堅くて圧縮荷重に対して強くなっている厚肉ソリッド部形成箇所で安定支持するとともに、溶着リブ19と第1樹脂パネル3との溶着強度を高めて、第1樹脂パネル3と第2樹脂パネル5とを振動溶着により強固に一体化させたパッケージトレイ1を得ることができる。   Therefore, the welding rib 19 is stably supported at the thick solid portion forming portion which is stiff and strong against the compressive load, and the welding strength between the welding rib 19 and the first resin panel 3 is increased, thereby the first resin panel. 3 and the 2nd resin panel 5 can be obtained by the package welding 1 firmly integrated by vibration welding.

また、この実施形態1では、複数個の厚肉ソリッド部17を振動方向に断続して延びるように形成しているので、連続した厚肉ソリッド部17に比べて重量を軽減することができる。この場合、溶着リブ19先端は隣り合う厚肉ソリッド部17で支えられているため、仮に溶着リブ19が隣り合う厚肉ソリッド部17間で薄肉ソリッド層13を突き抜けて発泡層15に入り込んだとしても、溶着リブ19を安定支持することができる。   In the first embodiment, since the plurality of thick solid portions 17 are formed so as to extend intermittently in the vibration direction, the weight can be reduced as compared with the continuous thick solid portions 17. In this case, since the tip of the welding rib 19 is supported by the adjacent thick solid portion 17, it is assumed that the welding rib 19 penetrates the thin solid layer 13 between the adjacent thick solid portions 17 and enters the foamed layer 15. Also, the welding rib 19 can be stably supported.

(実施形態2)
図6〜図9は、この発明の実施形態2に係る振動溶着構造が適用されたパッケージトレイ1を示す。
(Embodiment 2)
6 to 9 show a package tray 1 to which a vibration welding structure according to Embodiment 2 of the present invention is applied.

この実施形態2では、パッケージトレイ1が第1樹脂パネル3と第2樹脂パネル5とを振動溶着により一体化して構成されていること、第1樹脂パネル3表面に不織布からなる表皮7が一体に被着されていること、第1樹脂パネル3外面に薄肉ソリッド層13が、内部に発泡層15がそれぞれ形成されていること、及び第2樹脂パネル5裏面に溶着リブ19が振動方向に延びるように一体に突設されていること等については、実施形態1と同じである。   In the second embodiment, the package tray 1 is configured by integrating the first resin panel 3 and the second resin panel 5 by vibration welding, and the skin 7 made of nonwoven fabric is integrally formed on the surface of the first resin panel 3. The thin solid layer 13 is formed on the outer surface of the first resin panel 3, the foam layer 15 is formed inside, and the welding rib 19 is extended on the back surface of the second resin panel 5 in the vibration direction. And the like are the same as those of the first embodiment.

しかし、この実施形態2では、実施形態1の厚肉ソリッド部17の代わりに、第1樹脂パネル3外面(裏面)、つまり薄肉ソリッド層13に振動方向に断続して延びる複数個の矩形の凹部27が形成されていること、これら凹部27は底面及び縦壁27aを有し、上記溶着リブ19先端が圧接する縦壁27aの一部が一直線状に並ぶように振動方向と交差する方向に交互に変位して千鳥状に配置されていること、凹部27底面側を構成する薄肉ソリッド層13aがその周りの薄肉ソリッド層13よりも2倍程厚く、かつ表面側の薄肉ソリッド層13と一体になって凹部27底面側のソリッド部分が実質的に厚肉になっていること、及び上記溶着リブ19は、上記凹部27の縦壁27aの一部に対応して振動方向に延びていることの3点で実施形態1と異なっている。ただし、上記凹部27は、把持用の凹部9側では千鳥配置ではなく、振動方向に断続して一直線状に延び、かつ縦壁27aの一部が一直線状に並んで配置されている。これら凹部27は、第1樹脂パネル3と第2樹脂パネル5との振動溶着によりパッケージトレイ1が形成されると、その内側に位置して外部に現れない。 However, in this second embodiment, instead of the thick solid portion 17 of the first embodiment, a plurality of rectangular recesses extending intermittently in the vibration direction on the outer surface (back surface) of the first resin panel 3 , that is, the thin solid layer 13. 27, these recesses 27 have bottom surfaces and vertical walls 27a, and alternate in the direction intersecting the vibration direction so that a part of the vertical wall 27a with which the tip of the welding rib 19 is pressed is aligned. The thin solid layer 13a constituting the bottom surface of the recess 27 is about twice as thick as the surrounding thin solid layer 13 and is integrally formed with the thin solid layer 13 on the surface side. The solid portion on the bottom surface side of the recess 27 is substantially thick, and the weld rib 19 extends in the vibration direction corresponding to a part of the vertical wall 27a of the recess 27. Implemented with 3 points Different from Form 1. However, the concave portion 27 is not arranged in a staggered manner on the gripping concave portion 9 side, and extends in a straight line intermittently in the vibration direction, and a part of the vertical wall 27a is arranged in a straight line. When the package tray 1 is formed by vibration welding between the first resin panel 3 and the second resin panel 5, these concave portions 27 are located inside and do not appear outside.

なお、実施形態1と同じ構成箇所には同じ符号を付してその詳細な説明を省略する。   In addition, the same code | symbol is attached | subjected to the same structure location as Embodiment 1, and the detailed description is abbreviate | omitted.

この実施形態2では、上述の如く第1樹脂パネル3裏面の凹部27の縦壁27aを構成する薄肉ソリッド層13は、溶着リブ19の第1樹脂パネル3に対する圧接方向に沿っていて圧縮荷重に対して強くなっている。   In the second embodiment, as described above, the thin solid layer 13 constituting the vertical wall 27a of the concave portion 27 on the back surface of the first resin panel 3 is along the pressure contact direction of the welding rib 19 with respect to the first resin panel 3 and is subjected to a compressive load. It has become stronger.

そして、振動溶着時、上記凹部27の縦壁27aの一部は上記溶着リブ19先端面に対向位置し、該溶着リブ19先端は、上記縦壁27aの一部に対応する薄肉ソリッド層13との圧接振動により該薄肉ソリッド層13及び縦壁27aの一部を溶融させつつ自身も溶融してソリッド部分のみと溶着される。また、隣り合う凹部27間においても、薄肉ソリッド層13との圧接振動により該薄肉ソリッド層13を溶融させつつ自身も溶融してソリッド部分のみと溶着される。そして、溶着リブ19が凹部27の一直線状に並んだ縦壁27aを連結するように第1樹脂パネル3裏面に振動溶着されて、第1樹脂パネル3と第2樹脂パネル5とが溶着一体化している。   At the time of vibration welding, a part of the vertical wall 27a of the recess 27 is positioned opposite to the front end surface of the welding rib 19, and the front end of the welding rib 19 is connected to the thin solid layer 13 corresponding to a part of the vertical wall 27a. The thin solid layer 13 and a part of the vertical wall 27a are melted by the pressure contact vibration, and themselves melt and are welded only to the solid part. In addition, between the adjacent concave portions 27, the thin solid layer 13 is melted by the pressure contact vibration with the thin solid layer 13 and is melted to be welded only to the solid portion. And the welding rib 19 is vibration welded to the back surface of the first resin panel 3 so as to connect the vertical walls 27a arranged in a straight line in the recess 27, and the first resin panel 3 and the second resin panel 5 are welded and integrated. ing.

図10は実施形態2の第1樹脂パネル3を成形する成形型101を示す。この成形型101は、実施形態1の成形型101と同様に、固定型103、可動型105及び固定ブロック107を備えているが、この実施形態2では、熱可塑性樹脂Rを射出充填する際には、図10(a)に示すように、可動型105の成形面105aと固定ブロック107の先端面107aとが面一になっており、キャビティ109内に射出充填された熱可塑性樹脂Rが固化する過程で、図10(b)に示すように、可動型105をキャビティ109の容積が拡大する方向(型開き方向)に後退させる。このキャビティ109の容積拡大により、実施形態1で説明したような原理で、外面に薄肉ソリッド層13が形成されるとともに、内部に発泡層15が形成される。また、上記固定ブロック107先端が可動型105の成形面105aから固定型103側に突出した状態となるが、固定ブロック107は移動しないので、当該箇所のキャビティ109の容積は拡大せず、底面側の薄肉ソリッド層13aがその周りの薄肉ソリッド層13よりも2倍程厚く、かつ表面側の薄肉ソリッド層13と一体になって底面側のソリッド部分が実質的に厚肉になった凹部27が形成される。   FIG. 10 shows a mold 101 for molding the first resin panel 3 of the second embodiment. The mold 101 includes a fixed mold 103, a movable mold 105, and a fixed block 107 as in the mold 101 of the first embodiment. In the second embodiment, when the thermoplastic resin R is injected and filled, 10A, the molding surface 105a of the movable mold 105 and the tip surface 107a of the fixed block 107 are flush with each other, and the thermoplastic resin R injected and filled in the cavity 109 is solidified. In this process, as shown in FIG. 10B, the movable mold 105 is retracted in the direction in which the volume of the cavity 109 increases (the mold opening direction). By expanding the volume of the cavity 109, the thin solid layer 13 is formed on the outer surface and the foam layer 15 is formed on the inside according to the principle described in the first embodiment. Further, the tip of the fixed block 107 protrudes from the molding surface 105a of the movable mold 105 toward the fixed mold 103, but the fixed block 107 does not move, so the volume of the cavity 109 at that location does not increase, and the bottom side The thin solid layer 13a is about twice as thick as the surrounding thin solid layer 13, and the concave portion 27 is formed integrally with the thin solid layer 13 on the surface side so that the bottom solid portion becomes substantially thick. It is formed.

このように、この実施形態2では、第1樹脂パネル3裏面の薄肉ソリッド層13を、振動方向に断続して延びる複数個の凹部27の縦壁27aにより補強してその面剛性を高めている。また、第1樹脂パネル3の凹部27の縦壁27aを構成する薄肉ソリッド層13を、溶着リブ19の第1樹脂パネル3に対する圧接方向に沿わせ、かつ表面側の薄肉ソリッド層13に一体に連結させて圧縮荷重に対して強くしている。これにより、振動溶着時に溶着リブ19先端面を上記縦壁27aの一部に対応する薄肉ソリッド層13に圧接させても、この圧接力に十分に抗して当該縦壁27aの一部を撓まないようにすることができる。   As described above, in the second embodiment, the thin solid layer 13 on the back surface of the first resin panel 3 is reinforced by the vertical walls 27a of the plurality of concave portions 27 extending intermittently in the vibration direction to increase the surface rigidity. . Further, the thin solid layer 13 constituting the vertical wall 27a of the concave portion 27 of the first resin panel 3 is aligned with the pressure contact direction of the welding rib 19 with respect to the first resin panel 3, and is integrated with the thin solid layer 13 on the surface side. It is connected and strengthened against compressive load. As a result, even when the front end surface of the welding rib 19 is pressed against the thin solid layer 13 corresponding to a part of the vertical wall 27a during vibration welding, a part of the vertical wall 27a is flexed sufficiently against the pressing force. You can avoid it.

したがって、溶着リブ19を堅くて圧縮荷重に対して強くなっている凹部27の縦壁27aの一部で安定支持するとともに、溶着リブ19と第1樹脂パネル3との溶着強度を高めて、第1樹脂パネル3と第2樹脂パネル5とを振動溶着により強固に一体化させたパッケージトレイ1を得ることができる。また、第1樹脂パネル3に凹部27が形成されているので、第1樹脂パネル3、ひいてはパッケージトレイ1の重量を軽減することができる。   Therefore, the welding rib 19 is stably supported by a part of the vertical wall 27a of the concave portion 27 which is hard and strong against the compressive load, and the welding strength between the welding rib 19 and the first resin panel 3 is increased. The package tray 1 in which the first resin panel 3 and the second resin panel 5 are firmly integrated by vibration welding can be obtained. Moreover, since the recessed part 27 is formed in the 1st resin panel 3, the weight of the 1st resin panel 3, and by extension, the package tray 1 can be reduced.

また、この実施形態2では、複数個の凹部27を振動方向に断続して延びるように形成して、溶着リブ19先端を隣り合う凹部27の縦壁27aで支えているので、仮に溶着リブ19が隣り合う凹部27間で薄肉ソリッド層13を突き抜けて発泡層15に入り込んだとしても、溶着リブ19を安定支持することができる。   In the second embodiment, the plurality of recesses 27 are formed so as to extend intermittently in the vibration direction, and the tips of the welding ribs 19 are supported by the vertical walls 27a of the adjacent recesses 27. Even if the thin solid layer 13 penetrates between the adjacent recesses 27 and enters the foamed layer 15, the welding rib 19 can be stably supported.

さらに、この実施形態2では、凹部形成領域、つまり圧縮荷重に対して強い縦壁27aが振動方向と交差する方向に広がって位置しているため、第1樹脂パネル3、ひいてはパッケージトレイ1の剛性を高めることができる。   Further, in the second embodiment, since the recess forming region, that is, the vertical wall 27a that is strong against the compressive load is located so as to extend in the direction intersecting the vibration direction, the rigidity of the first resin panel 3 and eventually the package tray 1 is increased. Can be increased.

(実施形態3)
図11は、この発明の実施形態3に係る振動溶着構造が適用されたパッケージトレイ1の図6(b)相当図を示す。
(Embodiment 3)
FIG. 11 shows a view corresponding to FIG. 6B of the package tray 1 to which the vibration welding structure according to Embodiment 3 of the present invention is applied.

この実施形態3では、凹部27の深さが浅く、凹部27の底面側を構成する薄肉ソリッド層13aの厚みがその外周りの薄肉ソリッド層13と同じになって、凹部27の底面と表面側の薄肉ソリッド層13との間に発泡層15が介在している点が実施形態3と異なっているほかは、実施形態2と同様である。   In the third embodiment, the depth of the concave portion 27 is shallow, and the thickness of the thin solid layer 13a constituting the bottom surface side of the concave portion 27 is the same as that of the thin solid layer 13 around the outer periphery. The second embodiment is the same as the second embodiment except that the foam layer 15 is interposed between the thin solid layer 13 and the thin solid layer 13.

図12は実施形態3の第1樹脂パネル3を成形する成形型101を示す。この成形型101は、固定型103と可動型105とを備えている点は実施形態1,2の成形型101と同様であるが、固定ブロック107がない点は実施形態1,2と異なる。そして、上記可動型105の成形面105aには、凹部27成形用の凸部105bが突設されている。   FIG. 12 shows a mold 101 for molding the first resin panel 3 of the third embodiment. This mold 101 is the same as the mold 101 of the first and second embodiments in that it includes a fixed mold 103 and a movable mold 105, but differs from the first and second embodiments in that there is no fixed block 107. A convex portion 105 b for forming the concave portion 27 protrudes from the molding surface 105 a of the movable mold 105.

そして、可動型105をキャビティ109の容積が拡大する方向(型開き方向)に後退させると、キャビティ109全体の容積が等しく拡大し、第1樹脂パネル3外面(表裏両面)全体に厚みの等しい薄肉ソリッド層13が成形されるとともに、第1樹脂パネル3裏面に凹部27が形成される。この凹部27の縦壁27a及び底面側を構成する薄肉ソリッド層13aは、その周りの薄肉ソリッド層13と同じ厚みになっている。また、発泡層15は第1樹脂パネル3の内部全体に亘って形成されている。   Then, when the movable mold 105 is retracted in the direction in which the volume of the cavity 109 is increased (the mold opening direction), the volume of the entire cavity 109 is increased equally, and the entire outer surface (front and back surfaces) of the first resin panel 3 has the same thickness. The solid layer 13 is molded, and a recess 27 is formed on the back surface of the first resin panel 3. The thin solid layer 13a constituting the vertical wall 27a and the bottom surface side of the concave portion 27 has the same thickness as the thin solid layer 13 around it. The foam layer 15 is formed over the entire interior of the first resin panel 3.

したがって、この実施形態3では、凹部27が浅く、かつ凹部27底面側の薄肉ソリッド層13aが表面側の薄肉ソリッド層13と離れてその間に発泡層15がある分、当該箇所の板厚が実施形態2に比べて厚くなっており、これにより、凹部27の底面側の薄肉ソリッド層13aが実施形態2の厚肉ソリッド部17に比べて薄くて圧縮荷重に対する強度が若干低下気味になるのを補っている。そのほかは実施形態2と同様の効果を奏することができる。   Therefore, in the third embodiment, the concave portion 27 is shallow, and the thin solid layer 13a on the bottom surface side of the concave portion 27 is separated from the thin solid layer 13 on the front surface side, and the foam layer 15 is provided between them. The thick solid layer 13a on the bottom surface side of the recess 27 is thinner than the thick solid portion 17 of the second embodiment, and the strength against the compressive load is slightly reduced. I make up for it. Other than that, the same effects as those of the second embodiment can be obtained.

(実施形態4)
図13は、この発明の実施形態4に係る振動溶着構造が適用されたパッケージトレイ1の図6(b)相当図を示す。
(Embodiment 4)
FIG. 13 is a view corresponding to FIG. 6B of the package tray 1 to which the vibration welding structure according to Embodiment 4 of the present invention is applied.

この実施形態4では、凹部27が第1樹脂パネル3表面に形成されている点、及び溶着リブ19が第1樹脂パネル3裏面に上記凹部27の縦壁27aの一部に対応して振動溶着されている点が実施形態2と異なる。そして、第1樹脂パネル3の成形に際しては、図示しないが、成形型の可動型側に表皮7をセットせず、射出成形後に第1樹脂パネル3の表面側に表皮7を貼り付け、上記凹部27aを表皮7で覆って外部に露出しないようにしている。   In the fourth embodiment, the recess 27 is formed on the surface of the first resin panel 3, and the welding rib 19 is vibration welded to the back surface of the first resin panel 3 corresponding to a part of the vertical wall 27 a of the recess 27. This is different from the second embodiment. When molding the first resin panel 3, although not shown, the skin 7 is not set on the movable mold side of the molding die, and the skin 7 is pasted on the surface side of the first resin panel 3 after injection molding. 27a is covered with an outer skin 7 so as not to be exposed to the outside.

したがって、この実施形態4では、振動溶着時に溶着リブ19が圧接する第1樹脂パネル3裏面の溶着箇所は、平坦で、しかも凹部27底面側の薄肉ソリッド層13aが裏面側の薄肉ソリッド層13と一体になって実質的に厚肉になっているので、溶着リブ19の圧接力を凹部27底面側の実質的に厚肉になっている薄肉ソリッド層13aで受けて分散することができ、実施形態2に比べて凹部27の縦壁27aに作用する過剰な圧縮荷重の作用を低減して該縦壁27aが崩れ難いようにすることができる。   Therefore, in the fourth embodiment, the welding location on the back surface of the first resin panel 3 to which the welding rib 19 is pressed during vibration welding is flat, and the thin solid layer 13a on the bottom surface side of the recess 27 is the same as the thin solid layer 13 on the back surface side. Since it is integrally and substantially thick, the pressure contact force of the welding rib 19 can be received and dispersed by the thin solid layer 13a that is substantially thick on the bottom surface side of the recess 27, Compared to the second embodiment, it is possible to reduce the action of an excessive compressive load acting on the vertical wall 27a of the concave portion 27 so that the vertical wall 27a is not easily collapsed.

そのほかは、実施形態2と同様の効果を奏することができる。   Other than that, the same effects as those of the second embodiment can be obtained.

なお、上記の実施形態1では、厚肉ソリッド部17を振動方向に断続して延びるように一直線状に配置したが、隣り合う厚肉ソリッド部17を振動方向と交差する方向に若干変位させて千鳥状に配置したり、あるいは連続した1個の長尺の厚肉ソリッド部17を振動方向に延びるように一直線状又はジグザグ状に配置してもよい。特に、厚肉ソリッド部17が振動方向に連続して延びて1個で構成されている場合には、厚肉ソリッド部17の第1樹脂パネルに占める量が増大して溶着リブ19の支持剛性及び溶着強度をさらに高めることができる。   In the first embodiment, the thick solid portions 17 are arranged in a straight line so as to extend intermittently in the vibration direction, but the adjacent thick solid portions 17 are slightly displaced in a direction intersecting the vibration direction. They may be arranged in a zigzag pattern, or one continuous long thick solid portion 17 may be arranged in a straight line or zigzag so as to extend in the vibration direction. In particular, when the thick solid portion 17 extends continuously in the vibration direction and is composed of a single piece, the amount of the thick solid portion 17 occupying the first resin panel increases and the support rigidity of the weld rib 19 increases. In addition, the welding strength can be further increased.

また、上記の実施形態2〜4では、振動方向に断続して延びる凹部27を振動方向と交差する方向に若干変位させて千鳥状に配置したが、凹部27を振動方向に断続して一直線状に配置したり、あるいは連続した1個の長尺の凹部27を振動方向に延びるように一直線状又はジグザグ状に配置してもよい。そして、凹部27が振動方向に連続して延びて1個で構成されている場合には、凹部27が振動方向に断続して延びて複数個形成されている場合に比べて凹部27の空間容積が増大し、パッケージトレイ1の重量軽減効果を顕著にすることができる。   In the above-described Embodiments 2 to 4, the concave portions 27 that extend intermittently in the vibration direction are slightly displaced in the direction intersecting the vibration direction and are arranged in a staggered manner, but the concave portions 27 are intermittent in the vibration direction and are linear. Alternatively, one continuous long recess 27 may be arranged in a straight line or zigzag so as to extend in the vibration direction. And when the recessed part 27 is continuously extended in the vibration direction and is comprised by one piece, the space volume of the recessed part 27 compared with the case where the recessed part 27 is intermittently extended in the vibration direction and is formed in multiple numbers. And the weight reduction effect of the package tray 1 can be made remarkable.

さらに、上記の実施形態1では、厚肉ソリッド部17の形状を横断面楕円形にし、実施形態2〜4では凹部27の形状を矩形にしたが、その形状は問わず、真円形や三角形等の多角形等であってもよく、さらには、数種類の形状の厚肉ソリッド部17や凹部27を混在させてもよい。   Further, in the first embodiment, the thick solid portion 17 has an elliptical cross section, and in the second to fourth embodiments, the concave portion 27 has a rectangular shape. The thick solid part 17 and the recessed part 27 of several kinds of shapes may be mixed.

さらにまた、上記の各実施形態では、樹脂成形品が自動車用パッケージトレイ1である場合を示したが、グローブボックスのリッドやトランクボード等の他の自動車用樹脂成形品、さらには自動車以外の樹脂成形品にも適用することができるものである。   Furthermore, in each of the above embodiments, the case where the resin molded product is the automobile package tray 1 has been described. However, other automotive resin molded products such as a glove box lid and a trunk board, and further a resin other than an automobile. It can also be applied to molded products.

この発明は、第1樹脂パネルと第2樹脂パネルとを圧接させた状態で振動させることにより溶着一体化してなる樹脂成形品の振動溶着構造について有用である。   The present invention is useful for a vibration welded structure of a resin molded product obtained by welding and integrating by vibrating in a state where the first resin panel and the second resin panel are in pressure contact with each other.

図1(a)は第1樹脂パネル裏面の厚肉ソリッド部に第2樹脂パネルの溶着リブ先端を対応させた振動溶着前の状態を示す拡大断面図、図1(b)は図1(a)の状態から厚肉ソリッド部に溶着リブ先端を振動溶着した状態を示す拡大断面図、図1(c)は隣り合う厚肉ソリッド部間に溶着リブ先端を振動溶着した状態を示す拡大断面図である。FIG. 1A is an enlarged cross-sectional view showing a state before vibration welding in which a thick solid portion on the back surface of the first resin panel is made to correspond to the tip of the welding rib of the second resin panel, and FIG. ) Is an enlarged cross-sectional view showing a state in which the weld rib tip is vibration welded to the thick solid portion, and FIG. 1C is an enlarged cross-sectional view showing a state in which the weld rib tip is vibrated and welded between adjacent thick solid portions. It is. 図3のII−II線における断面図である。It is sectional drawing in the II-II line | wire of FIG. 実施形態1に係るパッケージトレイの斜視図である。3 is a perspective view of a package tray according to Embodiment 1. FIG. 実施形態1における第1樹脂パネル裏面の厚肉ソリッド部形成箇所を示す斜視図である。It is a perspective view which shows the thick solid part formation location of the 1st resin panel back surface in Embodiment 1. FIG. 実施形態1における第1樹脂パネルの成形工程図を示し、図5(a)は成形型のキャビティ内に熱可塑性樹脂を射出充填した状態を示す図1(a),(b)対応箇所の成形工程図、図5(b)は図5(a)における成形型の可動型をキャビティ容積が拡大する方向に僅かに後退させて第1樹脂パネルが成形された状態を示す成形工程図である。FIG. 5A shows a molding process diagram of the first resin panel in the first embodiment, and FIG. 5A shows a state in which a thermoplastic resin is injected and filled into the cavity of the molding die. FIG. 1A and FIG. FIG. 5B is a process diagram showing a state in which the first resin panel is molded by slightly retracting the movable mold of the mold in FIG. 5A in the direction of increasing the cavity volume. 実施形態2の図1(a),(b)相当図である。FIGS. 1A and 1B are diagrams corresponding to FIGS. 図8のVII −VII 線における断面図である。It is sectional drawing in the VII-VII line of FIG. 実施形態2の図3相当図である。FIG. 4 is a diagram corresponding to FIG. 3 of the second embodiment. 実施形態2の図4相当図である。FIG. 5 is a diagram corresponding to FIG. 4 of the second embodiment. 実施形態2の図5相当図である。FIG. 6 is a diagram corresponding to FIG. 5 of the second embodiment. 実施形態3の図6(b)相当図である。FIG. 6B is a diagram corresponding to FIG. 6B of the third embodiment. 実施形態3の図5相当図である。FIG. 6 is a diagram corresponding to FIG. 5 of Embodiment 3. 実施形態4の図6(b)相当図である。FIG. 6B is a diagram corresponding to FIG. 従来例の図1(b),(c)相当図である。It is a figure equivalent to Drawing 1 (b) and (c) of a conventional example.

符号の説明Explanation of symbols

1 パッケージトレイ(樹脂成形品)
3 第1樹脂パネル
5 第2樹脂パネル
13 薄肉ソリッド層
15 発泡層
17 厚肉ソリッド部
19 溶着リブ
27 凹部
27a 縦壁
1 Package tray (resin molded product)
3 1st resin panel 5 2nd resin panel 13 Thin solid layer 15 Foam layer 17 Thick solid part 19 Welding rib 27 Recessed part 27a Vertical wall

Claims (3)

第1樹脂パネル(3)と第2樹脂パネル(5)とを圧接させた状態で振動させることにより溶着一体化してなる樹脂成形品の振動溶着構造であって、
上記第1樹脂パネル(3)は、外面に薄肉ソリッド層(13)が形成され、かつ内部に発泡層(15)と、振動方向に連続又は断続して延び表裏両面の上記薄肉ソリッド層(13)を連結する厚肉ソリッド部(17)とが形成されてなり、
上記第2樹脂パネル(5)裏面には、溶着リブ(19)が上記厚肉ソリッド部(17)に対応して振動方向に延びるように一体に突設され、
振動溶着時、上記厚肉ソリッド部(17)は上記溶着リブ(19)先端面に対向位置し、該溶着リブ(19)先端は、上記厚肉ソリッド部(17)に対応する薄肉ソリッド層(13)との圧接振動により該薄肉ソリッド層(13)を溶融させつつ自身も溶融してソリッド部分のみと溶着されていることを特徴とする樹脂成形品の振動溶着構造。
A vibration welded structure of a resin molded product obtained by welding and integrating the first resin panel (3) and the second resin panel (5) while being in pressure contact with each other,
The first resin panel (3) has a thin solid layer (13) formed on the outer surface, and a foam layer (15) on the inside, and the thin solid layer (13 on both sides) extending continuously or intermittently in the vibration direction. ) To connect the thick solid part (17) ,
On the back surface of the second resin panel (5) , a welding rib (19) is integrally projected so as to extend in the vibration direction corresponding to the thick solid portion (17) ,
During vibration welding, the thick solid portion (17) is position opposite to the weld rib (19) distal end surface, solution deposition rib (19) tip, thin solid layer corresponding to the thick solid portion (17) ( 13. A vibration welded structure of a resin molded product, characterized in that the thin solid layer (13) is melted by pressure contact vibration with 13) and is melted and welded only to the solid portion.
第1樹脂パネル(3)と第2樹脂パネル(5)とを圧接させた状態で振動させることにより溶着一体化してなる樹脂成形品の振動溶着構造であって、
上記第1樹脂パネル(3)は、外面に薄肉ソリッド層(13)が形成されるとともに内部に発泡層(15)が形成され、かつ振動方向に連続又は断続して延び底面及び縦壁(27a)を有する凹部(27)が上記薄肉ソリッド層(13)に形成されてなり、
上記第2樹脂パネル(5)裏面には、溶着リブ(19)が上記凹部(27)の縦壁(27a)の一部に対応して振動方向に延びるように一体に突設され、
振動溶着時、上記凹部(27)の縦壁(27a)の一部は上記溶着リブ(19)先端面に対向位置し、該溶着リブ(19)先端は、上記縦壁(27a)の一部に対応する薄肉ソリッド層(13)との圧接振動により該薄肉ソリッド層(13)及び縦壁(27a)の一部を溶融させつつ自身も溶融してソリッド部分のみと溶着されていることを特徴とする樹脂成形品の振動溶着構造。
A vibration welded structure of a resin molded product obtained by welding and integrating the first resin panel (3) and the second resin panel (5) while being in pressure contact with each other,
The first resin panel (3) has a thin solid layer (13) formed on the outer surface and a foam layer (15) formed on the inside, and extends continuously or intermittently in the vibration direction and has a bottom surface and a vertical wall (27a ) recesses that have a (27) is formed on the thin solid layer (13),
On the back surface of the second resin panel (5) , a welding rib (19) is integrally projected so as to extend in the vibration direction corresponding to a part of the vertical wall (27a) of the recess (27) ,
During vibration welding, a portion of the vertical wall (27a) of the recess (27) faces positioned in the weld rib (19) distal end surface, solution deposition rib (19) tip portions of the vertical wall (27a) The thin solid layer (13) and the vertical wall (27a) are melted by pressure welding with a thin solid layer (13) corresponding to the Vibration welded structure of resin molded products.
請求項2に記載の樹脂成形品の振動溶着構造において、
上記凹部(27)は、振動方向に断続して延び、かつ上記溶着リブ(19)先端が圧接する縦壁(27a)の一部が一直線状に並ぶように振動方向と交差する方向に交互に変位して配置されていることを特徴とする樹脂成形品の振動溶着構造。
In the vibration welded structure of the resin molded product according to claim 2,
The recess (27) extends intermittently in the vibration direction, and alternately in a direction in which a part of the vertical wall (27a) of the weld rib (19) tip is pressed against intersects the vibration direction to be aligned in a straight line A vibration welded structure of a resin molded product, characterized by being displaced.
JP2007195965A 2007-07-27 2007-07-27 Vibration welding structure of resin molded products Active JP4961293B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007195965A JP4961293B2 (en) 2007-07-27 2007-07-27 Vibration welding structure of resin molded products

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007195965A JP4961293B2 (en) 2007-07-27 2007-07-27 Vibration welding structure of resin molded products

Publications (2)

Publication Number Publication Date
JP2009029030A JP2009029030A (en) 2009-02-12
JP4961293B2 true JP4961293B2 (en) 2012-06-27

Family

ID=40400086

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007195965A Active JP4961293B2 (en) 2007-07-27 2007-07-27 Vibration welding structure of resin molded products

Country Status (1)

Country Link
JP (1) JP4961293B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5275858B2 (en) * 2009-03-17 2013-08-28 ダイキョーニシカワ株式会社 Vibration welding structure of resin molded products
JP2011214651A (en) * 2010-03-31 2011-10-27 Ts Tech Co Ltd Fixing structure of member

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58212913A (en) * 1982-06-04 1983-12-10 Kojima Press Co Ltd Bonding method of resin parts
JPH0717016B2 (en) * 1990-05-01 1995-03-01 豊田合成株式会社 Method for manufacturing article having foam layer
JP3936258B2 (en) * 2002-07-29 2007-06-27 日本プラスト株式会社 Resin structure
JP4717532B2 (en) * 2005-07-05 2011-07-06 三光合成株式会社 Airbag device for automobile

Also Published As

Publication number Publication date
JP2009029030A (en) 2009-02-12

Similar Documents

Publication Publication Date Title
JP4836570B2 (en) Resin panel and automobile door
US20040140652A1 (en) Interior member having an airbag door section for use in vehicles, and its molding method
WO2008023545A1 (en) Process for manufacturing lid portion of vehicle airbag
JP4790332B2 (en) Resin molded body
JP4916019B2 (en) Vibration welding structure of resin molded products
JP4961293B2 (en) Vibration welding structure of resin molded products
JP4708945B2 (en) Resin panel and manufacturing method thereof
JP4705829B2 (en) Resin panel and manufacturing method thereof
JP5093487B2 (en) Injection foam molded article, injection foam mold, and method of manufacturing injection foam molded article
JP2005205800A (en) Welding member for vehicle interior finish
JP5377932B2 (en) Vibration welding structure and vibration welding method of resin molded product
JP5377931B2 (en) Plastic molded product
JP7113388B2 (en) Method for manufacturing vehicle interior member
JP5707933B2 (en) Method for producing hollow structure provided with foam reinforcing member
JP5165534B2 (en) Vibration welding structure of resin molded products
JP4423138B2 (en) Vehicle interior material molding equipment
JP2004352179A (en) Automobile interior parts for air bag device
JP5259208B2 (en) Vehicle interior panel and method of forming the same
JP4541163B2 (en) Interior parts for vehicles with airbag doors
JP5149645B2 (en) Panel with foam made of foamed resin and molding method thereof
JP2009051469A (en) Reinforcing structure of vehicular interior trim board
JP2006205837A (en) Interior article for vehicle with airbag door part and its manufacturing method
JP2005305917A (en) Expansion molded part and its manufacturing method
JP6029836B2 (en) Method for manufacturing vehicle interior member
JP2011131555A (en) Foamed resin panel and method for molding the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100428

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111227

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120208

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20120208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120228

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120326

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150330

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4961293

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250