JP4958108B2 - Polyester fiber - Google Patents

Polyester fiber Download PDF

Info

Publication number
JP4958108B2
JP4958108B2 JP2007141656A JP2007141656A JP4958108B2 JP 4958108 B2 JP4958108 B2 JP 4958108B2 JP 2007141656 A JP2007141656 A JP 2007141656A JP 2007141656 A JP2007141656 A JP 2007141656A JP 4958108 B2 JP4958108 B2 JP 4958108B2
Authority
JP
Japan
Prior art keywords
fiber
strength
polyester fiber
polyester
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007141656A
Other languages
Japanese (ja)
Other versions
JP2008297641A (en
Inventor
悟史 高田
正人 増田
雄士 鞠谷
正俊 塩谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Fibers Ltd
Toray Industries Inc
Toyobo Co Ltd
Unitika Ltd
Original Assignee
Teijin Fibers Ltd
Toray Industries Inc
Toyobo Co Ltd
Unitika Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Fibers Ltd, Toray Industries Inc, Toyobo Co Ltd, Unitika Ltd filed Critical Teijin Fibers Ltd
Priority to JP2007141656A priority Critical patent/JP4958108B2/en
Publication of JP2008297641A publication Critical patent/JP2008297641A/en
Application granted granted Critical
Publication of JP4958108B2 publication Critical patent/JP4958108B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Artificial Filaments (AREA)

Description

本発明は、タイヤコードなどのゴム補強用途、ベルト用途、スリング用途、漁網などのネット用途およびロープ等の産業資材用途に適し、従来にはない力学的特性を有した新規なポリエステル繊維であり、さらに詳しくは、擦過などの外因による欠陥が生じても強度低下しにくいポリエステル繊維に関するものである。   The present invention is a novel polyester fiber suitable for rubber reinforcement applications such as tire cords, belt applications, sling applications, net applications such as fishing nets and industrial material applications such as ropes, and has unprecedented mechanical properties, More specifically, the present invention relates to a polyester fiber that does not easily decrease in strength even when defects due to external factors such as abrasion occur.

近年のハイテクノロジー化の中、タイヤコードやゴムホース、ゴムベルトなどのゴム補強用途、シートベルトなどのベルト、スリング用途、魚網、陸上ネットなどのネット用途、ロープ用途などの産業資材用途において、構造材(製品)の性能向上のためには、構造材に用いる繊維の力学的特性の向上が必須である。これに加え、産業資材用途に用いられる繊維は、高荷重下で繰り返し伸長圧縮を受けるなどの過酷な条件下で使用される場合が多く、繊維の欠陥、擦過や変形などによる力学的特性の低下(劣化)が少ないことも重要である。   In recent years of high technology, structural materials (for rubber reinforcement applications such as tire cords, rubber hoses, rubber belts, belts such as seat belts, slings, nets such as fish nets and land nets, and industrial materials such as ropes) In order to improve the performance of products, it is essential to improve the mechanical properties of the fibers used in the structural material. In addition to this, fibers used for industrial materials are often used under severe conditions such as repeated elongation and compression under high loads, and the mechanical properties deteriorate due to fiber defects, scratches, deformation, etc. It is also important that there is little (deterioration).

現在、製造工程における環境負荷も注目される中、リサイクルが比較的容易に行え、かつ溶融紡糸・延伸、更には高速紡糸より低エネルギーかつ安価に製造できるポリエステル繊維を衣料用途だけでなく、産業資材用途においても広く適応させることが要望されている。   Currently, environmental impacts in the manufacturing process are also attracting attention. Polyester fibers that can be recycled relatively easily and can be produced at low energy and at a lower cost than melt spinning / drawing and high-speed spinning are used not only for clothing but also for industrial materials. There is a demand for a wide range of applications.

従来技術においても、高タフネスポリエステル繊維としては強度10.0g/d(8.82cN/dtex)以上、切断伸度15%以上のポリエステル繊維(特許文献1、特許請求の範囲)や、10.0g/d(8.82cN/dtex)以上の強度および10%以上の伸度を有したタフネスの高いポリエステル繊維(特許文献2、第4頁36〜37行参照)に関する記載がある。   Also in the prior art, as high-toughness polyester fibers, polyester fibers having a strength of 10.0 g / d (8.82 cN / dtex) or more and a cut elongation of 15% or more (Patent Document 1, Claims), 10.0 g / T (8.82 cN / dtex) There is a description regarding a polyester fiber having high strength and high toughness having an elongation of 10% or more (see Patent Document 2, page 4, lines 36 to 37).

しかし、これら繊維の製造方法は従来の低配向繊維を高倍率延伸することを逸脱しておらず、高タフネスと高弾性率とを両立することは難しく(特許文献2、実施例参照)、単繊維の変形による劣化に加え、擦過などによる劣化も進行しやすいなどの問題があった。つまり、これら繊維は確かに高度なタフネスを有する繊維ではあるが、使用中に繊維が擦過により劣化したり、き裂が入った場合などに発生する欠陥を想定した強度については検討がなされておらず、強度低下が問題になる用途に対しては不十分なものであった。   However, the manufacturing method of these fibers does not deviate from stretching a conventional low-oriented fiber at high magnification, and it is difficult to achieve both high toughness and high elastic modulus (see Patent Document 2, Examples). In addition to deterioration due to deformation of the fiber, there was a problem that deterioration due to abrasion and the like easily progressed. In other words, these fibers are certainly fibers with a high degree of toughness, but the strength that assumes defects that occur when the fibers deteriorate or become cracked during use has not been studied. However, it was insufficient for applications where strength reduction is a problem.

従来技術においても、高タフネスポリエステル繊維としては強度10.0g/d(8.82cN/dtex)以上、切断伸度15%以上のポリエステル繊維に関する記載がある(特許文献1第1頁参照)。   Also in the prior art, there is a description regarding polyester fibers having a strength of 10.0 g / d (8.82 cN / dtex) or more and a cutting elongation of 15% or more as high toughness polyester fibers (see Patent Document 1, page 1).

しかし、該繊維は、確かに高度なタフネスを有する繊維ではあるが、初期モジュラスが140g/d(123cN/dtex)以下と低いという問題がある。これは、該繊維の弾性変形領域が低いことを示し、高荷重下で圧縮伸長が繰り返しかかるような用途、例えばロープ等の用途では経時的に繊維が変形しやすく、構造材の間延びや強力低下などの問題が起こる。   However, although this fiber is certainly a fiber having a high degree of toughness, there is a problem that the initial modulus is as low as 140 g / d (123 cN / dtex) or less. This indicates that the elastic deformation region of the fiber is low, and in applications where compression and extension are repeatedly applied under high loads, such as ropes, the fiber tends to deform over time, and the stretch of structural materials and strength decrease Problems occur.

また、10.0g/d(8.82cN/dtex)以上の強度および10%以上の伸度を有したタフネスの高いポリエステル繊維に関する記載がある(特許文献2、第4頁36、37行参照)。該繊維の製造方法は従来の低配向繊維を高倍率延伸することを逸脱しておらず、高タフネスと高弾性率とを両立することは難しく(特許文献2、実施例参照)、単繊維の変形による劣化に加え、エネルギー吸収率が低いために、擦過などによる劣化も進行しやすいなどの問題がある。   In addition, there is a description regarding a polyester fiber having high toughness having a strength of 10.0 g / d (8.82 cN / dtex) or more and an elongation of 10% or more (see Patent Document 2, page 4, lines 36 and 37). . The method for producing the fiber does not deviate from stretching the conventional low-oriented fiber at a high magnification, and it is difficult to achieve both high toughness and high elastic modulus (see Patent Document 2, Examples). In addition to deterioration due to deformation, there is a problem that deterioration due to rubbing or the like tends to proceed because the energy absorption rate is low.

以上のように、高強度ポリエステル繊維は報告されているものの、該繊維に対して擦過や劣化等の外因による強度低下についての記載はなく、欠陥除去強度が高く、産業用途に最適なポリエステル繊維は得られていなかった。
特開平2−289115号公報 特公昭41−7892号公報
As described above, although high-strength polyester fibers have been reported, there is no description about strength reduction due to external factors such as abrasion and deterioration with respect to the fibers, and polyester fibers having high defect removal strength and optimal for industrial use are It was not obtained.
JP-A-2-289115 Japanese Patent Publication No.41-7892

本発明の課題は、上記したような従来技術の問題点を解消し、タイヤコードなどのゴム補強用途、ベルト用途、スリング用途、漁網などのネット用途およびロープ等の産業資材用途に適するポリエステル繊維に関し、高いタフネスを有し、かつ、外因による欠陥が生じても強度低下しにくいポリエステル繊維を提供せんとするものである。   An object of the present invention relates to a polyester fiber that solves the problems of the prior art as described above and is suitable for rubber reinforcement applications such as tire cords, belt applications, sling applications, net applications such as fishing nets, and industrial material applications such as ropes. It is intended to provide a polyester fiber that has high toughness and is resistant to strength reduction even when defects due to external factors occur.

上述した課題を達成する本発明のポリエステル繊維は、以下の(1)の構成を有するものである。
(1)欠陥除去強度が、1.9GPa以上であることを特徴とするポリエステル繊維。
The polyester fiber of the present invention that achieves the above-described problems has the following configuration (1).
(1) A polyester fiber having a defect removal strength of 1.9 GPa or more.

本発明によれば、タイヤコードなどのゴム補強用途、ベルト用途、スリング用途、漁網などのネット用途およびロープ等の産業資材用途に適する高強度で、外因による欠陥が生じても強度低下しにくいポリエステル繊維が提供される。   According to the present invention, high strength suitable for rubber reinforcement applications such as tire cords, belt applications, sling applications, net applications such as fishing nets and industrial material applications such as ropes, and a polyester that does not easily decrease in strength even when defects due to external factors occur. Fiber is provided.

以下、本発明のポリエステル繊維を実施するための最良の実施形態を説明する。   Hereinafter, the best mode for carrying out the polyester fiber of the present invention will be described.

本発明において使用されるポリエステル樹脂は、エステル結合を繰り返し構造にもつ直鎖状高分子であり、特に限定されるものではないが、ポリエチレンテレフタレート、ポリプロピレンテレフタレート、ポリブチレンテレフタレートが汎用性が高いため好ましく、高い欠陥除去強度を達成するためには、ポリエチレンテレフタレートがより好ましい。   The polyester resin used in the present invention is a linear polymer having an ester bond in a repeating structure, and is not particularly limited. However, polyethylene terephthalate, polypropylene terephthalate, and polybutylene terephthalate are preferable because of their high versatility. In order to achieve high defect removal strength, polyethylene terephthalate is more preferable.

本発明のポリエステル繊維には、本発明の効果が損なわれない範囲で他の成分が共重合されていてもよい。さらに、本発明の繊維には、艶消剤、難燃剤、滑剤等の既知添加剤を少量含有していてもよい。   The polyester fiber of the present invention may be copolymerized with other components as long as the effects of the present invention are not impaired. Furthermore, the fibers of the present invention may contain a small amount of known additives such as matting agents, flame retardants, and lubricants.

本発明にかかるポリエステル繊維は、欠陥除去強度SD=0が、1.9GPa以上であることが重要である。 It is important that the polyester fiber according to the present invention has a defect removal strength SD = 0 of 1.9 GPa or more.

本発明において、該欠陥除去強度の詳細な測定方法は、後述する実施例において記載するが、この欠陥除去強度は、繊維学会誌Vol.60,No.11(2004)349〜350頁に記載されているように、高分子繊維のように塑性変形しやすく延性が高い繊維に対する、欠陥サイズと繊維強度の関係式として知られているものである。   In the present invention, a detailed method for measuring the defect removal strength will be described in Examples described later. 60, no. 11 (2004) pages 349 to 350, which is known as a relational expression between the defect size and the fiber strength for a fiber that is easily plastically deformed and has high ductility such as a polymer fiber.

産業資材用途に用いる繊維としては高強度であるものが必要とされており、本発明のポリエステル繊維は、欠陥除去強度1.9GPa以上が必要である。更に高度な要求を満たし、産業資材における用途拡大を可能とするためには2.1GPa以上であることが好ましい。本発明のポリエステル繊維は、このように高い欠陥除去強度を有することにより、ポリエステル繊維の弾性率やタフネスを活用したタイヤコード用途においても、使用中の劣化による強度低下が抑制されるものである。該値の上限は、好ましくは本発明者らの知見によれば5.0GPa付近までであり、それよりも高い値のものは製造が難しくなってくる。   High-strength fibers are required for use in industrial materials, and the polyester fibers of the present invention require a defect removal strength of 1.9 GPa or more. Furthermore, it is preferably 2.1 GPa or more in order to satisfy a high level of demand and to enable expansion of applications in industrial materials. Since the polyester fiber of the present invention has such a high defect removal strength, a decrease in strength due to deterioration during use can be suppressed even in a tire cord application utilizing the elastic modulus and toughness of the polyester fiber. The upper limit of the value is preferably up to about 5.0 GPa according to the knowledge of the present inventors, and a value higher than that is difficult to manufacture.

また、本発明のポリエステル繊維は、欠陥除去強度の測定において、ノッチ面積の増加分ΔD(μm)と繊維強度の増加分ΔS(GPa)が下式の関係にあることが好ましい。
(ΔS−1/ΔD1/4)×D 1/4 ≦6
ただし、Dとは、繊維直径から導出した繊維の初期断面積(μm)とする。
In the measurement of the defect removal strength, the polyester fiber of the present invention preferably has a notch area increase ΔD (μm 2 ) and a fiber strength increase ΔS (GPa) in the following relationship.
(ΔS −1 / ΔD 1/4 ) × D 0 1/4 ≦ 6
However, D 0 is the initial cross-sectional area (μm 2 ) of the fiber derived from the fiber diameter.

産業資材用途では製造工程や使用中に擦過や薬剤の影響によって表面に欠陥が生じることが多い。この際に強度低下が著しければ、産業資材用途としては致命的となる。そこで、欠陥サイズが増加しても強度低下しにくい繊維が必要である。したがって、本発明のポリエステル繊維では欠陥サイズ増加分ΔD(μm)と繊維強度の変化分ΔS(GPa)の比に関する関係式((ΔS−1/ΔD1/4)×D 1/4 )が6以下であることが好ましい。この値が6より大きい場合には、外因によって劣化が進行した場合に、繊維全体の強度低下も大きくなり好ましくない。本発明においては、強度低下を抑制するために5.0以下とすることが好ましい。該値の下限は、好ましくは本発明では実質的に製造が難しくなってくる1.5である。 In industrial materials, defects often occur on the surface due to abrasion or chemicals during the manufacturing process or use. At this time, if the strength drop is significant, it becomes fatal as an industrial material application. Therefore, there is a need for a fiber that does not easily decrease in strength as the defect size increases. Therefore, in the polyester fiber of the present invention, a relational expression ((ΔS −1 / ΔD 1/4 ) × D 0 1/4 ) regarding the ratio between the defect size increase ΔD (μm 2 ) and the fiber strength change ΔS (GPa). Is preferably 6 or less. When this value is larger than 6, when the deterioration proceeds due to an external cause, the decrease in strength of the entire fiber becomes large, which is not preferable. In the present invention, it is preferably 5.0 or less in order to suppress a decrease in strength. The lower limit of the value is preferably 1.5, which is substantially difficult to produce in the present invention.

また、本発明のポリエステル繊維は、強度が1.6GPa以上であることが好ましい。近年のハイテクノロジー化の流れの中にあって、産業資材用途の構造材として要求される品質水準を考慮すれば、強度は少なくとも1.6GPa以上であることが好ましい。更に高度な要求を満たし、産業資材における用途拡大を可能とするためには1.8GPa以上であることがより好ましい。該値の上限は、好ましくは、実質的に製造が難しくなってくる3.0GPa付近である。以上のように本発明のポリエステル繊維は高いタフネスを有し、かつ、外因による欠陥が生じても強度低下しにくいポリエステル繊維である。したがって、本発明のポリエステル繊維は、タイヤコードなどのゴム補強用途、ベルト用途、スリング用途、漁網などのネット用途およびロープ等の産業資材用途に適するものである。   The polyester fiber of the present invention preferably has a strength of 1.6 GPa or more. Considering the quality level required as a structural material for industrial materials in the recent trend of high technology, the strength is preferably at least 1.6 GPa or more. Furthermore, in order to satisfy a high level requirement and to enable the use expansion in industrial materials, it is more preferably 1.8 GPa or more. The upper limit of the value is preferably around 3.0 GPa, which is substantially difficult to manufacture. As described above, the polyester fiber of the present invention is a polyester fiber that has high toughness and does not easily decrease in strength even when a defect due to an external cause occurs. Therefore, the polyester fiber of the present invention is suitable for rubber reinforcement applications such as tire cords, belt applications, sling applications, net applications such as fishing nets, and industrial material applications such as ropes.

また、本発明のポリエステル繊維は、溶融紡糸によって製糸されることが好ましい。溶融紡糸工程は、常法によって溶融、計量された溶融樹脂を紡糸口金より溶融吐出する製糸方法であるが、安価に大量の製糸を行うことができるため、産業用に低コストで繊維を得られるため好ましい。   The polyester fiber of the present invention is preferably produced by melt spinning. The melt spinning process is a spinning method in which a molten resin melted and measured by a conventional method is melted and discharged from a spinneret, but since a large amount of yarn can be produced at low cost, fibers can be obtained at low cost for industrial use. Therefore, it is preferable.

本発明のポリエステル繊維の具体的な製造方法を以下に述べるが、本発明はこれに限定されるものではない。   Although the specific manufacturing method of the polyester fiber of this invention is described below, this invention is not limited to this.

本発明のポリエステル繊維は、通常の溶融紡糸法、溶液紡糸法等で得られるものであるが、産業用用途であり低コストでることが重要であることから、溶融紡糸工程によって得られることが好ましい。   The polyester fiber of the present invention is obtained by a normal melt spinning method, solution spinning method, etc., but is preferably obtained by a melt spinning process because it is important for industrial use and low cost. .

本発明のポリエステル繊維は高い欠陥除去強度であることが必要であり、ポリエステル樹脂の固有粘度は0.8dl/g以上であることが好ましい。ポリエステル樹脂の固有粘度を高くすることで、得られる繊維の欠陥除去強度および、強度を向上させるためである。さらに欠陥除去強度を向上させるためには固有粘度を1.0dl/g以上とすることが好ましく、1.2dl/gとすることがより好ましい。   The polyester fiber of the present invention needs to have high defect removal strength, and the intrinsic viscosity of the polyester resin is preferably 0.8 dl / g or more. This is because the defect removal strength and strength of the resulting fiber are improved by increasing the intrinsic viscosity of the polyester resin. In order to further improve the defect removal strength, the intrinsic viscosity is preferably 1.0 dl / g or more, and more preferably 1.2 dl / g.

溶融紡糸法では、常法によって溶融、計量された溶融樹脂を紡糸口金より溶融吐出する。本発明の高い欠陥除去強度を有するポリエステル繊維は、口金孔径D(φcm)の紡糸口金から単孔当たりの吐出量Q(g/min)の吐出量で溶融吐出されたポリエステル樹脂に、紡糸口金面より紡糸線にそって100mmまでの間で、レーザ受光長:l(cm)、i番目のレーザのエネルギー密度:E(W/cm)、が下記(a)式〜(c)式の条件を満たすようにn方向からレーザを照射して得ることができる。

Figure 0004958108
Figure 0004958108
n≧2 ……(c)
D:口金孔径(φcm)
l:レーザ受光長(cm)
:i番目のレーザのエネルギー密度(W/cm
Q:単孔当たりの吐出量(g/min)
n:2以上の整数 In the melt spinning method, a molten resin melted and measured by a conventional method is melted and discharged from a spinneret. The polyester fiber having high defect removal strength according to the present invention is obtained by applying a spinneret surface to a polyester resin melt-discharged from a spinneret having a hole diameter D (φcm) at a discharge amount Q (g / min) per single hole. Further, the laser light receiving length: l (cm) and the energy density of the i-th laser: E i (W / cm 2 ) up to 100 mm along the spinning line are expressed by the following equations (a) to (c): It can be obtained by irradiating a laser from the n direction so as to satisfy the condition.
Figure 0004958108
Figure 0004958108
n ≧ 2 (c)
D: Base hole diameter (φcm)
l: Laser receiving length (cm)
E i : energy density of i-th laser (W / cm 2 )
Q: Discharge amount per single hole (g / min)
n: integer greater than or equal to 2

本発明に用いられる紡糸口金の口金孔径D(φcm)は樹脂の安定吐出ができればよく、特に限定されるものではないが、高強度の繊維を得るためにはφ0.05cm未満であることが好ましい。φ0.05cm未満であれば、口金から吐出前の高温の状態で樹脂が細化することになる。これは、紡糸線上でレーザ照射によって樹脂を加熱して細化させるという本発明の目的に近く、相乗効果として好ましいものであり、延伸糸としたときの強度およびタフネスの向上を両立させやすくなる。この目的のためには、φ0.03cm以下とすることがより好ましい。実質的に樹脂の吐出が困難になるφ0.005cmが下限である。なお、本発明における口金孔径とは口金に穿設された吐出孔の出口径のことであり、異形孔で紡糸する場合には、吐出孔断面積を丸孔と換算した値を用いる。   The diameter D (φcm) of the spinneret used in the present invention is not particularly limited as long as the resin can be stably discharged. However, in order to obtain high-strength fibers, it is preferably less than φ0.05 cm. . If it is less than φ0.05 cm, the resin is thinned in a high temperature state before discharging from the die. This is close to the object of the present invention in which the resin is heated and thinned by laser irradiation on the spinning line, and is preferable as a synergistic effect, and it is easy to achieve both improvement in strength and toughness when used as a drawn yarn. For this purpose, φ0.03 cm or less is more preferable. The lower limit is φ0.005 cm, which makes it substantially difficult to discharge the resin. The diameter of the nozzle hole in the present invention is the outlet diameter of the discharge hole formed in the nozzle. When spinning with a modified hole, the value obtained by converting the sectional area of the discharge hole to a round hole is used.

本発明でいうレーザ受光長l(cm)とは、樹脂に実質的にレーザが照射される部分の繊維軸方向の長さのことであり、樹脂は受光長を通過する時間分だけレーザ照射を受けて加熱される。受光長については特に限定されるものではないが、ポリエステル樹脂が十分に加熱されるためには0.2cm以上であることが好ましく、製糸性を安定させるために、1cm以下であることがより好ましい。   The laser light receiving length l (cm) in the present invention is the length in the fiber axis direction of the portion where the resin is substantially irradiated with the laser. Received and heated. The light receiving length is not particularly limited, but is preferably 0.2 cm or more in order to sufficiently heat the polyester resin, and more preferably 1 cm or less in order to stabilize the yarn forming property. .

本発明で用いるレーザとは、単色光であり、平行光線であり、コヒーレントである光線を指すものである。レーザのエネルギー密度E(W/cm)は、溶融樹脂がレーザを受光する位置において測定されるレーザ出力をスポット面積によって除することにより算出されるものである。 The laser used in the present invention is a monochromatic light, a parallel light beam, and a coherent light beam. The energy density E (W / cm 2 ) of the laser is calculated by dividing the laser output measured at the position where the molten resin receives the laser by the spot area.

本発明で用いられるレーザの種類は、特に限定されないが、レーザの波長10.6μmである炭酸ガスレーザは、ポリエステル樹脂の吸収率が高く効率的であること、また、工業的に用いるには大出力が得られること、安価なことが好ましく、この点からも炭酸ガスレーザであることが好ましい。   The type of laser used in the present invention is not particularly limited, but a carbon dioxide gas laser having a laser wavelength of 10.6 μm has a high absorption rate of the polyester resin and is efficient, and has a high output for industrial use. In view of this, a carbon dioxide laser is preferable.

本発明でいう単孔当たりの吐出量Q(g/min)とは、上記の紡糸口金1孔当たりの樹脂の吐出量である。本発明の製造方法は産業用繊維を目的としているため、樹脂の単孔あたりの吐出量は1.0g/min以上が好ましく、更に好ましくは2.0g/min以上である。   The discharge amount Q (g / min) per single hole referred to in the present invention is the discharge amount of the resin per one spinneret hole. Since the production method of the present invention is aimed at industrial fibers, the discharge amount per single hole of the resin is preferably 1.0 g / min or more, more preferably 2.0 g / min or more.

本発明では、溶融紡糸で得られる繊維をより低配向化するために、樹脂に強力なレーザを照射することが好ましく、紡糸線に沿って2方向以上から適度な強度のレーザを照射することが好ましい。このとき、1方向から照射するレーザとしては、口金孔径D(φcm)、レーザ受光長l(cm)、i番目のレーザのエネルギー密度E(W/cm)、単孔当たりの吐出量Q(g/min)より求められる式(a)の値が3以下であることが好ましい。式(b)で求められる値が3より大きくなる場合には、任意の1方向から高強力のレーザ照射をすることになり、ポリエステル樹脂の受光部表層部分の樹脂温度が必要以上に高温になる。このため、樹脂に含まれるオリゴマー成分の熱分解が起こり、得られる繊維に太細斑が発生する他、吐出樹脂のわずかな揺れによって繊維が溶断するなどして製糸性が悪化するためである。さらに高強力のレーザ照射を行う場合には、ポリエステル樹脂自体の熱分解により固有粘度が低下し、得られる繊維の破断強度、タフネスが著しく低下する。このため、式(a)で求められる値が3以下を満たすように、1方向からのレーザ照射で加えられる熱量を制限することが好ましく、紡糸の安定性を高めて生産性を上げるためには、式(a)より求められる値が2.5以下であることがより好ましい。 In the present invention, in order to lower the orientation of the fiber obtained by melt spinning, it is preferable to irradiate the resin with a powerful laser, and it is possible to irradiate the laser with an appropriate intensity from two or more directions along the spinning line. preferable. At this time, as the laser irradiated from one direction, the nozzle hole diameter D (φcm), the laser light receiving length l (cm), the energy density E i (W / cm 2 ) of the i-th laser, the discharge amount Q per single hole The value of the formula (a) obtained from (g / min) is preferably 3 or less. When the value obtained by the formula (b) is larger than 3, high-intensity laser irradiation is performed from any one direction, and the resin temperature of the light-receiving portion surface layer portion of the polyester resin becomes higher than necessary. . For this reason, thermal decomposition of the oligomer component contained in the resin occurs, and fine fibers are generated in the resulting fiber, and the fiber is melted by slight shaking of the discharged resin, so that the yarn forming property is deteriorated. Further, when high-intensity laser irradiation is performed, the intrinsic viscosity is lowered due to the thermal decomposition of the polyester resin itself, and the breaking strength and toughness of the resulting fiber are significantly lowered. For this reason, it is preferable to limit the amount of heat applied by laser irradiation from one direction so that the value obtained by the formula (a) satisfies 3 or less. In order to increase the stability of spinning and increase the productivity, More preferably, the value obtained from the formula (a) is 2.5 or less.

また、一方で、十分な欠陥除去強度、破断強度などの物性を有する繊維を得るためには、紡糸線上にて樹脂を十分加熱するために、強力なレーザ照射をすることが好ましい。このため2方向以上から、式(b)で計算される値が3以上になるように、レーザ照射することが好ましい。2方向以上からレーザ照射することにより、任意の一方向からのレーザ照射による紡糸不安定化要因を除き、式(b)を満たすようにレーザ照射を行うことで、樹脂に十分な熱量を加えることがでる。これに伴い、得られる未延伸繊維が低配向化し、延伸後には高い欠陥除去強度で高強度の繊維が得られるものである。樹脂をより加熱する方向が好ましいことから、式(b)で求められる値は3.5以上であることが寄り好ましい。上限としては、実質的に紡糸困難になる30以下である。   On the other hand, in order to obtain fibers having sufficient physical properties such as defect removal strength and breaking strength, it is preferable to perform powerful laser irradiation in order to sufficiently heat the resin on the spinning line. For this reason, it is preferable to perform laser irradiation from two or more directions so that the value calculated by the formula (b) is three or more. By applying laser irradiation from two or more directions, excluding the cause of spinning instability caused by laser irradiation from any one direction, laser irradiation is performed so as to satisfy the formula (b), thereby adding a sufficient amount of heat to the resin. I get out. Along with this, the obtained unstretched fibers are low-oriented, and after stretching, high-strength fibers are obtained with high defect removal strength. Since the direction in which the resin is further heated is preferable, the value obtained by the formula (b) is preferably 3.5 or more. The upper limit is 30 or less which makes spinning difficult substantially.

本発明においては、2方向以上からレーザを照射することにより、熱分解を抑えつつ十分に樹脂を加熱できるため、照射レーザの数については、それ以上特に限定されるものではないが、繊維の強度をさらに上げるためには、樹脂の断面方向の均一性を向上させるためにレーザ照射方向の対称性を高めることが好ましい。樹脂に対して2方向からレーザ照射する場合には、レーザの特性上、光軸を同一にできないため完全に対称にすることができない。対称性を上げるためには、レーザ照射を3方向以上から行うことが好ましい。一方で、樹脂に対してレーザ照射する方向が増加する場合には、レーザ照射スポットの厳密な位置合わせが実質的に難しくなるため、本発明においては、3方向からのレーザ照射とすることが好ましい。   In the present invention, by irradiating the laser from two or more directions, the resin can be sufficiently heated while suppressing thermal decomposition. Therefore, the number of irradiation lasers is not particularly limited, but the strength of the fiber. In order to further increase the symmetry, it is preferable to improve the symmetry of the laser irradiation direction in order to improve the uniformity in the cross-sectional direction of the resin. When laser irradiation is performed on the resin from two directions, the optical axis cannot be made identical because of the characteristics of the laser, and thus it cannot be made completely symmetrical. In order to increase symmetry, it is preferable to perform laser irradiation from three or more directions. On the other hand, when the direction of laser irradiation with respect to the resin increases, exact alignment of the laser irradiation spot becomes substantially difficult. Therefore, in the present invention, laser irradiation from three directions is preferable. .

本発明に従って高温時の細化が促進された繊維は十分に優れた力学的特性を有するが、更に製糸性向上や配向抑制を目的として従来法である冷却遅延措置、いわゆる加熱筒や保温筒を併用することは好ましいことである。本発明の製造方法において、繊維の引取方法は特に限定されるものではなく、いわゆる2工程法および直接延伸法などの任意の方法を採用することができる。ただし、紡糸線上で配向結晶化が起こると、結晶が配向の阻害点となるために、分子鎖を効率良く配向させる効果が減少してしまう可能性がある。したがって、紡糸工程において配向結晶化が起こらない引取速度とすることが好ましい。具体的には、引取速度は1000m/min未満であることが好ましい。1000m/min未満とすることにより、未延伸繊維の配向度を低くすることができ、高強度化が達成しやすくなる。更にこの傾向を顕著なものとするためには引取速度を700m/min以下とすることが好ましい。ただし、工業的観点から好ましくは引取速度の下限は300m/minである。なお、本発明の引取速度とは溶融樹脂が冷却固化後接触する第一ローラの回転速度のことを言う。   The fibers that have been promoted to be thinned at high temperatures according to the present invention have sufficiently excellent mechanical properties, but are further provided with a conventional cooling delay measure, so-called heating cylinders and heat insulation cylinders, for the purpose of improving the yarn production and suppressing the orientation. Use in combination is preferable. In the production method of the present invention, the fiber take-up method is not particularly limited, and any method such as a so-called two-step method and a direct drawing method can be adopted. However, when orientational crystallization occurs on the spinning line, the crystal becomes an inhibition point of orientation, which may reduce the effect of efficiently orienting molecular chains. Therefore, it is preferable to set the take-up speed so that orientation crystallization does not occur in the spinning process. Specifically, the take-up speed is preferably less than 1000 m / min. By setting it to less than 1000 m / min, the degree of orientation of unstretched fibers can be lowered, and high strength can be easily achieved. Furthermore, in order to make this tendency remarkable, it is preferable to set the take-up speed to 700 m / min or less. However, the lower limit of the take-up speed is preferably 300 m / min from an industrial viewpoint. The take-off speed of the present invention refers to the rotation speed of the first roller with which the molten resin contacts after cooling and solidification.

産業用繊維に適した優れた特性、特に強度を有した繊維とするためには延伸熱セットを施すことにより、分子鎖を配向させ、熱的に安定した繊維構造を形成させることが好ましい。延伸方法としては、例えば、回転速度を変更した一対以上のローラ間で延伸する手法がある。また、優れた力学的特性を得るためには2段以上で延伸することが好ましい。各ローラ間の速度比および温度については必要とする力学的特性に応じ変更することができる。加熱手法としては加熱ローラ、熱板、熱ピンおよびレーザ光照射などの加熱手法から選択することができる。なお、延伸工程での加熱手法としてレーザ光を用いることは延伸工程の加熱時に生成する微結晶などの分子鎖配向の阻害点となるものを生成させることなく、高応力で延伸できるという点から好ましいことである。   In order to obtain a fiber having excellent characteristics suitable for industrial fibers, in particular, strength, it is preferable to form a thermally stable fiber structure by orienting molecular chains by drawing heat setting. As a stretching method, for example, there is a method of stretching between a pair of rollers having different rotation speeds. In order to obtain excellent mechanical properties, it is preferable to stretch in two or more stages. The speed ratio and temperature between the rollers can be changed according to the required mechanical characteristics. The heating method can be selected from heating methods such as a heating roller, a hot plate, a heat pin, and laser beam irradiation. In addition, it is preferable to use a laser beam as a heating method in the stretching step because it can be stretched with high stress without generating an obstacle to molecular chain orientation such as microcrystals generated during heating in the stretching step. That is.

なお、上述した本発明のポリエステル繊維を製造する方法は、モノフィラメントあるいはマルチフィラメントのいずれの製造の場合にも適応することができる。   The above-described method for producing the polyester fiber of the present invention can be applied to the production of either monofilament or multifilament.

以下、実施例および比較例により、本発明を具体的かつより詳細に説明する。ただし、本発明は以下の実施例により制限されるものではない。なお、実施例および比較例中の物性値は以下の方法によって測定した。   Hereinafter, the present invention will be described specifically and in detail with reference to Examples and Comparative Examples. However, the present invention is not limited by the following examples. In addition, the physical-property value in an Example and a comparative example was measured with the following method.

A.密度
0.1gのサンプルを使用し、臭化ナトリウム水溶液密度勾配管による比重測定を行った。測定は、n数を2として行いそれらを平均した。
A. A sample having a density of 0.1 g was used, and the specific gravity was measured with an aqueous sodium bromide density gradient tube. The measurement was performed by setting n number to 2 and averaging them.

B.破断強度、伸度
島津製作所社製オートグラフを用い、初期試料50mm(未延伸繊維)、100mm(延伸繊維)、引張速度100%/minにて応力−歪曲線を測定して求めた。測定は、n数を5として行いそれらを平均した。
また、得られた値を(GPa)に変換するために、下記式を用いた。
[強度](GPa)=[密度](g/cm)×0.1×[強度][cN/dtex]
B. Breaking strength and elongation Using an autograph manufactured by Shimadzu Corporation, a stress-strain curve was measured by an initial sample of 50 mm (unstretched fiber), 100 mm (stretched fiber), and a tensile rate of 100% / min. The measurement was performed by setting n number to 5, and averaging them.
Moreover, in order to convert the obtained value into (GPa), the following formula was used.
[Strength] (GPa) = [Density] (g / cm 3 ) × 0.1 × [Strength] [cN / dtex]

C.欠陥除去強度
集束イオンビームミリング装置JEM−9310FIB(JEOL社製)によってイオンビームを繊維軸に垂直な方向に照射、貫通させ、繊維軸に垂直な断面に沿った表面ノッチを導入した。ノッチの面積は、繊維を側面から集束イオンビームミリング装置の2次電子像で観察し、0.25μmのオーダーで測定したノッチの深さと繊維直径から求め、円形断面以外の場合には、繊維直径に代えて走査型電子顕微鏡観察により測定された繊維断面形状の寸法を参考にして求めた。
次に、欠陥を導入した部分を含む初期試長6mmの繊維を引っ張り速度0.6mm/minにて Orientec社製RTC−1350A型引張試験機により応力−歪曲線を測定し、破断強度S(GPa)を測定した。
上記測定を繊維断面積に対するノッチの面積がおよそ2〜20%の範囲に分散するようN=15以上の測定を行った。
得られたノッチの面積D(μm)と破断強度S(GPa)の値を用い、横軸をD1/4、縦軸をS−1として、最小二乗法により1次関数
−1= K × D1/4 + K …(a)
としてカーブフィッティングする。ここで、K、Kは定数である。
最後に、欠陥除去強度SD=0は、D=0における推定破断強度であり、
D=0 = 1/K
として求めた。
C. Defect removal intensity A focused ion beam milling device JEM-9310FIB (manufactured by JEOL) was irradiated with an ion beam in a direction perpendicular to the fiber axis and penetrated to introduce a surface notch along a cross section perpendicular to the fiber axis. The area of the notch is obtained from the notch depth and fiber diameter measured on the order of 0.25 μm by observing the fiber from the side with a secondary electron image of a focused ion beam milling apparatus. Instead, the size of the fiber cross-sectional shape measured by observation with a scanning electron microscope was used as a reference.
Next, a stress-strain curve was measured with an RTC-1350A type tensile tester manufactured by Orientec at a tensile speed of 0.6 mm / min for a fiber having an initial test length of 6 mm including a portion into which a defect was introduced, and the breaking strength S (GPa ) Was measured.
In the above measurement, N = 15 or more was measured so that the area of the notch with respect to the fiber cross-sectional area was dispersed in the range of about 2 to 20%.
Using the values of the notch area D (μm 2 ) and the breaking strength S (GPa) obtained, the horizontal axis is D 1/4 and the vertical axis is S −1 , and the linear function S −1 = K 1 × D 1/4 + K 2 ... (a)
As curve fitting. Here, K 1 and K 2 are constants.
Finally, the defect removal strength SD = 0 is the estimated breaking strength at D = 0,
S D = 0 = 1 / K 2
As sought.

D.固有粘度
オルソクロロフェノール25℃で測定する。なお、本実施例では、昭和電工社製Shodex GPC−101を用い、溶離液HFIP、カラムHFIP−806M×2、検出器RI、流速1.0mL/minにて測定し、固有粘度既知のポリエチレンテレフタレートを用いて換算した。測定はn数を5として行い、それらを平均した。
D. Intrinsic viscosity Measured at 25 ° C. orthochlorophenol. In this example, Shodex GPC-101 manufactured by Showa Denko KK was used to measure the eluent HFIP, column HFIP-806M × 2, detector RI, flow rate 1.0 mL / min, and polyethylene terephthalate with a known intrinsic viscosity. It converted using. The measurement was performed assuming that the n number was 5, and they were averaged.

E.レーザ強度
樹脂が走行していない状態で、樹脂の走行位置にレーザパワーメータを設置してレーザの照射エネルギーを測定し、これをビームプロファイラにて測定した照射時のレーザスポット径の断面積で除した。測定はn数を5として行い、それらを平均した。
E. Laser intensity When the resin is not running, install a laser power meter at the resin running position to measure the laser irradiation energy, and divide this by the cross-sectional area of the laser spot diameter measured by the beam profiler. did. The measurement was performed assuming that the n number was 5, and they were averaged.

実施例1
ポリエチレンテレフタレート(固有粘度:1.0dl/g)を2軸エクストルーダによって溶融し、紡糸温度320℃、紡糸口金(孔径φ0.03cm、孔数1)より単孔吐出量3.0g/minで吐出した。この紡糸口金面より下流10mmのところで、レーザ受光長0.4cmの箇所に、それぞれレーザ強度270W/cmの炭酸ガスレーザを3方向より照射し、冷却固化後500m/minの紡糸速度で引き取り、未延伸糸を得た。該未延伸糸を供給ローラに導き、第1延伸ローラ、第2延伸ローラおよび第3延伸ローラ間で2段延伸を行った後、最終ローラを経て、張力制御方式の巻取機によって巻取り、延伸糸を得た。各延伸ローラの温度は90℃、140℃、230℃とし、2段目の延伸倍率は1.6倍、延伸速度は100m/minに設定した。得られたポリエステル繊維の物性を表1に示す。
また、実施例1、後述する比較例1、2で得られた各ポリエステル繊維における(S/GPa)−1と(D/μm1/4の関係について、図1に示した。
Example 1
Polyethylene terephthalate (inherent viscosity: 1.0 dl / g) was melted by a biaxial extruder and discharged at a spinning temperature of 320 ° C. and a spinneret (hole diameter φ0.03 cm, hole number 1) at a single hole discharge rate of 3.0 g / min. . A carbon dioxide laser with a laser intensity of 270 W / cm 2 was irradiated from three directions to a spot with a laser light receiving length of 0.4 cm at a position 10 mm downstream from the spinneret surface, and after cooling and solidification, it was taken out at a spinning speed of 500 m / min. A drawn yarn was obtained. The unstretched yarn is guided to a supply roller, and after two-stage stretching is performed between the first stretching roller, the second stretching roller, and the third stretching roller, the final roller is passed through a tension control type winder, A drawn yarn was obtained. The temperature of each stretching roller was 90 ° C., 140 ° C., and 230 ° C., the stretching ratio in the second stage was set to 1.6 times, and the stretching speed was set to 100 m / min. Table 1 shows the physical properties of the obtained polyester fibers.
Moreover, the relationship between (S / GPa) −1 and (D / μm 2 ) ¼ in each polyester fiber obtained in Example 1 and Comparative Examples 1 and 2 described later is shown in FIG.

比較例1
レーザ照射を行わなかったこと以外は全て実施例1と同様の方法で製糸を行い、延伸糸を得た。得られたポリエステル繊維の物性を表1に示す。
Comparative Example 1
Except that laser irradiation was not performed, yarn production was performed in the same manner as in Example 1 to obtain drawn yarn. Table 1 shows the physical properties of the obtained polyester fibers.

比較例2
固有粘度0.6dl/gのポリエチレンテレフタレートチップを用い、紡糸温度310度としたこと以外は全て実施例1と同様の方法で製糸を行い、延伸糸を得た。得られたポリエステル繊維の物性を表1に示す。
Comparative Example 2
Using a polyethylene terephthalate chip having an intrinsic viscosity of 0.6 dl / g, spinning was performed in the same manner as in Example 1 except that the spinning temperature was 310 ° C. to obtain a drawn yarn. Table 1 shows the physical properties of the obtained polyester fibers.

Figure 0004958108
Figure 0004958108

図1は、実施例1、比較例1、2で得られた各ポリエステル繊維における(S/GPa)−1と(D/μm1/4の関係について示したものである。FIG. 1 shows the relationship between (S / GPa) −1 and (D / μm 2 ) 1/4 in each polyester fiber obtained in Example 1 and Comparative Examples 1 and 2 .

Claims (5)

欠陥除去強度SD=0が、1.9GPa以上であることを特徴とするポリエステル繊維。 Defect removal strength SD = 0 is 1.9 GPa or more, The polyester fiber characterized by the above-mentioned. 欠陥除去強度の測定において、ノッチ面積の増加分ΔD(μm)と繊維強度の増加分ΔS(GPa)が下式の関係にあることを特徴とする請求項1記載のポリエステル繊維。
(ΔS−1/ΔD1/4)×D 1/4 ≦6
ただし、Dとは、繊維直径から導出した繊維の初期断面積(μm)とする。
2. The polyester fiber according to claim 1, wherein, in the measurement of the defect removal strength, the increase ΔD (μm 2 ) of the notch area and the increase ΔS (GPa) of the fiber strength are in the relationship of the following formula.
(ΔS −1 / ΔD 1/4 ) × D 0 1/4 ≦ 6
However, D 0 is the initial cross-sectional area (μm 2 ) of the fiber derived from the fiber diameter.
強度が1.6GPa以上であることを特徴とする請求項1または2いずれか記載のポリエステル繊維。   The polyester fiber according to claim 1, wherein the polyester fiber has a strength of 1.6 GPa or more. 溶融紡糸で得られることを特徴とする請求項1から3のいずれかに記載のポリエステル繊維。   The polyester fiber according to any one of claims 1 to 3, wherein the polyester fiber is obtained by melt spinning. ポリエステル樹脂を溶融紡糸して繊維を製造する方法において、固有粘度0.8dl/g以上のポリエステル樹脂を紡糸口金から溶融吐出し、紡糸口金面より紡糸線にそって100mmまでの間で、下記(a)式〜(c)式の条件を満たすようにn方向からレーザを照射して得られることを特徴とする請求項1から4のいずれかに記載のポリエステル繊維。
Figure 0004958108
Figure 0004958108
n≧2 ……(c)
ここで、D:口金孔径(φcm)
l:レーザ受光長(cm)
:i番目のレーザのエネルギー密度(W/cm
Q:単孔当たりの吐出量(g/min)
n:2以上の整数
In a method for producing a fiber by melt spinning a polyester resin, a polyester resin having an intrinsic viscosity of 0.8 dl / g or more is melted and discharged from a spinneret, and from the spinneret surface to 100 mm along the spinning line, the following ( The polyester fiber according to any one of claims 1 to 4, wherein the polyester fiber is obtained by irradiating a laser from the n direction so as to satisfy the conditions of the formulas (a) to (c).
Figure 0004958108
Figure 0004958108
n ≧ 2 (c)
Here, D: Base hole diameter (φcm)
l: Laser receiving length (cm)
E i : energy density of i-th laser (W / cm 2 )
Q: Discharge amount per single hole (g / min)
n: integer greater than or equal to 2
JP2007141656A 2007-05-29 2007-05-29 Polyester fiber Active JP4958108B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007141656A JP4958108B2 (en) 2007-05-29 2007-05-29 Polyester fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007141656A JP4958108B2 (en) 2007-05-29 2007-05-29 Polyester fiber

Publications (2)

Publication Number Publication Date
JP2008297641A JP2008297641A (en) 2008-12-11
JP4958108B2 true JP4958108B2 (en) 2012-06-20

Family

ID=40171414

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007141656A Active JP4958108B2 (en) 2007-05-29 2007-05-29 Polyester fiber

Country Status (1)

Country Link
JP (1) JP4958108B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107338484A (en) * 2016-08-25 2017-11-10 桐乡守敬应用技术研究院有限公司 Polyester fiber melts spinning method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005068225A (en) * 2003-08-21 2005-03-17 Toyobo Co Ltd Composite molding material and molding using the same
JP5082100B2 (en) * 2005-03-11 2012-11-28 国立大学法人山梨大学 Means for producing fully aromatic polyester microfilaments

Also Published As

Publication number Publication date
JP2008297641A (en) 2008-12-11

Similar Documents

Publication Publication Date Title
JP4912956B2 (en) Method for producing polyester fiber
JP2021120501A (en) Method for producing high-strength polyethylene terephthalate raw yarn
KR101838499B1 (en) Process for preparing polyethylene terephthalate filament having excellent high strength and dimensional stability
JP4958108B2 (en) Polyester fiber
Sugawara et al. Fiber structure development in PS/PET sea-island conjugated fiber during continuous laser drawing
JP4791844B2 (en) Polyester fiber
US20180202077A1 (en) Polypropylene fiber and method for manufacturing polypropylene fiber
JP2015086486A (en) Method for producing polyphenylene sulfide fiber
JP6838282B2 (en) Polypropylene fiber and manufacturing method of polypropylene fiber
JP5134417B2 (en) Method for producing polyester multifilament
JP2006089898A (en) High-strength polyethylene fiber
US4956446A (en) Polyester fiber with low heat shrinkage
JP4565325B2 (en) High strength polyethylene multifilament
JP3888164B2 (en) Polyester monofilament and method for producing the same
JP4729410B2 (en) Crimpable polyester fiber and method for producing the same
JP2008031617A (en) Biodegradable monofilament and method for producing the same
JP4757655B2 (en) Method for producing polyester fiber
KR101746029B1 (en) Process for preparing polyethylene terephthalate filament having excellent high strength and dimensional stability
KR101143721B1 (en) High Gravity Polyester Multi-filament and Its manufacturing Method
KR20170088151A (en) Manufacturing method of high strength synthetic fibers using high molecular weight thermoplastic polymer and synthetic fibers with high tenacity
KR101099882B1 (en) Polyester mixed yarn with different shrinkage and a preparing process thereof
KR101858242B1 (en) Gel spinning apparatus for ultra-high Molecular Weight Polyethylene, and manufacturing method of the ultra-high Molecular Weight Polyethylene using the same
JP2004324017A (en) Method for producing polyester fiber
KR20020061368A (en) Polyester filament yarn having dimensional stability and high strength. preparation thereof
JP6142265B2 (en) Polymethylpentene monofilament and method for producing the same

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20090220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090220

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20091102

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100305

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100305

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100524

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110816

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110830

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20110921

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110921

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120306

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120313

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150330

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4958108

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150330

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150330

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350