JP4956147B2 - Discharge lamp lighting device and lighting fixture - Google Patents

Discharge lamp lighting device and lighting fixture Download PDF

Info

Publication number
JP4956147B2
JP4956147B2 JP2006308043A JP2006308043A JP4956147B2 JP 4956147 B2 JP4956147 B2 JP 4956147B2 JP 2006308043 A JP2006308043 A JP 2006308043A JP 2006308043 A JP2006308043 A JP 2006308043A JP 4956147 B2 JP4956147 B2 JP 4956147B2
Authority
JP
Japan
Prior art keywords
discharge lamp
voltage
output
discharge
power supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006308043A
Other languages
Japanese (ja)
Other versions
JP2008123909A (en
Inventor
浩司 佐伯
賢治 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2006308043A priority Critical patent/JP4956147B2/en
Publication of JP2008123909A publication Critical patent/JP2008123909A/en
Application granted granted Critical
Publication of JP4956147B2 publication Critical patent/JP4956147B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Circuit Arrangements For Discharge Lamps (AREA)

Description

本発明は、複数個の放電灯を一括点灯可能な放電灯点灯装置、およびこの放電灯点灯装置と複数個の放電灯を搭載した照明器具に関するものである。   The present invention relates to a discharge lamp lighting device capable of collectively lighting a plurality of discharge lamps, and a lighting fixture equipped with the discharge lamp lighting device and a plurality of discharge lamps.

従来の放電灯点灯装置の概略構成を図9に示す。この放電灯点灯装置は、放電灯2灯を点灯制御するものであり、例えば、特開平10−326682号公報(図2)に開示されている。スイッチSW1がオンされると、交流電源ACが整流回路部1に接続され、交流電圧が整流された後、直流電源部2に入力され、所定の直流電圧Vdcが出力される。直流電源部2は例えば昇圧チョッパ構成から成り、制御手段3にて所定の直流電圧Vdcが略一定値となるように制御される。   FIG. 9 shows a schematic configuration of a conventional discharge lamp lighting device. This discharge lamp lighting device controls lighting of two discharge lamps, and is disclosed in, for example, Japanese Patent Laid-Open No. 10-326682 (FIG. 2). When the switch SW1 is turned on, the AC power source AC is connected to the rectifier circuit unit 1 and the AC voltage is rectified and then input to the DC power source unit 2 to output a predetermined DC voltage Vdc. The DC power supply unit 2 has a boost chopper configuration, for example, and is controlled by the control means 3 so that the predetermined DC voltage Vdc becomes a substantially constant value.

直流電源部2の出力には直流電圧を高周波に変換するインバータ部4が接続されており、インバータ部4はパワーMOSFETよりなる一対のスイッチ素子Q11、Q12の直列回路を備えるハーフブリッジ形である。インバータ部4のスイッチ素子Q11、Q12の発振周波数およびオンオフ時間はインバータ制御部5にて制御され、インバータ制御部5から出力される駆動信号にてスイッチ素子Q11、Q12は交互にオンオフされる。この動作により、インバータ部4の出力(スイッチ素子Q11のソース端子とスイッチ素子Q12のドレイン端子の接続点)には高周波の矩形波電圧が発生する。   The output of the DC power supply unit 2 is connected to an inverter unit 4 for converting a DC voltage into a high frequency, and the inverter unit 4 is a half bridge type including a series circuit of a pair of switch elements Q11 and Q12 made of a power MOSFET. The oscillation frequency and on / off time of the switch elements Q11 and Q12 of the inverter unit 4 are controlled by the inverter control unit 5, and the switch elements Q11 and Q12 are alternately turned on and off by the drive signal output from the inverter control unit 5. By this operation, a high-frequency rectangular wave voltage is generated at the output of the inverter unit 4 (a connection point between the source terminal of the switch element Q11 and the drain terminal of the switch element Q12).

インバータ部4の出力には直流カット用のコンデンサC1Aを介してインダクタL1AとコンデンサC2Aからなる共振回路部6が接続されており、さらに直流カット用のコンデンサC1Bを介してインダクタL1BとコンデンサC2Bの直列回路からなる共振回路部7が並列に接続される。放電灯LAおよびLBはそれぞれコンデンサC2AおよびC2Bにフィラメント部Fを介して並列に接続される。インバータ部4の高周波動作により共振回路部6および7のコンデンサC2AおよびC2Bの両端には共振電圧が発生し、この共振電圧にて放電灯LAおよびLBは始動点灯し、点灯後はインバータ部4の発振周波数を所定値に変調させることにより所定の放電灯出力を得る構成である。   The output of the inverter unit 4 is connected to a resonance circuit unit 6 including an inductor L1A and a capacitor C2A via a DC cut capacitor C1A, and further, an inductor L1B and a capacitor C2B are connected in series via a DC cut capacitor C1B. A resonant circuit section 7 composed of a circuit is connected in parallel. Discharge lamps LA and LB are connected in parallel to capacitors C2A and C2B via filament portion F, respectively. Due to the high frequency operation of the inverter unit 4, resonance voltages are generated at both ends of the capacitors C2A and C2B of the resonance circuit units 6 and 7, and the discharge lamps LA and LB are started and lit by this resonance voltage. In this configuration, a predetermined discharge lamp output is obtained by modulating the oscillation frequency to a predetermined value.

本従来構成の特徴たる点は、複数の共振回路部6,7が並列にインバータ部4に接続されて成る点である。複数の共振回路部6,7が並列にインバータ部4に接続されて成る利点は、インバータ部4を複数設ける必要がないため、部品点数の削減および部品コストの低下が可能となることである。   The feature of this conventional configuration is that a plurality of resonance circuit sections 6 and 7 are connected to the inverter section 4 in parallel. The advantage that a plurality of resonance circuit units 6 and 7 are connected to the inverter unit 4 in parallel is that it is not necessary to provide a plurality of inverter units 4, so that the number of components and the cost of components can be reduced.

本従来例は2本の放電灯LA,LBで構成されるが、放電灯の灯数が更に多い場合においてはその利点が更に発揮される。且つ、本従来例の構成であれば、1本の放電灯が外された場合において、放電灯が外された共振回路のみ共振経路が遮断されるため、放電灯未接続側は安全に共振作用を停止させることができ、正常に接続されている放電灯のみを正常に点灯始動させることができるという利点もあるため、一般的に複数の放電灯を点灯させる家庭用の照明器具に備えられる放電灯点灯装置においては本従来例のような共振回路の複数並列接続構成が用いられている。
特開平10−326682号公報(図2)
Although this conventional example is composed of two discharge lamps LA and LB, the advantage is further exhibited when the number of discharge lamps is larger. In addition, with the configuration of the conventional example, when one discharge lamp is removed, the resonance path is cut off only in the resonance circuit from which the discharge lamp is removed, so that the discharge lamp unconnected side can safely resonate. In addition, there is an advantage that only a normally connected discharge lamp can be started and started normally. In the lamp lighting device, a plurality of parallel connection configurations of resonance circuits as in the conventional example are used.
Japanese Patent Laid-Open No. 10-326682 (FIG. 2)

しかしながら、本従来構成においては次のような問題が生じる。図10は従来構成において放電灯が1灯外れた状態の回路構成を示し、図11は従来構成における各部電圧波形を示す。放電灯LAが外れた場合においてインバータ部4の発振が継続する場合、インバータ部4の出力電圧Vo1は図11(b)に示すように直流電圧Vdc(図11(a))と同ピーク値の高周波の矩形波電圧となる。なお、インバータ部4の発振デューテイ比(インバータ部4のスイッチ素子Q11,Q12のオンオフ比)は回路効率を高める意味から略50%に設定されることが一般的であり、本従来構成においてもインバータ部4の発振デューティ比を略50%としており、それに伴い出力電圧Vo1の波形も略50%のデューティ比となる。   However, the following problems occur in this conventional configuration. FIG. 10 shows a circuit configuration in a state where one discharge lamp is disconnected in the conventional configuration, and FIG. 11 shows voltage waveforms of respective parts in the conventional configuration. If the oscillation of the inverter unit 4 continues when the discharge lamp LA is disconnected, the output voltage Vo1 of the inverter unit 4 has the same peak value as the DC voltage Vdc (FIG. 11 (a)) as shown in FIG. It becomes a high-frequency rectangular wave voltage. Note that the oscillation duty ratio of the inverter unit 4 (on / off ratio of the switching elements Q11 and Q12 of the inverter unit 4) is generally set to about 50% in order to increase circuit efficiency. The oscillation duty ratio of the unit 4 is set to about 50%, and accordingly, the waveform of the output voltage Vo1 also becomes a duty ratio of about 50%.

1灯の放電灯LAが外れた状態(図10の状態)にてインバータ部4の発振が継続する場合、外れた側の放電灯LAの高圧側の接続点(図9のインダクタL1Aと放電灯LAとの接続点)に発生する出力電圧Vo2は、出力電圧Vo1が直流カット用コンデンサC1Aを介して出力されるため、出力電圧Vo1の直流成分が除去された交流矩形波電圧となる。   When the oscillation of the inverter unit 4 continues when one discharge lamp LA is disconnected (the state shown in FIG. 10), the connection point on the high-pressure side of the disconnected discharge lamp LA (the inductor L1A and the discharge lamp in FIG. 9). The output voltage Vo2 generated at the connection point (LA) is an AC rectangular wave voltage from which the DC component of the output voltage Vo1 is removed because the output voltage Vo1 is output via the DC cut capacitor C1A.

なお、実際の出力電圧Vo2は、浮遊容量成分C0の影響による共振電圧(インダクタL1Aと浮遊容量成分C0の共振電圧)が重畳するため、図11(c)のように、交流矩形波電圧に高周波のリンギング成分が重畳した波形となる。ここで、リンギング成分を無視した出力電圧Vo2の実効値(Vo2(RMS))は発振デューティ比を50%とした場合、以下のように求められる。なお、実際の実効値成分はリンギング成分が重畳するため、下記の値よりも若干高くなる。   Note that since the actual output voltage Vo2 is superimposed with a resonance voltage (resonance voltage of the inductor L1A and the stray capacitance component C0) due to the influence of the stray capacitance component C0, a high frequency is added to the AC rectangular wave voltage as shown in FIG. This is a waveform in which the ringing component is superimposed. Here, the effective value (Vo2 (RMS)) of the output voltage Vo2 ignoring the ringing component is obtained as follows when the oscillation duty ratio is 50%. The actual effective value component is slightly higher than the following value because the ringing component is superimposed.

Vo2(RMS)=0.5×Vdc …(式1)
上式において、Vdcは直流電源部2の出力直流電圧の平均値とする。
Vo2 (RMS) = 0.5 × Vdc (Formula 1)
In the above equation, Vdc is an average value of the output DC voltage of the DC power supply unit 2.

このように、直流電圧Vdcが高いほど、放電灯外れ時に放電灯接続点に発生する二次電圧(放電灯接続点−回路グランド間電圧)および対地電圧(放電灯接続点−アース(対地)間電圧)が高くなるため、直流電圧Vdcが高く設定される場合においては放電灯の着脱の際に電撃を生ずる恐れが高くなり、よって安全性を考慮すると直流電圧Vdcは必要以上に高めに設定することができないという問題がある。   Thus, as the DC voltage Vdc is higher, the secondary voltage (voltage between the discharge lamp connection point and the circuit ground) generated at the discharge lamp connection point when the discharge lamp is disconnected and the ground voltage (between the discharge lamp connection point and the ground (ground)). When the DC voltage Vdc is set high, there is a high risk of electric shock when the discharge lamp is attached / detached. Therefore, in consideration of safety, the DC voltage Vdc is set higher than necessary. There is a problem that can not be.

また、安全性の観点から、二次電圧および対地電圧が高くなる場合は照明器具を接地できるようにアース機構が必要となる。家庭用照明器具の場合、吊り下げ型器具(ペンダント器具)は150V、直付け型器具(シーリング器具)は300Vを超える場合においてはアース機構を設けなければならない。   Further, from the viewpoint of safety, when the secondary voltage and the ground voltage are high, an earth mechanism is necessary so that the lighting apparatus can be grounded. In the case of household lighting fixtures, a grounding mechanism must be provided if the hanging type fixture (pendant fixture) exceeds 150V, and the direct attachment type fixture (sealing fixture) exceeds 300V.

よって、照明器具のアース機構を不要とするには吊り下げ型器具の場合は150V、直付け型器具の場合は300Vを下回るように二次電圧および対地電圧を制限しなければならず、よって、(式1)にて換算すると直流電圧Vdcの上限値は吊り下げ型器具で300V、直付け型器具で600Vとなる。なお、実際の上限値は前述の高周波リンギング成分による電圧上昇を考慮して前述の上限値よりも若干低めに設定されることが望ましい。   Therefore, in order to eliminate the grounding mechanism of the lighting fixture, the secondary voltage and the ground voltage must be limited to be lower than 150 V in the case of the hanging type appliance and 300 V in the case of the direct installation type appliance. When converted according to (Equation 1), the upper limit value of the DC voltage Vdc is 300 V for the hanging type instrument and 600 V for the direct attachment type instrument. The actual upper limit value is desirably set slightly lower than the above upper limit value in consideration of the voltage increase due to the high frequency ringing component.

ところで、近年、放電灯の長細管化が進み、それに伴い放電灯を始動点灯させるために必要な始動電圧も高くなってきている。始動電圧は共振回路部の共振作用にて得られるが、より高い始動電圧を得るためには共振作用を更に強める必要があり、部品の電気ストレスも増大する傾向にある。また、共振回路部品のばらつきによる始動電圧ばらつきも増大傾向となり、更なる部品の電気ストレスの増大、もしくは始動電圧不足による放電灯不点灯などの問題も生じる恐れがある。   By the way, in recent years, discharge lamps have become longer, and accordingly, the starting voltage required for starting and lighting the discharge lamp is also increasing. The starting voltage is obtained by the resonance action of the resonance circuit unit. However, in order to obtain a higher starting voltage, the resonance action needs to be further strengthened, and the electrical stress of the component tends to increase. In addition, starting voltage variations due to variations in resonant circuit components tend to increase, and there is a possibility that problems such as further increase in electrical stress of components or lighting of the discharge lamp due to insufficient starting voltage may occur.

この問題を回避するには直流電圧Vdcを高く設定することで共振作用を強めることなく所定の始動電圧を得るようにすれば良いのだが、直流電圧Vdcを高くすると二次電圧および対地電圧も高くなるため前述の問題が生じることになる。   In order to avoid this problem, it is sufficient to obtain a predetermined starting voltage without increasing the resonance effect by setting the DC voltage Vdc high. However, if the DC voltage Vdc is increased, the secondary voltage and the ground voltage are also increased. Therefore, the above-described problem occurs.

また、他の従来構成においては新たな問題が生じる。図12は他の従来構成の回路図であり、図13は図12の従来構成における放電灯外れ側の高圧側接続点に発生する電圧波形を示す。   In addition, new problems arise in other conventional configurations. FIG. 12 is a circuit diagram of another conventional configuration, and FIG. 13 shows a voltage waveform generated at a high-pressure side connection point on the discharge lamp detachment side in the conventional configuration of FIG.

図12の従来構成は図10の構成と略同じだが、直流バイアス経路8および9が各放電灯LA,LBに夫々設けられている。この構成は例えば特開2002−83699号公報の図5にあるように放電灯異常時に生じる放電灯の立消えを検出するために設けられている。図12の場合、放電灯が正常に点灯している状態の放電灯の抵抗インピーダンス値(一般的に数十から数百Ω程度)と比べて充分大きな抵抗インピーダンス値の抵抗R1A、R2A、R3AおよびR1B、R2B、R3Bにて直流バイアス経路8および9が構成されており、抵抗R1AおよびR1Bは直流電源部2の出力と各共振回路部の直流カット用コンデンサC1A,C1BとインダクタL1A,L1Bとの接続点の間に設けられる。この抵抗R1AおよびR1Bにて直流電圧Vdcを放電灯接続点にバイアスする構成である。なお、抵抗R1AおよびR1Bの接続点と放電灯接続点の間にはインダクタL1A,L1Bが介在するが、直流成分には殆ど影響しないため無視できる。   The conventional configuration of FIG. 12 is substantially the same as the configuration of FIG. 10, but DC bias paths 8 and 9 are provided in each of the discharge lamps LA and LB, respectively. This configuration is provided, for example, as shown in FIG. 5 of Japanese Patent Laid-Open No. 2002-83699 to detect the extinction of the discharge lamp that occurs when the discharge lamp is abnormal. In the case of FIG. 12, the resistors R1A, R2A, R3A having sufficiently large resistance impedance values compared to the resistance impedance value (generally about several tens to several hundreds Ω) of the discharge lamp in a state where the discharge lamp is normally lit. DC bias paths 8 and 9 are constituted by R1B, R2B, and R3B, and resistors R1A and R1B are provided between the output of the DC power supply unit 2, the DC cut capacitors C1A and C1B of each resonance circuit unit, and the inductors L1A and L1B. Provided between connection points. The resistors R1A and R1B bias the DC voltage Vdc to the discharge lamp connection point. Although inductors L1A and L1B are interposed between the connection points of resistors R1A and R1B and the discharge lamp connection point, they are negligible because they hardly affect the DC component.

放電灯LA側にて放電灯異常時の検出動作を説明する。放電灯LAが正常に点灯している場合、放電灯LAの抵抗インピーダンス値RLAは抵抗R1A、R2A、R3Aと比べて非常に小さいため、抵抗R3Aの両端直流電圧(直流電圧Vdcと抵抗R1A、R2A、R3A、RLAから生成される分圧電圧)は略0Vである。なお、抵抗R3Aの両端に接続されるコンデンサC7Aは交流電圧除去用に設けられており、これにより抵抗R3Aの両端電圧には直流電圧Vdcと抵抗R1A、R2A、R3A、RLAの分圧電圧のみが発生する。抵抗R3Aの両端電圧はインバータ制御部5に入力され、この電圧が低電圧レベルの場合は放電灯正常状態と判定し、通常動作を継続する。   The detection operation when the discharge lamp is abnormal on the discharge lamp LA side will be described. When the discharge lamp LA is normally lit, the resistance impedance value RLA of the discharge lamp LA is very small compared to the resistances R1A, R2A, and R3A, so the DC voltage across the resistance R3A (the DC voltage Vdc and the resistances R1A and R2A) , R3A, and RLA (divided voltage generated from RLA) is approximately 0V. Note that the capacitor C7A connected to both ends of the resistor R3A is provided for AC voltage removal. As a result, only the DC voltage Vdc and the divided voltages of the resistors R1A, R2A, R3A, and RLA are included in the voltage across the resistor R3A. appear. The voltage across the resistor R3A is input to the inverter control unit 5, and when this voltage is at a low voltage level, it is determined that the discharge lamp is in a normal state, and normal operation is continued.

放電灯LAの異常により放電灯LAが立消えした場合、放電灯LAの抵抗インピーダンス値RLAは略無限大となるため、抵抗R3Aの両端直流電圧は直流電圧Vdcと抵抗R1A、R2A、R3Aから生成される高電圧レベルの分圧電圧が発生し、インバータ制御部5に入力される。この電圧が高電圧レベルの場合は放電灯異常状態と判定し、発振を停止する等の保護動作へ移行する。   When the discharge lamp LA is extinguished due to the abnormality of the discharge lamp LA, the resistance impedance value RLA of the discharge lamp LA becomes almost infinite, so the DC voltage across the resistor R3A is generated from the DC voltage Vdc and the resistors R1A, R2A, and R3A. A divided voltage having a high voltage level is generated and input to the inverter control unit 5. When this voltage is at a high voltage level, it is determined that the discharge lamp is in an abnormal state, and a protective operation such as stopping oscillation is performed.

放電灯LAが外された場合も同様に抵抗R3Aの両端直流電圧は直流電圧Vdcと抵抗R1A、R2A、R3Aの分圧電圧が発生するが、この場合は保護動作へ移行させる制御を禁止させることで放電灯1灯外れ、他の1灯接続時の点灯動作を保証することができる(図示しないが低圧側の放電灯フィラメント外れを検出し、検出後に抵抗R3Aを短絡するスイッチ手段を設けることで保護動作への移行制御を禁止することができる)。   Similarly, when the discharge lamp LA is removed, the DC voltage across the resistor R3A generates the DC voltage Vdc and the divided voltage of the resistors R1A, R2A, and R3A. In this case, the control to shift to the protection operation is prohibited. In this case, it is possible to guarantee the lighting operation when one discharge lamp is disconnected and the other one is connected (not shown, but by providing switch means for detecting the disconnection of the low-pressure discharge lamp filament and short-circuiting the resistor R3A after detection. Transition control to protection operation can be prohibited).

このような放電灯接続点に直流電圧がバイアスされる構成においては、放電灯外れ時の二次電圧および対地電圧が更に高くなる場合がある。放電灯LAが外れた場合、放電灯接続点には下記の直流電圧V1が発生する。   In such a configuration in which a DC voltage is biased at the discharge lamp connection point, the secondary voltage and the ground voltage when the discharge lamp is disconnected may be further increased. When the discharge lamp LA is disconnected, the following DC voltage V1 is generated at the discharge lamp connection point.

V1=A×Vdc …(式2)
上式において、Aは次式で与えられる分圧比である。
A=(R2A+R3A)/(R1A+R2A+R3A)
V1 = A × Vdc (Formula 2)
In the above equation, A is a partial pressure ratio given by the following equation.
A = (R2A + R3A) / (R1A + R2A + R3A)

この場合、放電灯外れ時に発生する二次電圧および対地電圧(Vo2)は、図13に示すように、図11(c)の交流矩形波電圧に直流電圧V1が重畳した電圧となる。この交流矩形波電圧と直流電圧V1の合成電圧実効値(出力電圧Vo2の実効値)は交流成分と直流成分の二乗和の関係となるから、リンギング成分を無視した出力電圧Vo2の実効値(Vo2(RMS))は発振デューティ比を50%とした場合、以下のように求められる。   In this case, as shown in FIG. 13, the secondary voltage and ground voltage (Vo2) generated when the discharge lamp is removed are voltages obtained by superimposing the DC voltage V1 on the AC rectangular wave voltage of FIG. 11C. Since the combined voltage effective value of the AC rectangular wave voltage and the DC voltage V1 (effective value of the output voltage Vo2) has a relation of the sum of squares of the AC component and the DC component, the effective value (Vo2) of the output voltage Vo2 ignoring the ringing component. (RMS)) is obtained as follows when the oscillation duty ratio is 50%.

Vo2(RMS)2 =(0.5×Vdc)2 +V12 =(0.5×Vdc)2 +(A×Vdc)2 …(式3) Vo2 (RMS) 2 = (0.5 × Vdc) 2 + V1 2 = (0.5 × Vdc) 2 + (A × Vdc) 2 (Equation 3)

(式3)を変形すると、
Vo2(RMS)2 =Vdc2 ×(0.52 +A2
When (Formula 3) is transformed,
Vo2 (RMS) 2 = Vdc 2 × (0.5 2 + A 2 )

したがって、
Vo2(RMS)=√(0.52 +A2 ) …(式4)
Therefore,
Vo2 (RMS) = √ (0.5 2 + A 2 ) (Formula 4)

よって、(式1)に示す交流成分のみの実効値電圧よりも下記倍率分(B)だけ大きな実効値電圧が発生することになる。
B=√(0.52 +A2 )/0.5 …(式5)
Therefore, an effective value voltage that is larger by the following magnification (B) than the effective value voltage of only the AC component shown in (Expression 1) is generated.
B = √ (0.5 2 + A 2 ) /0.5 (Formula 5)

例えば、R1A=900kΩ、R2A=600kΩ、R3A=300kΩの場合、分圧比率Aは0.5となり、交流成分のみの実効値電圧よりもB≒1.4倍の大きな実効値電圧が発生することになり、放電灯の着脱の際に電撃を生ずる恐れが更に高くなるため、安全性を考慮すると照明器具のアース機構が必要となる。   For example, in the case of R1A = 900 kΩ, R2A = 600 kΩ, and R3A = 300 kΩ, the voltage dividing ratio A is 0.5, and a large effective value voltage B≈1.4 times larger than the effective value voltage of only the AC component is generated. Therefore, there is a higher risk of electric shock when the discharge lamp is attached / detached. Therefore, in consideration of safety, a grounding mechanism for the lighting fixture is required.

放電灯着脱時の電撃を抑制する従来例としては、例えば特開平7−99089号公報があるが、この構成においては放電灯外れ時の二次電圧および対地電圧を低減する手段は設けられておらず、且つ直流バイアス経路も存在するため放電灯外れ時の二次電圧および対地電圧は更に高くなってしまう問題があった。   For example, Japanese Patent Laid-Open No. 7-99089 discloses a conventional example for suppressing electric shock when a discharge lamp is attached / detached. However, in this configuration, means for reducing a secondary voltage and a ground voltage when the discharge lamp is detached is not provided. In addition, since the DC bias path is also present, there is a problem that the secondary voltage and the ground voltage when the discharge lamp is removed are further increased.

また、放電灯外れ時の二次電圧および対地電圧を抑制する他の従来例としては、例えば特許第3505937号公報があるが、これは直流電源部2から出力される直流電圧Vdcを280V以下に設定することは開示されているが、長細管化放電灯に対応させる場合には大きな課題となり、また直流バイアス経路が存在する構成とした場合においては更に大きな課題が生じることになる。   Another conventional example for suppressing the secondary voltage and ground voltage when the discharge lamp is disconnected is, for example, Japanese Patent No. 3505937. This is because the DC voltage Vdc output from the DC power supply unit 2 is 280 V or less. Although setting is disclosed, it becomes a big problem when it corresponds to a long tube discharge lamp, and a bigger problem arises when it is configured to have a DC bias path.

また、放電灯外れ時の二次電圧および対地電圧を抑制する他の従来例としては、例えば特開平5―234689号公報や特開2003−45690号公報があるが、これらは放電灯外れ時に昇圧チョッパの出力電圧を低くすることは開示されているが、直流バイアス経路が存在する構成とした場合における配慮は成されておらず、大きな課題が生じることになる。   Further, as other conventional examples for suppressing the secondary voltage and the ground voltage when the discharge lamp is disconnected, there are, for example, Japanese Patent Application Laid-Open Nos. 5-23489 and 2003-45690, which are boosted when the discharge lamp is disconnected. Although it has been disclosed to reduce the output voltage of the chopper, no consideration is given to a configuration in which a DC bias path is present, which causes a significant problem.

本発明は、上述のような課題を解決するためになされたものであり、その目的とするところは、放電灯が外れた状態の二次電圧および対地電圧を低減することで電撃の発生を抑制し、安全性に優れ、且つ器具のアース機構を不要とすることで安価な放電灯点灯装置およびこれを用いた照明器具を提供することにある。   The present invention has been made to solve the above-described problems, and its object is to suppress the occurrence of electric shock by reducing the secondary voltage and ground voltage when the discharge lamp is disconnected. The object of the present invention is to provide an inexpensive discharge lamp lighting device and a lighting fixture using the same because it is excellent in safety and does not require the earthing mechanism of the fixture.

請求項1の発明にあっては、上記の課題を解決するために、図1に示すように、直流電源部2と、前記直流電源部2から供給される直流出力Vdcを高周波出力に変換するインバータ部4と、インダクタL1A,L1B、コンデンサC2A,C2Bを含む共振負荷部を備え、前記共振負荷部が前記インバータ部4の出力端間に複数個並列に接続され、前記共振負荷部に夫々放電灯LA,LBが接続され、これら各放電灯LA,LBの装着の有無を判別する手段と、前記各放電灯の点灯の有無を判別する手段と、前記各放電灯のうち何れかの放電灯が未装着の場合は他の正常接続された放電灯が継続して点灯できる範囲で直流電源部2の出力を低下させる直流電源出力制御手段12を備え、放電灯未装着時に直流電源部2から供給される直流出力Vdcの分圧電圧が放電灯接続点に発生する直流バイアス経路8,9を各放電灯毎に有し、直流バイアス経路8,9は直流電圧に対する分圧比率Aを有し、放電灯接続点と直流電源部の間に存在する直流インピーダンス成分を含み、放電灯が装着され且つ点灯しているときは放電灯の点灯時インピーダンスによる前記分圧電圧の低下を検出することで放電灯の点灯を判別できるように前記直流インピーダンス成分の値が設定されている放電灯点灯装置であって、何れかの放電灯が未装着の場合は、直流出力VdcをVdc<150/√(A2 +0.52 )[V]に低下させることを特徴とするものである。 In order to solve the above-described problems, the invention of claim 1 converts the DC power supply unit 2 and the DC output Vdc supplied from the DC power supply unit 2 into a high frequency output as shown in FIG. An inverter unit 4 and a resonant load unit including inductors L1A and L1B and capacitors C2A and C2B are provided . A plurality of the resonant load units are connected in parallel between the output terminals of the inverter unit 4 and are released to the resonant load units, respectively. Means for determining whether or not each of the discharge lamps LA and LB is mounted , means for determining whether or not each of the discharge lamps is lit, and any one of the discharge lamps. When the discharge lamp is not mounted, it is provided with a DC power supply output control means 12 for reducing the output of the DC power supply section 2 within a range in which other normally connected discharge lamps can be continuously lit. DC output supplied Has a DC bias path 8,9 divided voltage Vdc is generated in the discharge lamp connection points for each discharge lamp, the DC bias path 8 and 9 have a partial pressure ratio A to the DC voltage, the discharge lamp connection point When the discharge lamp is mounted and is lit, the discharge lamp is turned on by detecting a decrease in the divided voltage due to the impedance when the discharge lamp is turned on. In the discharge lamp lighting device in which the value of the DC impedance component is set so as to be discriminated , when any of the discharge lamps is not mounted, the DC output Vdc is set to Vdc <150 / √ (A 2 +0.5). 2 ) It is characterized by being lowered to [V].

請求項2の発明にあっては、上記の課題を解決するために、図1に示すように、直流電源部2と、前記直流電源部2から供給される直流出力Vdcを高周波出力に変換するインバータ部4と、インダクタL1A,L1B、コンデンサC2A,C2Bを含む共振負荷部を備え、前記共振負荷部が前記インバータ部4の出力端間に複数個並列に接続され、前記共振負荷部に夫々放電灯LA,LBが接続され、これら各放電灯LA,LBの装着の有無を判別する手段と、前記各放電灯の点灯の有無を判別する手段と、前記各放電灯のうち何れかの放電灯が未装着の場合は他の正常接続された放電灯が継続して点灯できる範囲で直流電源部2の出力を低下させる直流電源出力制御手段12を備え、放電灯未装着時に直流電源部2から供給される直流出力Vdcの分圧電圧が放電灯接続点に発生する直流バイアス経路8,9を各放電灯毎に有し、直流バイアス経路8,9は直流電圧に対する分圧比率Aを有し、放電灯接続点と直流電源部の間に存在する直流インピーダンス成分を含み、放電灯が装着され且つ点灯しているときは放電灯の点灯時インピーダンスによる前記分圧電圧の低下を検出することで放電灯の点灯を判別できるように前記直流インピーダンス成分の値が設定されている放電灯点灯装置であって、何れかの放電灯が未装着の場合は、直流出力VdcをVdc<300/√(A2 +0.52 )[V]に低下させることを特徴とするものである。 In the invention of claim 2, in order to solve the above problem, as shown in FIG. 1, the DC power supply unit 2 and the DC output Vdc supplied from the DC power supply unit 2 are converted into a high frequency output. An inverter unit 4 and a resonant load unit including inductors L1A and L1B and capacitors C2A and C2B are provided . A plurality of the resonant load units are connected in parallel between the output terminals of the inverter unit 4 and are released to the resonant load units, respectively. Means for determining whether or not each of the discharge lamps LA and LB is mounted , means for determining whether or not each of the discharge lamps is lit, and any one of the discharge lamps. When the discharge lamp is not mounted, it is provided with a DC power supply output control means 12 for reducing the output of the DC power supply section 2 within a range in which other normally connected discharge lamps can be continuously lit. DC output supplied Has a DC bias path 8,9 divided voltage Vdc is generated in the discharge lamp connection points for each discharge lamp, the DC bias path 8 and 9 have a partial pressure ratio A to the DC voltage, the discharge lamp connection point When the discharge lamp is mounted and is lit, the discharge lamp is turned on by detecting a decrease in the divided voltage due to the impedance when the discharge lamp is turned on. In the discharge lamp lighting device in which the value of the DC impedance component is set so as to be discriminated , when any of the discharge lamps is not mounted, the DC output Vdc is set to Vdc <300 / √ (A 2 +0.5 2 ) It is characterized by being lowered to [V].

請求項3の発明にあっては、請求項1または2の発明において、インバータ部4の発振周波数を変化させることで放電灯の点灯出力を切替え可能な制御手段5と、放電灯外れ時において、この点灯出力の切替え動作を禁止する点灯出力切替え禁止手段15とを備えることを特徴とする(図5参照)。   In the invention of claim 3, in the invention of claim 1 or 2, the control means 5 capable of switching the lighting output of the discharge lamp by changing the oscillation frequency of the inverter unit 4, and when the discharge lamp is disconnected, A lighting output switching prohibiting means 15 for prohibiting the switching operation of the lighting output is provided (see FIG. 5).

請求項4の発明は、請求項1〜3のいずれかに記載の放電灯点灯装置と、放電灯点灯装置を装着する本体と、放電灯点灯装置から電力が供給される複数の放電灯と、を備えたことを特徴とする照明器具である(図7、図8参照)。   The invention of claim 4 is the discharge lamp lighting device according to any one of claims 1 to 3, a main body on which the discharge lamp lighting device is mounted, a plurality of discharge lamps to which electric power is supplied from the discharge lamp lighting device, (Refer to FIG. 7 and FIG. 8).

請求項1の発明によれば、放電灯外れ時に直流バイアス経路の影響で直流電圧成分が二次電圧(対地電圧)に重畳する構成を有する場合においても、放電灯が外れた状態の二次電圧および対地電圧を低減することで電撃の発生を抑制できるため安全性に優れ、且つ正常接続された放電灯は点灯維持可能であり、且つ天井吊り下げ型器具のアース機構が不要となる放電灯点灯装置を提供できるという効果がある。   According to the first aspect of the present invention, the secondary voltage in a state where the discharge lamp is disconnected even when the DC voltage component is superimposed on the secondary voltage (ground voltage) due to the influence of the DC bias path when the discharge lamp is disconnected. Since the occurrence of electric shock can be suppressed by reducing the ground voltage, it is excellent in safety, the normally connected discharge lamp can be kept lit, and the discharge lamp lighting that eliminates the need for a grounding mechanism for ceiling-suspended appliances There is an effect that a device can be provided.

請求項2の発明によれば、放電灯外れ時に直流バイアス経路の影響で直流電圧成分が二次電圧(対地電圧)に重畳する構成を有する場合においても、放電灯が外れた状態の二次電圧および対地電圧を低減することで電撃の発生を抑制できるため安全性に優れ、且つ正常接続された放電灯は点灯維持可能であり、且つ天井直付け型器具のアース機構が不要となる放電灯点灯装置を提供できるという効果がある。   According to the second aspect of the present invention, the secondary voltage in a state where the discharge lamp is disconnected even when the DC voltage component is superimposed on the secondary voltage (ground voltage) due to the influence of the DC bias path when the discharge lamp is disconnected. Since the occurrence of electric shock can be suppressed by reducing the ground voltage, it is excellent in safety, the normally connected discharge lamp can be kept lit, and the discharge lamp lighting that eliminates the need for the grounding mechanism of the ceiling-mounted appliance There is an effect that a device can be provided.

請求項3の発明によれば、放電灯外れ時に直流バイアス経路の影響で直流電圧成分が二次電圧(対地電圧)に重畳する構成を有する場合においても、放電灯が外れた状態の二次電圧および対地電圧を低減することで電撃の発生を抑制できるため安全性に優れ、且つ点灯出力を切替え可能な場合においても正常接続された放電灯は点灯維持可能な放電灯点灯装置を提供できるという効果がある。   According to the third aspect of the present invention, the secondary voltage in a state where the discharge lamp is disconnected even when the DC voltage component is superimposed on the secondary voltage (ground voltage) due to the influence of the DC bias path when the discharge lamp is disconnected. In addition, it is possible to provide a discharge lamp lighting device that is excellent in safety because it can suppress the occurrence of electric shock by reducing the ground voltage, and that can maintain the lighting of a normally connected discharge lamp even when the lighting output can be switched. There is.

請求項4の発明によれば、放電灯が外れた状態の二次電圧および対地電圧を低減することで電撃の発生を抑制できるため安全性に優れ、且つ正常接続された放電灯は点灯維持可能であり、且つアース機構が不要であるため安価な照明器具を提供できるという効果がある。   According to the invention of claim 4, since the generation of electric shock can be suppressed by reducing the secondary voltage and the ground voltage in a state in which the discharge lamp is disconnected, it is excellent in safety, and the normally connected discharge lamp can be kept on. In addition, since an earth mechanism is not required, an inexpensive lighting apparatus can be provided.

(実施形態1)
図1に実施形態1の回路構成を示し、図2に実施形態1の放電灯外れ時の各部電圧波形を示す。本実施形態において、回路構成は従来例の図12と略同じであるが、各放電灯の装着有無を検出する検出部10および11が設けられており、検出部にて放電灯の外れが検出された場合、直流電源部2の出力を低下させる直流電源出力制御手段12が設けられている。
(Embodiment 1)
FIG. 1 shows a circuit configuration of the first embodiment, and FIG. 2 shows voltage waveforms of respective parts when the discharge lamp is removed from the first embodiment. In this embodiment, the circuit configuration is substantially the same as that of the conventional example of FIG. 12, but detection units 10 and 11 for detecting whether or not each discharge lamp is mounted are provided, and the detection unit detects the disconnection of the discharge lamp. In this case, DC power supply output control means 12 for reducing the output of the DC power supply unit 2 is provided.

検出部10および11は同じ回路構成であり、検出部10について説明すると、直流電源部2の出力電圧Vdcを抵抗R4AとR5AとR6Aにて分圧する構成で、抵抗R5AとR6Aの接続点がトランジスタQ2Aのベースに、抵抗R4AとR5Aの接続点が放電灯LAの低圧側フィラメント部(コンデンサC2Aと低圧側フィラメント部の接続点側)に夫々接続される。コンデンサC4Aは高周波電圧除去用に設けられ、これによりトランジスタQ2Aのベースには直流成分の電圧のみが発生する。ここで、抵抗R4A、R5A、R6Aはフィラメント部の抵抗値よりも大きな抵抗値に設定してあり、フィラメント部が正常に接続されている場合(つまり放電灯が装着されている場合)はフィラメント部と、抵抗R5AとR6Aの直列回路との並列接続合成抵抗値が極めて小さくなるため、トランジスタQ2Aのベース電圧も小さくなり、トランジスタQ2Aはオフ状態を維持する。フィラメント部が未接続の場合(つまり放電灯が外れている場合)は抵抗R4A、R5A、R6Aの分圧のみとなるため、トランジスタQ2Aのベース電圧は大きくなり、トランジスタQ2Aはオン状態を維持する。   The detection units 10 and 11 have the same circuit configuration. The detection unit 10 will be described. The output voltage Vdc of the DC power supply unit 2 is divided by resistors R4A, R5A, and R6A, and the connection point between the resistors R5A and R6A is a transistor. The connection point between the resistors R4A and R5A is connected to the base of Q2A to the low-pressure side filament part (the connection point side between the capacitor C2A and the low-pressure side filament part) of the discharge lamp LA, respectively. Capacitor C4A is provided for high-frequency voltage removal, whereby only the DC component voltage is generated at the base of transistor Q2A. Here, the resistances R4A, R5A, and R6A are set to resistance values larger than the resistance value of the filament portion, and when the filament portion is normally connected (that is, when the discharge lamp is mounted), the filament portion Since the combined resistance value of the parallel connection of the series circuit of the resistors R5A and R6A is extremely small, the base voltage of the transistor Q2A is also small, and the transistor Q2A is kept off. When the filament portion is not connected (that is, when the discharge lamp is disconnected), only the voltage is divided by the resistors R4A, R5A, and R6A. Therefore, the base voltage of the transistor Q2A increases and the transistor Q2A maintains the on state.

直流電源出力制御手段12は直流電源部2の出力電圧Vdcを切り替えるスイッチ手段としてのトランジスタQ3と、トランジスタQ3のベース電流を制御用電源Vcから供給するための抵抗R10にて構成される。トランジスタQ3のベースはトランジスタQ2Aのコレクタに接続され、トランジスタQ2Aオフ時はトランジスタQ3オン、トランジスタQ2Aオン時はトランジスタQ3オフとなる。トランジスタQ3のコレクタは制御手段3に備えられた抵抗R8とR9の接続点に接続される。   The DC power supply output control means 12 includes a transistor Q3 as switch means for switching the output voltage Vdc of the DC power supply unit 2, and a resistor R10 for supplying the base current of the transistor Q3 from the control power supply Vc. The base of the transistor Q3 is connected to the collector of the transistor Q2A. When the transistor Q2A is off, the transistor Q3 is on, and when the transistor Q2A is on, the transistor Q3 is off. The collector of the transistor Q3 is connected to the connection point of the resistors R8 and R9 provided in the control means 3.

直流電源部2はスイッチ素子Q1、ダイオードD1、インダクタL2、コンデンサC3から成る昇圧チョッパ構成であり、本構成は周知技術であるため動作説明は省略する。スイッチ素子Q1のオンオフ制御は制御手段3で行われ、制御手段3には汎用制御ICであるIC1(例えばオンセミコンダクター社製、品番MC33262)が備えられる。この集積回路IC1には出力電圧Vdcを抵抗R7、R8、R9にて分圧した信号が電圧帰還入力端子に入力され、この信号レベルに応じた出力電圧Vdcが生成されるようにスイッチ素子Q1をオンオフ制御する駆動信号がドライブ出力端子から出力され、いわゆるフィードバック動作が行われる。つまり、出力電圧Vdcに対する電圧帰還入力端子の信号レベルを変化させることで出力電圧Vdcも任意に変化させることができ、出力電圧Vdcに対する信号レベルを大きくする(つまり抵抗R7、R8、R9にて設定される分圧比率を大きくする)ことで出力電圧Vdcを小さくすることができる。   The DC power supply unit 2 has a boost chopper configuration including a switch element Q1, a diode D1, an inductor L2, and a capacitor C3. Since this configuration is a well-known technique, a description of its operation is omitted. On / off control of the switch element Q1 is performed by the control means 3, and the control means 3 is provided with IC1 (for example, product number MC33262 manufactured by ON Semiconductor Co., Ltd.) which is a general-purpose control IC. In this integrated circuit IC1, a signal obtained by dividing the output voltage Vdc by the resistors R7, R8, and R9 is input to the voltage feedback input terminal, and the switch element Q1 is set so that the output voltage Vdc corresponding to the signal level is generated. A drive signal for on / off control is output from the drive output terminal, and so-called feedback operation is performed. That is, the output voltage Vdc can be arbitrarily changed by changing the signal level of the voltage feedback input terminal with respect to the output voltage Vdc, and the signal level with respect to the output voltage Vdc is increased (that is, set by the resistors R7, R8, and R9). The output voltage Vdc can be reduced by increasing the divided voltage ratio.

直流電源出力制御手段12に備えられたトランジスタQ3のコレクタは抵抗R8とR9の接続点に接続され、トランジスタQ3がオンすると抵抗R9が短絡される構成である。放電灯LA,LBが2灯ともに正常に装着されている場合、トランジスタQ3はオン保持されるため、抵抗R9は短絡状態を維持し、電圧帰還入力端子の出力電圧Vdcに対する信号レベル(分圧比率)は小さくなり、出力電圧Vdcは大きい値で設定される(この状態が通常のVdcレベルである)。放電灯が外れた場合、トランジスタQ3がオフとなるため抵抗R9が短絡状態から開放状態になり、その結果、帰還入力端子の出力電圧Vdcに対する信号レベル(分圧比率)は大きくなり、よって出力電圧Vdcは小さくなる。   The collector of the transistor Q3 provided in the DC power supply output control means 12 is connected to the connection point between the resistors R8 and R9, and the resistor R9 is short-circuited when the transistor Q3 is turned on. When both of the discharge lamps LA and LB are normally mounted, the transistor Q3 is kept on, so that the resistor R9 maintains a short circuit state and the signal level (voltage division ratio) with respect to the output voltage Vdc at the voltage feedback input terminal. ) Becomes smaller, and the output voltage Vdc is set to a larger value (this state is a normal Vdc level). When the discharge lamp is disconnected, the transistor Q3 is turned off, so that the resistor R9 is changed from the short-circuit state to the open state. As a result, the signal level (voltage division ratio) with respect to the output voltage Vdc at the feedback input terminal increases. Vdc becomes smaller.

放電灯正常接続時の直流電源部出力電圧をVdc、放電灯1灯外れ時の直流電源部出力電圧をVdc’とした場合、各部波形は図2のようになり、VdcはVdc’に低下するため、放電灯外れ側の二次電圧(対地電圧)の交流成分実効値もVdc/2からVdc’/2に低下する。例えば、Vdc=260V、Vdc’=200Vと設定した場合、放電灯外れ側の二次電圧(対地電圧)交流成分実効値は260/2=130Vから200/2=100Vへ低下することになる。   When the DC power supply output voltage when the discharge lamp is normally connected is Vdc and the DC power supply output voltage when the discharge lamp is disconnected is Vdc ′, the waveform of each part is as shown in FIG. 2, and Vdc drops to Vdc ′. Therefore, the AC component effective value of the secondary voltage (ground voltage) on the discharge lamp removal side also decreases from Vdc / 2 to Vdc ′ / 2. For example, when Vdc = 260V and Vdc ′ = 200V are set, the secondary voltage (ground voltage) AC component effective value on the discharge lamp removal side decreases from 260/2 = 130V to 200/2 = 100V.

また、スイッチ素子Q6は放電灯が始動点灯するまでの期間、出力電圧の切替えを禁止するために設けられており、放電灯始動期間中はスイッチ素子Q6オン、始動期間が終了し、点灯モードへ移行後は、スイッチ素子Q6オフとなるように制御することで放電灯の始動点灯に出力電圧の低下動作が影響しないようにしている。   The switch element Q6 is provided to prohibit switching of the output voltage until the discharge lamp is started and lit. During the discharge lamp start period, the switch element Q6 is turned on, the start period ends, and the lighting mode is entered. After the transition, the switching element Q6 is controlled so as to be turned off so that the operation of decreasing the output voltage does not affect the starting lighting of the discharge lamp.

ここで、低下後のVdc’は他の正常接続された放電灯が点灯を維持することができ、且つ放電灯外れ側の二次電圧(対地電圧)が所定の値以下(150V以下または300V以下)になるように設定することで、放電灯1灯外れ時における正常に接続されている放電灯のみを正常に点灯維持させることができ、且つ放電灯外れ側の一次電圧(対地電圧)を低くすることができるため、放電灯着脱の際に発生する電撃を抑制でき、よって安全性が向上する。   Here, the reduced Vdc ′ is such that other normally connected discharge lamps can be kept on, and the secondary voltage (ground voltage) outside the discharge lamp is not more than a predetermined value (150 V or less or 300 V or less). ), It is possible to normally maintain only the normally connected discharge lamp when one discharge lamp is disconnected, and to lower the primary voltage (ground voltage) on the discharge lamp disconnect side. Therefore, it is possible to suppress electric shock that occurs when the discharge lamp is attached / detached, thereby improving safety.

また、直流バイアス経路8、9が設けられていることにより放電灯外れ時に発生する二次電圧(対地電圧)は直流バイアス分に応じて更に高くなる傾向となるため、放電灯外れ時においては直流バイアス分の影響を考慮した出力電圧Vdcに切り替える必要がある。図2にて説明すると、出力電圧VdcからVdc’へ切り替えることで、二次電圧(対地電圧)の交流成分ピーク値はVdcからVdc’に低下し、且つ直流バイアス経路にて重畳される直流成分値はV1(直流出力電圧Vdcを直流バイアス経路の分圧比率Aで乗じた直流電圧値)からV2(直流出力電圧Vdc’を直流バイアス経路の分圧比率Aで乗じた直流電圧値)に低下するため、二次電圧(対地電圧)を大幅に低下することができる。   Further, since the DC bias paths 8 and 9 are provided, the secondary voltage (ground voltage) generated when the discharge lamp is disconnected tends to be higher according to the DC bias, and therefore the DC voltage is generated when the discharge lamp is disconnected. It is necessary to switch to the output voltage Vdc considering the influence of the bias. Referring to FIG. 2, by switching from the output voltage Vdc to Vdc ′, the AC component peak value of the secondary voltage (ground voltage) decreases from Vdc to Vdc ′ and is superimposed on the DC bias path. The value decreases from V1 (DC voltage value obtained by multiplying the DC output voltage Vdc by the DC bias path voltage dividing ratio A) to V2 (DC voltage value obtained by multiplying the DC output voltage Vdc 'by the voltage dividing ratio A of the DC bias path). Therefore, the secondary voltage (ground voltage) can be greatly reduced.

放電灯LA側が外れた場合について更に詳細を説明する。放電灯外れ時には直流バイアス経路8を構成する抵抗R1A、R2A、R3Aにて設定される分圧比率A(従来例の(式2)参照)にて決定される直流電圧が二次電圧(対地電圧)に重畳する。この時の二次電圧(対地電圧)は(式4)にて求めることができ、ここで、二次電圧(対地電圧)を150V以下にするための直流電源部2の出力電圧Vdcは以下のように求められる。   The case where the discharge lamp LA side comes off will be described in further detail. When the discharge lamp is disconnected, the DC voltage determined by the voltage dividing ratio A (see (Formula 2) of the conventional example) set by the resistors R1A, R2A, and R3A constituting the DC bias path 8 is a secondary voltage (ground voltage). ). The secondary voltage (ground voltage) at this time can be obtained by (Equation 4). Here, the output voltage Vdc of the DC power supply unit 2 for setting the secondary voltage (ground voltage) to 150 V or less is as follows: Asking.

Vo2(RMS)=Vdc×√(0.52 +A2 )<l50 Vo2 (RMS) = Vdc × √ (0.5 2 + A 2 ) <150

これを変形すると、以下のようになる。
Vdc<150/√(0.52 +A2 ) …(式6)
When this is modified, it becomes as follows.
Vdc <150 / √ (0.5 2 + A 2 ) (Formula 6)

この(式6)を満足する出力電圧Vdcに切り替えることにより、放電灯点灯装置を家庭用吊り下げ型器具(ペンダン卜器具)に組み込んで使用する場合においても器具にアース機構を設ける必要がなく、安価な照明器具を提供することができる。   By switching to the output voltage Vdc that satisfies this (Equation 6), it is not necessary to provide a grounding mechanism for the appliance even when the discharge lamp lighting device is incorporated in a household hanging appliance (pendant fence appliance). An inexpensive lighting apparatus can be provided.

具体的には、通常時の出力電圧Vdcを260Vとし、直流バイアス経路8を構成する抵抗を、R1A=900kΩ、R2A=600kΩ、R3A=300kΩ(分圧比率Aは0.5)とした場合、放電灯外れ時の出力電圧Vdcを下記算出値未満に下げれば良い。   Specifically, when the normal output voltage Vdc is 260 V, and the resistors constituting the DC bias path 8 are R1A = 900 kΩ, R2A = 600 kΩ, R3A = 300 kΩ (the voltage dividing ratio A is 0.5), What is necessary is just to lower | hang the output voltage Vdc at the time of discharge lamp removal to less than the following calculated value.

Vdc<150/√(0.52 +0.52 )=212.13 (V) Vdc <150 / √ (0.5 2 +0.5 2 ) = 212.13 (V)

よって、放電灯外れ時の出力電圧Vdcを212V未満に設定すれば良い。なお、実際の二次電圧(対地電圧)は図2に示すようにリンギング成分が重畳するため、この影響も考慮して上記数値よりも若干低め(例えば200V程度)に設定することが望ましい。   Therefore, the output voltage Vdc when the discharge lamp is removed may be set to less than 212V. Since the actual secondary voltage (ground voltage) is superimposed with a ringing component as shown in FIG. 2, it is desirable to set it slightly lower (for example, about 200 V) in consideration of this effect.

また、放電灯点灯装置を家庭用直付け型器具(シーリング器具)に組み込んで使用する場合においては二次電圧(対地電圧)が300V以下であれば器具にアース機構を設ける必要はないため、図1の構成であれば出力電圧Vdcを300V程度に設定しても問題はない(424V以下であれば良い)。   In addition, when the discharge lamp lighting device is used by being incorporated in a household direct attachment type appliance (sealing appliance), if the secondary voltage (ground voltage) is 300 V or less, it is not necessary to provide a ground mechanism in the appliance. In the case of the configuration 1, there is no problem even if the output voltage Vdc is set to about 300 V (the voltage may be 424 V or less).

しかし、直流バイアス経路の構成が図3のような場合は問題が生じる。この構成の場合、放電灯が接続されている状態の直流バイアス経路は図1の構成と等価的には同じ(インダクタおよびフィラメントの直流インピーダンスは他の抵抗器の直流インピーダンスと比べて無視できるほど小さいため)であるが、放電灯が外れた場合、直流バイアス経路はフィラメント経路が無くなるため抵抗R1Aのみが有効となり、よって直流バイアス経路の分圧比率Aは略1となる。この場合においては、放電灯外れ時の出力電圧Vdcを下記算出値未満に下げれば良い。   However, a problem arises when the configuration of the DC bias path is as shown in FIG. In the case of this configuration, the DC bias path in the state where the discharge lamp is connected is equivalent to the configuration of FIG. 1 (the DC impedance of the inductor and the filament is negligibly small compared to the DC impedance of other resistors). However, when the discharge lamp is disconnected, the DC bias path has no filament path, so only the resistor R1A is effective, and therefore the DC bias path voltage dividing ratio A is approximately 1. In this case, the output voltage Vdc when the discharge lamp is removed may be lowered below the calculated value below.

Vdc<300/√(12 +0.52 )=268.33 (V) Vdc <300 / √ (1 2 +0.5 2 ) = 268.33 (V)

よって、放電灯外れ時の出力電圧Vdcを268V未満に設定すれば良い。なお、実際の二次電圧(対地電圧)は図2に示すようにリンギング成分が重畳するため、この影響も考慮して上記数値よりも若干低め(例えば250V程度)に設定することが望ましい。   Therefore, the output voltage Vdc when the discharge lamp is disconnected may be set to less than 268V. Since the actual secondary voltage (ground voltage) is superimposed with a ringing component as shown in FIG. 2, it is desirable to set it slightly lower (for example, about 250 V) in consideration of this effect.

直流バイアス経路の構成は図1および図3に示した構成に限らず、例えば、複数の直流バイアス経路が存在しても良いし、直流バイアス経路を遮断する部品(例えばコンデンサなど)以外の電子部品が直流バイアス経路および主回路部(共振回路部、インバータ部、放電灯負荷部、等を含む回路構成部位)に介在しても良い。要するに、放電灯接続点と出力電圧Vdc接続点の間に存在する直流インピーダンス成分と、放電灯接続点と回路グランド(またはアース(対地))の間に存在する直流インピーダンス成分とが存在し、放電灯外れ時に前述の直流インピーダンス成分にて出力電圧Vdcの分圧電圧が放電灯接続点に発生する構成であれば良い。   The configuration of the DC bias path is not limited to the configuration shown in FIGS. 1 and 3. For example, a plurality of DC bias paths may exist, and electronic components other than components that block the DC bias path (for example, capacitors) May be interposed in the DC bias path and the main circuit part (circuit constituent parts including a resonance circuit part, an inverter part, a discharge lamp load part, etc.). In short, there is a DC impedance component that exists between the discharge lamp connection point and the output voltage Vdc connection point, and a DC impedance component that exists between the discharge lamp connection point and the circuit ground (or ground (ground)). Any configuration may be used as long as the divided voltage of the output voltage Vdc is generated at the discharge lamp connection point by the aforementioned DC impedance component when the lamp is disconnected.

また、放電灯の外れを検出する手段を有し、放電灯の外れが検出された場合、直流電源部の出力電圧(つまりはインバータ部の入力電圧)を、他の正常接続された放電灯が点灯維持可能な範囲で低下させる構成が設けられておれば、本実施形態に示すような直流電源部構成、インバータ部構成、インバータ制御回路構成、共振回路構成および共振回路の構成数、放電灯の灯数、放電灯外れ検出手段構成、直流電源出力制御手段構成に限るものではないことは言うまでもない。   In addition, it has means for detecting the disconnection of the discharge lamp, and when the discharge lamp is detected to be disconnected, the output voltage of the DC power supply unit (that is, the input voltage of the inverter unit) is changed to another normally connected discharge lamp. If a configuration for reducing the lighting within the range in which lighting can be maintained is provided, the DC power supply configuration, the inverter configuration, the inverter control circuit configuration, the resonant circuit configuration, the number of resonant circuits, the number of components of the discharge lamp, as shown in this embodiment Needless to say, the present invention is not limited to the number of lamps, discharge lamp detachment detection means configuration, and DC power supply output control means configuration.

このように、放電灯外れ時に直流バイアス経路の影響で直流電圧成分が二次電圧(対地電圧)に重畳する構成を有する場合においても、放電灯が外れた状態の二次電圧および対地電圧を低減することで電撃の発生を抑制できるため安全性に優れ、且つ正常接続された放電灯は点灯維持可能な放電灯点灯装置を提供できる。   In this way, even when the DC voltage component is superimposed on the secondary voltage (ground voltage) due to the influence of the DC bias path when the discharge lamp is disconnected, the secondary voltage and ground voltage when the discharge lamp is disconnected are reduced. Therefore, it is possible to provide a discharge lamp lighting device that is excellent in safety because the occurrence of electric shock can be suppressed and that can maintain the lighting of a normally connected discharge lamp.

(実施形態2)
図4に実施形態2の概略回路構成を示す。本実施形態は直流電源部の出力電圧切替え構成に関する別の構成例を示すものであり、他の構成および動作概念は実施形態1と同様である。本実施形態の直流電源部13は、実施形態1の図1に示す整流回路部1と直流電源部2の機能が複合されており、スイッチ手段SW2によって全波整流回路としての機能と倍電圧整流回路としての機能とに切り替えることができるものである。すなわち、ダイオードD2〜D5にて構成される整流回路の直流出力端間に一対の平滑コンデンサC5、C6の直列回路を接続し、交流電源ACの一端を整流回路の一方の交流入力端に接続するとともに、交流電源ACの他端を整流回路の他方の交流入力端と平滑コンデンサC5、C6の接続点とに択一的に接続する切替え手段としてのスイッチ手段SW2を設けている。
(Embodiment 2)
FIG. 4 shows a schematic circuit configuration of the second embodiment. The present embodiment shows another configuration example relating to the output voltage switching configuration of the DC power supply unit, and other configurations and operation concepts are the same as those of the first embodiment. The DC power supply unit 13 of the present embodiment combines the functions of the rectifier circuit unit 1 and the DC power supply unit 2 shown in FIG. 1 of the first embodiment, and functions as a full-wave rectifier circuit and voltage doubler rectification by the switch means SW2. It can be switched to a function as a circuit. That is, a series circuit of a pair of smoothing capacitors C5 and C6 is connected between the DC output terminals of the rectifier circuit constituted by the diodes D2 to D5, and one end of the AC power supply AC is connected to one AC input terminal of the rectifier circuit. In addition, switch means SW2 is provided as switching means for selectively connecting the other end of the AC power supply AC to the other AC input end of the rectifier circuit and the connection point of the smoothing capacitors C5 and C6.

スイッチ手段SW2により整流回路の交流入力端が選択されているときには、平滑コンデンサC5、C6の直列回路の両端に整流回路の直流出力電圧が印加されるから、通常の全波整流回路として機能する。   When the AC input terminal of the rectifier circuit is selected by the switch means SW2, the DC output voltage of the rectifier circuit is applied to both ends of the series circuit of the smoothing capacitors C5 and C6, so that it functions as a normal full-wave rectifier circuit.

また、スイッチ手段SW2により平滑コンデンサC5、C6の接続点が選択されているときには、整流回路の一方のアーム(ダイオードD2,D3)と平滑コンデンサC5、C6とによりブリッジ回路が構成され、交流電源ACの電圧波形の半サイクルごとに各平滑コンデンサC5、C6が夫々充電されるから、平滑コンデンサC5、C6の直列回路の両端電圧は交流電源ACのピーク電圧の略2倍になる。   When the connection point of the smoothing capacitors C5 and C6 is selected by the switch means SW2, a bridge circuit is constituted by one arm (diodes D2 and D3) of the rectifier circuit and the smoothing capacitors C5 and C6, and the AC power supply AC Since the smoothing capacitors C5 and C6 are charged every half cycle of the voltage waveform, the voltage across the series circuit of the smoothing capacitors C5 and C6 is approximately twice the peak voltage of the AC power supply AC.

スイッチ手段SW2の切替えは直流電源出力制御手段12から出力される信号に応じてドライブ手段14を介して行われ、放電灯が正常接続されている場合は直流電源部13を倍電圧整流回路としての機能を持たせ、放電灯外れ時は直流電源部13を全波整流回路としての機能を持たせることで、実施形態1と同様の機能を持たせることができる。   Switching of the switch means SW2 is performed via the drive means 14 in accordance with a signal output from the DC power supply output control means 12, and when the discharge lamp is normally connected, the DC power supply unit 13 is used as a voltage doubler rectifier circuit. A function similar to that of the first embodiment can be provided by providing a function and providing the DC power supply unit 13 with a function as a full-wave rectifier circuit when the discharge lamp is disconnected.

(実施形態3)
図5に実施形態3の回路構成を示し、図6に実施形態3の動作説明用の電流−電圧特性グラフを示す。本実施形態において、回路構成は実施形態1の図1と略同じであるが、調光信号Sが入力されるとインバータ部4の発振周波数を変化させることで放電灯の点灯出力を切替え可能な制御手段がインバータ制御部5に設けられており、放電灯外れ時において、この点灯出力の切替え動作を禁止する点灯出力切替え禁止手段15が設けられている点が異なる。
(Embodiment 3)
FIG. 5 shows a circuit configuration of the third embodiment, and FIG. 6 shows a current-voltage characteristic graph for explaining the operation of the third embodiment. In this embodiment, the circuit configuration is substantially the same as in FIG. 1 of the first embodiment, but when the dimming signal S is input, the lighting output of the discharge lamp can be switched by changing the oscillation frequency of the inverter unit 4. The control means is provided in the inverter control unit 5 and is different in that a lighting output switching prohibiting means 15 for prohibiting the switching operation of the lighting output is provided when the discharge lamp is disconnected.

図5において、調光信号SがLow信号の場合は放電灯出力を全光出力とし、High信号の場合は調光出力とするようにインバータ部4の発振周波数を変化させる制御が行われる。本実施形態では発振周波数を全光出力時に60kHz、調光出力時に88kHzに変化させている。   In FIG. 5, control is performed to change the oscillation frequency of the inverter unit 4 so that the discharge lamp output is the all-light output when the dimming signal S is a low signal, and the dimming output when the dimming signal S is a high signal. In this embodiment, the oscillation frequency is changed to 60 kHz at the time of all light output and to 88 kHz at the time of dimming output.

本実施形態の場合、放電灯負荷はFCL40型ランプであり、通常時における直流電源部2の出力電圧Vdcを260V、共振回路部のインダクタを0.75mH、放電灯に並列接続されるコンデンサを7.5nF、直流カット用コンデンサを100nFに設定しており、前述の発振周波数にて全光出力および調光出力にて放電灯を点灯維持させる構成としており、この条件における放電灯および共振回路部の電流−電圧特性は図6のカーブ16、17、18で示される。   In the case of the present embodiment, the discharge lamp load is an FCL40 type lamp, the output voltage Vdc of the DC power supply unit 2 in a normal state is 260 V, the inductor of the resonance circuit unit is 0.75 mH, and the capacitor connected in parallel to the discharge lamp is 7 .5 nF, the DC cut capacitor is set to 100 nF, and the discharge lamp is lit and maintained at all light output and dimming output at the above-mentioned oscillation frequency. The current-voltage characteristics are shown by curves 16, 17 and 18 in FIG.

破線で示すカーブ16はFCL40型ランプの電流−電圧特性カーブであり、カーブ17は全光出力時の発振周波数における共振回路部の負荷特性カーブ(放電灯負荷の抵抗インピーダンスが零から無限大に変化した場合の放電灯負荷に流れる電流および放電灯負荷の両端電圧をプロットしたグラフ)であり、カーブ18は調光出力時の発振周波数における共振回路部の負荷特性カーブである。このカーブ16とカーブ17,18とが交わる点が、全光時および調光時の放電灯出力であり、この交わる点で示される電流および電圧にて放電灯は点灯を維持することになる。   A curve 16 indicated by a broken line is a current-voltage characteristic curve of the FCL40 type lamp, and a curve 17 is a load characteristic curve of the resonance circuit section at the oscillation frequency at the time of all light output (the resistance impedance of the discharge lamp load changes from zero to infinity). And a curve 18 is a load characteristic curve of the resonance circuit section at the oscillation frequency at the time of dimming output. The point where the curve 16 intersects with the curves 17 and 18 is the discharge lamp output at the time of all light and dimming, and the discharge lamp maintains the lighting at the current and voltage indicated by the intersection.

ここで、放電灯が外され、直流電源部2の出力電圧Vdcを260Vから200Vに低下させる制御が行われた場合、負荷特性カーブは放電灯出力が低下する方向(電流および電圧が低下する方向)へと変化し、全光時および調光時の負荷特性カーブは夫々カーブ17からカーブ19、カーブ18からカーブ20、へと変化することになる。この場合、全光時はFCL40型ランプの電流−電圧特性カーブ16と交わる点を持つため点灯を維持できるが、調光時はカーブ16との交わる点を持たないため点灯を維持することができなくなり、放電灯は立消え状態となる。   Here, when the discharge lamp is removed and control is performed to reduce the output voltage Vdc of the DC power supply unit 2 from 260 V to 200 V, the load characteristic curve is the direction in which the discharge lamp output decreases (the direction in which the current and voltage decrease). ), And the load characteristic curves at the time of all light and dimming change from the curve 17 to the curve 19 and from the curve 18 to the curve 20, respectively. In this case, the lighting can be maintained because it has a point that intersects the current-voltage characteristic curve 16 of the FCL40 lamp at all light, but it can be kept on since there is no point at which the curve 16 intersects at the time of dimming. The discharge lamp goes out.

この状態を回避するため、点灯出力切替え禁止手段15が設けられる。点灯出力切替え禁止手段15はトランジスタQ4、Q5、抵抗R11にて構成されており、放電灯が正常状態の場合、トランジスタQ4オン、トランジスタQ5オフが保持され、調光信号Sは制限されることなく、インバータ制御部5に入力される。放電灯が外れた状態の場合、トランジスタQ4オフ、トランジスタQ5オンが保持され、調光信号SはLowに保持されることにより調光点灯への切替え動作を禁止する。   In order to avoid this state, lighting output switching prohibiting means 15 is provided. The lighting output switching prohibiting means 15 includes transistors Q4 and Q5 and a resistor R11. When the discharge lamp is in a normal state, the transistor Q4 on and the transistor Q5 off are held, and the dimming signal S is not limited. Is input to the inverter control unit 5. When the discharge lamp is disconnected, the transistor Q4 off and the transistor Q5 on are held, and the dimming signal S is held low, thereby prohibiting the switching operation to dimming lighting.

このように、放電灯外れ時に直流バイアス経路の影響で直流電圧成分が二次電圧(対地電圧)に重畳する構成を有する場合においても、放電灯が外れた状態の二次電圧および対地電圧を低減することで電撃の発生を抑制できるため安全性に優れ、且つ点灯出力を切替え可能な場合においても正常接続された放電灯は点灯維持可能な放電灯点灯装置を提供できる。   In this way, even when the DC voltage component is superimposed on the secondary voltage (ground voltage) due to the influence of the DC bias path when the discharge lamp is disconnected, the secondary voltage and ground voltage when the discharge lamp is disconnected are reduced. Thus, it is possible to provide a discharge lamp lighting device that is excellent in safety because it can suppress the occurrence of electric shock and that can maintain the lighting of a normally connected discharge lamp even when the lighting output can be switched.

(実施形態4)
図7は本発明の照明器具の一実施形態を示す概略側面図である。本実施形態は家庭用の天井吊り下げ型照明器具である。図7において、21は本体シャーシ、22は透光カバー、23は反射板、24は放電灯点灯装置、LAおよびLBは環状放電灯である。
(Embodiment 4)
FIG. 7 is a schematic side view showing an embodiment of the lighting fixture of the present invention. This embodiment is a ceiling-suspended lighting fixture for home use. In FIG. 7, 21 is a main body chassis, 22 is a translucent cover, 23 is a reflector, 24 is a discharge lamp lighting device, and LA and LB are annular discharge lamps.

本体シャーシ21は円形の浅皿状をなし、本体シャーシ21の略中央部から電源コード25を介して交流電源が電源接続部26に接続されると共に天井に取り付けられる手段を有しており、また透光カバー22を装着するための機構を有している。   The main body chassis 21 has a circular shallow dish shape, and has means for connecting an AC power source to the power source connecting portion 26 through a power cord 25 from a substantially central portion of the main body chassis 21 and being attached to the ceiling. A mechanism for mounting the translucent cover 22 is provided.

反射板23および透光カバー22は、放電灯の発光を床面へ反射する形状に成形されている。放電灯点灯装置24は、実施形態1〜3のいずれかに記載の回路構成からなり、本体シャーシ21と反射板23の間に形成される空間内に配設されている。透光カバー22は、本体シャーシ21、放電灯LA、LBおよび反射板23などを覆うように備えられる。   The reflecting plate 23 and the translucent cover 22 are formed in a shape that reflects light emitted from the discharge lamp to the floor surface. The discharge lamp lighting device 24 has the circuit configuration described in any of Embodiments 1 to 3, and is disposed in a space formed between the main body chassis 21 and the reflection plate 23. The translucent cover 22 is provided so as to cover the main body chassis 21, the discharge lamps LA and LB, the reflection plate 23, and the like.

本実施形態において、放電灯点灯装置24は実施形態1〜3に記載された回路構成にて成るため、実施形態1〜3記載の効果を奏する家庭用の天井吊り下げ型照明器具を提供でき、且つ器具のアース機構が不要とすることで安価な照明器具を提供することができる。   In the present embodiment, since the discharge lamp lighting device 24 has the circuit configuration described in the first to third embodiments, it is possible to provide a household ceiling-suspended lighting fixture that exhibits the effects described in the first to third embodiments. Moreover, an inexpensive lighting fixture can be provided by eliminating the need for the earthing mechanism of the fixture.

(実施形態5)
図8は本発明の照明器具の他の実施形態を示す概略側面図である。本実施形態は家庭用の天井直付け型照明器具である。図8において、21は本体シャーシ、22は透光カバー、23は反射板、24は放電灯点灯装置、LAおよびLBは環状放電灯である。
(Embodiment 5)
FIG. 8 is a schematic side view showing another embodiment of the lighting fixture of the present invention. This embodiment is a ceiling-mounted lighting fixture for home use. In FIG. 8, 21 is a main body chassis, 22 is a translucent cover, 23 is a reflector, 24 is a discharge lamp lighting device, and LA and LB are annular discharge lamps.

本体シャーシ21は、円形の浅皿状をなし、電源接続部および天井に取り付ける手段(ともに図示せず)を備えてあるとともに、透光カバー22を装着するための機構を有している。反射板23は、極力浅く形成されるとともに、放電灯の発光をなるべく透光カバー22の面の輝度が均一になるように反射する形状に成形されている。放電灯点灯装置24は、実施形態1〜3のいずれかに記載の回路構成からなり、本体シャーシ21と反射板23の間に形成される空間内に配設されている。透光カバー22は、本体シャーシ21の下面に配設されて放電灯LA,LBおよび反射板23などを包囲している。   The main body chassis 21 has a circular shallow dish shape, is provided with a power supply connection portion and means for attaching to the ceiling (both not shown), and has a mechanism for mounting the translucent cover 22. The reflection plate 23 is formed as shallow as possible and is shaped to reflect the light emitted from the discharge lamp so that the luminance of the surface of the light-transmitting cover 22 is as uniform as possible. The discharge lamp lighting device 24 has the circuit configuration described in any of Embodiments 1 to 3, and is disposed in a space formed between the main body chassis 21 and the reflection plate 23. The translucent cover 22 is disposed on the lower surface of the main body chassis 21 and surrounds the discharge lamps LA and LB, the reflection plate 23 and the like.

本実施形態において、放電灯点灯装置24は実施形態1〜3記載の回路構成にてなるため、実施形態1〜3記載の効果を奏する家庭用の天井直付け型照明器具を提供でき、且つ器具のアース機構が不要とすることで安価な照明器具を提供することができる。   In the present embodiment, since the discharge lamp lighting device 24 has the circuit configuration described in the first to third embodiments, it is possible to provide a household ceiling-mounted lighting fixture that exhibits the effects described in the first to third embodiments. Therefore, an inexpensive lighting fixture can be provided.

本発明の実施形態1の構成を示す回路図である。It is a circuit diagram which shows the structure of Embodiment 1 of this invention. 本発明の実施形態1の動作を示す波形図である。It is a wave form diagram which shows operation | movement of Embodiment 1 of this invention. 本発明の実施形態1の一変形例の構成を示す回路図である。It is a circuit diagram which shows the structure of the modification of Embodiment 1 of this invention. 本発明の実施形態2の要部構成を示す回路図である。It is a circuit diagram which shows the principal part structure of Embodiment 2 of this invention. 本発明の実施形態3の構成を示す回路図である。It is a circuit diagram which shows the structure of Embodiment 3 of this invention. 本発明の実施形態3の動作を示す特性図である。It is a characteristic view which shows the operation | movement of Embodiment 3 of this invention. 本発明の実施形態4の照明器具の概略側面図である。It is a schematic side view of the lighting fixture of Embodiment 4 of this invention. 本発明の実施形態5の照明器具の概略側面図である。It is a schematic side view of the lighting fixture of Embodiment 5 of this invention. 従来例1の回路図である。FIG. 6 is a circuit diagram of Conventional Example 1. 従来例1の放電灯外れ時の構成を示す回路図である。It is a circuit diagram which shows the structure at the time of the discharge lamp removal of the prior art example 1. FIG. 従来例1の放電灯外れ時の動作を示す波形図である。It is a wave form diagram which shows the operation | movement at the time of discharge lamp removal of the prior art example 1. FIG. 従来例2の回路図である。FIG. 10 is a circuit diagram of Conventional Example 2. 従来例2の放電灯外れ時の動作を示す波形図である。It is a wave form diagram which shows the operation | movement at the time of discharge lamp removal of the prior art example 2. FIG.

符号の説明Explanation of symbols

2 直流電源部
4 インバータ部
LA,LB 放電灯
8,9 直流バイアス経路
10,11 検出部
12 直流電源出力制御手段
2 DC power source 4 Inverter LA, LB Discharge lamp 8, 9 DC bias path 10, 11 Detector 12 DC power output control means

Claims (4)

直流電源部と、前記直流電源部から供給される直流出力を高周波出力に変換するインバータ部と、インダクタ、コンデンサを含む共振負荷部を備え、前記共振負荷部が前記インバータ部の出力端間に複数個並列に接続され、前記共振負荷部に夫々放電灯が接続され、これら各放電灯の装着の有無を判別する手段と、前記各放電灯の点灯の有無を判別する手段と、前記各放電灯のうち何れかの放電灯が未装着の場合は他の正常接続された放電灯が継続して点灯できる範囲で直流電源部の出力を低下させる直流電源出力制御手段を備え、放電灯未装着時に直流電源部から供給される直流出力の分圧電圧が放電灯接続点に発生する直流バイアス経路を各放電灯毎に有し、直流バイアス経路は直流電圧に対する分圧比率Aを有し、放電灯接続点と直流電源部の間に存在する直流インピーダンス成分を含み、放電灯が装着され且つ点灯しているときは放電灯の点灯時インピーダンスによる前記分圧電圧の低下を検出することで放電灯の点灯を判別できるように前記直流インピーダンス成分の値が設定されている放電灯点灯装置であって、何れかの放電灯が未装着の場合は、直流出力VdcをVdc<150/√(A2 +0.52 )[V]に低下させることを特徴とする放電灯点灯装置。 A DC power supply unit; an inverter unit that converts a DC output supplied from the DC power supply unit into a high-frequency output; and a resonant load unit including an inductor and a capacitor, and a plurality of the resonant load units are provided between output terminals of the inverter unit. A discharge lamp connected to each of the resonant load sections, a means for determining whether or not each of the discharge lamps is mounted , a means for determining whether or not each of the discharge lamps is lit, and each of the discharge lamps If any of the discharge lamps is not installed, it is equipped with DC power supply output control means that reduces the output of the DC power supply unit within the range in which other normally connected discharge lamps can continue to be lit. has a DC bias path to the divided voltage of the DC output supplied from the DC power supply unit is generated in the discharge lamp connection points for each discharge lamp, the DC bias path to have a partial pressure ratio a to the DC voltage, the discharge lamp Connection point and DC It includes a DC impedance component that exists between the source parts, and when the discharge lamp is mounted and lit, it is possible to determine the lighting of the discharge lamp by detecting a decrease in the divided voltage due to the impedance when the discharge lamp is lit Thus, in the discharge lamp lighting device in which the value of the DC impedance component is set and any one of the discharge lamps is not mounted, the DC output Vdc is set to Vdc <150 / √ (A 2 +0.5 2 ). A discharge lamp lighting device characterized by being lowered to [V]. 直流電源部と、前記直流電源部から供給される直流出力を高周波出力に変換するインバータ部と、インダクタ、コンデンサを含む共振負荷部を備え、前記共振負荷部が前記インバータ部の出力端間に複数個並列に接続され、前記共振負荷部に夫々放電灯が接続され、これら各放電灯の装着の有無を判別する手段と、前記各放電灯の点灯の有無を判別する手段と、前記各放電灯のうち何れかの放電灯が未装着の場合は他の正常接続された放電灯が継続して点灯できる範囲で直流電源部の出力を低下させる直流電源出力制御手段を備え、放電灯未装着時に直流電源部から供給される直流出力の分圧電圧が放電灯接続点に発生する直流バイアス経路を各放電灯毎に有し、直流バイアス経路は直流電圧に対する分圧比率Aを有し、放電灯接続点と直流電源部の間に存在する直流インピーダンス成分を含み、放電灯が装着され且つ点灯しているときは放電灯の点灯時インピーダンスによる前記分圧電圧の低下を検出することで放電灯の点灯を判別できるように前記直流インピーダンス成分の値が設定されている放電灯点灯装置であって、何れかの放電灯が未装着の場合は、直流出力VdcをVdc<300/√(A2 +0.52 )[V]に低下させることを特徴とする放電灯点灯装置。 A DC power supply unit; an inverter unit that converts a DC output supplied from the DC power supply unit into a high-frequency output; and a resonant load unit including an inductor and a capacitor, and a plurality of the resonant load units are provided between output terminals of the inverter unit. A discharge lamp connected to each of the resonant load sections, a means for determining whether or not each of the discharge lamps is mounted , a means for determining whether or not each of the discharge lamps is lit, and each of the discharge lamps If any of the discharge lamps is not installed, it is equipped with DC power supply output control means that reduces the output of the DC power supply unit within the range in which other normally connected discharge lamps can continue to be lit. has a DC bias path to the divided voltage of the DC output supplied from the DC power supply unit is generated in the discharge lamp connection points for each discharge lamp, the DC bias path to have a partial pressure ratio a to the DC voltage, the discharge lamp Connection point and DC It includes a DC impedance component that exists between the source parts, and when the discharge lamp is mounted and lit, it is possible to determine the lighting of the discharge lamp by detecting a decrease in the divided voltage due to the impedance when the discharge lamp is lit Thus, in the discharge lamp lighting device in which the value of the DC impedance component is set , if any of the discharge lamps is not mounted, the DC output Vdc is set to Vdc <300 / √ (A 2 +0.5 2 ). A discharge lamp lighting device characterized by being lowered to [V]. インバータ部の発振周波数を変化させることで放電灯の点灯出力を切替え可能な制御手段と、放電灯外れ時において、この点灯出力の切替え動作を禁止する点灯出力切替え禁止手段とを備えることを特徴とする請求項1または2記載の放電灯点灯装置。 A control means capable of switching the lighting output of the discharge lamp by changing the oscillation frequency of the inverter unit, and a lighting output switching prohibiting means for prohibiting the switching operation of the lighting output when the discharge lamp is disconnected. The discharge lamp lighting device according to claim 1 or 2. 請求項1〜3のいずれかに記載の放電灯点灯装置と、放電灯点灯装置を装着する本体と、放電灯点灯装置から電力が供給される複数の放電灯と、を備えたことを特徴とする照明器具。 A discharge lamp lighting device according to any one of claims 1 to 3, a main body on which the discharge lamp lighting device is mounted, and a plurality of discharge lamps to which electric power is supplied from the discharge lamp lighting device. Lighting equipment to do.
JP2006308043A 2006-11-14 2006-11-14 Discharge lamp lighting device and lighting fixture Expired - Fee Related JP4956147B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006308043A JP4956147B2 (en) 2006-11-14 2006-11-14 Discharge lamp lighting device and lighting fixture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006308043A JP4956147B2 (en) 2006-11-14 2006-11-14 Discharge lamp lighting device and lighting fixture

Publications (2)

Publication Number Publication Date
JP2008123909A JP2008123909A (en) 2008-05-29
JP4956147B2 true JP4956147B2 (en) 2012-06-20

Family

ID=39508433

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006308043A Expired - Fee Related JP4956147B2 (en) 2006-11-14 2006-11-14 Discharge lamp lighting device and lighting fixture

Country Status (1)

Country Link
JP (1) JP4956147B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05234689A (en) * 1992-02-24 1993-09-10 Hitachi Lighting Ltd Electric discharge lamp lighting circuit
JPH0799094A (en) * 1993-09-29 1995-04-11 Tec Corp Discharge lamp lighting device
JP4314978B2 (en) * 2003-11-21 2009-08-19 パナソニック電工株式会社 Discharge lamp lighting device and lighting fixture

Also Published As

Publication number Publication date
JP2008123909A (en) 2008-05-29

Similar Documents

Publication Publication Date Title
US7102297B2 (en) Ballast with end-of-lamp-life protection circuit
CA2788390C (en) Low current solution for illuminated switches using dc operated leds
EP2177923A1 (en) Discharge lamp lighting device and illumination fixture with end of life detection
JP4956147B2 (en) Discharge lamp lighting device and lighting fixture
CA2829611C (en) Latching circuit for ballast
JP4000618B2 (en) Discharge lamp lighting device and lighting device
US5642019A (en) Safety protector for non-isolated ballasts
JP5381034B2 (en) Discharge lamp lighting device and lighting fixture provided with the discharge lamp lighting device
JP2008016393A (en) Discharge lamp lighting device and luminaire
KR102135002B1 (en) Electronic ballast for discharge lamp
JP6461995B2 (en) Power adapter
JP4314978B2 (en) Discharge lamp lighting device and lighting fixture
US20160073459A1 (en) Led lamp device
US7573204B2 (en) Standby lighting for lamp ballasts
JP4099696B2 (en) Discharge lamp lighting device and lighting apparatus
JP3925190B2 (en) Discharge lamp lighting device
JP2008523573A (en) High frequency gas discharge lamp circuit
JP2006040855A (en) Discharge lamp lighting device, lighting apparatus, and lighting system
JP2006196312A (en) Discharge lamp igniter, illumination device, luminair, and illumination system
JP2008034148A (en) Discharge lamp lighting device and luminaire
JP2006120349A (en) Discharge lamp lighting device, illumination apparatus, and illumination system
JP2013239389A (en) Discharge lamp lighting device and illumination device
JP3829946B2 (en) Discharge lamp lighting device and lighting device
JP4899967B2 (en) Discharge lamp lighting device, lighting fixture and lighting system
JP2010057343A (en) Load control unit and lighting fixture

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090727

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110812

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110830

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111028

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20111207

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20111207

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20111214

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20120112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120221

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120316

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150323

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees