JP4954919B2 - Flange-up molding test method - Google Patents

Flange-up molding test method Download PDF

Info

Publication number
JP4954919B2
JP4954919B2 JP2008045925A JP2008045925A JP4954919B2 JP 4954919 B2 JP4954919 B2 JP 4954919B2 JP 2008045925 A JP2008045925 A JP 2008045925A JP 2008045925 A JP2008045925 A JP 2008045925A JP 4954919 B2 JP4954919 B2 JP 4954919B2
Authority
JP
Japan
Prior art keywords
molding
test
flange
deformation
face
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008045925A
Other languages
Japanese (ja)
Other versions
JP2009204399A (en
Inventor
朗弘 上西
昌史 東
繁 米村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2008045925A priority Critical patent/JP4954919B2/en
Publication of JP2009204399A publication Critical patent/JP2009204399A/en
Application granted granted Critical
Publication of JP4954919B2 publication Critical patent/JP4954919B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Description

本発明は、プレス成形時に伸びフランジ破断を回避するために最適の材料を選定するための試験方法に関する。   The present invention relates to a test method for selecting an optimal material in order to avoid stretch flange breakage during press molding.

近年、自動車業界では、衝突時の乗員への傷害を低減しうる車体構造の開発が急務の課題となっている。また、一方で燃費改善のために車体の軽量化も重要である。これらの課題の解決のために、より高強度の材料特に鉄鋼材料では高強度鋼板の適用が検討されている。しかしながら、一般に強度の上昇は成形性の劣化を招くとされており、適用拡大のためには成形性改善、特に伸びフランジ成形部の破断を回避することが重要である。   In recent years, in the automobile industry, the development of a vehicle body structure that can reduce injury to passengers during a collision has become an urgent issue. On the other hand, reducing the weight of the vehicle body is also important for improving fuel efficiency. In order to solve these problems, application of high-strength steel sheets is being studied for higher-strength materials, particularly steel materials. However, it is generally considered that an increase in strength causes deterioration of moldability, and it is important to improve the moldability, particularly to avoid breakage of the stretch flange formed portion, in order to expand the application.

このような課題の解決のために伸びフランジ性に優れた材料の開発が進められている。特許文献1にはフェライトやベイナイトなどの微視組織の制御により伸びフランジ性を改善した材料が開示されている。また特許文献2には塑性異方性と特定方向の引張試験における均一伸びを規定することで伸びフランジ性に優れるアルミニウム合金板が開示されている。   In order to solve such a problem, development of a material excellent in stretch flangeability is underway. Patent Document 1 discloses a material having improved stretch flangeability by controlling a microstructure such as ferrite and bainite. Patent Document 2 discloses an aluminum alloy plate having excellent stretch flangeability by defining plastic anisotropy and uniform elongation in a tensile test in a specific direction.

しかしながら、実際の部品での伸びフランジ成形性は通常行われている引張試験で評価された材料特性と直接の相関が薄いことが指摘されている。その理由は試験片の中央部のネッキングにより破断が生じる引張試験とは異なり、破断がフランジ端面から生じるためと考えられている。この状況を模擬するために非特許文献1に示されているように穴広げ試験が行われている。また特許文献3に示されているように試験片の中央部に円弧状の切欠きを加えた後に引張試験を行うことで伸びフランジ成形性の評価が行われている。しかしながら、これらの試験方法による評価ではその変形状態が必ずしも実際の伸びフランジ成形部の変形状態と一致していなかった。   However, it has been pointed out that stretch flangeability in actual parts is not directly correlated with the material properties evaluated in the usual tensile tests. The reason is considered to be because the fracture occurs from the end face of the flange, unlike the tensile test in which the fracture occurs due to necking at the center of the test piece. In order to simulate this situation, a hole expansion test is performed as shown in Non-Patent Document 1. Further, as shown in Patent Document 3, stretch flange formability is evaluated by performing a tensile test after adding an arc-shaped notch to the center of a test piece. However, in the evaluation by these test methods, the deformation state did not necessarily coincide with the actual deformation state of the stretch flange formed part.

特開2002−60898号公報JP 2002-60898 A 特開2006−257506号公報JP 2006-257506 A 特開2005−98720号公報JP 2005-98720 A 「プレス成形難易ハンドブック第2版」p.470“Press Forming Difficulty Handbook 2nd Edition” p. 470

本発明は、プレス成形時の不具合の中で材料の伸びフランジ成形性を精度よく評価するための試験方法を提供するものである。   The present invention provides a test method for accurately evaluating the stretch flangeability of a material among the problems during press molding.

本発明者らは、実際の伸びフランジ破断が生ずる部位を詳細に観察し、その部位での変形が素材板面の面外に起こり、かつ破断危険部位で端面に沿う方向に変形勾配が生じていることを見出した。本発明者らはこのような変形勾配が材料の伸びフランジ成形性に影響することを見出し、事前にこれを模擬した試験を行うことにより精度よく伸びフランジ成形性を評価する試験方法を考案したものである。本発明の要旨とするところは以下の通りである。   The present inventors have observed in detail the part where the actual stretch flange breakage occurs, the deformation at that part occurs out of the plane of the material plate surface, and the deformation gradient occurs in the direction along the end face at the breakage risk part. I found out. The present inventors have found that such a deformation gradient affects the stretch flangeability of the material, and devised a test method for accurately evaluating the stretch flangeability by conducting a test simulating this in advance. It is. The gist of the present invention is as follows.

(1) 円弧状のせん断端面を持つ試験片を用いて、該試験片の法線方向に面外変形を加えて行き、せん断端面に破断が生じる際の成形高さにより、伸びフランジ成形性の評価を行うことを特徴とするフランジアップ成形試験方法。 (1) Using a test piece having an arc-shaped shear end face, subjecting the test piece to out-of-plane deformation in the normal direction, and the forming height at which the shear end face breaks, A flange-up molding test method characterized by performing an evaluation.

(2) 円状パンチを用いて円弧状のせん断端面を形成した試験片を用いることを特徴とする上記(1)に記載のフランジアップ成形試験方法。   (2) The flange-up molding test method according to (1), wherein a test piece in which an arc-shaped shear end face is formed using a circular punch is used.

(3) パンチ、ダイ、しわ押えにより面外変形を加えることを特徴とする上記(1)または(2)に記載のフランジアップ成形試験方法。   (3) The flange-up molding test method as described in (1) or (2) above, wherein an out-of-plane deformation is applied by a punch, die, or wrinkle presser.

(4) 前記パンチが円筒パンチであることを特徴とする上記(3)に記載のフランジアップ成形試験方法。   (4) The flange-up molding test method according to (3), wherein the punch is a cylindrical punch.

本発明に基づいたフランジアップ試験方法を行うことで実部品に近い状況で伸びフランジ成形性を高い精度で試験できる。それにより最適の材料の提供による生産性の向上を通じて製造コストの低減につながる。   By performing the flange-up test method based on the present invention, stretch flange formability can be tested with high accuracy in a situation close to that of an actual part. As a result, the production cost is reduced through the improvement of productivity by providing the optimum material.

本発明者らは、まず実部品での伸びフランジ破断部位での変形状態を詳細に調査した。その結果実際に割れが起こる箇所でその端面に沿って板厚減少率やひずみ量等がピークを持ち、その周囲でそれらの値が減少していくことが分かった。すなわち、部品においてはある領域に変形が集中した後にさらにその領域内で変形の局所化が起こりついには破断に至るものと考えられる。   The present inventors first investigated in detail the deformation state at the stretch flange fracture site in the actual part. As a result, it was found that the plate thickness reduction rate and the strain amount had a peak along the end face where cracking actually occurred, and those values decreased around the peak. That is, in a part, it is considered that after deformation concentrates in a certain area, the deformation is further localized in that area and eventually breaks.

これまで伸びフランジ成形性の指標として穴広げ成形試験の結果が用いられてきた。穴を設けたブランクを円錐または円筒のパンチで押し広げ、初期穴径と破断が生じた際の穴径の比(λ値と呼ばれる)を算出することで伸びフランジ成形性の良し悪しが判断されている。穴広げ成形試験の場合は穴端部に生じる変形量は周方向でほぼ均一となる。従って、穴縁端面に沿う方向での変形勾配は非常に小さい。   Until now, the results of the hole expansion molding test have been used as an index of stretch flangeability. A blank with a hole is spread with a conical or cylindrical punch, and the ratio of the initial hole diameter to the hole diameter when fracture occurs (called the λ value) is calculated to determine whether the stretch flangeability is good or bad. ing. In the case of the hole expansion molding test, the amount of deformation generated at the hole end is substantially uniform in the circumferential direction. Therefore, the deformation gradient in the direction along the hole edge surface is very small.

前述のように実際の部品の伸びフランジ成形部では素材端面の変形が不均一である。軟鋼板のように十分な局所変形能を持つ比較的軟質の材料の場合には穴広げ試験による評価結果と実部品の伸びフランジ成形性との間に比較的良い対応関係が見られるが、近年適用が進んでいる高強度鋼板ではその両者の相関が小さいという課題があった。   As described above, the deformation of the end face of the material is not uniform in the stretch flange forming part of the actual part. In the case of a relatively soft material with sufficient local deformability such as mild steel sheet, there is a relatively good correspondence between the evaluation result of the hole expansion test and the stretch flangeability of the actual part. There is a problem that the correlation between the two is small in the high-strength steel plate which is being applied.

本発明者らは鋭意検討の結果、この差異が材料の加工硬化能と局所変形能がそれぞれ穴広げ試験と実部品の伸びフランジ成形で異なる寄与をしていることに思い至った。実部品の伸びフランジ変形部では素材端面に沿う変形の分布は不均一であり、破断危険部にピークを持っている。端面に沿う変形量を積分したものが同一であってもこのピーク高さが小さい時には破断には至らない。端面に沿う変形の分布を支配するのは材料の加工硬化能であり、引張試験のn値または一様伸びで通常評価される特性値である。加工硬化能が高い材料の場合にはピークに加わる変形を周囲に伝播させることで結果としてピーク高さが低減され、破断が回避される。一方、穴広げ試験の場合には穴縁に沿う方向で変形量の分布がなく、従って加工硬化能を変えても穴縁に沿う方向の変形分布には影響がない。従って穴広げ試験の場合には局所変形能が評価されることになる。   As a result of intensive studies, the present inventors have come to realize that the difference between work hardening ability and local deformation ability of the material contributes differently in the hole expansion test and the stretch flange molding of the actual part. In the stretch flange deformed part of the actual part, the distribution of the deformation along the end face of the material is non-uniform and has a peak in the fracture risk part. Even if the integrated amount of deformation along the end face is the same, it does not break when this peak height is small. It is the work hardening ability of the material that dominates the distribution of deformation along the end face, the characteristic value normally evaluated by the n value of the tensile test or the uniform elongation. In the case of a material with high work hardening ability, the deformation applied to the peak is propagated to the surroundings, and as a result, the peak height is reduced and breakage is avoided. On the other hand, in the case of the hole expansion test, there is no distribution of deformation in the direction along the hole edge. Therefore, changing the work hardening ability does not affect the deformation distribution in the direction along the hole edge. Therefore, in the case of the hole expansion test, the local deformability is evaluated.

一般に鉄鋼の薄板材料を考えた場合、590MPa級以上の高強度材ではその材料強化に用いる手法の性質から加工硬化能と、局所変形能(通常引張試験における局部伸びとして評価される)が両立しないことが知られている。上述のように穴広げ試験では主に局所変形能の評価となるが、実際の伸びフランジ成形では加工硬化能と局所変形能のバランスが重要となる。   In general, when considering steel sheet materials, high-strength materials of 590 MPa or higher do not have both work hardening ability and local deformation ability (usually evaluated as local elongation in tensile tests) due to the nature of the method used to strengthen the material. It is known. As described above, the hole expansion test mainly evaluates local deformability, but in actual stretch flange molding, the balance between work hardening ability and local deformability is important.

そこで本発明者らは、端面に沿う変形が不均一となる状態での試験方法を模索し、実部品での伸びフランジ成形性と相関の良い試験方法を見出した。まず試験片としては実際のプレス成形での伸びフランジ成形部位と同様にせん断端面を設け、その端面に端面中央部にピークを持つ変形を与える。この際試験片にはその材料の持つ成形能と対応して破断が生じる。この時の成形高さを試験での評価項目とする。成形高さが高いほど伸びフランジ成形性が良好ということになる。成形高さは局所変形能と相関するが、端面に沿う方向に不均一な変形であるために同時に加工硬化能の影響も受ける。この状態は実成形での変形状態に近い。端面中央部にピークを持つ変形を与えるのは、試験片法線方向に面外変形を与えることにより達成される。端面に効率的に変形を集中させるためにはダイとしわ押さえにより試験片を拘束した後に試験片法線方向にパンチを移動させることにより行うことが好ましい。また、実成形での条件を考えるとパンチとしては円筒形状のものを用いることが好ましいが、特殊な成形での対応を考える時には円錐、球頭、楕円断面等のパンチ形状を用いても良い。   Therefore, the present inventors sought a test method in a state where the deformation along the end face is not uniform, and found a test method having a good correlation with stretch flange formability in an actual part. First, as a test piece, a shear end face is provided in the same manner as the stretch flange forming portion in actual press forming, and a deformation having a peak at the center of the end face is given to the end face. At this time, the test piece breaks corresponding to the molding ability of the material. The molding height at this time is used as an evaluation item in the test. The higher the molding height, the better the stretch flange formability. Although the molding height correlates with local deformability, it is affected by work hardening ability at the same time because it is non-uniform deformation along the end face. This state is close to the deformed state in actual molding. Giving a deformation having a peak at the center of the end face is achieved by applying an out-of-plane deformation in the normal direction of the specimen. In order to efficiently concentrate the deformation on the end face, it is preferable that the punch is moved in the normal direction of the test piece after the test piece is constrained by a die and a wrinkle presser. In consideration of conditions in actual molding, it is preferable to use a cylindrical punch, but when considering special molding, a punch shape such as a cone, a spherical head, or an elliptical cross section may be used.

また試験片にせん断端面を作成する方法としてはせん断面の性状を支配するクリアランス(せん断のパンチとダイの隙間)を効率的に変化させる利便性を考えると、円状のせん断用パンチを用いることが好ましい。本発明ではせん断端面に不均一な変形を与えるためにせん断後の端面は開断面とする必要があるが、円状パンチを用いて穴を設けた場合にはその素板を試験目的に応じてせん断することにより本発明の試験方法の試験片とすることができる。後述するがこのせん断角を変化させることにより、端面に沿う変形の不均一を制御したり、端面以外での破断を回避したりすることができる。本発明では実際の加工で広く用いられている金型によるせん断された端面を持つ試験片を用いることを基本とするが、実際の条件に応じて切削やレーザ、ウォータジェット等により端面を加工しても良い。   In addition, as a method of creating a shear end face on a specimen, a circular shear punch should be used considering the convenience of efficiently changing the clearance (gap between the shear punch and the die) that governs the properties of the shear surface. Is preferred. In the present invention, in order to give nonuniform deformation to the shear end face, the end face after shearing needs to have an open cross section, but when a hole is provided by using a circular punch, the base plate is made according to the test purpose. It can be set as the test piece of the test method of this invention by shearing. As will be described later, by changing the shear angle, nonuniform deformation along the end face can be controlled, and breakage other than at the end face can be avoided. In the present invention, a test piece having a sheared end surface by a mold widely used in actual processing is basically used, but the end surface is processed by cutting, laser, water jet, or the like according to actual conditions. May be.

試験時の最大フランジアップ高さHmaxは材料の破断がないと想定したときにパンチにより与えることのできる最大成形高さとなるが、これは工具や試験片形状を変化させることで種々の値に設定できる。試験する素材間の成形能の差異が明確となるように適切に選択する必要があるが、パンチ径をDとしたときに、0.10≦Hmax/D≦0.40の範囲とすることが好ましい。鉄鋼材料を対象とする場合にはさらに0.20≦Hmax/D≦0.30の範囲とすると加工硬化特性との関係から効率的に試験を行うことができ好適である。   The maximum flange-up height Hmax during the test is the maximum molding height that can be given by the punch when it is assumed that there is no material breakage, but this can be set to various values by changing the shape of the tool or specimen. it can. Although it is necessary to select appropriately so that the difference in forming ability between the materials to be tested becomes clear, when the punch diameter is D, the range may be 0.10 ≦ Hmax / D ≦ 0.40. preferable. In the case of steel materials, it is preferable that the range of 0.20 ≦ Hmax / D ≦ 0.30 can be efficiently tested from the relationship with work hardening characteristics.

[実施例1]
以下に実例を挙げながら、本発明の技術内容について説明する。
[Example 1]
The technical contents of the present invention will be described below with examples.

本実施例の検討に用いた素材(試験片)を表1に示す。素材としては、軟鋼から980MPa級の高強度鋼までの種々の材料(鋼A〜H)を用いた。板厚はすべて1.2mmである。この表に穴広げ値(λ値)も併せて示している。このλ値は試験片中央にφ10mmの穴をせん断により設けた後に、60°の円錐パンチを用いてこの穴を押し広げ、端面に破断(板厚貫通クラック)が生じた時点での穴径を測定し初期穴径との差を初期穴径で除したものを百分率で示したものである。λ値は通常伸びフランジ成形性の指標として用いられ、高い値を示すほど伸びフランジ成形性に優れた材料であると考えられている。   Table 1 shows the materials (test pieces) used in this example. As materials, various materials (steel A to H) ranging from mild steel to high strength steel of 980 MPa class were used. The plate thickness is all 1.2 mm. This table also shows the hole expansion value (λ value). The λ value is the diameter of the hole when a hole of φ10 mm is formed in the center of the test piece by shearing and then widened using a 60 ° conical punch, and the end surface is ruptured (thickness penetration crack). It is a percentage obtained by measuring and dividing the difference from the initial hole diameter by the initial hole diameter. The λ value is usually used as an index of stretch flange formability, and it is considered that the higher the value, the better the flange flange formability.

Figure 0004954919
Figure 0004954919

この材料の伸びフランジ成形性を評価するために実部品に近い形状での成形試験を行った。実験に用いた金型形状は100mmおよび150mmの二つのコーナー半径を持つものであり、その金型(パンチ)形状を図1に示す。またブランク形状を図2(a)、(b)に示す。図2(a)はR75mm及びR125mmのせん断面を有し、図2(b)はR100mm及びR150mmのせん断面を有するブランク形状のものである。この二種の形状のブランクに対して成形実験を行った。その結果を表2に示す。全体的に見るとブランク形状(a)は(b)に比べて厳しい成形条件となることが分かった。すべての素材に対し成形実験を行った後、実験結果を評点化した。まず、問題なく成形できた場合を評点2、破断は生じないもののネッキングが発生した場合には評点1を、破断が生じた場合は0とした。ブランク形状(a)および(b)のそれぞれの評点を合算し、各材料の実成形での伸びフランジ成形性指標とした。λ値から推測されるように材料の高強度化とともに評点の悪化が見られるが、いくつかの鋼種では必ずしもλ値と評点との相関が高くないことが分かった。これは前述のようにλ値の測定では端面に沿う方向の変形分布がほとんどないという違いに起因すると考えられる。   In order to evaluate the stretch flangeability of this material, a molding test was performed with a shape close to that of an actual part. The mold shape used in the experiment has two corner radii of 100 mm and 150 mm, and the mold (punch) shape is shown in FIG. Moreover, a blank shape is shown to Fig.2 (a), (b). FIG. 2A shows a blank shape having shear surfaces of R75 mm and R125 mm, and FIG. 2B shows a blank shape having shear surfaces of R100 mm and R150 mm. A molding experiment was conducted on these two types of blanks. The results are shown in Table 2. As a whole, it was found that the blank shape (a) had stricter molding conditions than (b). After conducting molding experiments on all the materials, the experimental results were scored. First, a score of 2 was given when molding was possible without any problem, a score of 1 was given when necking occurred but no fracture occurred, and a score of 0 was given when fracture occurred. The respective scores of the blank shapes (a) and (b) were added together to obtain the stretch flange formability index in actual molding of each material. As estimated from the λ value, the grade deteriorates as the strength of the material increases, but it was found that the correlation between the λ value and the score was not necessarily high in some steel types. As described above, this is considered to be caused by the difference that there is almost no deformation distribution in the direction along the end face in the measurement of the λ value.

Figure 0004954919
Figure 0004954919

そこで本発明者らは効率的に実部品に近い変形状態で伸びフランジ性を評価する試験方法を検討した。穴広げ試験方法の問題点は端面に沿う方向の変形分布が均一となることであった。そこで穴広げ試験方法の利点である比較的小さな試験片を用いて大規模な金型を用いる必要がなく試験が可能であることを活かしつつ、変形分布を不均一とする方法として、中央部の穴をせん断により打ち抜いた後で分割した試験片を用いる試験方法を考案した。   Therefore, the present inventors examined a test method for efficiently evaluating stretch flangeability in a deformed state close to an actual part. The problem with the hole expansion test method is that the deformation distribution in the direction along the end face is uniform. Therefore, as a method of making the deformation distribution non-uniform while taking advantage of the fact that it is possible to test without using a large-scale mold using a relatively small test piece, which is an advantage of the hole expansion test method, A test method was devised that uses test pieces that have been split after punching holes.

図3(a)〜(c)にその試験の概要を示す。(a)はフランジアップ成形試験の開始前の縦断面図で、(b)はフランジアップ成形試験の開始前の平面図で、そして、(c)はフランジアップ成形試験の終了後の縦断面図である。この試験では、通常行われている円筒パンチによる穴広げ試験の金型を活用して試験を行っている。その際にブランクを分割しフランジアップ成形を行うものである。本実施例では、図3(a)に示すように、ダイ1は肩Rが5mmで106φのものを用い、しわ押さえ2で拘束した後に、図3(c)に示すように、肩Rが10mmの100mmφ円筒平底ポンチ3を用いて成形を行った。成形に用いたブランク4は中央部にφ60mmの穴を打ち抜き後、180mm角を1/4に切断したものを用いた(図4)。打ち抜き時のクリアランス(打ち抜き工具のパンチとダイの隙間を試験材板厚で除したもの)は15%とした。以降の実施例ではすべての条件でこのクリアランスを一定としたが、実際の成形条件と対応させる等の目的で打ち抜き時のクリアランスを変化させて打ち抜いた後に試験を実施しても良い。   An outline of the test is shown in FIGS. (A) is a longitudinal sectional view before the start of the flange-up molding test, (b) is a plan view before the start of the flange-up molding test, and (c) is a longitudinal sectional view after the end of the flange-up molding test. It is. In this test, a test is performed by utilizing a mold for a hole expansion test using a cylindrical punch which is usually performed. At that time, the blank is divided and flange-up molding is performed. In this embodiment, as shown in FIG. 3 (a), the die 1 has a shoulder R of 5 mm and 106φ, and after being restrained by the wrinkle presser 2, the shoulder R is shown in FIG. 3 (c). Molding was performed using a 10 mm 100 mmφ cylindrical flat bottom punch 3. The blank 4 used for the molding was obtained by punching a hole of φ60 mm in the center and then cutting a 180 mm square into 1/4 (FIG. 4). The clearance at the time of punching (the punching tool punch and die gap divided by the test material plate thickness) was 15%. In the following examples, the clearance is constant under all conditions. However, the test may be performed after punching by changing the clearance at the time of punching for the purpose of corresponding to the actual molding conditions.

試験時には通常の穴広げ試験と同様に端面の亀裂発生状況を目視にて観察し、板厚方向に貫通亀裂が生じた時点でパンチを停止させた。ここでは亀裂発生時のパンチストロークを評価指標とした。なおこのパンチストロークを用いる代わりに亀裂発生時で停止させた試験片の成形高さをフランジアップ成形高さ5として測定しても良い。表3に590MPa級鋼である鋼C、D、E、Fに対して試験を行った結果を示す。鋼C(No.1)、鋼D(No.2)、鋼F(No.4)はほぼ同等のλ値を示していたが、本発明の試験法で評価した場合には異なる成形高さとして評価されることが分かった。これは鋼D、鋼Fの加工硬化能が優れるために本発明の試験法で生じる端面に沿う方向の変形分布を緩和したためであると考えられる。一方、加工硬化能、λ値ともに優れる鋼E(No.3)は本試験法でも優れた特性を示すことが分かった。   At the time of the test, the crack occurrence state of the end face was visually observed in the same manner as in the normal hole expansion test, and the punch was stopped when a through crack occurred in the thickness direction. Here, the punch stroke when cracks occurred was used as an evaluation index. Instead of using this punch stroke, the molding height of the test piece stopped when the crack is generated may be measured as the flange-up molding height 5. Table 3 shows the results of tests performed on steels C, D, E, and F, which are 590 MPa class steels. Steel C (No. 1), Steel D (No. 2), and Steel F (No. 4) showed almost the same λ value, but different forming heights when evaluated by the test method of the present invention. It was found to be evaluated as. This is thought to be because the deformation distribution in the direction along the end face produced by the test method of the present invention was relaxed because the work hardening ability of Steel D and Steel F was excellent. On the other hand, it was found that steel E (No. 3), which is excellent in both work hardening ability and λ value, shows excellent characteristics even in this test method.

Figure 0004954919
Figure 0004954919

本発明の試験法により評価した結果(成形高さ)と実際の成形試験結果との対応関係を調査した。図5は表2の実成形での評点と本発明の試験方法により評価した成形高さ(表3)の関係を図示したものである。ここに示されているように実成形での評点の高い材料はフランジアップ成形高さも大きくなり、両者が対応していることが分かる。一方、図6は従来伸びフランジ成形性の指標として用いられてきたλ値(表1)と成形試験評点との関係を示したものである。一部の材料で実成形での優劣とλ値の大小とが対応しておらず、λ値が実際の伸びフランジ成形性の指標として相応しくなく、本発明の試験方法による評価値が指標としてより相応しいことが分かった。   The correspondence between the results (molding height) evaluated by the test method of the present invention and the actual molding test results was investigated. FIG. 5 illustrates the relationship between the score in actual molding in Table 2 and the molding height (Table 3) evaluated by the test method of the present invention. As shown here, a material having a high score in actual molding also has a large flange-up molding height, and it can be seen that both correspond. On the other hand, FIG. 6 shows the relationship between the λ value (Table 1), which has been used as an index of stretch flange formability, and the molding test score. In some materials, the superiority or inferiority in actual molding does not correspond to the magnitude of λ value, λ value is not suitable as an index of actual stretch flange formability, and the evaluation value by the test method of the present invention is more I found it appropriate.

[実施例2]
実施例1では1/4に切断した試験片を用いて試験を行った。本発明者らの検討の結果、試験片の切断角は端面に沿う方向の変形状態を変化させることが分かった。すなわち切断角が小さい場合には(1/4切断の場合は90°)端面に沿う方向の変形分布はより小さい傾向となり、この切断角が大きくなると円弧状の部分の中央での端面に沿う方向の変形勾配が大きくなり、低い成形高さで破断が起こりやすいことがわかった。また、切断角が小さい場合には特に材料の延性が小さいときに試験片端部のダイ肩に巻き付く部分(図4中に(ア)と表記)での変形集中が大きくなり、円弧状の端面の中央部で破断が生じる前に(ア)部で破断が生じてしまうことがあった。その場合にはしわ押さえからダイ肩にかかる試験片を一部切断してしわ押えによる拘束を緩和して巻き付き部での変形集中を抑えることにより本試験が可能となる。またさらに簡便には切断角を大きくすることにより試験が可能となる。以下、切断角を180°とした例を述べる(1/2切断)。
[Example 2]
In Example 1, it tested using the test piece cut | disconnected by 1/4. As a result of the study by the present inventors, it has been found that the cutting angle of the test piece changes the deformation state in the direction along the end face. That is, when the cutting angle is small (90 ° for 1/4 cutting), the deformation distribution in the direction along the end surface tends to be smaller, and when this cutting angle increases, the direction along the end surface at the center of the arc-shaped portion. It has been found that the deformation gradient increases and breakage easily occurs at a low molding height. Also, when the cutting angle is small, especially when the ductility of the material is small, the concentration of deformation at the portion of the end of the test piece that wraps around the die shoulder (indicated as (A) in FIG. 4) increases, resulting in an arc-shaped end surface. Before the break occurred at the central part of the film, the break may occur at the (a) part. In this case, the test can be performed by partially cutting a test piece on the die shoulder from the wrinkle retainer to relieve the restraint caused by the wrinkle retainer and restrain the deformation concentration at the winding portion. In addition, the test can be performed more simply by increasing the cutting angle. Hereinafter, an example in which the cutting angle is 180 ° will be described (1/2 cutting).

図7は150mm角の試験片の中央にφ40mmの打ち抜き穴(R20mm)をせん断により加工した後(クリアランス15%)、半分に切断したものである。この試験片を肩Rが3mmで85mmφのダイと、肩Rが10mmの80φ円筒平底ポンチを用いて実施例1と同様の試験を行った。その結果を表4に示す。本実験では前述のようなダイ肩部での破断は生じなかった。さらに、表2の実成形での評点と表4のフランジアップ成形高さを評価した。図8に示されているように本発明の試験方法による評価結果は実成形結果とよく対応した。   FIG. 7 shows a punched hole (R20 mm) having a diameter of 40 mm in the center of a 150 mm square test piece, which is cut in half after being processed by shearing (clearance 15%). This test piece was tested in the same manner as in Example 1 using a die having a shoulder R of 3 mm and an 85 mmφ and an 80φ cylindrical flat bottom punch having a shoulder R of 10 mm. The results are shown in Table 4. In this experiment, there was no breakage at the die shoulder as described above. Furthermore, the score in actual molding shown in Table 2 and the flange-up molding height shown in Table 4 were evaluated. As shown in FIG. 8, the evaluation results by the test method of the present invention corresponded well with the actual molding results.

目的とする実成形条件と対応させるために、初期のせん断端面形状を円弧以外としても良いが、過度の変形集中による早期の破断を避けるために滑らかな形状とし曲率変化を小さくすることが好ましい。   In order to correspond to the target actual molding conditions, the initial shear end face shape may be other than a circular arc, but it is preferable to make the shape smooth and reduce the change in curvature in order to avoid early breakage due to excessive deformation concentration.

Figure 0004954919
Figure 0004954919

[実施例3]
中央部にせん断穴を設けた後に1/4に分割したブランクを用いて試験を行ったのは実施例1と同様であるが、種々の初期穴の打ち抜き径D0と成形パンチ径Dを組み合わせて試験を行った。この際、最大フランジアップ高さHmaxはブランク(試験片)の伸び変形を無視すれば、Hmax=(D−D0)/2となる。表1に示す鋼C、D、Fを用いて試験を行った。表5に試験条件と試験結果を示す。本試験方法では端面に破断が生じた時点での成形高さを評価しているが、一部の条件ではパンチにより与えることのできる最大変形を与えても破断が生じなかった。これは端面中央部に生じる変形が小さいため、材料の成形能に余裕があったためと考えられる。しかしながら供試材のすべてに破断が生じない場合には材料の優劣が判定できない。最大フランジアップ高さが過度に大きいか過度に小さい場合には最大変形が小さくなり、今回の供試材のすべてで破断が生じず、優劣が判定できなかった。材料間に差異が生じるHmax/Dの値の範囲は0.10≦Hmax/D≦0.40の範囲であった。また0.20≦Hmax/D≦0.30とするとすべての材料で破断が生じ、成形高さとして材料の優劣が評価でき好ましいことが分かった。
[Example 3]
The test was performed using a blank that was divided into ¼ after a shear hole was provided in the center, as in Example 1. However, various punching diameters D0 and punching diameters D of the initial holes were combined. A test was conducted. At this time, the maximum flange-up height Hmax is Hmax = (D−D0) / 2 if the elongation deformation of the blank (test piece) is ignored. Tests were performed using steels C, D, and F shown in Table 1. Table 5 shows the test conditions and test results. In this test method, the molding height at the time when the end face broke was evaluated. However, even under the maximum deformation that could be given by the punch under some conditions, no break occurred. This is presumably because there was a margin in the molding ability of the material because the deformation that occurred at the center of the end face was small. However, if all the test materials do not break, the superiority or inferiority of the materials cannot be determined. When the maximum flange-up height was excessively large or excessively small, the maximum deformation was small, and all of the test materials of this time did not break, and the superiority or inferiority could not be determined. The range of the value of Hmax / D where the difference between the materials occurred was 0.10 ≦ Hmax / D ≦ 0.40. Further, it was found that when 0.20 ≦ Hmax / D ≦ 0.30, fracture occurred in all materials, and the superiority or inferiority of the materials could be evaluated as the molding height.

Figure 0004954919
Figure 0004954919

金型(パンチ)形状の説明図である。It is explanatory drawing of a metal mold | die (punch) shape. 実施例1の実験に用いたブランク形状((a)〜(b))を示す図である。It is a figure which shows the blank shape ((a)-(b)) used for the experiment of Example 1. FIG. (a)はフランジアップ成形試験の開始前の縦断面図、(b)はフランジアップ成形試験の開始前の平面図、そして、(c)はフランジアップ成形試験の終了後の縦断面図である。(A) is a longitudinal sectional view before the start of the flange-up molding test, (b) is a plan view before the start of the flange-up molding test, and (c) is a longitudinal sectional view after the end of the flange-up molding test. . 実施例1の成形実験に用いたブランク形状の説明図である。It is explanatory drawing of the blank shape used for the shaping | molding experiment of Example 1. FIG. 実施例1で評価したフランジアップ成形高さと伸びフランジ成形性評点との関係を示す図である。It is a figure which shows the relationship between the flange-up shaping | molding height evaluated in Example 1, and the stretch flange formability score. 鋼板の穴広げ値(λ値)と伸びフランジ成形性評点との関係を示す図である。It is a figure which shows the relationship between the hole-expansion value ((lambda) value) of a steel plate, and a stretch flange formability score. 実施例2の成形実験に用いたブランク形状の説明図である。It is explanatory drawing of the blank shape used for the shaping | molding experiment of Example 2. FIG. 実施例2で評価したフランジアップ成形高さと伸びフランジ成形性評点との関係を示す図である。It is a figure which shows the relationship between the flange-up shaping | molding height evaluated in Example 2, and the stretch flange formability score.

符号の説明Explanation of symbols

1 ダイ
2 しわ押さえ
3 ポンチ
4 被加工板(ブランク)
5 フランジアップ成形高さ
1 Die 2 Wrinkle presser 3 Punch 4 Work plate (blank)
5 Flange-up molding height

Claims (4)

円弧状のせん断端面を持つ試験片を用いて、該試験片の法線方向に面外変形を加えて行き、せん断端面に破断が生じる際の成形高さにより、伸びフランジ成形性の評価を行うことを特徴とするフランジアップ成形試験方法。 Using a test piece having an arc-shaped shear end face, an out-of-plane deformation is applied in the normal direction of the test piece, and the stretch flange formability is evaluated by the forming height at which the shear end face breaks. A flange-up molding test method characterized by the above. 円状パンチを用いて円弧状のせん断端面を形成した試験片を用いることを特徴とする請求項1に記載のフランジアップ成形試験方法。   The flange-up molding test method according to claim 1, wherein a test piece in which an arc-shaped shear end face is formed using a circular punch is used. パンチ、ダイ、しわ押えにより面外変形を加えることを特徴とする請求項1または2に記載のフランジアップ成形試験方法。   The flange-up molding test method according to claim 1 or 2, wherein an out-of-plane deformation is applied by a punch, a die, or a wrinkle presser. 前記パンチが円筒パンチであることを特徴とする請求項3に記載のフランジアップ成形試験方法。   The flange-up molding test method according to claim 3, wherein the punch is a cylindrical punch.
JP2008045925A 2008-02-27 2008-02-27 Flange-up molding test method Active JP4954919B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008045925A JP4954919B2 (en) 2008-02-27 2008-02-27 Flange-up molding test method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008045925A JP4954919B2 (en) 2008-02-27 2008-02-27 Flange-up molding test method

Publications (2)

Publication Number Publication Date
JP2009204399A JP2009204399A (en) 2009-09-10
JP4954919B2 true JP4954919B2 (en) 2012-06-20

Family

ID=41146836

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008045925A Active JP4954919B2 (en) 2008-02-27 2008-02-27 Flange-up molding test method

Country Status (1)

Country Link
JP (1) JP4954919B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59187243A (en) * 1983-04-07 1984-10-24 Mitsubishi Heavy Ind Ltd Measuring method of anisotropy of plate
JP3327134B2 (en) * 1996-09-05 2002-09-24 日本鋼管株式会社 Testing method and apparatus for metal materials and thermometer
JP4621216B2 (en) * 2006-02-01 2011-01-26 新日本製鐵株式会社 Fracture limit acquisition method and apparatus, program, and recording medium

Also Published As

Publication number Publication date
JP2009204399A (en) 2009-09-10

Similar Documents

Publication Publication Date Title
US11590591B2 (en) Press die designing method using an index value obtained from two stress gradients in sheet thickness direction and gradient of surface stress distribution in direction
CN101542003B (en) Structural member for automobile, two-wheel vehicle or railway vehicle excelling in shock absorption performance, shape fixability and flange portion cuttability and process for manufacturing the same
KR101837873B1 (en) Steel plate punching tool and punching method
US10639698B2 (en) Shearing method
JP4711396B2 (en) Punching method for high strength steel sheet
Narayanasamy et al. Effect of mechanical and fractographic properties on hole expandability of various automobile steels during hole expansion test
JP4959605B2 (en) Press molding method and base plate for press molding
Abe et al. Shearing of ultra-high strength steel sheets with step punch
Kinsey et al. Forming of aluminum tailor welded blanks
CN106222550A (en) A kind of high-strength automotive anti-collision beam and preparation method thereof
Sheng Formability of tailor-welded strips and progressive forming test
Chen et al. Investigation of factors affecting the formability of metallic sheets in dieless incremental hole-flanging
Nasheralahkami et al. Characterization of trimmed edge of advanced high strength steel
Elshalakany et al. An experimental investigation of the formability of low carbon steel tailor-welded blanks of different thickness ratios
JP4954919B2 (en) Flange-up molding test method
Huang et al. Formability of Fe-Mn-C twinning induced plasticity steel
Adnan et al. Study of springback pattern of non-uniform thickness section based on V-bending experiment
Ishimaru et al. Effect of material properties and forming conditions on formability of high-purity ferritic stainless steel
Yagita et al. Deformation behaviour in shearing of ultra-high strength steel sheets under insufficient blankholding force
Feistle et al. Notch shear cutting of press hardened steels
Shih et al. Robust shearing process for improving ahss sheared edge stretchability
JP2007307616A (en) Method and tool for shearing metal sheet, and metal sheet product obtained by shearing
Simoncini et al. Bending and stamping processes of FSWed thin sheets in AA1050 alloy
JP2010052006A (en) Coining method after punching and coining punch
JP2006159281A (en) Method for press forming structural member having excellent shock absorption characteristic

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111206

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120221

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120314

R151 Written notification of patent or utility model registration

Ref document number: 4954919

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150323

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150323

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150323

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350