JP4954053B2 - Warming valve warming method, warming valve warming system - Google Patents

Warming valve warming method, warming valve warming system Download PDF

Info

Publication number
JP4954053B2
JP4954053B2 JP2007337130A JP2007337130A JP4954053B2 JP 4954053 B2 JP4954053 B2 JP 4954053B2 JP 2007337130 A JP2007337130 A JP 2007337130A JP 2007337130 A JP2007337130 A JP 2007337130A JP 4954053 B2 JP4954053 B2 JP 4954053B2
Authority
JP
Japan
Prior art keywords
valve
temperature
upstream
steam
drain valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007337130A
Other languages
Japanese (ja)
Other versions
JP2009156215A (en
Inventor
泰之 杉野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugoku Electric Power Co Inc
Original Assignee
Chugoku Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugoku Electric Power Co Inc filed Critical Chugoku Electric Power Co Inc
Priority to JP2007337130A priority Critical patent/JP4954053B2/en
Publication of JP2009156215A publication Critical patent/JP2009156215A/en
Application granted granted Critical
Publication of JP4954053B2 publication Critical patent/JP4954053B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Control Of Turbines (AREA)

Description

本発明は、水蒸気タービンへ駆動蒸気を供給する駆動蒸気配管に設けた塞止弁の熱応力を低減させるための塞止弁のウォーンミング方法、及び塞止弁のウォーミングシステムに関する。 The present invention relates to a closing valve warming method and a closing valve warming system for reducing thermal stress of a blocking valve provided in a driving steam pipe for supplying driving steam to a steam turbine.

発電所のボイラで生成された主蒸気を蒸気タービンに供給するための駆動蒸気配管には、図1に示すように、蒸気タービン30への駆動蒸気の供給を切り替えるための塞止弁11が設けられている。このような塞止弁11は、タービンを停止した状態から急激に駆動蒸気を供給すると、熱応力により破損する虞があるため、熱応力低減を目的としたウォーミングが必要となる。   As shown in FIG. 1, the driving steam pipe for supplying main steam generated in the boiler of the power plant to the steam turbine is provided with a blocking valve 11 for switching supply of driving steam to the steam turbine 30. It has been. Such a shut-off valve 11 may be damaged by thermal stress when driving steam is rapidly supplied from a state where the turbine is stopped, so that warming for the purpose of reducing thermal stress is required.

ここで、塞止弁11のウォーミングを行う際に、急激に塞止弁11を加熱してしまうと、大きな熱応力が生じてしまう。このため、塞止弁11のウォーミングは、2分間、塞止弁11を開いて駆動蒸気を内部に流し込む工程(以下、リセットという)と、4分間、塞止弁11を閉じて、塞止弁11の温度の偏りを解消する工程(以下、トリップという)とを複数回繰り返すことにより行っていた。   Here, when the stop valve 11 is warmed when the stop valve 11 is warmed, a large thermal stress is generated. For this reason, the warming of the blocking valve 11 is performed by opening the blocking valve 11 for 2 minutes and flowing driving steam into the interior (hereinafter referred to as reset), and closing the blocking valve 11 for 4 minutes. The process of eliminating the temperature unevenness of the valve 11 (hereinafter referred to as a trip) was repeated a plurality of times.

図9に示すように、リセットの工程では、高圧加減弁12を閉じ、上流ドレン弁15及び下流ドレン弁16を開いた状態で塞止弁11を開く。これにより、主蒸気管40を流れる駆動蒸気が駆動蒸気配管10内部に流れこみ、上流ドレン排出口13及び下流ドレン排出口14より排出される。リセットの工程では、例えば2分間、このように駆動蒸気配管10内に駆動蒸気を通過させて、塞止弁11を加熱する。   As shown in FIG. 9, in the resetting process, the high pressure regulating valve 12 is closed, and the closing valve 11 is opened with the upstream drain valve 15 and the downstream drain valve 16 being opened. Thereby, the driving steam flowing through the main steam pipe 40 flows into the driving steam pipe 10 and is discharged from the upstream drain discharge port 13 and the downstream drain discharge port 14. In the resetting process, for example, the driving steam is allowed to pass through the driving steam pipe 10 in this way for 2 minutes to heat the blocking valve 11.

次に、図10に示すように、トリップの工程では、例えば4分間、上流ドレン弁15及び下流ドレン弁16を開いた状態のまま、塞止弁11を閉じる。これにより、駆動蒸気配管10内部に流れ込んだ駆動蒸気は、上流ドレン排出口13より排出され、塞止弁11まで到達することはほとんどない。これにより、塞止弁11はほとんど温度が上昇することなく、塞止弁11の温度に偏りが解消され、熱応力が緩和される。   Next, as shown in FIG. 10, in the trip step, for example, the closing valve 11 is closed while the upstream drain valve 15 and the downstream drain valve 16 are open for 4 minutes. As a result, the driving steam flowing into the driving steam pipe 10 is discharged from the upstream drain discharge port 13 and hardly reaches the blocking valve 11. As a result, the temperature of the blocking valve 11 hardly increases, the bias of the blocking valve 11 is eliminated, and the thermal stress is alleviated.

この際、リセット及びトリップの工程で上流ドレン弁15及び下流ドレン弁16を開放しているのは、駆動蒸気配管10内部の温度が低く、駆動蒸気が温度低下により超臨界状態から液体となり、凝縮水が発生した場合に、この凝縮水を配管外部に排出するためである。
なお、本出願人は、塞止弁のウォーミングに関する先行技術文献について調査したが、該当するものは発見されなかった。
At this time, the upstream drain valve 15 and the downstream drain valve 16 are opened in the reset and trip processes because the temperature inside the driving steam pipe 10 is low, and the driving steam becomes liquid from the supercritical state due to the temperature drop. This is because when the water is generated, the condensed water is discharged outside the pipe.
In addition, although this applicant investigated the prior art document regarding the warming of the obstruction valve, the applicable thing was not discovered.

ところで、上記のようなウォーミング方法では、上流側のドレン弁を開いた状態でトリップ及びリセットを行っているため、駆動蒸気配管内に送りこまれた駆動蒸気が上流側ドレン弁から流出してしまう。上流側ドレン弁から流出する駆動蒸気は塞止弁の温度の上昇に寄与しない。
図8は、従来の方法によりウォーミングを行った場合の内壁メタル温度及び蒸気量と、経過時間の関係を示すグラフである。同図に示すように、従来のウォーミング方法では、リセット及びトリップを行っている際に、塞止弁の温度上昇に寄与しない駆動蒸気が上流ドレン弁15より排出されていたため、図中斜線部で示す部分の面積に相当する量の駆動蒸気が必要となり、図中網かけで示す部分の面積に相当する量の駆動蒸気が無駄になっている。(なお、網掛部は後述するように、本発明のウォーミング方法により節約できる部分を示す。)
By the way, in the warming method as described above, since the trip and reset are performed with the upstream drain valve opened, the driving steam sent into the driving steam pipe flows out from the upstream drain valve. . The driving steam flowing out from the upstream drain valve does not contribute to an increase in the temperature of the blocking valve.
FIG. 8 is a graph showing the relationship between the inner wall metal temperature and the amount of steam and the elapsed time when warming is performed by a conventional method. As shown in the figure, in the conventional warming method, the driving steam that does not contribute to the temperature rise of the closing valve is discharged from the upstream drain valve 15 during resetting and tripping. The amount of driving steam corresponding to the area of the portion indicated by is required, and the amount of driving steam corresponding to the area of the portion indicated by hatching is wasted. (The shaded portion indicates a portion that can be saved by the warming method of the present invention, as will be described later.)

本発明は、上記の問題に鑑みなされたものであって、その目的は、駆動蒸気の熱を効率良く塞止弁のウォーミングに利用できる塞止弁のウォーミング方法及び塞止弁のウォーミングシステムを提供することである。 The present invention has been made in view of the above-described problems, and an object of the present invention is to provide a warming method for a shut-off valve that can efficiently use the heat of driving steam for warming the shut-off valve, and warming the shut-off valve. Is to provide a system .

本発明の塞止弁のウォーミング方法は、駆動蒸気をボイラから水蒸気タービンへ供給する駆動蒸気配管に設けられた塞止弁のウォーミング方法であって、前記駆動蒸気配管は、前記塞止弁の上流側及び下流側にそれぞれ設けられ、配管内部に発生したドレンを外部に排出するための上流側ドレン排出口及び下流側ドレン排出口と、上流側ドレン排出口及び下流側ドレン排出口をそれぞれ開閉する上流ドレン弁及び下流ドレン弁と、前記駆動蒸気配管の前記下流ドレン弁より下流側に設けられた加減弁とを備え、前記下流ドレン弁を開き、前記加減弁を閉じ、前記塞止弁を開くとともに、前記駆動蒸気配管内の温度が前記蒸気の超臨界温度に基づいて決定された閾温度未満の場合には、前記上流ドレン弁を開き、前記駆動蒸気配管内の温度が前記閾温度以上の場合には、前記上流ドレン弁を閉じるリセットステップと、前記塞止弁を閉じるとともに、前記駆動蒸気配管内の温度が前記蒸気の超臨界温度に基づいて決定された閾温度未満の場合には、前記上流ドレン弁を開き、前記駆動蒸気配管内の温度が前記閾温度以上の場合には、前記上流ドレン弁を閉じるトリップステップとを繰り返すことを特徴とする。 The closing valve warming method of the present invention is a closing valve warming method provided in a driving steam pipe for supplying driving steam from a boiler to a steam turbine, and the driving steam pipe is connected to the blocking valve. The upstream drain outlet and the downstream drain outlet, and the upstream drain outlet and the downstream drain outlet, respectively, are provided on the upstream side and the downstream side, respectively, for discharging the drain generated inside the pipe to the outside. An upstream drain valve and a downstream drain valve to be opened and closed; and an adjusting valve provided on the downstream side of the downstream drain valve of the driving steam pipe; opening the downstream drain valve; closing the adjusting valve; are opened, and wherein when the temperature of the motive steam in the pipe is lower than threshold temperature is determined based on the supercritical temperature of the steam, open the upstream drain valve, the temperature of the driving steam in the pipe is pre When the above threshold temperature, a reset step of closing the upstream drain valve, closes the stop valve, the temperature of the driving steam in the pipe is lower than threshold temperature is determined based on the supercritical temperature of the steam In this case, the upstream drain valve is opened, and when the temperature in the driving steam pipe is equal to or higher than the threshold temperature, a trip step for closing the upstream drain valve is repeated.

また、本発明の塞止弁のウォーミングシステムは、駆動蒸気をボイラから水蒸気タービンへ供給する駆動蒸気配管に設けられた塞止弁のウォーミングシステムであって、前記塞止弁の上流側及び下流側にそれぞれ設けられ、配管内部に発生したドレンを外部に排出するための上流側ドレン排出口及び下流側ドレン排出口にそれぞれ設けられた上流ドレン弁及び下流ドレン弁と、前記駆動蒸気配管の前記下流ドレン弁より下流側に設けられた加減弁と、前記駆動蒸気配管内の温度を測定する温度センサと、前記塞止弁、上流ドレン弁、下流ドレン弁、及び加減弁の開閉を制御可能な制御部とを備え、前記制御部は、前記下流ドレン弁を開き、前記加減弁を閉じ、前記塞止弁を開くとともに、前記温度センサにより測定された前記駆動蒸気配管内の温度が前記蒸気の超臨界温度に基づいて決定された閾温度未満の場合には、前記上流ドレン弁を開き、前記温度センサにより測定された前記駆動蒸気配管内の温度が前記閾温度以上の場合には、前記上流ドレン弁を閉じるリセットステップと、前記塞止弁を閉じるとともに、前記温度センサにより測定された前記駆動蒸気配管内の温度が前記蒸気の超臨界温度に基づいて決定された閾温度未満の場合には、前記上流ドレン弁を開き、前記温度センサにより測定された前記駆動蒸気配管内の温度が前記閾温度以上の場合には、前記上流ドレン弁を閉じるトリップステップとを繰り返すことを特徴とする。 Further, the closing valve warming system of the present invention is a closing valve warming system provided in a driving steam pipe for supplying driving steam from a boiler to a steam turbine, the upstream side of the blocking valve, An upstream drain valve and a downstream drain valve respectively provided at the downstream side and provided at the upstream drain outlet and the downstream drain outlet for discharging the drain generated inside the pipe to the outside, and the driving steam pipe Control of opening / closing of the control valve provided on the downstream side of the downstream drain valve, a temperature sensor for measuring the temperature in the driving steam pipe, and the closing valve, upstream drain valve, downstream drain valve, and control valve A control unit that opens the downstream drain valve, closes the control valve, opens the shut-off valve, and in the drive steam pipe measured by the temperature sensor. When the temperature is lower than a threshold temperature determined based on the supercritical temperature of the steam, the upstream drain valve is opened, and the temperature in the driving steam pipe measured by the temperature sensor is equal to or higher than the threshold temperature. A reset step of closing the upstream drain valve, closing the shut-off valve, and a temperature in the driving steam pipe measured by the temperature sensor determined based on a supercritical temperature of the steam If the temperature is less than the threshold temperature, the upstream drain valve is opened, and when the temperature in the driving steam pipe measured by the temperature sensor is equal to or higher than the threshold temperature, a trip step for closing the upstream drain valve is repeated. Features.

本発明によれば、駆動蒸気配管内の温度が蒸気の超臨界温度に基づいて決定された閾温度未満の場合には上流ドレン弁を開き、閾温度以上の場合には上流ドレン弁を閉じた状態で、リセット及びトリップを行うように構成したので、上流ドレン弁により、塞止弁の温度上昇に寄与しない駆動蒸気の流出を防止でき、効率よく塞止弁のウォーミングを行うことができる。 According to the present invention, the upstream drain valve is opened when the temperature in the driving steam pipe is lower than the threshold temperature determined based on the supercritical temperature of the steam, and the upstream drain valve is closed when the temperature is higher than the threshold temperature. Since the reset and trip are performed in the state, the upstream drain valve can prevent the driving steam from flowing out without contributing to the temperature rise of the stop valve, and the warming of the stop valve can be performed efficiently.

以下、本発明の塞止弁のウォーミング方法の一実施形態について図面を参照しながら説明する。
本実施形態のウォーミング方法は上記図1に示す駆動蒸気配管10を対象とする。なお、図2は図1に示す駆動蒸気配管10の模式図を示す。
駆動蒸気配管10は、主蒸気管40を流れる駆動蒸気を蒸気タービン30に供給するための配管であり、主蒸気管40より、例えば、圧力24.1MPa、温度538℃の超臨界状態の蒸気が供給される。なお、通常、蒸気は、温度が臨界温度373.95℃以上、かつ、圧力が臨界圧力22.064MPa以上となると超臨界状態となる。
Hereinafter, an embodiment of a warming method for a closing valve according to the present invention will be described with reference to the drawings.
The warming method of the present embodiment is directed to the drive steam pipe 10 shown in FIG. FIG. 2 is a schematic diagram of the drive steam pipe 10 shown in FIG.
The driving steam pipe 10 is a pipe for supplying the driving steam flowing through the main steam pipe 40 to the steam turbine 30. From the main steam pipe 40, for example, supercritical steam at a pressure of 24.1 MPa and a temperature of 538 ° C. Supplied. Normally, the vapor enters a supercritical state when the temperature reaches a critical temperature of 373.95 ° C. or higher and the pressure reaches a critical pressure of 22.064 MPa or higher.

図1及び図2に示すように、駆動蒸気配管10には、塞止弁11及び高圧加減弁12が取り付けられており、塞止弁11及び高圧加減弁12を開くことにより、蒸気タービン30に駆動蒸気が供給される。また、駆動蒸気配管10の塞止弁11の上流側及び下流側には、夫々、上流ドレン排出口13及び下流ドレン排出口14が設けられている。上流ドレン排出口13及び下流ドレン排出口14は、超臨界状態の蒸気が温度又は圧力が低下することにより駆動蒸気配管10内に生じた凝縮水を排出するためのものである。上流ドレン排出口13及び下流ドレン排出口14には、夫々を開閉する上流ドレン弁15及び下流ドレン弁16が設けられている。   As shown in FIGS. 1 and 2, the driving steam pipe 10 is provided with a blocking valve 11 and a high-pressure adjusting valve 12. By opening the blocking valve 11 and the high-pressure adjusting valve 12, the steam steam 30 is attached to the steam turbine 30. Driving steam is supplied. An upstream drain outlet 13 and a downstream drain outlet 14 are provided on the upstream side and the downstream side of the closing valve 11 of the drive steam pipe 10, respectively. The upstream drain discharge port 13 and the downstream drain discharge port 14 are for discharging condensed water generated in the drive steam pipe 10 due to a drop in temperature or pressure of the supercritical steam. The upstream drain outlet 13 and the downstream drain outlet 14 are provided with an upstream drain valve 15 and a downstream drain valve 16 that open and close each of them.

蒸気タービン30の起動時には、超臨界状態の駆動蒸気が主蒸気管40より駆動蒸気配管10内に流れ込む。この際、塞止弁11の温度が低いと、駆動蒸気の熱により塞止弁11の温度が急激に上昇して、大きな熱応力が作用してしまう。そこで、塞止弁11の温度が低下するのを抑えるために、蒸気タービン30を停止した後、駆動蒸気配管10の内壁の温度(以下、内壁メタル温度という)が350℃以下になった場合には塞止弁11のウォーミングを行う。   When the steam turbine 30 is started, supercritical driving steam flows from the main steam pipe 40 into the driving steam pipe 10. At this time, if the temperature of the blocking valve 11 is low, the temperature of the blocking valve 11 rapidly increases due to the heat of the driving steam, and a large thermal stress acts. Therefore, when the temperature of the inner wall of the driving steam pipe 10 (hereinafter referred to as the inner wall metal temperature) becomes 350 ° C. or less after the steam turbine 30 is stopped in order to suppress the temperature of the closing valve 11 from being lowered. Performs warming of the blocking valve 11.

図3は、本実施形態のウォーミングシステムを示す構成図である。本実施形態のウォーミングシステム1は、上記説明した塞止弁11と、高圧加減弁12と、上流ドレン弁15と、下流ドレン弁16と、駆動蒸気配管10に取付けられた温度センサ17と、制御部20と、で構成される。制御部20は、塞止弁11、高圧加減弁12、上流ドレン弁15、及び下流ドレン弁16に電気的に接続されており、これらの弁の開閉を制御できる。また、制御部20は温度センサ17と電気的に接続されており、温度センサ17により測定された駆動蒸気配管10の内壁メタルの温度が入力される。   FIG. 3 is a configuration diagram showing the warming system of the present embodiment. The warming system 1 of the present embodiment includes the above-described blocking valve 11, high-pressure control valve 12, upstream drain valve 15, downstream drain valve 16, and temperature sensor 17 attached to the drive steam pipe 10, And a control unit 20. The control unit 20 is electrically connected to the blocking valve 11, the high pressure regulating valve 12, the upstream drain valve 15, and the downstream drain valve 16, and can control the opening and closing of these valves. The control unit 20 is electrically connected to the temperature sensor 17, and the temperature of the inner wall metal of the drive steam pipe 10 measured by the temperature sensor 17 is input.

本実施形態のウォーミングシステム1は、温度センサ17により測定された内壁メタルの温度が350℃以下となると、制御部20が、塞止弁11、高圧加減弁12、上流ドレン弁15、及び下流ドレン弁16を適宜開閉させることによりトリップ及びリセットの工程を行う。   In the warming system 1 of the present embodiment, when the temperature of the inner wall metal measured by the temperature sensor 17 becomes 350 ° C. or less, the control unit 20 controls the blocking valve 11, the high pressure regulator 12, the upstream drain valve 15, and the downstream A trip and reset process is performed by opening and closing the drain valve 16 as appropriate.

ここで、制御部20には、予め超臨界温度に基づき決定された閾温度が記録されており、トリップ及びリセットの工程において、温度センサ17により測定された内壁メタル温度が、閾温度未満の場合には、上流ドレン弁15を開き、閾温度以上の場合には、上流ドレン弁15を閉じる。   Here, a threshold temperature determined in advance based on the supercritical temperature is recorded in the control unit 20, and the inner wall metal temperature measured by the temperature sensor 17 in the trip and reset process is less than the threshold temperature. In this case, the upstream drain valve 15 is opened. When the temperature is equal to or higher than the threshold temperature, the upstream drain valve 15 is closed.

温度センサ17により測定される内壁メタルの温度が閾温度を超えている場合には、駆動蒸気配管10内部に駆動蒸気が流れこんでも、駆動蒸気の温度が臨界温度以下となることがない。また、上記の通り、駆動蒸気は臨界圧力以上の圧力を有する。このため、駆動蒸気配管10内に送られた駆動蒸気の温度及び圧力は臨界温度及び臨界圧力以下にならず、駆動蒸気は超臨界状態のままであり、凝縮水となることはない。このように、凝縮水が発生しないため、上流ドレン弁15を閉じても、駆動蒸気配管10内にドレンが溜まることはない。   When the temperature of the inner wall metal measured by the temperature sensor 17 exceeds the threshold temperature, even if the driving steam flows into the driving steam pipe 10, the temperature of the driving steam does not fall below the critical temperature. Further, as described above, the driving steam has a pressure equal to or higher than the critical pressure. For this reason, the temperature and pressure of the driving steam sent into the driving steam pipe 10 do not become lower than the critical temperature and the critical pressure, and the driving steam remains in a supercritical state and does not become condensed water. Thus, since condensed water does not generate | occur | produce, even if the upstream drain valve 15 is closed, a drain does not accumulate in the drive steam piping 10. FIG.

なお、本実施形態では、ドレンが発生してしまうとタービン翼損傷のそれがあり、また、上流ドレン弁15を閉止後、塞止弁11前後の圧力差が増大することで、塞止弁11が全開出来なくなる可能性があるため、閾温度を、臨界温度(=373.95℃)に安全のため10℃の裕度を加えた温度(=383.95℃)とした。   In the present embodiment, if the drain is generated, the turbine blade may be damaged. Further, after the upstream drain valve 15 is closed, the pressure difference between the front and back of the stop valve 11 increases, so that the stop valve 11 Therefore, the threshold temperature was set to a temperature (= 383.95 ° C.) obtained by adding a margin of 10 ° C. to the critical temperature (= 373.95 ° C.) for safety.

以下、本実施形態のウォーミング方法について説明する。
温度センサにより測定される内壁メタル温度が閾温度に達するまでは、従来のウォーミング方法と同様に行う。
すなわち、蒸気タービン30を停止した後、温度センサ17により測定される内壁メタル温度が350度以下となると、図4に示すように、制御部20は、従来と同様に、高圧加減弁12を閉じ、上流ドレン弁15及び下流ドレン弁16を開いた状態で塞止弁11を開くリセットの工程を行う。これにより、主蒸気管40を流れる駆動蒸気が駆動蒸気配管10内部に流れこみ、上流ドレン排出口13及び下流ドレン排出口14より排出される。このように、例えば2分間、駆動蒸気配管10内に駆動蒸気を通過させて、塞止弁11を加熱する。
Hereinafter, the warming method of this embodiment will be described.
The conventional warming method is performed until the inner wall metal temperature measured by the temperature sensor reaches the threshold temperature.
That is, after the steam turbine 30 is stopped, when the inner wall metal temperature measured by the temperature sensor 17 becomes 350 ° C. or less, the control unit 20 closes the high pressure regulating valve 12 as shown in FIG. Then, a resetting process is performed in which the closing valve 11 is opened while the upstream drain valve 15 and the downstream drain valve 16 are opened. Thereby, the driving steam flowing through the main steam pipe 40 flows into the driving steam pipe 10 and is discharged from the upstream drain discharge port 13 and the downstream drain discharge port 14. In this manner, for example, the driving steam is passed through the driving steam pipe 10 for 2 minutes to heat the blocking valve 11.

リセットが終了した後、図5に示すように、制御部20は、上流ドレン弁15及び下流ドレン弁16を開いた状態のまま、塞止弁11を閉じるトリップの工程を行う。これにより、駆動蒸気配管10内部に流れ込んだ駆動蒸気は、上流ドレン排出口13より排出され、塞止弁11まで到達することはほとんどない。これにより、塞止弁11は加熱されることなく、塞止弁11の温度に偏りが解消され、熱応力が緩和される。このような状態で例えば、4分間待機する。   After the reset is completed, as shown in FIG. 5, the control unit 20 performs a trip process for closing the closing valve 11 while the upstream drain valve 15 and the downstream drain valve 16 are opened. As a result, the driving steam flowing into the driving steam pipe 10 is discharged from the upstream drain discharge port 13 and hardly reaches the blocking valve 11. As a result, the non-uniformity in temperature of the blocking valve 11 is eliminated and the thermal stress is alleviated without heating the blocking valve 11. In this state, for example, it waits for 4 minutes.

制御部20は、温度センサ17により測定される内壁メタル温度が閾温度を超えるまで、上記のリセット及びトリップを繰り返す。そして、本実施形態のウォーミング方法では、温度センサ17により測定された内壁メタル温度が閾温度を超えると、制御部20は上流ドレン弁15を閉じた状態でリセット及びトリップを行う。   The controller 20 repeats the above reset and trip until the inner wall metal temperature measured by the temperature sensor 17 exceeds the threshold temperature. In the warming method of the present embodiment, when the inner wall metal temperature measured by the temperature sensor 17 exceeds the threshold temperature, the control unit 20 performs reset and trip while the upstream drain valve 15 is closed.

図6は、上流ドレン弁15を閉じた状態でリセットを行っている状況を示す図である。同図に示すように、上流ドレン弁15及び高圧加減弁12を閉止し、塞止弁11及び下流ドレン弁16を開くことにより、主蒸気管40より駆動蒸気が流れ込み、下流ドレン排出口16より排出される。このように、上流ドレン弁15を閉じることにより駆動蒸気配管10に流れ込んだ駆動蒸気を塞止弁11の加熱に利用することができる。このような状態で2分間リセットを行った後、塞止弁11を閉じてトリップを行う。   FIG. 6 is a diagram showing a situation where the reset is performed with the upstream drain valve 15 closed. As shown in the figure, the upstream drain valve 15 and the high pressure control valve 12 are closed, and the blocking valve 11 and the downstream drain valve 16 are opened, so that driving steam flows from the main steam pipe 40 and from the downstream drain discharge port 16. Discharged. Thus, the driving steam that has flowed into the driving steam pipe 10 by closing the upstream drain valve 15 can be used for heating the blocking valve 11. After resetting for 2 minutes in such a state, the closing valve 11 is closed to perform a trip.

図7は、上流ドレン弁15を閉じた状態で、トリップを行っている状況を示す図である。同図に示すように、上流ドレン弁15及び塞止弁11を閉じることにより、主蒸気管40より駆動蒸気が流入することがない。また、上流ドレン弁15を閉止していることにより、塞止弁11の加熱に寄与しない駆動蒸気が排出されることを防ぐことができる。なお、この際、上記の通り、駆動蒸気配管10の内部は閾温度を超えているため、駆動蒸気の圧力が臨界圧力以下となることがなく、ドレンが発生することはない。   FIG. 7 is a diagram showing a situation where a trip is performed with the upstream drain valve 15 closed. As shown in the figure, the driving steam does not flow from the main steam pipe 40 by closing the upstream drain valve 15 and the blocking valve 11. Further, since the upstream drain valve 15 is closed, it is possible to prevent the driving steam that does not contribute to the heating of the closing valve 11 from being discharged. At this time, as described above, since the inside of the drive steam pipe 10 exceeds the threshold temperature, the pressure of the drive steam does not become the critical pressure or less, and no drain is generated.

このように、上流ドレン弁15を閉じた状態で上記のリセット及びトリップを繰り返し、温度センサにより測定される温度が所定の温度まで上昇したら、ウォーミングを終了する。   In this way, the above reset and trip are repeated with the upstream drain valve 15 closed, and the warming is finished when the temperature measured by the temperature sensor rises to a predetermined temperature.

従来技術の欄に記載したように、従来のウォーミング方法では、リセット及びトリップを行っている際に、塞止弁の温度上昇に寄与しない駆動蒸気が上流ドレン弁15より排出されていたため、図8に網かけして示す部分の面積に相当する量の駆動蒸気が無駄になっていたが、本実施形態のウォーミング方法によれば、内壁メタル温度が閾温度以上となると、上流ドレン弁15を閉じるため、図8に図中網かけして示した部分の面積に相当する量の駆動蒸気を節約できることとなる。   As described in the column of the prior art, in the conventional warming method, the driving steam that does not contribute to the temperature rise of the closing valve is discharged from the upstream drain valve 15 during resetting and tripping. However, according to the warming method of the present embodiment, when the inner wall metal temperature is equal to or higher than the threshold temperature, the upstream drain valve 15 is wasteful. Therefore, the amount of driving steam corresponding to the area of the portion shaded in FIG. 8 can be saved.

以上説明したように、本実施形態のウォーミング方法によれば、内壁メタル温度がドレン水が発生しない温度になると、上流ドレン弁を閉じるため、上流ドレン弁より塞止弁の温度の上昇に寄与しない駆動蒸気の流出を防止することができる。これにより、効率的に塞止弁の加熱を行うことができ、コストの削減を図ることができる。   As described above, according to the warming method of the present embodiment, when the inner wall metal temperature becomes a temperature at which no drain water is generated, the upstream drain valve is closed, which contributes to an increase in the temperature of the blocking valve from the upstream drain valve. It is possible to prevent the driving steam from flowing out. Thereby, the closing valve can be efficiently heated, and the cost can be reduced.

ウォーミング方法の適用の対象となる駆動蒸気配管を示す断面図である。It is sectional drawing which shows the drive steam piping used as the object of application of a warming method. ウォーミング方法の適用の対象となる駆動蒸気配管の模式図である。It is a schematic diagram of the drive steam piping used as the object of application of a warming method. 本実施形態のウォーミングシステムの構成を示す図である。It is a figure which shows the structure of the warming system of this embodiment. 内壁メタル温度が閾温度を超える前のリセットの工程を示す図である。It is a figure which shows the reset process before an inner wall metal temperature exceeds a threshold temperature. 内壁メタル温度が閾温度を超える前のトリップの工程を示す図である。It is a figure which shows the process of the trip before an inner wall metal temperature exceeds a threshold temperature. 内壁メタル温度が閾温度を超えた後のリセットの工程を示す図である。It is a figure which shows the reset process after an inner wall metal temperature exceeds a threshold temperature. 内壁メタル温度が閾温度を超えた後のトリップの工程を示す図である。It is a figure which shows the process of the trip after an inner wall metal temperature exceeds threshold temperature. 従来の方法によりウォーミングを行った場合の内壁メタル温度及び蒸気量と、経過時間の関係を示すグラフである。It is a graph which shows the relationship between the inner wall metal temperature and vapor | steam amount at the time of warming by the conventional method, and elapsed time. 従来のリセットの工程を示す図である。It is a figure which shows the process of the conventional reset. 従来のトリップの工程を示す図である。It is a figure which shows the process of the conventional trip.

符号の説明Explanation of symbols

1 ウォーミングシステム
10 駆動蒸気配管
11 塞止弁
12 高圧加減弁
13 上流ドレン排出口
14 下流ドレン排出口
15 上流ドレン弁
16 下流ドレン弁
17 温度センサ
20 制御部
30 蒸気タービン
40 主蒸気管
DESCRIPTION OF SYMBOLS 1 Warming system 10 Drive steam piping 11 Stop valve 12 High pressure control valve 13 Upstream drain discharge port 14 Downstream drain discharge port 15 Upstream drain valve 16 Downstream drain valve 17 Temperature sensor 20 Control part 30 Steam turbine 40 Main steam pipe

Claims (2)

駆動蒸気をボイラから水蒸気タービンへ供給する駆動蒸気配管に設けられた塞止弁のウォーミング方法であって、
前記駆動蒸気配管は、前記塞止弁の上流側及び下流側にそれぞれ設けられ、配管内部に発生したドレンを外部に排出するための上流側ドレン排出口及び下流側ドレン排出口と、
上流側ドレン排出口及び下流側ドレン排出口をそれぞれ開閉する上流ドレン弁及び下流ドレン弁と、
前記駆動蒸気配管の前記下流ドレン弁より下流側に設けられた加減弁とを備え、
前記下流ドレン弁を開き、前記加減弁を閉じ、前記塞止弁を開くとともに、前記駆動蒸気配管内の温度が前記蒸気の超臨界温度に基づいて決定された閾温度未満の場合には、前記上流ドレン弁を開き、前記駆動蒸気配管内の温度が前記閾温度以上の場合には、前記上流ドレン弁を閉じるリセットステップと、
前記塞止弁を閉じるとともに、前記駆動蒸気配管内の温度が前記蒸気の超臨界温度に基づいて決定された閾温度未満の場合には、前記上流ドレン弁を開き、前記駆動蒸気配管内の温度が前記閾温度以上の場合には、前記上流ドレン弁を閉じるトリップステップとを繰り返すことを特徴とするウォーミング方法。
A warming method for a shut-off valve provided in a drive steam pipe for supplying drive steam from a boiler to a steam turbine,
The drive steam pipes are provided on the upstream side and the downstream side of the block valve, respectively, and an upstream drain outlet and a downstream drain outlet for discharging the drain generated inside the pipe to the outside,
An upstream drain valve and a downstream drain valve for opening and closing the upstream drain outlet and the downstream drain outlet, respectively;
An adjusting valve provided on the downstream side of the downstream drain valve of the drive steam pipe,
When the downstream drain valve is opened, the control valve is closed, the closing valve is opened, and the temperature in the driving steam pipe is lower than a threshold temperature determined based on the supercritical temperature of the steam, A reset step of opening the upstream drain valve and closing the upstream drain valve when the temperature in the drive steam pipe is equal to or higher than the threshold temperature;
When the shut-off valve is closed and the temperature in the driving steam pipe is lower than a threshold temperature determined based on the supercritical temperature of the steam, the upstream drain valve is opened, and the temperature in the driving steam pipe is When the temperature is equal to or higher than the threshold temperature, the warming method is characterized by repeating a trip step for closing the upstream drain valve.
駆動蒸気をボイラから水蒸気タービンへ供給する駆動蒸気配管に設けられた塞止弁のウォーミングシステムであって、
前記塞止弁の上流側及び下流側にそれぞれ設けられ、配管内部に発生したドレンを外部に排出するための上流側ドレン排出口及び下流側ドレン排出口にそれぞれ設けられた上流ドレン弁及び下流ドレン弁と、
前記駆動蒸気配管の前記下流ドレン弁より下流側に設けられた加減弁と、
前記駆動蒸気配管内の温度を測定する温度センサと、
前記塞止弁、上流ドレン弁、下流ドレン弁、及び加減弁の開閉を制御可能な制御部とを備え、
前記制御部は、前記下流ドレン弁を開き、前記加減弁を閉じ、前記塞止弁を開くとともに、前記温度センサにより測定された前記駆動蒸気配管内の温度が前記蒸気の超臨界温度に基づいて決定された閾温度未満の場合には、前記上流ドレン弁を開き、前記温度センサにより測定された前記駆動蒸気配管内の温度が前記閾温度以上の場合には、前記上流ドレン弁を閉じるリセットステップと、
前記塞止弁を閉じるとともに、前記温度センサにより測定された前記駆動蒸気配管内の温度が前記蒸気の超臨界温度に基づいて決定された閾温度未満の場合には、記上流ドレン弁を開き、前記温度センサにより測定された前記駆動蒸気配管内の温度が前記閾温度以上の場合には、前記上流ドレン弁を閉じるトリップステップとを繰り返すことを特徴とする塞止弁のウォーミングシステム。
A warming system for a shut-off valve provided in a driving steam pipe for supplying driving steam from a boiler to a steam turbine,
An upstream drain valve and a downstream drain provided respectively on the upstream drain side and the downstream drain outlet provided on the upstream side and the downstream side of the blocking valve, respectively, for discharging the drain generated inside the pipe to the outside. A valve,
An adjusting valve provided on the downstream side of the downstream drain valve of the driving steam pipe;
A temperature sensor for measuring the temperature in the drive steam pipe;
A control unit capable of controlling the opening and closing of the blocking valve, the upstream drain valve, the downstream drain valve, and the adjusting valve;
The control unit opens the downstream drain valve, closes the control valve, opens the shut-off valve, and the temperature in the driving steam pipe measured by the temperature sensor is based on the supercritical temperature of the steam. A reset step of opening the upstream drain valve if the temperature is lower than the determined threshold temperature, and closing the upstream drain valve if the temperature in the drive steam pipe measured by the temperature sensor is equal to or higher than the threshold temperature. When,
It closes the stop valve, wherein when the temperature of the motive steam in the pipe measured by the temperature sensor is lower than threshold temperature is determined based on the supercritical temperature of the steam, open the front Symbol upstream drain valve When the temperature in the driving steam pipe measured by the temperature sensor is equal to or higher than the threshold temperature, a tripping step for closing the upstream drain valve is repeated.
JP2007337130A 2007-12-27 2007-12-27 Warming valve warming method, warming valve warming system Expired - Fee Related JP4954053B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007337130A JP4954053B2 (en) 2007-12-27 2007-12-27 Warming valve warming method, warming valve warming system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007337130A JP4954053B2 (en) 2007-12-27 2007-12-27 Warming valve warming method, warming valve warming system

Publications (2)

Publication Number Publication Date
JP2009156215A JP2009156215A (en) 2009-07-16
JP4954053B2 true JP4954053B2 (en) 2012-06-13

Family

ID=40960480

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007337130A Expired - Fee Related JP4954053B2 (en) 2007-12-27 2007-12-27 Warming valve warming method, warming valve warming system

Country Status (1)

Country Link
JP (1) JP4954053B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6178104B2 (en) * 2013-04-19 2017-08-09 株式会社東芝 Steam turbine piping and piping
JP6617073B2 (en) * 2016-05-12 2019-12-04 株式会社日立製作所 Power supply system

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5237523B2 (en) * 1973-04-04 1977-09-22
JPS54118902A (en) * 1978-03-08 1979-09-14 Toshiba Corp Steam cut-off valve warming equipment
JPH0652049B2 (en) * 1985-05-30 1994-07-06 株式会社東芝 Adjustable valve warming control method and apparatus
JPH0381506A (en) * 1989-08-25 1991-04-05 Toshiba Corp Steam governing valve chest warming method
JP2953794B2 (en) * 1991-02-16 1999-09-27 株式会社東芝 Steam control valve chest warming method
JPH05222903A (en) * 1992-02-12 1993-08-31 Toshiba Corp Steam governing valve chest warming device

Also Published As

Publication number Publication date
JP2009156215A (en) 2009-07-16

Similar Documents

Publication Publication Date Title
JP2010106835A (en) Rapid heating of steam pipe in electric power station
US10982567B2 (en) Condensate and feedwater system of steam power plant and operation method for the same
JP4982507B2 (en) Turbine ground seal steam temperature reduction control device and plant control method in steam turbine power generation facility
JP6376390B2 (en) Hot water storage hot water system
JP4954053B2 (en) Warming valve warming method, warming valve warming system
JP5783458B2 (en) Increased output operation method in steam power plant
JP2010261618A (en) Hot water storage type hot water supply device
JP5178575B2 (en) Power plant water supply apparatus and control method
CN110382842B (en) Gas turbine combined cycle plant and control method for gas turbine combined cycle plant
JP6607375B2 (en) Auxiliary heat source machine
JP5708975B2 (en) Water heater
JP2008309391A (en) Heat pump type hot water supply device
KR101749125B1 (en) heating water suppling system and controlling method thereof
JP2010131953A (en) Mold temperature controller
JP6624879B2 (en) Water heater
JP2009287838A (en) Heat pump water heater
JP5225714B2 (en) Hot water system
JP2016005830A (en) Flue gas treatment apparatus, and operational method of flue gas treatment apparatus
KR102245954B1 (en) How the waste heat steam generator works
KR101701786B1 (en) Plant control apparatus and combined cycle power plant
JP2008232496A (en) Heating system
JP7303554B2 (en) hot water system
JP7064694B2 (en) Hot water storage and hot water supply device
JP7382811B2 (en) Heat exchanger
JP2017172949A (en) Hot water heating device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100319

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110906

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111004

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120306

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120313

R150 Certificate of patent or registration of utility model

Ref document number: 4954053

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150323

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150323

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees