JP4953856B2 - Equalization circuit - Google Patents

Equalization circuit Download PDF

Info

Publication number
JP4953856B2
JP4953856B2 JP2007049326A JP2007049326A JP4953856B2 JP 4953856 B2 JP4953856 B2 JP 4953856B2 JP 2007049326 A JP2007049326 A JP 2007049326A JP 2007049326 A JP2007049326 A JP 2007049326A JP 4953856 B2 JP4953856 B2 JP 4953856B2
Authority
JP
Japan
Prior art keywords
delay
delay time
circuit
path
replica
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007049326A
Other languages
Japanese (ja)
Other versions
JP2008219078A (en
Inventor
寛和 久保田
由明 木坂
英二 吉田
宮本  裕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2007049326A priority Critical patent/JP4953856B2/en
Publication of JP2008219078A publication Critical patent/JP2008219078A/en
Application granted granted Critical
Publication of JP4953856B2 publication Critical patent/JP4953856B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、ディジタルデータ信号を伝送するディジタル伝送システムに使用される受信したデータ信号の波形の歪を識別再生前に補正する等化回路に関する。   The present invention relates to an equalizing circuit for correcting distortion of a waveform of a received data signal used for a digital transmission system for transmitting a digital data signal before identification reproduction.

近年のディジタル伝送システムの高速化に伴い、伝送路における信号品質劣化は無視できなくなっている。伝送路システムでは伝送路の損失のみならず、波長分散(GVD)や偏波モード分散(PMD)、さらにマルチモードファイバを用いたシステムではモード分散による波形劣化が大きな課題である。   With the recent increase in the speed of digital transmission systems, signal quality degradation in the transmission line cannot be ignored. In the transmission line system, not only the loss of the transmission line, but also wavelength degradation (GVD) and polarization mode dispersion (PMD), and in the system using the multimode fiber, the waveform deterioration due to the mode dispersion is a big problem.

従来、小型かつ低コストな解決策の1つとして、電気回路による適応波形等化技術が適用されている。代表的な等化回路として、トランスバーサル型等化回路(Finite Impulse Response filter:有限インパルス応答フィルタとも呼ばれる)と再帰型等化回路(infinite Impulse Response filter:無限インパルス応答フィルタとも呼ばれる)が広く通信システムに適用されている(例えば、非特許文献1参照)。   Conventionally, an adaptive waveform equalization technique using an electric circuit has been applied as one of small and low-cost solutions. As typical equalization circuits, a transversal type equalization circuit (also called a finite impulse response filter) and a recursive type equalization circuit (also called an infinite impulse response filter) are widely used as communication systems. (See, for example, Non-Patent Document 1).

従来の等化回路を図9を参照して説明する。図9は従来の等化回路の動作を説明するための図である。従来の等化回路は、図9に示すように、劣化した波形を時間軸でずらして、重み付けして加減算を行うことにより、波形の整形を行うものである。構成は、図10に示すように、分配回路1によって受信信号のレプリカ信号を複数作り、遅延回路42〜4n−nによって各レプリカ信号に異なる遅延を与え、さらに、各レプリカ信号に乗算回路51〜5nによって信号強度の重み付けをした後に加算回路16により加算する。   A conventional equalization circuit will be described with reference to FIG. FIG. 9 is a diagram for explaining the operation of a conventional equalization circuit. As shown in FIG. 9, the conventional equalization circuit shapes the waveform by shifting the deteriorated waveform on the time axis, performing weighting, and performing addition / subtraction. As shown in FIG. 10, the distribution circuit 1 generates a plurality of replica signals of the received signal, the delay circuits 42 to 4n-n give different delays to the replica signals, and each replica signal has a multiplier circuit 51 to The signal strength is weighted by 5n and then added by the adder circuit 16.

分配数(段数、タップ数とも言う)、および、各レプリカ信号の重み付け設定を変更することで、等化回路の伝達関数を変更することができ、多様な波形劣化を実現可能である。図11に示すように、n個の分配回路61〜6n、n個の遅延回路71〜7n、(n+1)個の乗算回路81〜8(n+1)、1個の加算回路32のような構成とすることで遅延回路71〜7nの総遅延時間量が少なくなり回路を小型にすることができる。劣化要因の状態変化が前もってわからないため、各レプリカ信号の重み付け設定を最適条件となるように自己学習させるのが適応等化である(例えば、非特許文献2参照)。   By changing the number of distributions (also called the number of stages and the number of taps) and the weighting setting of each replica signal, the transfer function of the equalization circuit can be changed, and various waveform deteriorations can be realized. As shown in FIG. 11, the configuration includes n distribution circuits 61 to 6n, n delay circuits 71 to 7n, (n + 1) multiplication circuits 81 to 8 (n + 1), and one addition circuit 32. As a result, the total delay time amount of the delay circuits 71 to 7n is reduced, and the circuit can be reduced in size. Since the state change of the deterioration factor is not known in advance, it is adaptive equalization to perform self-learning so that the weighting setting of each replica signal becomes an optimum condition (for example, see Non-Patent Document 2).

M.Nakamura,H.Nosaka,M.Ida,K.Kurishima,and M.Tokumitsu、paperTuG4,OFC2004、“Electrical PMD equalizer ICs for a40−Gbit/s transmission”M.M. Nakamura, H .; Nosaka, M .; Ida, K .; Kurishima, and M.K. Tokumitsu, paperTuG4, OFC2004, “Electrical PMD equalizer ICs for a40-Gbit / s transmission” 坂庭好一訳「ディジタルコミュニケーション」、科学技術出版、10−1−2節ならびに10−2節Translation of Yoshikazu Sabatani “Digital Communication”, Science and Technology Publishing, Sections 10-1-2 and 10-2

精密に補正するためには各レプリカ信号間の時間差を細かく複製することが好ましい。一方、大きな波形劣化を補正するためには最初のレプリカ信号と最後のレプリカ信号との間の遅延時間差を劣化した波形を含む程度にまで大きくとる必要があるため、細かい時間差でレプリカ信号を作成すると多くのレプリカ信号が必要になり、回路が複雑化してしまう。   In order to correct precisely, it is preferable to replicate the time difference between each replica signal finely. On the other hand, in order to correct large waveform deterioration, it is necessary to make the delay time difference between the first replica signal and the last replica signal large enough to include the deteriorated waveform. Many replica signals are required, which complicates the circuit.

すなわち、トランスバーサル型等化回路の解析や設計は、従来は、各レプリカ信号間の遅延時間差は等しいとして解析および設計を行ってきた。これは波形劣化要因の数学的なモデルが等間隔で離散化したものであるため、その補償のためには歪のモデル化に対応して等間隔で解析するのが自然だからである(例えば、非特許文献2参照)。   That is, the analysis and design of the transversal equalization circuit has conventionally been analyzed and designed on the assumption that the delay time difference between the replica signals is equal. This is because a mathematical model of the waveform deterioration factor is discretized at equal intervals, and therefore it is natural to analyze at equal intervals in response to distortion modeling for the compensation (for example, Non-patent document 2).

このため、最初のレプリカ信号と最後のレプリカ信号との間の遅延時間差を劣化した波形を含む程度にまで大きくとると、複製するレプリカ信号数の増大が不可欠であり、回路が複雑化してしまう。   For this reason, if the delay time difference between the first replica signal and the last replica signal is large enough to include a deteriorated waveform, it is indispensable to increase the number of replica signals to be replicated, and the circuit becomes complicated.

本発明は、このような背景の下に行われたものであって、少ないレプリカ信号数により補正能力を向上させることができる等化回路および歪軽減方法を提供することを目的とする。   The present invention has been made under such a background, and an object thereof is to provide an equalization circuit and a distortion reduction method capable of improving the correction capability with a small number of replica signals.

本発明の等化回路は、各レプリカ信号間の遅延時間差を不等間隔とすることにより、少ないレプリカ信号数で等化回路の補正能力を向上させることを特徴とする。   The equalization circuit of the present invention is characterized in that the correction capability of the equalization circuit is improved with a small number of replica signals by making the delay time difference between the replica signals unequal.

すなわち、本発明は、受信信号から複数のレプリカ信号を複製し、それぞれのレプリカ信号に遅延を与え、それぞれのレプリカ信号に重み付けをして加減算し、前記受信信号の歪を軽減する等化回路である。   That is, the present invention provides an equalization circuit that duplicates a plurality of replica signals from a received signal, delays each replica signal, adds and subtracts each replica signal by weighting, and reduces distortion of the received signal. is there.

ここで、本発明の特徴とするところは、レプリカ信号間の遅延時間のうち少なくとも1つが他の遅延時間とは異なるように遅延量を与える手段を備えたところにある。   Here, a feature of the present invention resides in that there is provided means for giving a delay amount so that at least one of the delay times between the replica signals is different from other delay times.

例えば、レプリカ信号の複製数が奇数の場合には中央のレプリカ信号の遅延時間を基準遅延時間とし、レプリカ信号の複製数が偶数の場合には中央2個のレプリカ信号の遅延時間の平均を基準遅延時間とし、その基準遅延時間と各レプリカ信号の遅延時間との差の最大値がシンボルレートの逆数の時間の0.75倍よりも大きく1.2倍以下であることが望ましい。   For example, when the number of replica signal replicas is an odd number, the delay time of the central replica signal is used as a reference delay time. When the number of replica signal replicas is an even number, the average of the delay times of two central replica signals is used as a reference. It is desirable that the delay time is such that the maximum difference between the reference delay time and the delay time of each replica signal is greater than 0.75 times the reciprocal time of the symbol rate and not more than 1.2 times.

例えば、レプリカ信号の複製数が4つであり、各レプリカ信号を遅延時間が少ない順に並べた場合に、2番目と3番目のレプリカ信号間の遅延時間差がそれ以外のレプリカ信号間の遅延時間差に比べて短い。ただし、2番目と3番目のレプリカ信号間の遅延時間差がそれ以外の一部のレプリカ信号間の遅延時間差と等しくなる場合もある。   For example, when there are four replica signals and the replica signals are arranged in ascending order of the delay time, the delay time difference between the second and third replica signals becomes the delay time difference between the other replica signals. Shorter than that. However, the delay time difference between the second and third replica signals may be equal to the delay time difference between some other replica signals.

この場合には、2番目と3番目のレプリカ信号間の遅延時間差がシンボルレートの逆数の時間の0.5倍以下であり、この2個のレプリカ間の遅延時間の平均から測った1番目のレプリカ信号あるいは4番目のレプリカ信号の遅延時間差は、少なくとも一方がシンボルレートの逆数の0.75倍より大きく1.2倍以下であることが望ましい。   In this case, the delay time difference between the second and third replica signals is not more than 0.5 times the reciprocal time of the symbol rate, and the first one measured from the average delay time between the two replicas. It is desirable that at least one of the delay time differences of the replica signal or the fourth replica signal is greater than 0.75 times the reciprocal of the symbol rate and not more than 1.2 times.

また、本発明を歪軽減方法の観点から観ることもできる。すなわち、本発明は、受信信号から複数のレプリカ信号を複製し、それぞれのレプリカ信号に遅延を与え、それぞれのレプリカ信号に重み付けをして加減算し、前記受信信号の歪を軽減する等化回路が行う歪軽減方法である。   The present invention can also be viewed from the viewpoint of a distortion reducing method. That is, the present invention provides an equalization circuit that duplicates a plurality of replica signals from a received signal, delays each replica signal, adds and subtracts each replica signal by weighting, and reduces distortion of the received signal. This is a distortion reduction method to be performed.

ここで、本発明の特徴とするところは、レプリカ信号間の遅延時間のうち少なくとも1つが他の遅延時間とは異なるように遅延量を与えるところにある。   Here, the feature of the present invention is that the delay amount is given so that at least one of the delay times between the replica signals is different from the other delay times.

本発明によれば、レプリカ信号数が4程度の簡略な回路構成によっても等化回路の補正特性向上を実現できる。   According to the present invention, the correction characteristic of the equalization circuit can be improved even with a simple circuit configuration in which the number of replica signals is about four.

(第一実施例)
本発明の第一実施例の等化回路を図1ないし図3を参照して説明する。図1に本実施例の等化回路の構成例として4タップの場合の例を示す。伝送によって歪んだ受信信号は分配回路1によって複数のレプリカ信号♯1〜♯4に複製されて分配される。
(First Example)
An equalizing circuit according to a first embodiment of the present invention will be described with reference to FIGS. FIG. 1 shows an example in the case of 4 taps as a configuration example of the equalization circuit of this embodiment. The received signal distorted by transmission is duplicated and distributed by the distribution circuit 1 into a plurality of replica signals # 1 to # 4.

各レプリカ信号♯1〜♯4はそれぞれ遅延回路2〜7を通り、乗算回路12〜15によって重み付けをした後、加算回路16によって合成する。図中で微遅延回路8〜11は遅延回路2〜7に比べて小さな遅延時間を与える回路である。全ての遅延回路2〜7の遅延時間は等しく、また、全ての微遅延回路8〜11の遅延時間は等しい。   The replica signals # 1 to # 4 pass through the delay circuits 2 to 7, respectively, are weighted by the multiplication circuits 12 to 15, and then synthesized by the adder circuit 16. In the figure, fine delay circuits 8 to 11 are circuits that give a smaller delay time than delay circuits 2 to 7. All the delay circuits 2 to 7 have the same delay time, and all the fine delay circuits 8 to 11 have the same delay time.

これにより、レプリカ信号♯1と♯2との間の遅延時間差は、
遅延回路1個分+微遅延回路1個分
となる。また、レプリカ信号♯2と♯3との間の遅延時間差は、
遅延回路1個分
となる。また、レプリカ信号♯3と♯4との間の遅延時間差は、
遅延回路1個分+微遅延回路1個分
となる。
Thereby, the delay time difference between the replica signals # 1 and # 2 is
One delay circuit plus one fine delay circuit. Also, the delay time difference between replica signals # 2 and # 3 is
This is equivalent to one delay circuit. Also, the delay time difference between replica signals # 3 and # 4 is
One delay circuit plus one fine delay circuit.

よって、レプリカ信号♯2と♯3との間の遅延時間差は、レプリカ信号♯1と♯2との間の遅延時間差およびレプリカ信号♯3と♯4との間の遅延時間差よりも短くなる。   Therefore, the delay time difference between replica signals # 2 and # 3 is shorter than the delay time difference between replica signals # 1 and # 2 and the delay time difference between replica signals # 3 and # 4.

また、図2のように、分配回路20〜22を2分配として多段接続し、分配回路20〜22間に遅延回路23〜25および微遅延回路26、27を配置することにより、順次遅延を与えてもよい。分配回路20〜22により分配されたレプリカ信号♯1〜♯4は、それぞれ乗算回路28〜31により重み付けした後、加算回路32によって合成する。   Further, as shown in FIG. 2, the distribution circuits 20 to 22 are connected in multiple stages as two distributions, and delay circuits 23 to 25 and fine delay circuits 26 and 27 are arranged between the distribution circuits 20 to 22, thereby sequentially giving delays. May be. Replica signals # 1 to # 4 distributed by distribution circuits 20 to 22 are weighted by multiplication circuits 28 to 31, respectively, and then synthesized by addition circuit 32.

図3に数値解析による本発明の効果を示す。レプリカ数が4である等化回路によって偏波分散による波形劣化の改善効果を計算した例であり、44Gbit/sのDQPSK信号が偏波分散の大きさとして、歪が小さい場合(DGD=25ps)、中程度の場合(DGD=30ps)、大きい場合(DGD=35ps)の各伝送路を伝送することによって歪んだ波形を補正した場合の効果を、横軸に微遅延回路の遅延時間をとり、縦軸に信号品質(Quality:Q値)の改善量をとって描いたものである。遅延回路の遅延時間はボーレートの逆数の0.5倍とした。時間の単位はボーレートの逆数で描いてある。   FIG. 3 shows the effect of the present invention by numerical analysis. This is an example in which the improvement effect of waveform degradation due to polarization dispersion is calculated by an equalization circuit having 4 replicas, and the 44 Gbps DQPSK signal has a small distortion (DGD = 25 ps) as the polarization dispersion magnitude. In the case of medium (DGD = 30 ps) and large (DGD = 35 ps), the effect of correcting the distorted waveform by transmitting through each transmission line, the delay time of the fine delay circuit on the horizontal axis, The vertical axis represents the improvement in signal quality (Quality: Q value). The delay time of the delay circuit was 0.5 times the inverse of the baud rate. The unit of time is drawn as the reciprocal of the baud rate.

また、グラフの上部には横軸として、レプリカ信号♯2および♯3の平均遅延時間を基準遅延時間とした場合に、この基準遅延時間とレプリカ信号♯1または♯4の遅延時間との差の大きい方の値を記入した。   The horizontal axis at the top of the graph shows the difference between the reference delay time and the delay time of the replica signal # 1 or # 4 when the average delay time of the replica signals # 2 and # 3 is used as the reference delay time. The larger value was entered.

微遅延回路を入れて遅延時間を不等間隔にすることにより、特に歪が大きい場合の補正能力が向上している。また、最も補正能力が向上するのは、レプリカ信号♯2および♯3の平均遅延時間を基準遅延時間とした場合に、この基準遅延時間とレプリカ信号♯1または♯4の遅延時間との差の大きい方の値がボーレートの逆数の1倍付近であり、0.75倍(等間隔)より大きく1.2倍以下であれば補正能力の向上が得られる。   By introducing a fine delay circuit and making the delay time unequal intervals, the correction capability is improved particularly when the distortion is large. The correction capability is most improved when the average delay time of the replica signals # 2 and # 3 is set as the reference delay time, and the difference between the reference delay time and the delay time of the replica signal # 1 or # 4. If the larger value is around 1 times the reciprocal of the baud rate and is greater than 0.75 times (equal intervals) and less than 1.2 times, the correction capability can be improved.

(第二実施例)
本発明の第二実施例の等化回路を図4ないし図8を参照して説明する。本実施例では、図4および図5に示すように、レプリカ信号♯1と♯2との間の遅延時間差のみを増加させる。この場合には、図1および図2の構成と比べると、図1の微遅延回路11および図2の微遅延回路27が図4および図5の構成には存在しない。
(Second embodiment)
An equalizing circuit according to a second embodiment of the present invention will be described with reference to FIGS. In this embodiment, as shown in FIGS. 4 and 5, only the delay time difference between the replica signals # 1 and # 2 is increased. In this case, the fine delay circuit 11 of FIG. 1 and the fine delay circuit 27 of FIG. 2 do not exist in the configurations of FIG. 4 and FIG.

これにより、レプリカ信号♯1と♯2との間の遅延時間差は、
遅延回路1個分+微遅延回路1個分
となる。また、レプリカ信号♯2と♯3との間の遅延時間差は、
遅延回路1個分
となる。また、レプリカ信号♯3と♯4との間の遅延時間差は、
遅延回路1個分
となる。
Thereby, the delay time difference between the replica signals # 1 and # 2 is
One delay circuit plus one fine delay circuit. Also, the delay time difference between replica signals # 2 and # 3 is
This is equivalent to one delay circuit. Also, the delay time difference between replica signals # 3 and # 4 is
This is equivalent to one delay circuit.

よって、レプリカ信号♯2と♯3との間の遅延時間差は、レプリカ信号♯3と♯4との間の遅延時間差と等しくなるが、レプリカ信号♯1と♯2との間の遅延時間差よりも短くなる。   Therefore, the delay time difference between replica signals # 2 and # 3 is equal to the delay time difference between replica signals # 3 and # 4, but more than the delay time difference between replica signals # 1 and # 2. Shorter.

あるいは、図6および図7に示すように、レプリカ信号♯3と♯4との間の遅延時間のみを増加させてもよい。この場合には、図1および図2の構成と比べると、図1の微遅延回路8、9、11および図2の微遅延回路26が図6および図7の構成には存在しない。   Alternatively, as shown in FIGS. 6 and 7, only the delay time between replica signals # 3 and # 4 may be increased. In this case, compared with the configuration of FIGS. 1 and 2, the fine delay circuits 8, 9, 11 of FIG. 1 and the fine delay circuit 26 of FIG. 2 are not present in the configurations of FIGS.

これにより、レプリカ信号♯1と♯2との間の遅延時間差は、
遅延回路1個分
となる。また、レプリカ信号♯2と♯3との間の遅延時間差は、
遅延回路1個分
となる。また、レプリカ信号♯3と♯4との間の遅延時間差は、
遅延回路1個分+微遅延回路1個分
となる。
Thereby, the delay time difference between the replica signals # 1 and # 2 is
This is equivalent to one delay circuit. Also, the delay time difference between replica signals # 2 and # 3 is
This is equivalent to one delay circuit. Also, the delay time difference between replica signals # 3 and # 4 is
One delay circuit plus one fine delay circuit.

よって、レプリカ信号♯2と♯3との間の遅延時間差は、レプリカ信号♯1と♯2との間の遅延時間差と等しくなるが、レプリカ信号♯3と♯4との間の遅延時間差よりも短くなる。   Therefore, the delay time difference between replica signals # 2 and # 3 is equal to the delay time difference between replica signals # 1 and # 2, but more than the delay time difference between replica signals # 3 and # 4. Shorter.

図8に数値解析による図6および図7の構成例の場合の効果を示す。図6および図7の構成例においては、レプリカ信号♯1と♯2との間、および、レプリカ信号♯2と♯3との間の遅延時間差は等しく、それぞれボーレートの逆数の0.5倍である。条件は図3と同じであり、歪が大きい場合(DGD=35ps)のみの結果を示している。   FIG. 8 shows the effect of the configuration examples of FIGS. 6 and 7 by numerical analysis. In the configuration example of FIGS. 6 and 7, the delay time difference between replica signals # 1 and # 2 and between replica signals # 2 and # 3 are equal, and each is 0.5 times the reciprocal of the baud rate. is there. The conditions are the same as in FIG. 3, and the results are shown only when the distortion is large (DGD = 35 ps).

微遅延回路を入れて遅延時間を不等間隔にすることにより、歪が大きい場合の補正能力が向上している。また、最も補正能力が向上するのはレプリカ信号♯2および♯3の平均遅延時間を基準遅延時間とした場合に、この基準遅延時間とレプリカ信号♯1または♯4の遅延時間との差の大きい方の値がボーレートの逆数の1倍付近であり、0.75倍(等間隔)より大きく1.2倍以下であれば補正能力の向上が得られる。図4および図5の構成においても同様の効果が得られる。   By introducing a fine delay circuit and making the delay times unequal, the correction capability when the distortion is large is improved. The correction capability is most improved when the average delay time of the replica signals # 2 and # 3 is set as the reference delay time, and the difference between the reference delay time and the delay time of the replica signal # 1 or # 4 is large. If one of the values is near 1 times the reciprocal of the baud rate and is greater than 0.75 times (equal intervals) and less than 1.2 times, the correction capability can be improved. Similar effects can be obtained with the configurations of FIGS.

(実施例の補足)
図1および図2に示した第一実施例の等化回路における微遅延回路8〜11、26、27の遅延時間を変更することにより図4〜図7に示す等化回路と等価な遅延時間を有する等化回路とすることもできる。
(Supplementary example)
By changing the delay times of the fine delay circuits 8 to 11, 26 and 27 in the equalization circuit of the first embodiment shown in FIGS. 1 and 2, a delay time equivalent to that of the equalization circuit shown in FIGS. An equalization circuit having

また、本実施例では説明を分り易くするために、遅延回路2〜7、23〜25に微遅延回路8〜11、26、27を追加した構成を例示したが、初めから遅延回路2〜7、23〜25に微遅延回路8〜11、26、27を追加した場合と等価な遅延時間を有する遅延回路を設けてもよい。   Further, in this embodiment, for the sake of easy understanding, the configuration in which the fine delay circuits 8 to 11, 26 and 27 are added to the delay circuits 2 to 7, 23 to 25 is illustrated. A delay circuit having a delay time equivalent to that obtained by adding fine delay circuits 8 to 11, 26, and 27 to 23 to 25 may be provided.

本発明によれば、レプリカ信号数が4程度の簡略な回路構成によっても等化回路の補正特性向上を実現できるので、等化回路の複雑化を回避しつつ補正特性を向上させる場合に有効利用できる。特に歪が大きい場合の等化回路の歪補正能力の向上に有効利用することができる。   According to the present invention, the correction characteristic of the equalization circuit can be improved even with a simple circuit configuration having about four replica signals. Therefore, the present invention is effectively used to improve the correction characteristic while avoiding the complexity of the equalization circuit. it can. In particular, it can be effectively used to improve the distortion correction capability of the equalization circuit when the distortion is large.

第一実施例の等化回路の構成図(分配回路1段)。The block diagram of the equalization circuit of a 1st Example (1 stage of distribution circuits). 第一実施例の等化回路の構成図(分配回路多段)。The block diagram of the equalization circuit of a 1st Example (distribution circuit multistage). 数値解析による本発明の効果を示す図(第一実施例)。The figure which shows the effect of this invention by numerical analysis (1st Example). 第二実施例の等化回路の構成図(分配回路1段で前方微遅延)。The block diagram of the equalization circuit of a 2nd Example (one stage of distribution circuits, a front fine delay). 第二実施例の等化回路の構成図(分配回路多段で前方微遅延)。The block diagram of the equalization circuit of a 2nd Example (a distribution circuit is multistage, and a front fine delay). 第二実施例の等化回路の構成図(分配回路1段で後方微遅延)。The block diagram of the equalization circuit of a 2nd Example (a distribution circuit is 1 step | paragraph, and a back fine delay). 第二実施例の等化回路の構成図(分配回路多段で後方微遅延)。The block diagram of the equalization circuit of a 2nd Example (a distribution circuit is multistage, and a back fine delay). 数値解析による本発明の効果を示す図(第二実施例)。The figure which shows the effect of this invention by a numerical analysis (2nd Example). 従来の等化回路の動作を説明するための図。The figure for demonstrating operation | movement of the conventional equalization circuit. 従来の等化回路の構成図(分配回路1段)。The block diagram of the conventional equalization circuit (1 stage of distribution circuits). 従来の等化回路の構成図(分配回路多段)。The block diagram of the conventional equalization circuit (distribution circuit multistage).

符号の説明Explanation of symbols

1、20〜22、61〜6n 分配回路
2〜7、23〜25、42、43−1、43−2、4n−1〜4n−n、71〜7n 遅延回路
8〜11、26、27 微遅延回路
12〜15、28〜31、51〜5n、81〜8(n+1) 乗算回路
16、32 加算回路
♯1〜♯4 レプリカ信号
1, 20 to 22, 61 to 6n Distribution circuits 2 to 7, 23 to 25, 42, 43-1, 43-2, 4n-1 to 4n-n, 71 to 7n Delay circuits 8 to 11, 26, 27 Delay circuits 12-15, 28-31, 51-5n, 81-8 (n + 1) Multiplier circuits 16, 32 Adder circuits # 1- # 4 Replica signal

Claims (2)

受信信号から4つのレプリカ信号を複製し、それぞれのレプリカ信号に遅延を与え、それぞれのレプリカ信号に重み付けをして加減算し、前記受信信号の歪を軽減する等化回路において、
44Gbit/sのDQPSK信号を受信し、
受信信号が受けた微分群遅延差(DGD)が30ps又は35psであり、
遅延回路1個分の遅延時間はシンボルレートの逆数の時間の0.5倍であり、
微遅延回路1個分の遅延時間は遅延回路1個分の遅延時間よりも小さく、
レプリカ信号に遅延を与える4つの経路は、遅延時間のない第1の経路と、遅延回路1個分と微遅延回路1個分とからなる遅延時間を与える第2の経路と、遅延回路2個分と微遅延回路1個分とからなる遅延時間を与える第3の経路と、遅延回路3個分と微遅延回路2個分とからなる遅延時間を与える第4の経路とからなり、
第2の経路と第3の経路の遅延時間の平均、すなわち、遅延回路1.5個分と微遅延回路1個分とからなる遅延時間を基準遅延時間とし
前記基準遅延時間と第1の経路及び第4の経路の遅延時間との差分、すなわち、遅延回路1.5個分と微遅延回路1つ分とからなる遅延時間が、シンボルレートの逆数の時間の0.75倍よりも大きく1.2倍以下である
ことを特徴とする等化回路。
In an equalization circuit that replicates four replica signals from a received signal, delays each replica signal, adds and subtracts each replica signal by weighting, and reduces distortion of the received signal.
Receives 44 Gbit / s DQPSK signal,
The differential group delay difference (DGD) received by the received signal is 30 ps or 35 ps,
The delay time for one delay circuit is 0.5 times the reciprocal time of the symbol rate,
The delay time for one fine delay circuit is smaller than the delay time for one delay circuit,
The four paths for giving a delay to the replica signal are a first path without a delay time, a second path for giving a delay time consisting of one delay circuit and one fine delay circuit, and a delay circuit 2. A third path that gives a delay time consisting of one delay circuit and one fine delay circuit, and a fourth path that gives a delay time consisting of three delay circuits and two fine delay circuits ,
The average delay time of the second path and the third path, that is, the delay time consisting of 1.5 delay circuits and 1 fine delay circuit is set as a reference delay time ,
The difference between the reference delay time and the delay times of the first path and the fourth path, that is, the delay time consisting of 1.5 delay circuits and one fine delay circuit is a time that is the reciprocal of the symbol rate. An equalization circuit that is greater than 0.75 times and 1.2 times or less.
受信信号から4つのレプリカ信号を複製し、それぞれのレプリカ信号に遅延を与え、それぞれのレプリカ信号に重み付けをして加減算し、前記受信信号の歪を軽減する等化回路において、
44Gbit/sのDQPSK信号を受信し、
受信信号が受けた微分群遅延差(DGD)が35psであり、
遅延回路1個分の遅延時間はシンボルレートの逆数の時間の0.5倍であり、
微遅延回路1個分の遅延時間は遅延回路1個分の遅延時間よりも小さく、
レプリカ信号に遅延を与える4つの経路は、遅延時間のない第1の経路と、遅延回路1個分からなる遅延時間を与える第2の経路と、遅延回路2個分からなる遅延時間を与える第3の経路と、遅延回路3個分と微遅延回路1個分とからなる遅延時間を与える第4の経路とからなり、
第2の経路と第3の経路の遅延時間の平均、すなわち、遅延回路1.5個分からなる遅延時間を基準遅延時間とし、
前記基準遅延時間と第4の経路の遅延時間との差分、すなわち、遅延回路1.5個分と微遅延回路1つ分とからなる遅延時間が、シンボルレートの逆数の時間の0.75倍よりも大きく1.2倍以下である
ことを特徴とする等化回路。
In an equalization circuit that replicates four replica signals from a received signal, delays each replica signal, adds and subtracts each replica signal by weighting, and reduces distortion of the received signal.
Receives 44 Gbit / s DQPSK signal,
The differential group delay difference (DGD) received by the received signal is 35 ps,
The delay time for one delay circuit is 0.5 times the reciprocal time of the symbol rate,
The delay time for one fine delay circuit is smaller than the delay time for one delay circuit,
The four paths that give a delay to the replica signal are a first path without a delay time, a second path that gives a delay time consisting of one delay circuit, and a third path that gives a delay time consisting of two delay circuits. A path and a fourth path giving a delay time consisting of three delay circuits and one fine delay circuit,
The average delay time of the second path and the third path, that is, the delay time consisting of 1.5 delay circuits is set as the reference delay time,
The difference between the reference delay time and the delay time of the fourth path, that is, the delay time consisting of 1.5 delay circuits and one fine delay circuit is 0.75 times the reciprocal of the symbol rate. Larger than 1.2 times
An equalization circuit characterized by that .
JP2007049326A 2007-02-28 2007-02-28 Equalization circuit Active JP4953856B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007049326A JP4953856B2 (en) 2007-02-28 2007-02-28 Equalization circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007049326A JP4953856B2 (en) 2007-02-28 2007-02-28 Equalization circuit

Publications (2)

Publication Number Publication Date
JP2008219078A JP2008219078A (en) 2008-09-18
JP4953856B2 true JP4953856B2 (en) 2012-06-13

Family

ID=39838660

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007049326A Active JP4953856B2 (en) 2007-02-28 2007-02-28 Equalization circuit

Country Status (1)

Country Link
JP (1) JP4953856B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5026355B2 (en) * 2008-06-25 2012-09-12 日本電信電話株式会社 Electric dispersion equalization circuit
JP5524900B2 (en) * 2011-04-20 2014-06-18 日本電信電話株式会社 Optical fiber transmission system and optical receiver
JP6256187B2 (en) * 2014-05-14 2018-01-10 株式会社デンソー Decision feedback equalizer
JP7428037B2 (en) 2020-03-24 2024-02-06 富士通オプティカルコンポーネンツ株式会社 Equalizer and communication module using it

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04176268A (en) * 1990-11-09 1992-06-23 Hitachi Ltd Filter circuit
US5682125A (en) * 1994-09-21 1997-10-28 Seagate Technology, Inc. Adaptive analog transversal equalizer
US5777910A (en) * 1996-11-19 1998-07-07 Thomson Multimedia S.A. Sparse equalization filter adaptive in two dimensions
JPH10336083A (en) * 1997-06-03 1998-12-18 N T T Ido Tsushinmo Kk Adaptive array receiver
JP4620907B2 (en) * 2001-07-04 2011-01-26 日本無線株式会社 Delay wave canceller

Also Published As

Publication number Publication date
JP2008219078A (en) 2008-09-18

Similar Documents

Publication Publication Date Title
CN103081422B (en) For adaptive circuit and the method for DFF
JP5353878B2 (en) Waveform equalization circuit and waveform equalization method
EP1392013B1 (en) Hybrid adaptive equalizer for optical communication systems
US8081677B2 (en) Receiver-based adaptive equalizer with pre-cursor compensation
JP2015122632A (en) Optical communication receiver
JP4953856B2 (en) Equalization circuit
CN109981500B (en) Signal processing method and signal processing device
TW202044806A (en) Equalizer circuit
EP1538797B1 (en) Electrical backplane transmission using duobinary signaling
CN110266388B (en) PMD (polarization mode dispersion) equalization method and device, electronic equipment and storage medium
JP4682983B2 (en) A method for calculating the filter coefficient of the equalizer of a communication receiver using the Hermite optimization method.
KR100320213B1 (en) Real and complex compatible channel equalizer
CN107534629B (en) Decision feedback equalization device and method and optical transmission system
US11876648B2 (en) DFE implementation for wireline applications
CN116016059A (en) Equalization method and system for improving transmission performance of high-speed low-signal-to-noise ratio optical communication link
JP5077241B2 (en) Equalization filter and distortion compensation method
JP4515418B2 (en) Equalization circuit
Glentis et al. Electronic dispersion compensation of fiber links using sparsity induced volterra equalizers
CN109075862B (en) Crosstalk equalizing method and equipment for space division multiplexing system
CN102137052B (en) Variable step length least mean square channel equilibrium method based on gradient vector
CN107005307A (en) The method and balancer of a kind of setting balancer
CN112600774A (en) Equalizer of high-speed interface circuit and control method thereof
JP4924276B2 (en) Distributed equalization method, distributed equalization apparatus, and optical transceiver
CN108616466B (en) Channel parallel equalization method and device
KR100245997B1 (en) Method and device for updating tap coefficient in channel equalizer

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20090526

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090526

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090526

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091228

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101019

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110118

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110125

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20110401

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120210

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120313

R150 Certificate of patent or registration of utility model

Ref document number: 4953856

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150323

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350