JP4953250B2 - Intake / exhaust valve drive system - Google Patents

Intake / exhaust valve drive system Download PDF

Info

Publication number
JP4953250B2
JP4953250B2 JP2007328691A JP2007328691A JP4953250B2 JP 4953250 B2 JP4953250 B2 JP 4953250B2 JP 2007328691 A JP2007328691 A JP 2007328691A JP 2007328691 A JP2007328691 A JP 2007328691A JP 4953250 B2 JP4953250 B2 JP 4953250B2
Authority
JP
Japan
Prior art keywords
piston
fluid chamber
diameter portion
fluid
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007328691A
Other languages
Japanese (ja)
Other versions
JP2009150296A (en
Inventor
順一 山本
幸司 辻岡
俊介 赤松
義光 藤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JAPAN MARINE EQUIPMENT ASSOCIATION
Nabtesco Corp
Original Assignee
JAPAN MARINE EQUIPMENT ASSOCIATION
Nabtesco Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JAPAN MARINE EQUIPMENT ASSOCIATION, Nabtesco Corp filed Critical JAPAN MARINE EQUIPMENT ASSOCIATION
Priority to JP2007328691A priority Critical patent/JP4953250B2/en
Publication of JP2009150296A publication Critical patent/JP2009150296A/en
Application granted granted Critical
Publication of JP4953250B2 publication Critical patent/JP4953250B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Valve Device For Special Equipments (AREA)

Description

本発明は、作動流体によって機関の吸排気弁を開閉する吸排気弁駆動装置に関する。   The present invention relates to an intake / exhaust valve drive device that opens and closes an intake / exhaust valve of an engine with a working fluid.

従来、上記のような吸排気弁駆動装置には、例えば特許文献1に開示されているようなものがある。特許文献1の技術によれば、シリンダ本体内に、排気弁に結合された内側ピストンを配置し、この内側ピストンの外周に摺動自在に嵌合された外側ピストンもシリンダ本体内に配置してある。開弁初期には、内側及び外側ピストン双方を作動油の圧力によって同時に摺動させ、外側ピストンがシリンダ本体内に設けたストッパによって移動が拘束された後には、内側ピストンのみを摺動させる。   Conventionally, there is an intake / exhaust valve driving device as described above, for example, as disclosed in Patent Document 1. According to the technique of Patent Document 1, an inner piston coupled to an exhaust valve is disposed in a cylinder body, and an outer piston slidably fitted to the outer periphery of the inner piston is also disposed in the cylinder body. is there. At the initial stage of valve opening, both the inner and outer pistons are simultaneously slid by the pressure of the hydraulic oil, and after the movement of the outer piston is restricted by the stopper provided in the cylinder body, only the inner piston is slid.

一般に排気弁は、開弁開始時のみ機関の筒内圧力に見合った荷重が必要であるが、一旦、開弁すると小さな荷重で開弁を継続することができる。この特性に対応するように、この技術では、開弁開始時には内側及び外側両ピストンからなる大きなピストンによる大きな力で排気弁を開弁し、開弁後には内側ピストンのみによる小さな力で排気弁を更に開くことができる。   In general, the exhaust valve needs a load corresponding to the in-cylinder pressure of the engine only at the start of the valve opening, but once the valve is opened, the valve opening can be continued with a small load. In order to correspond to this characteristic, this technology opens the exhaust valve with a large force by a large piston consisting of both inner and outer pistons at the start of valve opening, and opens the exhaust valve with a small force only by the inner piston after opening. It can be opened further.

特開2000−282823号公報JP 2000-282823 A

しかし、この技術によれば、ピストンが内側及び外側両ピストンからなり、部品点数が多くなり、しかも、内側ピストン及び外側ピストンそれぞれをシリンダと同心に形成する必要があり、機械加工が難しかった。   However, according to this technique, the piston is composed of both inner and outer pistons, the number of parts is increased, and it is necessary to form the inner piston and the outer piston concentrically with the cylinder, which makes machining difficult.

本発明は、部品点数が少なく、しかも機械加工が容易な吸排気弁駆動装置を提供することを目的とする。   It is an object of the present invention to provide an intake / exhaust valve drive device having a small number of parts and easy machining.

本発明の一態様の吸排気弁駆動装置は、シリンダ本体を有している。このシリンダ本体内をその長さ方向に沿って摺動可能にピストンが設けられている。このピストンの摺動に従って、前記シリンダ本体の長さ方向における前記ピストンの両側に第1及び第2の流体室が形成される。即ち、ピストンの一方の側に第1の流体室が形成され、ピストンの他方の側に第2の流体室が形成されている。前記ピストンの摺動に従って第1及び第2の流体室の容積が変化し、第1の流体室の容積が大きくなるとき、第2の流体室の容積が小さくなり、第1の流体室の容積が小さくなるとき、第2の流体室の容積が大きくなる。第2の流体室内のロッドを介して前記ピストンに吸排気弁体が接続されている。第1の流体室に前記ピストン駆動用の作動流体、例えば作動油を供給するように、前記シリンダ本体に作動流体供給通路が設けられている。第2の流体室から作動流体を排出するように前記シリンダ本体に作動流体排出通路が設けられている。前記作動流体排出通路は、前記ピストンが第1の流体室側から第2の流体室側へ所定距離だけ移動したとき前記ピストンによって閉じられる位置に形成されている。前記ピストンの第1の流体室側から第2の流体室側への移動によって第1及び第2の流体室を繋ぐように、前記シリンダ本体に連絡通路が設けられている。   The intake / exhaust valve driving device of one embodiment of the present invention has a cylinder body. A piston is provided in the cylinder body so as to be slidable along the length direction. As the piston slides, first and second fluid chambers are formed on both sides of the piston in the longitudinal direction of the cylinder body. That is, a first fluid chamber is formed on one side of the piston, and a second fluid chamber is formed on the other side of the piston. When the volumes of the first and second fluid chambers change as the piston slides and the volume of the first fluid chamber increases, the volume of the second fluid chamber decreases and the volume of the first fluid chamber decreases. When becomes smaller, the volume of the second fluid chamber becomes larger. An intake / exhaust valve body is connected to the piston via a rod in the second fluid chamber. A working fluid supply passage is provided in the cylinder body so as to supply the piston driving working fluid, for example, working oil, to the first fluid chamber. A working fluid discharge passage is provided in the cylinder body so as to discharge the working fluid from the second fluid chamber. The working fluid discharge passage is formed at a position that is closed by the piston when the piston moves a predetermined distance from the first fluid chamber side to the second fluid chamber side. A communication passage is provided in the cylinder body so as to connect the first and second fluid chambers by movement of the piston from the first fluid chamber side to the second fluid chamber side.

このように構成された吸排気弁駆動装置では、第1の流体室に流体が供給されることによって、ピストンが第1の流体室側から第2の流体室側に移動し、第2の流体室から流体が作動流体排出通路を介して排出される。所定距離だけピストンが移動すると、作動流体排出通路がピストンによって閉じられ、第2の流体室と第1の流体室とが連絡通路を介して連通され、第2の流体室の流体が第1の流体室に供給される。その結果、第1の流体室に供給する流体の流量を少なくすることができる。   In the intake / exhaust valve drive device configured as described above, when the fluid is supplied to the first fluid chamber, the piston moves from the first fluid chamber side to the second fluid chamber side, and the second fluid Fluid is discharged from the chamber through the working fluid discharge passage. When the piston moves by a predetermined distance, the working fluid discharge passage is closed by the piston, the second fluid chamber and the first fluid chamber communicate with each other through the communication passage, and the fluid in the second fluid chamber passes through the first fluid chamber. Supplied to the fluid chamber. As a result, the flow rate of the fluid supplied to the first fluid chamber can be reduced.

前記ピストンは、第1の流体室側に大径部と、これに連なる小径部と、第2の流体室側に設けた大径部より小径のロッドとを、有している。第1の流体室は、前記大径部用の流体室と、前記小径部用の流体室とを、有し、前記連絡通路は前記大径部用の流体室に接続されている。 The piston has a large-diameter portion on the first fluid chamber side, a small-diameter portion continuous therewith, and a rod having a smaller diameter than the large-diameter portion provided on the second fluid chamber side . The first fluid chamber includes a fluid chamber for the large diameter portion and a fluid chamber for the small diameter portion, and the communication passage is connected to the fluid chamber for the large diameter portion.

このように構成すると、当初には、大径部用及び小径用の流体室にそれぞれ供給された流体によってピストンが第2の流体室側に移動するので、大きな力でピストンが駆動され、吸排気弁を大きな力で駆動することができる。その後、ピストンによって作動流体排出通路が閉じられると、連絡用通路によって大径部用の流体室と第2の流体室とが繋がれ、両流体室の圧力が等しくなる。従って、その後には、第2の流体室の作動流体が連絡用通路を介して大径部用の流体室に供給される。その結果、連絡用通路を介して大径部用の流体室に供給される流量分だけ、作動流量を減らすことができる。   With this configuration, initially, the piston is moved to the second fluid chamber side by the fluid supplied to the fluid chambers for the large-diameter portion and the small-diameter portion. The valve can be driven with great force. Thereafter, when the working fluid discharge passage is closed by the piston, the fluid passage for the large-diameter portion and the second fluid chamber are connected by the communication passage, and the pressures of both fluid chambers become equal. Therefore, thereafter, the working fluid in the second fluid chamber is supplied to the fluid chamber for the large diameter portion via the communication passage. As a result, the operating flow rate can be reduced by an amount corresponding to the flow rate supplied to the large-diameter portion fluid chamber via the communication passage.

更に、前記大径部は、前記ピストンの第1の流体室側から第2の流体室側への移動に従って前記連絡通路を前記大径部用の流体室に徐々に繋ぐ形状に形成することができる。   Furthermore, the large diameter portion may be formed in a shape that gradually connects the communication passage to the fluid chamber for the large diameter portion in accordance with the movement of the piston from the first fluid chamber side to the second fluid chamber side. it can.

このように構成することによって、大径部の圧力が第2の流体室の圧力と等しくなるときに、急激な圧力変化が生じず、徐々に圧力が変化し、両者が等しくなる。従って、ピストンの速度変化が急激に生じることを防止できる。   With such a configuration, when the pressure of the large diameter portion becomes equal to the pressure of the second fluid chamber, a sudden pressure change does not occur, the pressure gradually changes, and both become equal. Therefore, it is possible to prevent a rapid change in the piston speed.

以上のように、本発明によれば、吸排気弁駆動装置に供給する作動流体の量を減少させることができ、流体源に小型のものを使用することができるし、ピストンは、機械加工によって作りやすくなる。   As described above, according to the present invention, the amount of working fluid supplied to the intake / exhaust valve drive device can be reduced, a small fluid source can be used, and the piston can be machined by machining. It becomes easy to make.

本発明の1実施形態の吸排気弁駆動装置は、内燃機関、例えばディーゼル機関の排気弁を開閉する排気弁駆動装置で、例えば図1に示すようにシリンダ本体2を有している。この本体2には、円孔のシリンダ孔が形成され、このシリンダ孔内にピストン4が収容されている。ピストン4は、シリンダ孔内をその長さ方向に沿って摺動可能である。ピストン4は、シリンダ孔の直径に一致する直径を有する大径部4aを備えている。大径部4aの一方の端部(図1における上端部)側に大径部4aよりも直径の小さい小径部4bが、同心状に形成されている。このピストン4によってシリンダ孔内は、図1における上側の第1の作動流体室、例えば作動油圧室6と、図1の下側の第2の作動流体室、例えば作動油圧室8とに区画されている。   An intake / exhaust valve drive apparatus according to an embodiment of the present invention is an exhaust valve drive apparatus that opens and closes an exhaust valve of an internal combustion engine, for example, a diesel engine, and has a cylinder body 2 as shown in FIG. The main body 2 is formed with a circular cylinder hole, and the piston 4 is accommodated in the cylinder hole. The piston 4 is slidable along the length direction in the cylinder hole. The piston 4 includes a large diameter portion 4a having a diameter that matches the diameter of the cylinder hole. A small-diameter portion 4b having a diameter smaller than that of the large-diameter portion 4a is formed concentrically on one end portion (upper end portion in FIG. 1) of the large-diameter portion 4a. The inside of the cylinder hole is partitioned by the piston 4 into a first working fluid chamber on the upper side in FIG. 1, for example, a working hydraulic chamber 6 and a second working fluid chamber on the lower side in FIG. ing.

大径部4aにおける下側の端部には、大径部4aと同心にロッド10が一体形成されている。このロッド10は、大径部4aよりも小径であり、その先端は、シリンダ本体2を貫通して図1における下方に突出し、弁棒12の図1における上端に接触している。弁棒12の図1における下端には吸排気弁、例えば排気弁の弁体14が一体に形成されている。この弁体14は、ディーゼル機関内に設けた弁座16に着座している。、弁棒12の周囲に配置された弾性手段、例えばコイルバネ18によって、弁体14はシリンダ本体2側に押圧され、強固に弁座16に着座させられている。   A rod 10 is integrally formed at the lower end of the large diameter portion 4a concentrically with the large diameter portion 4a. The rod 10 has a smaller diameter than the large-diameter portion 4a, and the tip of the rod 10 penetrates the cylinder body 2 and protrudes downward in FIG. 1, and contacts the upper end of the valve rod 12 in FIG. An intake / exhaust valve, for example, a valve body 14 of an exhaust valve is integrally formed at the lower end of the valve rod 12 in FIG. The valve body 14 is seated on a valve seat 16 provided in the diesel engine. The valve body 14 is pressed toward the cylinder body 2 by an elastic means, for example, a coil spring 18, disposed around the valve stem 12, and is firmly seated on the valve seat 16.

シリンダ本体2の図1における上側においてシリンダ孔は開口している。この開口にはシリンダカバー20が取り付けられ、この開口は閉じられている。このシリンダカバー20から小径部4bの周囲側に向けてスリーブ22が伸延している。このスリーブ22の外径はシリンダ孔の直径に一致し、内径は、小径部4bの直径に一致している。スリーブ22によって小径部用作動流体室、例えば小径部用作動油圧室6bが形成されている。弁体14が弁座16に着座している状態において、ピストン4は図1における上側に最も寄っており、小径部作動油圧室6bの容積は最も小さい。このスリーブ22の先端とシリンダ孔の内周面と大径部4aの図1の上端部との間に大径部用作動流体室、例えば大径部用作動油圧室6aが形成されている。これも、弁体14が弁座16に着座している状態において、ピストン4が図1における上側に最も寄っており、大径部作動油圧室6aの容積は最も小さい。逆に、この状態では、作動油圧室8の容積は最も大きい。   The cylinder hole is opened on the upper side in FIG. A cylinder cover 20 is attached to the opening, and the opening is closed. A sleeve 22 extends from the cylinder cover 20 toward the periphery of the small diameter portion 4b. The outer diameter of the sleeve 22 coincides with the diameter of the cylinder hole, and the inner diameter coincides with the diameter of the small diameter portion 4b. The sleeve 22 forms a small-diameter portion working fluid chamber, for example, a small-diameter portion working hydraulic chamber 6b. In a state where the valve body 14 is seated on the valve seat 16, the piston 4 is closest to the upper side in FIG. 1, and the volume of the small-diameter portion working hydraulic chamber 6b is the smallest. A large-diameter working fluid chamber, for example, a large-diameter working hydraulic chamber 6a, is formed between the tip of the sleeve 22, the inner peripheral surface of the cylinder hole, and the upper end of the large-diameter portion 4a in FIG. Also in the state where the valve body 14 is seated on the valve seat 16, the piston 4 is closest to the upper side in FIG. 1, and the volume of the large-diameter working hydraulic chamber 6 a is the smallest. Conversely, in this state, the volume of the working hydraulic chamber 8 is the largest.

このようにピストン4が最も上側によっている状態で、大径部用作動油圧室6aに形成した溝26を介して大径部用作動油圧室6aに作動流体、例えば作動油が供給され、かつ小径部用作動油圧室6bに形成した溝28を介して小径部用作動油圧室6bに作動油が供給される。これら溝26、28が作動油供給通路の一部をなす。   In this manner, with the piston 4 being on the uppermost side, a working fluid, for example, working oil is supplied to the large-diameter hydraulic oil chamber 6a through the groove 26 formed in the large-diameter hydraulic oil chamber 6a, and the small-diameter hydraulic oil chamber 6a has a small diameter. The working oil is supplied to the small-diameter portion working hydraulic chamber 6b through the groove 28 formed in the portion working hydraulic chamber 6b. These grooves 26 and 28 form a part of the hydraulic oil supply passage.

この状態において、作動油圧室8内には作動油が存在し、これがピストン4の図1における下側への移動によって排出されるように、作動油圧室8には排出通路の一部をなす溝30が形成されている。この溝30は、ピストン4が上述したように図1における上側に最も寄った位置から所定距離だけ図1における下側に移動したときに、大径部4aによって閉じられ、溝30を介しての作動油の排出が停止される。   In this state, the hydraulic oil is present in the hydraulic oil pressure chamber 8, and the hydraulic oil pressure is discharged by the downward movement of the piston 4 in FIG. 30 is formed. The groove 30 is closed by the large diameter portion 4a when the piston 4 moves a predetermined distance from the position closest to the upper side in FIG. Hydraulic oil discharge is stopped.

この溝30よりも弁体14側に寄った位置の作動油圧室8内には、連絡通路32接続用の溝34が形成されている。この連絡通路32は、ピストン4が最も図1における上側に寄った位置から所定距離だけ下側に移動したときには、大径部用作動油圧室6aと連通するシリンダ孔内周面の位置に形成された溝36に接続されている。   A groove 34 for connecting the communication passage 32 is formed in the working hydraulic chamber 8 at a position closer to the valve body 14 than the groove 30. This communication passage 32 is formed at the position of the inner peripheral surface of the cylinder hole that communicates with the large-diameter hydraulic oil chamber 6a when the piston 4 moves downward by a predetermined distance from the position closest to the upper side in FIG. Connected to the groove 36.

溝26には逆止弁37付き流量調整弁38が接続され、この流量調整弁38と溝28とは合流して、逆止弁40を介して制御弁、例えば電磁切換弁42の出力ポートAに接続されている。これら逆止弁37付き流量調整弁38、逆止弁40が残りの作動油供給通路を構成している。   A flow rate adjusting valve 38 with a check valve 37 is connected to the groove 26, and the flow rate adjusting valve 38 and the groove 28 join together, and a control valve, for example, an output port A of an electromagnetic switching valve 42 is connected via a check valve 40. It is connected to the. The flow rate adjusting valve 38 with the check valve 37 and the check valve 40 constitute the remaining hydraulic oil supply passage.

電磁切換弁42は、出力ポートBも有し、これは常に閉じられている。この他に、電磁切換弁42は、ポンプポートPとタンクポートTとを有し、ポンプポートPは、ポンプ44によって蓄圧された作動油が供給されている蓄圧器46に接続されている。タンクポートTはタンク48に接続されている。電磁切換弁44は、中立状態では、ポートA、BをタンクポートTに接続し、ポンプポートPを閉じている。第1の状態に切り換えられると、電磁切換弁42は、ポートAをポンプポートPに接続し、かつポートBをタンクポートTに接続する。従って、大径部作動圧油室6a、小径部作動圧油室6bにそれぞれ作動油が供給される。また、第2の状態に切り換えられると、電気切換弁42は、ポートAをタンクポートTに接続し、ポンプポートPをポートBに接続する。電磁切換弁44は、ディーゼル機関のクランク角度センサ50からの検出信号に基づいて信号処理機52が弁開信号を発生したとき、第2の状態から中立状態を経て第1の状態に切り換えられる。   The electromagnetic switching valve 42 also has an output port B, which is always closed. In addition, the electromagnetic switching valve 42 has a pump port P and a tank port T, and the pump port P is connected to a pressure accumulator 46 to which hydraulic fluid accumulated by the pump 44 is supplied. The tank port T is connected to the tank 48. In the neutral state, the electromagnetic switching valve 44 connects the ports A and B to the tank port T and closes the pump port P. When switched to the first state, the electromagnetic switching valve 42 connects the port A to the pump port P and connects the port B to the tank port T. Accordingly, hydraulic oil is supplied to the large-diameter portion working pressure oil chamber 6a and the small-diameter portion working pressure oil chamber 6b, respectively. When switched to the second state, the electrical switching valve 42 connects the port A to the tank port T and connects the pump port P to the port B. When the signal processor 52 generates a valve opening signal based on the detection signal from the crank angle sensor 50 of the diesel engine, the electromagnetic switching valve 44 is switched from the second state to the first state through the neutral state.

小径部作動油圧室6bは、流量調整弁53、逆止弁54、55を介してタンク48に接続されている。大径部作動油圧室6aは逆止弁37付き流量調整弁38、流量調整弁53、逆止弁54、55を介してタンク48に接続されている。溝30は、逆止弁55を介してタンク48に接続されている。逆止弁55が溝30と共に排出通路を形成している。   The small-diameter portion working hydraulic chamber 6 b is connected to the tank 48 via a flow rate adjustment valve 53 and check valves 54 and 55. The large-diameter working hydraulic chamber 6a is connected to the tank 48 via a flow rate adjusting valve 38 with a check valve 37, a flow rate adjusting valve 53, and check valves 54 and 55. The groove 30 is connected to the tank 48 via a check valve 55. The check valve 55 forms a discharge passage together with the groove 30.

図2に示すように、ピストン4の大径部4aの図1における上端部の周縁部の直径は、シリンダ孔の直径よりも小さく形成されている。その周縁部から図1における下側に向かうに従って徐々に直径が増大する傾斜面56が大径部4aには形成されている。この傾斜面56の先端から同じ直径で作動油圧室8側に向かう直線部58が大径部4aには形成されている。この直線部58の先端から作動油圧室8側に向かって、傾斜面56よりも緩い傾斜で直径が増大する傾斜面60が大径部4aには形成されている。この傾斜面60の先端から傾斜面60の傾斜よりもさらに緩い傾斜で直径がシリンダ孔の直径に一致するまで傾斜面62が大径部4aには形成されている。図2に破線で示すように、ピストン4が図2における下側、即ち作動油圧室8側に移動すると、大径部作動油室6aは、まず傾斜面62で溝36に繋がり、次に傾斜面60で溝36に繋がり、以下、直線部58、傾斜面56の順で繋がる。従って、大径部作動油室6a、作動油室8の作動油の流量は徐々に変化し、急激に変化することはない。   As shown in FIG. 2, the diameter of the peripheral edge portion of the upper end portion in FIG. 1 of the large diameter portion 4 a of the piston 4 is formed smaller than the diameter of the cylinder hole. An inclined surface 56 whose diameter gradually increases from the peripheral edge toward the lower side in FIG. 1 is formed in the large diameter portion 4a. A straight portion 58 having the same diameter from the tip of the inclined surface 56 toward the hydraulic pressure chamber 8 is formed in the large diameter portion 4a. An inclined surface 60 whose diameter increases with a gentler inclination than the inclined surface 56 is formed in the large-diameter portion 4a from the tip of the straight portion 58 toward the hydraulic pressure chamber 8 side. An inclined surface 62 is formed in the large-diameter portion 4a from the tip of the inclined surface 60 until the diameter matches the diameter of the cylinder hole with a gentler inclination than the inclination of the inclined surface 60. As shown by a broken line in FIG. 2, when the piston 4 moves downward in FIG. 2, that is, toward the hydraulic pressure chamber 8, the large-diameter hydraulic fluid chamber 6 a is first connected to the groove 36 by the inclined surface 62 and then tilted. It connects to the groove | channel 36 by the surface 60, and is connected in order of the linear part 58 and the inclined surface 56 hereafter. Accordingly, the flow rate of the hydraulic oil in the large-diameter hydraulic fluid chamber 6a and the hydraulic fluid chamber 8 changes gradually and does not change abruptly.

図3に示すように、ピストン4における大径部4aのロッド10との結合面の直径(図1における下端部)はシリンダ孔よりも小さく形成され、その周面から作動油圧室6側(図3における上側)に向かって徐々に直径が増加する傾斜面64が大径部4aには形成されている。この傾斜面64からシリンダ孔の内周面に接するまで、傾斜面64よりも緩い傾斜で傾斜面66が大径部4aには形成されている。従って、ピストン4aが作動油圧室8側に移動して溝30を閉じる場合、まず傾斜面64が溝30の位置に到達し、その後に傾斜面66が溝30の位置に到達する。従って、溝30での流量の変化は緩やかに生じる。   As shown in FIG. 3, the diameter of the coupling surface of the large diameter portion 4a of the piston 4 with the rod 10 (lower end portion in FIG. 1) is formed smaller than the cylinder hole, and from the peripheral surface to the working hydraulic pressure chamber 6 side (see FIG. 3). 3 is formed in the large-diameter portion 4a. From the inclined surface 64 to the inner peripheral surface of the cylinder hole, the inclined surface 66 is formed in the large diameter portion 4a with a gentler inclination than the inclined surface 64. Therefore, when the piston 4 a moves to the hydraulic pressure chamber 8 side and closes the groove 30, the inclined surface 64 first reaches the position of the groove 30, and then the inclined surface 66 reaches the position of the groove 30. Therefore, the change in the flow rate in the groove 30 occurs gradually.

このように構成された排気弁駆動装置が、図1に示すように、弁体14が弁座16に着座し、ピストン4が最も図1における上側に位置する状態とする。この状態において、クランク角度センサ50からの検出信号に基づいて信号処理機52が弁開信号を発生すると、電磁切換弁42が第1の状態に切り換えられ、蓄圧器46からの作動油が、逆止弁40を介して小径部油圧室6bに供給され、逆止弁40及び逆止弁37付き流量調整弁38を介して大径部油圧室4aに供給される。これによって、ピストン4は、大径部4aの上端部の面積及び小径部4bの上端部の面積との和と、作動油の圧力とによって決まる大荷重によって図1における下側に押圧され、移動する。この際、溝36がピストン4の大径部4aによって閉じられているので、作動油圧室8内の作動油は、溝30から逆止弁55を介してタンク48に排出される。また、ピストン4に加わった大荷重によって弁体14がコイルバネ18の作用力に抗して弁座16から離座するように弁体14を図1における下側に移動させる。   As shown in FIG. 1, the exhaust valve driving apparatus configured as described above is configured such that the valve body 14 is seated on the valve seat 16 and the piston 4 is located at the uppermost position in FIG. 1. In this state, when the signal processor 52 generates a valve opening signal based on the detection signal from the crank angle sensor 50, the electromagnetic switching valve 42 is switched to the first state, and the hydraulic oil from the pressure accumulator 46 is reversed. It is supplied to the small-diameter hydraulic chamber 6b via the stop valve 40, and is supplied to the large-diameter hydraulic chamber 4a via the check valve 40 and the flow rate adjusting valve 38 with the check valve 37. Thereby, the piston 4 is pressed and moved downward in FIG. 1 by a large load determined by the sum of the area of the upper end portion of the large diameter portion 4a and the area of the upper end portion of the small diameter portion 4b and the pressure of the hydraulic oil. To do. At this time, since the groove 36 is closed by the large diameter portion 4 a of the piston 4, the hydraulic oil in the working hydraulic chamber 8 is discharged from the groove 30 to the tank 48 via the check valve 55. Further, the valve element 14 is moved downward in FIG. 1 so that the valve element 14 is separated from the valve seat 16 against the acting force of the coil spring 18 due to a large load applied to the piston 4.

やがて、図3に破線で示すように大径部4aの下側の傾斜面64、66が溝30を通過することによって流量が緩やかに抑制されながら、大径部4aが溝30を通過してタンク48への作動油の排出が停止する。   Eventually, as shown by the broken line in FIG. 3, the large-diameter portion 4a passes through the groove 30 while the flow rate is moderately suppressed by the inclined surfaces 64 and 66 on the lower side of the large-diameter portion 4a passing through the groove 30. The discharge of hydraulic oil to the tank 48 stops.

ピストン4が更に図1における下側に移動し、図2に破線で示すように、傾斜面62、60、直線部58、傾斜面56が溝36を順に通過することによって、図4に示すように溝34、連絡通路32、溝36を介して作動流体室8と大径部作動油圧室6aとが連通する。その結果、緩やかに流量が変化しながら、大径部作動油圧室6a内の作動油が作動油圧室8に流れ、両油圧室6a、8の圧力は等しくなる。この作動油圧室8内の作動油の圧力に基づく荷重が、大径部4aを図1における上側に押し戻すので、大径部作動油圧室6aの作動油によって大径部4aに生じていた荷重が打ち消される。その結果、ピストン4を下側に押す力は小さくなるが、弁体14が開弁しているから、ピストン4が図1における下側に移動する。この移動によって作動油圧室8から連絡通路32を介して大径部作動油圧室6aに作動油が戻されている。大径部作動油圧室6a、小径部作動油圧室6bに電磁切換弁42から供給される作動油は、上述した作動油圧室8から大径部作動油圧室6aに戻されている量を差し引いた量だけである。従って、電磁弁42やそれに伴う蓄圧器46やポンプ44は小容量のものになる。また、ピストンを二重にすることなく、一体形成できるから、部品点数が少なく構造が簡単である。また、高精度の同心度が要求される部分は、ピストン14と弁座16のみになり、機械加工上の造り易さが向上できる。   As the piston 4 further moves downward in FIG. 1 and the inclined surfaces 62 and 60, the straight portion 58, and the inclined surface 56 sequentially pass through the groove 36 as shown by broken lines in FIG. The working fluid chamber 8 and the large-diameter portion working hydraulic chamber 6a communicate with each other through the groove 34, the communication passage 32, and the groove 36. As a result, the hydraulic oil in the large-diameter hydraulic hydraulic chamber 6a flows into the hydraulic hydraulic chamber 8 while the flow rate changes slowly, and the pressures in the hydraulic chambers 6a and 8 become equal. Since the load based on the pressure of the hydraulic oil in the hydraulic oil pressure chamber 8 pushes the large diameter portion 4a upward in FIG. 1, the load generated in the large diameter portion 4a by the hydraulic oil in the large diameter hydraulic pressure chamber 6a is Be countered. As a result, the force that pushes the piston 4 downward becomes small, but the valve body 14 is open, so the piston 4 moves downward in FIG. By this movement, the working oil is returned from the working hydraulic chamber 8 to the large-diameter working hydraulic chamber 6a through the communication passage 32. The hydraulic fluid supplied from the electromagnetic switching valve 42 to the large-diameter hydraulic chamber 6a and the small-diameter hydraulic chamber 6b is obtained by subtracting the amount returned from the hydraulic chamber 8 to the large-diameter hydraulic chamber 6a. Only quantity. Therefore, the electromagnetic valve 42, the accumulator 46 and the pump 44 associated therewith have a small capacity. In addition, since the piston can be integrally formed without double, the number of parts is small and the structure is simple. Further, only the piston 14 and the valve seat 16 are required to have a high degree of concentricity, and the ease of manufacturing in machining can be improved.

開弁信号が消失すると、切換弁44は第2の状態に切り換えられ、ポートAがタンク48に接続され、ポンプポートPがポートBに接続される。これによって大径部作動油圧室6a、小径部作動油圧室6bへの新たな作動油の供給が停止され、コイルバネ18のバネ力によってピストン4が作動油圧室6側に戻され、この際に作動油圧室6の大径部作動油圧室6aの作動油は、逆止弁37付き流量調整弁38、流量調整弁53、逆止弁54、55を介してタンク48に排出され、小径部作動油圧室6bの作動油は、流量調整弁53、逆止弁54、55を介してタンク48に排出される。   When the valve opening signal disappears, the switching valve 44 is switched to the second state, the port A is connected to the tank 48, and the pump port P is connected to the port B. As a result, the supply of new hydraulic fluid to the large-diameter hydraulic chamber 6a and the small-diameter hydraulic chamber 6b is stopped, and the piston 4 is returned to the hydraulic chamber 6 side by the spring force of the coil spring 18 and is activated at this time. The hydraulic oil in the large-diameter hydraulic chamber 6a of the hydraulic chamber 6 is discharged to the tank 48 via the flow rate adjustment valve 38 with the check valve 37, the flow rate adjustment valve 53, and the check valves 54 and 55, and the small-diameter hydraulic pressure is obtained. The hydraulic fluid in the chamber 6 b is discharged to the tank 48 through the flow rate adjustment valve 53 and the check valves 54 and 55.

上記の実施形態では、作動流体として作動油を使用したが、これに限ったものではなく、例えば圧力空気を使用することもできる。また、上記の実施形態では、排気弁の駆動装置に本発明を実施したが、これに限ったものではなく、例えば吸気弁の駆動装置としても使用することができる。   In the above embodiment, the working oil is used as the working fluid. However, the present invention is not limited to this, and for example, pressurized air can be used. In the above-described embodiment, the present invention is applied to the exhaust valve drive device. However, the present invention is not limited to this, and the exhaust valve drive device can be used, for example, as an intake valve drive device.

本発明の1実施形態の吸排気弁駆動装置の概略構成図である。It is a schematic block diagram of the intake / exhaust valve drive device of one Embodiment of this invention. 図1の吸排気弁駆動装置のピストンの一部の拡大図である。It is a one part enlarged view of the piston of the intake / exhaust valve drive device of FIG. 図1の吸排気弁駆動装置のピストンの他の部分の拡大図である。It is an enlarged view of the other part of the piston of the intake / exhaust valve drive device of FIG. 図1の吸排気弁駆動装置の動作状態における概略構成図である。It is a schematic block diagram in the operation state of the intake / exhaust valve drive device of FIG.

符号の説明Explanation of symbols

2 シリンダ本体
4 ピストン
6 作動油圧室(第1の作動流体室)
8 作動油圧室(第2の作動流体室)
14 弁体
30 溝(作動流体排出通路)
32 連絡通路
2 Cylinder body 4 Piston 6 Working hydraulic chamber (first working fluid chamber)
8 Working hydraulic chamber (second working fluid chamber)
14 Valve body 30 Groove (working fluid discharge passage)
32 passage

Claims (2)

シリンダ本体と、
このシリンダ本体内をその長さ方向に沿って摺動可能に前記シリンダ本体内に設けられたピストンと、
このピストンの摺動に従って、前記シリンダ本体の長さ方向における前記ピストンの両側に形成され前記ピストンの摺動に従って容積が変化する第1及び第2の流体室と、
第2の流体室を介して前記ピストンに接続された吸排気弁体と、
第1の流体室に前記ピストン駆動用の作動流体を供給するように前記シリンダ本体に設けられた作動流体供給通路と、
第2の流体室から作動流体を排出するように前記シリンダ本体に設けられた作動流体排出通路とを、
具備し、
前記作動流体排出通路は、前記ピストンが第1の流体室側から第2の流体室側へ所定距離だけ移動したとき前記ピストンによって閉じられる位置に形成され、前記ピストンの第1の流体室側から第2の流体室側への移動によって第1及び第2の流体室を繋ぐように前記シリンダ本体に連絡通路が設けられ、
前記ピストンは、第1の流体室側には大径部と、これに連なる小径部と、第2の流体室側には大径部より小径のロッドとを、有し、
第1の流体室は、前記大径部用の流体室と、前記小径部用の流体室とを、有し、
前記連絡通路は前記大径部用の流体室に接続される
吸排気弁駆動装置。
A cylinder body,
A piston provided in the cylinder body so as to be slidable along the length direction in the cylinder body;
First and second fluid chambers formed on both sides of the piston in the length direction of the cylinder body and changing in volume according to the sliding of the piston according to the sliding of the piston,
An intake and exhaust valve body connected to the piston via a second fluid chamber;
A working fluid supply passage provided in the cylinder body so as to supply a working fluid for driving the piston to the first fluid chamber;
A working fluid discharge passage provided in the cylinder body so as to discharge the working fluid from the second fluid chamber;
Equipped,
The working fluid discharge passage is formed at a position where the piston is closed by the piston when the piston moves from the first fluid chamber side to the second fluid chamber side by a predetermined distance, and from the first fluid chamber side of the piston. A connecting passage is provided in the cylinder body so as to connect the first and second fluid chambers by movement toward the second fluid chamber ;
The piston has a large diameter portion on the first fluid chamber side, a small diameter portion connected to the large diameter portion, and a rod having a smaller diameter than the large diameter portion on the second fluid chamber side,
The first fluid chamber has a fluid chamber for the large diameter portion and a fluid chamber for the small diameter portion,
The communication passage is an intake / exhaust valve driving device connected to the fluid chamber for the large diameter portion.
請求項1記載の吸排気弁駆動装置において、前記大径部は、前記ピストンの第1の流体室側から第2の流体室側への移動に従って前記連絡通路を前記大径部用の流体室に徐々に繋ぐ形状に形成されている吸排気弁駆動装置。 2. The intake / exhaust valve driving device according to claim 1 , wherein the large-diameter portion moves the communication passage through the fluid chamber for the large-diameter portion in accordance with the movement of the piston from the first fluid chamber side to the second fluid chamber side. The intake / exhaust valve drive device is formed in a shape that is gradually connected to.
JP2007328691A 2007-12-20 2007-12-20 Intake / exhaust valve drive system Active JP4953250B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007328691A JP4953250B2 (en) 2007-12-20 2007-12-20 Intake / exhaust valve drive system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007328691A JP4953250B2 (en) 2007-12-20 2007-12-20 Intake / exhaust valve drive system

Publications (2)

Publication Number Publication Date
JP2009150296A JP2009150296A (en) 2009-07-09
JP4953250B2 true JP4953250B2 (en) 2012-06-13

Family

ID=40919689

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007328691A Active JP4953250B2 (en) 2007-12-20 2007-12-20 Intake / exhaust valve drive system

Country Status (1)

Country Link
JP (1) JP4953250B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5815584B2 (en) * 2012-04-10 2015-11-17 エムエーエヌ・ディーゼル・アンド・ターボ・フィリアル・アフ・エムエーエヌ・ディーゼル・アンド・ターボ・エスイー・ティスクランド Balance position valve spindle
EP3406866A1 (en) * 2017-05-22 2018-11-28 EMPA Eidgenössische Materialprüfungs- und Forschungsanstalt Hydraulic drive for accelerating and braking components to be dynamically moved
EP3656990A1 (en) 2018-11-22 2020-05-27 EMPA Eidgenössische Materialprüfungs- und Forschungsanstalt Hydraulic drive for accelerating and braking components to be dynamically moved
US20240035400A1 (en) 2019-12-20 2024-02-01 Empa Eidgenossische Material-Prufungs- Und Forschungsanstalt Hydraulic Drive for Accelerating and Braking Components That Are To Be Moved Dynamically

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6040711A (en) * 1983-08-12 1985-03-04 Yanmar Diesel Engine Co Ltd Valve mechanism
JP2664986B2 (en) * 1989-04-03 1997-10-22 三菱重工業株式会社 Valve train for internal combustion engine
JPH0749011A (en) * 1993-08-05 1995-02-21 Nippon Soken Inc Hydraulic valve opening/closing mechanism
JPH08177429A (en) * 1994-12-20 1996-07-09 Mitsubishi Motors Corp Variable valve timing mechanism
DE19543080C2 (en) * 1995-11-18 1999-10-28 Man B & W Diesel Ag Device for controlling valves of an internal combustion engine, in particular the gas supply valve of a gas engine
JP2004084670A (en) * 2002-08-28 2004-03-18 Man B & W Diesel As Valve operated with hydraulic pressure
AU2003289087A1 (en) * 2003-03-24 2004-10-18 Yokohama Tlo Company, Ltd. Variable valve system of internal combustion engine and control method thereof, and hydraulic actuator
JP4523559B2 (en) * 2006-03-03 2010-08-11 阪神内燃機工業株式会社 Engine valve drive

Also Published As

Publication number Publication date
JP2009150296A (en) 2009-07-09

Similar Documents

Publication Publication Date Title
WO2015108178A1 (en) Crosshead engine
US6892683B2 (en) Electrohydraulic valve controller
US10883523B2 (en) Fluid pressure cylinder
US10895269B2 (en) Double acting hydraulic pressure intensifier
JP4953250B2 (en) Intake / exhaust valve drive system
US6135073A (en) Hydraulic check valve recuperation
JP4825842B2 (en) Fuel pump
JP6067953B1 (en) Flow control valve
US9441539B2 (en) Variable compression ratio apparatus
EP1549832B1 (en) An arrangement of an internal combustion engine poppet valve and an actuator therefor
US7913612B2 (en) Actuator control device
JP3997983B2 (en) Piezoelectric element driven three-way switching valve and fuel injection valve using the three-way switching valve
US7484482B1 (en) Valve assembly for a two-stroke engine
JP2003515045A (en) Fuel injection valve for internal combustion engine
US20190263370A1 (en) Valve assembly, brake system and method for operating a valve assembly
JPH0791969B2 (en) Valve drive for internal combustion engine
JP2006083863A (en) Injector control valve for fuel injection device
JP2017020562A (en) Relief valve
US10895230B2 (en) Fuel injection device
JP4537095B2 (en) Circuit breaker fluid pressure drive
FR2860551B1 (en) HYDRAULIC ACTUATOR FOR INTERNAL COMBUSTION ENGINE AND INTERNAL COMBUSTION ENGINE COMPRISING AT LEAST ONE SUCH HYDRAULIC ACTUATOR
JP2005076576A (en) Spool valve for vessel
WO2024147167A1 (en) Vehicular hydraulic system, and vehicle height adjustment device comprising this vehicular hydraulic system
JPH07229431A (en) Compression ratio controller of internal combustion engine
JP2005030529A (en) Marine spool valve

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101013

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120306

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120307

R150 Certificate of patent or registration of utility model

Ref document number: 4953250

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150323

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250