JP4952387B2 - Distance measuring device - Google Patents

Distance measuring device Download PDF

Info

Publication number
JP4952387B2
JP4952387B2 JP2007148797A JP2007148797A JP4952387B2 JP 4952387 B2 JP4952387 B2 JP 4952387B2 JP 2007148797 A JP2007148797 A JP 2007148797A JP 2007148797 A JP2007148797 A JP 2007148797A JP 4952387 B2 JP4952387 B2 JP 4952387B2
Authority
JP
Japan
Prior art keywords
frequency
transceiver
output
signal
data signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007148797A
Other languages
Japanese (ja)
Other versions
JP2008304192A (en
Inventor
尚典 宇田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP2007148797A priority Critical patent/JP4952387B2/en
Publication of JP2008304192A publication Critical patent/JP2008304192A/en
Application granted granted Critical
Publication of JP4952387B2 publication Critical patent/JP4952387B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Radar Systems Or Details Thereof (AREA)

Description

本発明は、2つの送受信機を組み合わせた、当該2つの送受信機間の距離を測定する装置に関する。   The present invention relates to an apparatus for measuring a distance between two transmitters / receivers by combining the two transmitters / receivers.

電波或いは超音波を用い、対象物からの反射波を受信して送信波との位相差等を検知又は調整することで、対象物までの距離を測定する技術としては、下記特許文献1乃至3が挙げられる。
特開2004−198306号公報 特開2005−308694号公報 特開2005−091214号公報
As a technique for measuring the distance to an object by receiving a reflected wave from the object using a radio wave or an ultrasonic wave and detecting or adjusting a phase difference from the transmitted wave, the following Patent Documents 1 to 3 are provided. Is mentioned.
JP 2004-198306 A JP 2005-308694 A Japanese Patent Laying-Open No. 2005-091214

特許文献1の技術は、送受信機と反射物との間にPLL(Phase Locked Loop)を形成するものである。送信した電波あるいは超音波が測定対象にあたり反射した反射波を分周して、基準信号と比較する。比較結果をループフィルタ(積分器としてのLPFが用いられる)を介して、電圧制御発振器(VCO)の制御電圧として入力する。また、変復調を用いる例も図示されている。   The technique of Patent Document 1 forms a PLL (Phase Locked Loop) between a transceiver and a reflector. The reflected wave reflected by the transmitted radio wave or ultrasonic wave hits the object to be measured is divided and compared with the reference signal. The comparison result is input as a control voltage of a voltage controlled oscillator (VCO) through a loop filter (LPF as an integrator is used). An example using modulation / demodulation is also shown.

特許文献2の技術は超音波を用いたPLL形成による距離センサである。反射波と送信波の位相を比較する構成としている。   The technology of Patent Document 2 is a distance sensor by PLL formation using ultrasonic waves. The phase of the reflected wave and the transmitted wave is compared.

特許文献3の技術は、基準信号の4倍の周波数のパルス光の測定対象からの反射光と、基準信号の5倍の周波数のパルス光との論理積と、基準信号とから距離を測定するものである。   The technique of Patent Document 3 measures a distance from a logical product of a reflected light from a measurement target of pulsed light having a frequency four times that of a reference signal and a pulsed light having a frequency five times that of the reference signal, and the reference signal. Is.

上記特許文献1乃至3は、全て、測定対象からの反射波を利用している。すると、電波や超音波を反射しにくい測定対象や、測定対象と測定装置の間に障害物があると測距することが困難になる。この点で、近距離の測定に限定される。   Patent Documents 1 to 3 all use a reflected wave from a measurement target. Then, it becomes difficult to perform distance measurement when there is an obstacle between the measurement object and the measurement apparatus that does not reflect radio waves and ultrasonic waves or between the measurement object and the measurement apparatus. In this respect, it is limited to short distance measurements.

また、送信波と受信波は同じ周波数の波を用いているので、測定対象物以外からの反射がある場合、測定対象物からの反射波を識別できない。また、送信アンテナと受信アンテナが近くに配置された場合(測定装置が小型の場合)、送信した電波(超音波)が直接受信する可能性が懸念される。   In addition, since the transmitted wave and the received wave use the same frequency wave, the reflected wave from the measurement object cannot be identified when there is reflection from other than the measurement object. Moreover, when the transmitting antenna and the receiving antenna are arranged close to each other (when the measuring device is small), there is a concern that the transmitted radio wave (ultrasonic wave) may be directly received.

本発明は上記の課題を解決するために成されたものであり、間に障害物があっても距離測定を可能とする距離測定装置を提供することを目的とする。また、遠距離の測定も可能とする距離測定装置を提供することも目的とする。更には、法規制により、搬送波に載せる信号の周波数を低いものとしなければならない場合でも、位相比較をそれらの中間周波数で行うことを目的とする。   The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a distance measuring device that enables distance measurement even when there are obstacles between them. It is another object of the present invention to provide a distance measuring device that can measure a long distance. Furthermore, even if it is necessary to make the frequency of a signal carried on a carrier wave low due to legal regulations, the object is to perform phase comparison at those intermediate frequencies.

請求項1に係る発明は、第1の送受信機(1000)及び第2の送受信機(2000)から成る距離測定装置であって、
第1の送受信機(1000)は、
周波数f0/R(Rは自然数)の参照信号を生成する参照信号発振器(100及び106)と、2入力の一方が、参照信号である位相比較器(11)と、位相比較器(11)の出力が入力される積分器又は低域濾波器(12)と、積分器又は低域濾波器(12)の出力に基づいて、周波数f1=Nf0/Rの搬送波を生成するための電圧制御発振器(13)と、電圧制御発振器(13)の出力する周波数f1=Nf0/Rの搬送波から周波数f1/N=f0/Rの信号を生成する1/N分周器(Nは2以上の整数)(14)と、1/N分周器(14)の出力に基づき、周波数f1/MN=f0/MR(Mは1000以上の整数)の送信データ信号DTを生成する1/M分周器(15)と、周波数f1=Nf0/Rの搬送波を送信データ信号DTで変調する第1変調器(110)と、第2の送受信機(2000)から受信した、周波数f2(≠f1)の搬送波を変調した受信信号から、同期復調により周波数f1/MN=f0/MRの受信データ信号DRを復調する第1同期復調器(160)と、第1同期復調器(160)の出力する周波数f1/MN=f0/MRの受信データ信号DRから周波数f1/N=f0/Rの信号を生成するPLLから成る第1周波数変換器(170)とを有し、
第2の送受信機(2000)は、第1の送受信機(1000)から受信した、周波数f1の搬送波を変調した受信信号から、同期復調により周波数f1/MN=f0/MRの折返しデータ信号D2を復調する第2同期復調器(260)と、当該第2同期復調器(260)の出力する周波数f1/MN=f0/MRの折返しデータ信号D2から、周波数変換された周波数f2(≠f1)の搬送波を生成するPLLから成る第2周波数変換器(270)と、周波数f2(≠f1)の搬送波を折返しデータ信号D2で変調する第2変調器(210)とを有し、
位相比較器(11)の2入力の他方は、第1周波数変換器(170)の出力であって、
位相比較器(11)、積分器又は低域濾波器(12)、電圧制御発振器(13)及び1/N分周器(14)は、第1の送受信機の送信データ信号DT、第2の送受信機の折返しデータ信号D2及び第1の送受信機の受信データ信号DRを介して、第1周波数変換器(170)の出力する周波数f1/N=f0/Rの信号の位相と参照信号発振器(100及び106)の出力する周波数f0/Rの参照信号の位相とを一致させるように、PLLを形成しており、
1/N分周器(14)の出力と、参照信号発振器(100及び106)の出力する周波数f0/Rの参照信号又は第1周波数変換器(170)の出力する周波数f1/N=f0/Rの信号との位相差を検出することで、第1の送受信機と第2の送受信機との距離を測定することを特徴とする距離測定装置である。
The invention according to claim 1 is a distance measuring device comprising a first transceiver (1000) and a second transceiver (2000),
The first transceiver (1000)
Reference signal oscillators (100 and 106) for generating a reference signal of frequency f 0 / R (R is a natural number), a phase comparator (11) in which one of the two inputs is a reference signal, and a phase comparator (11) And a voltage for generating a carrier wave having a frequency f 1 = Nf 0 / R based on the output of the integrator or the low-pass filter (12). A controlled oscillator (13) and a 1 / N frequency divider (N) that generates a signal of frequency f 1 / N = f 0 / R from a carrier of frequency f 1 = Nf 0 / R output from the voltage controlled oscillator (13) Is an integer greater than or equal to 2) (14) and the transmission data signal D T of frequency f 1 / MN = f 0 / MR (M is an integer greater than or equal to 1000) based on the output of the 1 / N frequency divider (14). A 1 / M frequency divider (15) to generate and a carrier wave having a frequency f 1 = Nf 0 / R as a transmission data signal D T From the received signal obtained by modulating the carrier wave of frequency f 2 (≠ f 1 ) received from the first modulator (110) modulated by the second transmitter / receiver (2000), the frequency f 1 / MN = f 0 / MR first synchronous demodulator for demodulating a received data signal D R with (160), the received data signal D R of the output frequency f 1 / MN = f 0 / MR of the first synchronous demodulator (160) A first frequency converter (170) comprising a PLL that generates a signal of frequency f 1 / N = f 0 / R from
The second transmitter / receiver (2000) uses the demodulated data of frequency f 1 / MN = f 0 / MR by synchronous demodulation from the received signal modulated from the carrier of frequency f 1 received from the first transmitter / receiver (1000). second synchronous demodulator for demodulating the signal D 2 and (260), from the frequency f 1 / MN = f 0 / MR of the folded data signal D 2 that output of the second synchronous demodulator (260), frequency-converted frequency f 2 (≠ f 1) second frequency converter consisting of PLL for generating a carrier wave and (270), a second modulator for modulating the data signal D 2 folding carrier frequency f 2 (≠ f 1) ( 210)
The other of the two inputs of the phase comparator (11) is the output of the first frequency converter (170),
The phase comparator (11), integrator or low-pass filter (12), voltage controlled oscillator (13), and 1 / N frequency divider (14) are connected to the transmission data signal D T of the first transceiver, the second via the received data signal D R of the transceivers of the folded data signal D 2 and the first transceiver, the output frequency f 1 / N = f 0 / R of the signal of the phase of the first frequency converter (170) And the reference signal oscillator (100 and 106) output the PLL so that the phase of the reference signal of the frequency f 0 / R matches.
The output of the 1 / N frequency divider (14), the reference signal of the frequency f 0 / R output from the reference signal oscillator (100 and 106), or the frequency f 1 / N output from the first frequency converter (170) = A distance measuring apparatus that measures a distance between a first transceiver and a second transceiver by detecting a phase difference with an f 0 / R signal.

請求項2に係る発明は、第1変調器(110)と第2変調器(210)は、PSK変調器又はQPSK変調器であり、
第1同期復調器(160)と第2同期復調器(260)は、PSK同期復調器又はQPSK同期復調器であることを特徴とする。
請求項3に係る発明は、請求項1に記載の距離測定装置において、第1変調器(110)と第2変調器(210)をいずれもFM変調器で、第1同期復調器(160)と第2同期復調器(260)をいずれもFM復調器で置き換えたことを特徴とする距離測定装置である。
請求項4に係る発明は、請求項1に記載の距離測定装置において、第1変調器(110)、第2変調器(210)、第1同期復調器(160)、第2同期復調器(260)は、上記構成と、通常の通信装置との切替を可能としたことを特徴とする距離測定装置である。
In the invention according to claim 2, the first modulator (110) and the second modulator (210) are a PSK modulator or a QPSK modulator,
The first synchronous demodulator (160) and the second synchronous demodulator (260) are a PSK synchronous demodulator or a QPSK synchronous demodulator.
The invention according to claim 3 is the distance measuring device according to claim 1, wherein both the first modulator (110) and the second modulator (210) are FM modulators, and the first synchronous demodulator (160). And the second synchronous demodulator (260) are both replaced by an FM demodulator.
The invention according to claim 4 is the distance measuring device according to claim 1, wherein the first modulator (110), the second modulator (210), the first synchronous demodulator (160), the second synchronous demodulator ( 260) is a distance measuring device characterized in that switching between the above configuration and a normal communication device is possible.

第1の送受信機から送信された第1の搬送波を変調したデータ信号を、第2の送受信機で復調し、第2の搬送波をそれで変調して逆送信し、第1の送受信機で復調すると、往復の2度の送受信の間に、送受信距離(第1及び第2の送受信機間の距離の2倍)分の位相差(時間差)が生じることとなる。この際、第1の送受信機と第2の送受信機との間でPLLを形成するようにし、電圧制御発振器(VCO)を安定発振させて、VCO13の出力から分周されて生成された送信データ信号と、受信データ信号との位相差を検出すると良いが、この際のデータ信号には国内法その他により規制があり、例えば搬送波1GHz程度では、帯域幅の制限のため、データ信号は十数kHz程度以下としなければならない。そこで、VCOの出力(周波数f1)から2段階の分周を行う。第1段階では例えば1〜数十MHz程度(f1/N)に落とし、データ信号としては例えば当該十数kHz程度以下(f1/MN)としたものとする。こうして、データ信号DTとしては例えば当該十数kHz程度以下(f1/MN)としたものを送受信することとして、帯域制限の法規制に従い、位相比較の際にはデジタル計算での桁落ちを考慮して前記1〜数十MHz程度(f1/N)のもの同士を比較するようにする。この際、VCOの出力の第1段の分周信号(周波数f1/N)と比較する対照は、参照信号発振器の出力する周波数f0/Rの参照信号と、第1周波数変換器の出力する周波数f1/N=f0/Rの信号のいずれでも良い。これは、第1周波数変換器の出力する周波数f1/N=f0/Rの信号の位相と参照信号発振器の出力する周波数f0/Rの参照信号の位相とを一致させるように、第1の送受信機の送信データ信号DT、第2の送受信機の折返しデータ信号D2及び第1の送受信機の受信データ信号DRを介した、1/N分周器と第1周波数変換器によるPLLにより制御されているからである。 When a data signal obtained by modulating the first carrier wave transmitted from the first transceiver is demodulated by the second transceiver, the second carrier wave is modulated by the second carrier wave, and then reversely transmitted, and then demodulated by the first transceiver. A phase difference (time difference) corresponding to the transmission / reception distance (twice the distance between the first and second transmitters / receivers) occurs between the two round-trip transmissions / receptions. At this time, a PLL is formed between the first transceiver and the second transceiver, the voltage controlled oscillator (VCO) is stably oscillated, and the transmission data generated by frequency division from the output of the VCO 13 is generated. It is preferable to detect the phase difference between the signal and the received data signal, but the data signal at this time is regulated by domestic laws and others, and for example, in the carrier wave of about 1 GHz, the data signal is more than a dozen kHz due to the bandwidth limitation Must be less than or equal to. Therefore, two-stage frequency division is performed from the VCO output (frequency f 1 ). In the first stage, it is assumed that the frequency is reduced to, for example, about 1 to several tens of MHz (f 1 / N), and the data signal is set to, for example, about ten or less kHz (f 1 / MN). Thus, the data signal DT is transmitted / received, for example, at a frequency of about 10 kHz or less (f 1 / MN), and in accordance with the band limitation laws and regulations, the digit comparison is performed in the phase comparison. Considering the above, those of about 1 to several tens of MHz (f 1 / N) are compared with each other. At this time, the comparison with the first-stage frequency-divided signal (frequency f 1 / N) of the VCO output is the reference signal of the frequency f 0 / R output from the reference signal oscillator and the output of the first frequency converter. Any of the signals of the frequency f 1 / N = f 0 / R to be used may be used. This is so that the phase of the signal of the frequency f 1 / N = f 0 / R output from the first frequency converter matches the phase of the reference signal of the frequency f 0 / R output from the reference signal oscillator. transmitting the data signal D T of 1 transceiver, via the received data signal D R of the second transceiver of the folded data signal D 2 and the first transceiver, 1 / N divider and the first frequency converter This is because it is controlled by the PLL.

以上の本発明によれば、より低周波(周波数f1/MN)のデータ信号の時間差(位相差)を、M逓倍した信号にて検出し、搬送波にはより高周波(周波数f1)を用いるものであり、当該低周波のデータ信号を復調可能であれば良く、精度よく距離測定が可能である。また、第2の送受信機を装着することにより、電波を反射しないものも、測距対象とすることができる。回折効果が期待できる周波数を搬送波としているため第1及び第2の送受信機の間の障壁やノイズに対し強いので、直接見通すことができない場所に第2の送受信機がしまい込まれているような場合でも距離測定ができる。回折効果の期待できる800MHz以下の高周波を搬送波として用いれば障害物を回折して距離測定も可能である。尚、第1の送受信機から第2の送受信機への送信と、第2の送受信機から第1の送受信機への逆送信では異なる周波数の搬送波を用いるので、混信は無い。即ち反射波を受信する技術のように、測定対象物以外のものからの逆送信はあり得ない。また、データ信号DTの周波数(f1/MN)を変更することで容易に測定距離範囲を設定変更することができる。
距離測定のための位相比較は、搬送波の周波数f1とデータ信号の周波数f1/MNの中間の周波数f1/Nで行うことができ、例えば法規制によりデータ信号の周波数f1/MNを極めて低く設定しなければならない場合でも、距離測定のための位相比較に用いる周波数f1/Nは測定対象となる距離に併せて自由に設計できる。例えば、搬送波に1GHz程度の場合はデータ信号を十数kHz程度以下としなければならないが、距離測定のための位相比較には、例えば数mの距離の測定のために数MHzの信号で位相比較することができる。
この際、上記1/M分周器の設定値Mと、上記第1周波数変換器のPLLが有すべき1/M分周器の設定値Mを所望の値に変更することで、測定対象の距離範囲を変更することができる。これは、位相比較可能範囲が0〜360度であるので、これを越える位相差(距離)は、より小さい位相差(距離)と判別がつかないことから生じる要請である。
According to the present invention described above, the time difference (phase difference) of the data signal having a lower frequency (frequency f 1 / MN) is detected by the M-multiplied signal, and the higher frequency (frequency f 1 ) is used for the carrier wave. It is only necessary that the low-frequency data signal can be demodulated, and the distance can be measured with high accuracy. In addition, a device that does not reflect radio waves can be set as a distance measurement target by mounting the second transceiver. Since the frequency at which the diffraction effect can be expected is used as a carrier wave, it is strong against a barrier and noise between the first and second transceivers, so that the second transceiver is buried in a place where it cannot be directly seen. Even in the case of distance measurement. If a high frequency of 800 MHz or less that can be expected to have a diffraction effect is used as a carrier wave, the distance can be measured by diffracting the obstacle. Note that there is no interference because transmissions from the first transceiver to the second transceiver and reverse transmission from the second transceiver to the first transceiver use different frequency carriers. That is, unlike the technique of receiving a reflected wave, there is no reverse transmission from anything other than the object to be measured. Further, the measurement distance range can be easily changed by changing the frequency (f 1 / MN) of the data signal DT .
The phase comparison for distance measurement can be performed at a frequency f 1 / N intermediate between the carrier frequency f 1 and the data signal frequency f 1 / MN. For example, the frequency f 1 / MN of the data signal is set by legal regulation. Even when it must be set very low, the frequency f 1 / N used for phase comparison for distance measurement can be freely designed according to the distance to be measured. For example, if the carrier wave is about 1 GHz, the data signal must be about a dozen kHz or less. For phase comparison for distance measurement, for example, phase comparison is performed with a signal of several MHz for distance measurement of several meters. can do.
At this time, by changing the setting value M of the 1 / M divider and the setting value M of the 1 / M divider that the PLL of the first frequency converter should have to a desired value, the measurement object The distance range can be changed. This is a request resulting from the fact that the phase difference (distance) exceeding this is indistinguishable from a smaller phase difference (distance) because the phase-comparable range is 0 to 360 degrees.

本発明の適用においては、復調に際し、局部発振器(LO)とミキサ(混合器、乗算器)を用いる場合に、局部発振器(LO)の位相によってデータ信号(D2、DR)が影響されないことが必要である。マルチパスや第1及び第2送受信機の間の障壁などにより、振幅の変化が想定されるので、ASKの変復調よりも、位相や周波数変調が適している。また、送受信の際に、位相変化が生じないように、周波数を変える場合もPLLを利用し、復調の際は同期復調を行う(請求項2、3)。また、変復調器は通常の通信機能を兼ねる。第1の送受信機(リーダー)と第2の送受信機(タグ)間で、通信によりIDの確認後、測距動作に移行する(請求項4)。
本発明は、屋内での物品の位置の検出、車と歩行者との距離測定、車車間の距離測定に用いることができる。
In the application of the present invention, when a local oscillator (LO) and a mixer (mixer, multiplier) are used for demodulation, the data signals (D 2 , D R ) are not affected by the phase of the local oscillator (LO). is required. Since a change in amplitude is assumed due to a multipath or a barrier between the first and second transceivers, phase and frequency modulation are more suitable than modulation and demodulation of ASK. Further, PLL is also used when changing the frequency so that no phase change occurs during transmission and reception, and synchronous demodulation is performed during demodulation. Further, the modem also has a normal communication function. After the ID is confirmed by communication between the first transmitter / receiver (reader) and the second transmitter / receiver (tag), the operation shifts to a distance measuring operation.
The present invention can be used for detecting the position of an article indoors, measuring a distance between a car and a pedestrian, and measuring a distance between vehicles.

データ信号は矩形波が好ましい。但し位相差を検出可能であれば任意の波形のデータ信号を用いることができる。変調方法は任意であるが、位相変調(PSK)であれば、差動変復調が容易となる。特にBPSKやQPSKが好ましい。同期検波のための搬送波の再生方法としては、公知の任意の技術を採用できる。例えばn相PSKに対し、n逓倍方式、逆変調方式、コスタスループを採用できる。変復調をFM変復調で行う場合も公知の任意の技術を採用できる。例えばクワドラチャ検波やPLL検波を用いることができる。尚、振幅変調を採用しても本願発明は実施可能である。
以下では、多く市販されているQPSKk同期復調IC(直交復調器)を利用するために、QPSKの同期復調方式であるコスタスループによる復調で記載している。また、同相成分と直交成分を同じ信号で変調する場合は実質的にBPSKによる変復調と同じとなる。
The data signal is preferably a rectangular wave. However, a data signal having an arbitrary waveform can be used as long as the phase difference can be detected. The modulation method is arbitrary, but differential modulation / demodulation is facilitated by phase modulation (PSK). BPSK and QPSK are particularly preferable. Any known technique can be employed as a carrier wave recovery method for synchronous detection. For example, an n multiplication method, an inverse modulation method, and a Costas loop can be adopted for n-phase PSK. Any known technique can be employed when modulation / demodulation is performed by FM modulation / demodulation. For example, quadrature detection or PLL detection can be used. The present invention can be implemented even if amplitude modulation is employed.
In the following description, in order to use many commercially available QPSKk synchronous demodulation ICs (orthogonal demodulator), description is made with demodulation by Costas loop, which is a QPSK synchronous demodulation system. Further, when the in-phase component and the quadrature component are modulated with the same signal, the modulation / demodulation by BPSK is substantially the same.

1〜10m程度の範囲の距離測定であれば、例えばキャリアを数十MHz〜1GHz、データ信号DTの周波数f1/MNを十数kHz以下とし、位相比較信号は周波数f1/Nを1〜数十MHz程度とすると良い。実際、5(kHz)の1波長は60(km)であり、往復10(m)の2度の送受信間の時間差(位相差)は0.06(deg)と微小となる。ここで例えばM=1000とすれば、周波数5(MHz)の信号で位相差を比較でき、位相差は60(deg)と、デジタル演算において、桁落ちしない数値で出力される。これはARIB STD−T67”特定小電力無線局テレメータ用、テレコントロール用及びデータ伝送用無設備”での1216MHz帯と1252MHz帯を用いる複信方式での、占有周波数帯域幅は16kHz以下との規制に合致する。 For distance measurement in the range of about 1 to 10 m, for example, the carrier is set to several tens of MHz to 1 GHz, the frequency f 1 / MN of the data signal DT is set to tens of kHz or less, and the phase comparison signal has a frequency f 1 / N of 1 It should be about tens of MHz. Actually, one wavelength of 5 (kHz) is 60 (km), and the time difference (phase difference) between the two round trips of 10 (m) is as small as 0.06 (deg). For example, if M = 1000, the phase difference can be compared with a signal having a frequency of 5 (MHz), and the phase difference is 60 (deg), which is output as a numerical value that is not lost in digital calculation. This is a duplex system using the 1216 MHz band and the 1252 MHz band in ARIB STD-T67 “No equipment for specified low power radio station telemeters, telecontrol and data transmission”, and the occupied frequency bandwidth is restricted to 16 kHz or less. It matches.

下記に具体的な実施例を示すが、本発明はこれらに限定されるものではない。また、各ブロック図は、重要な構成要素を示したものであって、例えば所望の箇所に、帯域濾波器(BPF)や、AGC等の増幅器を追加することは当然本発明に包含される。   Specific examples are shown below, but the present invention is not limited thereto. Each block diagram shows important components. For example, it is naturally included in the present invention to add a band-pass filter (BPF) or an amplifier such as AGC at a desired location.

図1.Aは、本発明の具体的な第1の実施例に係る距離測定装置を構成する第1の送受信機1000の構成を示すブロック図である。また、図1.Bは、第2の送受信機2000の構成を示すブロック図である。本実施例では、第1の送受信機1000から第2の送受信機2000への送信と第2の送受信機2000から第1の送受信機1000への逆送信のいずれも直交位相変調方式(QPSK)を用いるものである。またその際の復調においては、コスタスループにより搬送波を再生するものである。   FIG. A is a block diagram showing a configuration of a first transceiver 1000 that constitutes a distance measuring apparatus according to a specific first embodiment of the present invention. In addition, FIG. B is a block diagram showing a configuration of the second transceiver 2000. FIG. In this embodiment, both the transmission from the first transceiver 1000 to the second transceiver 2000 and the reverse transmission from the second transceiver 2000 to the first transceiver 1000 use the quadrature phase modulation method (QPSK). It is what is used. In the demodulation at that time, a carrier wave is reproduced by a Costas loop.

図1.Aに示す第1の送受信機1000の構成は次の通りである。参照信号発振器100、参照信号分周器106、位相比較器11、LPF12、VCO13、1/N分周器14、1/M分周器15、変調器110、デュプレクサ190、アンテナA1、同期復調器160、周波数変換器170及び位相比較器(位相差検出器)111。周波数変換器170は、位相比較器171、LPF172、VCO173及び1/M分周器175から成り、PLLを構成している。 FIG. The configuration of the first transceiver 1000 shown in A is as follows. Reference signal oscillator 100, reference signal divider 106, phase comparator 11, LPF 12, VCO 13, 1 / N divider 14, 1 / M divider 15, modulator 110, duplexer 190, antenna A 1 , synchronous demodulation 160, frequency converter 170, and phase comparator (phase difference detector) 111. The frequency converter 170 includes a phase comparator 171, an LPF 172, a VCO 173, and a 1 / M frequency divider 175, and constitutes a PLL.

図1.Bに示す第2の送受信機2000の構成は次の通りである。アンテナA2、デュプレクサ290、同期復調器260、周波数変換器270及び変調器210。周波数変換器270は、位相比較器271、LPF272、VCO273及び分周器275から成り、PLLを構成している。 FIG. The configuration of the second transceiver 2000 shown in B is as follows. Antenna A 2 , duplexer 290, synchronous demodulator 260, frequency converter 270 and modulator 210. The frequency converter 270 includes a phase comparator 271, an LPF 272, a VCO 273, and a frequency divider 275, and constitutes a PLL.

水晶発振器等の、周波数の固定された参照信号発振器100の出力である周波数f0の矩形波を分周器106で分周して周波数f0/R(Rは自然数)の矩形波とし、位相比較器11、LPF12、VCO13、1/N分周器14から成り、以下に示す第2の送受信機2000を介したPLLを構成して、VCO13は周波数f1=Nf0/R(Nは整数)の搬送波を生成する。周波数f1=Nf0/Rの搬送波はVCO13から1/N分周器14と変調器110に出力される。1/N分周器14の出力は1/M分周器15に出力され、分周されて周波数f1/MN(Mは整数)の送信データ信号DTが生成される。これは変調器110に出力される。変調器110では、周波数f1/MNの送信データ信号DTで周波数f1=Nf0/Rの搬送波をQPSK変調する。ここにおいて、同相成分Iと直交成分Qは同じ値で変調される。送信信号はデュプレクサ190を経てアンテナA1から第2の送受信機2000に送信される。 A rectangular wave having a frequency f 0 , which is an output of a reference signal oscillator 100 having a fixed frequency, such as a crystal oscillator, is divided by a frequency divider 106 into a rectangular wave having a frequency f 0 / R (R is a natural number), and the phase The comparator 11, LPF 12, VCO 13, and 1 / N frequency divider 14 constitute a PLL through the second transceiver 2000 shown below. The VCO 13 has a frequency f 1 = Nf 0 / R (N is an integer) ) Carrier wave. The carrier wave having the frequency f 1 = Nf 0 / R is output from the VCO 13 to the 1 / N frequency divider 14 and the modulator 110. The output of the 1 / N frequency divider 14 is output to the 1 / M frequency divider 15 and frequency-divided to generate a transmission data signal D T having a frequency f 1 / MN (M is an integer). This is output to the modulator 110. The modulator 110 QPSK modulates the carrier wave having the frequency f 1 = Nf 0 / R with the transmission data signal D T having the frequency f 1 / MN. Here, the in-phase component I and the quadrature component Q are modulated with the same value. The transmission signal is transmitted from the antenna A 1 to the second transceiver 2000 through the duplexer 190.

第2の送受信機2000では、アンテナA2で受信された信号がデュプレクサ290を経て同期復調器260にて復調される。ここでQPSKの復調のために、コスタスループにより搬送波が再生され、用いられる。復調された、周波数f1/MNの折返しデータ信号D2は、周波数変換器270と変調器210に出力される。周波数変換器270では、周波数f1/MNの折返しデータ信号D2から、PLLにより、周波数f2(≠f1)の搬送波が生成される。ここで、f2はf1/MNの整数倍であり、分周器275は当該整数分の1の分周を行うものである。この周波数f2(≠f1)の搬送波は変調器210に出力される。こうして、変調器210では、周波数f1/MNの折返しデータ信号D2で周波数f2(≠f1)の搬送波をQPSK変調する。ここにおいて、同相成分Iと直交成分Qは同じ値で変調される。送信信号はデュプレクサ290を経てアンテナA2から第1の送受信機1000に送信される。 In the second transceiver 2000, the signal received by the antenna A 2 is demodulated by the synchronous demodulator 260 through the duplexer 290. Here, the carrier wave is regenerated and used by the Costas loop for demodulation of QPSK. The demodulated folded data signal D 2 having the frequency f 1 / MN is output to the frequency converter 270 and the modulator 210. In the frequency converter 270, a carrier wave having a frequency f 2 (≠ f 1 ) is generated from the looped data signal D 2 having the frequency f 1 / MN by a PLL. Here, f 2 is an integral multiple of f 1 / MN, and the frequency divider 275 performs frequency division by 1 / integer. The carrier wave having the frequency f 2 (≠ f 1 ) is output to the modulator 210. Thus, the modulator 210 QPSK modulates the carrier wave having the frequency f 2 (≠ f 1 ) with the folded data signal D 2 having the frequency f 1 / MN. Here, the in-phase component I and the quadrature component Q are modulated with the same value. The transmission signal is transmitted from the antenna A 2 to the first transceiver 1000 via the duplexer 290.

次に第1の送受信機1000では、アンテナA1で受信された信号がデュプレクサ190を経て同期復調器160にて復調される。ここでQPSKの復調のために、コスタスループにより搬送波が再生され、用いられる。復調された、周波数f1/MNの受信データ信号DRは、周波数変換器170に出力される。周波数変換器170では、周波数f1/MNの受信データ信号DRから、PLLにより、周波数f1/Nの位相比較信号が生成され、位相比較器11に出力される。 Next, in the first transmitter / receiver 1000, the signal received by the antenna A 1 is demodulated by the synchronous demodulator 160 through the duplexer 190. Here, the carrier wave is regenerated and used by the Costas loop for demodulation of QPSK. Received data signal D R of the demodulated, the frequency f 1 / MN are outputted to the frequency converter 170. In the frequency converter 170, from the received data signal D R of the frequency f 1 / MN, the PLL, the phase comparison signal of a frequency f 1 / N is generated and output to the phase comparator 11.

このように、VCO13の出力を周波数f1=Nf0/RとするためのPLLは、位相比較器11、LPF12、VCO13、1/N分周器14のみならず、1/M分周器15で周波数f1/MNのデータ信号となった後、2度の変復調を経て、周波数変換器170で周波数f1/Nの位相比較信号とされた後に、分周器106の出力する周波数f0/Rの参照信号と位相をロックされる仕組みとなっている。 Thus, the PLL for setting the output of the VCO 13 to the frequency f 1 = Nf 0 / R is not only the phase comparator 11, the LPF 12, the VCO 13, and the 1 / N frequency divider 14, but also the 1 / M frequency divider 15. After the data signal of frequency f 1 / MN is obtained, the signal is subjected to modulation / demodulation twice, and is converted to a phase comparison signal of frequency f 1 / N by the frequency converter 170, and then the frequency f 0 output from the frequency divider 106 is obtained. / R reference signal and phase are locked.

同期復調器160にて復調された周波数f1/MNの受信データ信号DRは、1/M分周器15の出力する周波数f1/MNの送信データ信号DTよりも、位相が遅れている。即ち、第1の送受信機1000と第2の送受信機2000とが距離L離れていた場合、双方向通信によりデータ信号は距離2Lを伝搬するので、時間遅れΔtは光速をcとしてΔt=2L/cとなる。本発明においては、1/N分周器14の出力するf1/Nと、周波数変換器170の出力とロックした分周器106の出力する周波数f0/Rの信号とを位相比較器111で比較し、例えばdeg単位で出力させる。よって時間遅れΔtが、位相比較器111で比較される信号の1周期であるN/f1よりも小さければ、位相遅れとして検出可能である(測定可能な距離Lの範囲)。一方、Δtの精度の面では、第1及び第2の搬送波の1波長よりも細かい精度がある。概ね、第1及び第2の搬送波の4分の1波長程度の精度を有すると考えられる。 Received data signal D R of the frequency f 1 / MN demodulated by the synchronous demodulator 160, than the 1 / M frequency divider 15 transmitted data signal D T of the output frequency f 1 / MN, the phase is delayed by Yes. That is, when the first transmitter / receiver 1000 and the second transmitter / receiver 2000 are separated from each other by a distance L, the data signal propagates through the distance 2L by bidirectional communication. Therefore, the time delay Δt is Δt = 2L / c. In the present invention, the phase comparator 111 compares f 1 / N output from the 1 / N frequency divider 14 and the output of the frequency converter 170 and the signal of the frequency f 0 / R output from the locked frequency divider 106. For example, and output in units of deg. Therefore, if the time delay Δt is smaller than N / f 1 which is one cycle of the signal compared by the phase comparator 111, it can be detected as a phase delay (measurable distance L range). On the other hand, in terms of the accuracy of Δt, the accuracy is finer than one wavelength of the first and second carrier waves. In general, it is considered that the first and second carrier waves have an accuracy of about a quarter wavelength.

第1の送受信機1000は第2の送受信機2000と双方向通信を行うこととなる。第1の送受信機1000から第2の送受信機2000への送信は周波数f1の搬送波で、第2の送受信機2000から第1の送受信機1000への逆送信は周波数f2(≠f1)の搬送波で行われるので混信はない。また、それらをデータ信号でQPSK変調しているため、強力なベースバンドフィルタを入れることができ、通信環境が悪くてもデータ信号の位相比較が容易である。ノイズに強いので、工場のような電波環境の比較的悪い場所でも利用しやすい。変調回路はミキサを用いるものであるが、ミキサへの入力される全ての信号はVCO13からの出力に「同期」したものであり、不確定な位相は入り込まない。復調はコスタス方式を用いた直交復調であり、同期検波である。このため、不確定な位相は入りこまない。第1の送受信機は復調した後、PLLを用いて位相比較周波数までアップコンバージョンしている。PLLを用いているため、当該周波数変換時に不確定な位相は入らない。
このように、本発明においては、ミキサを用いることによりデータ信号の位相が影響を受けることが全く無いので、精度の高い位相差を検出でき、精度の高い距離測定を実施できる。
また、本発明においては、各分周器の設定を変更することで、測定可能距離を自在に変更できる。
The first transceiver 1000 performs bidirectional communication with the second transceiver 2000. Transmission from the first transceiver 1000 to the second transceiver 2000 is a carrier wave of frequency f 1 , and reverse transmission from the second transceiver 2000 to the first transceiver 1000 is frequency f 2 (≠ f 1 ). There is no interference because it is carried out by the carrier wave. Moreover, since they are QPSK modulated with a data signal, a strong baseband filter can be inserted, and the phase comparison of the data signal is easy even if the communication environment is bad. Because it is resistant to noise, it is easy to use even in places with relatively poor radio wave environments such as factories. Although the modulation circuit uses a mixer, all the signals input to the mixer are “synchronized” with the output from the VCO 13 so that an indefinite phase does not enter. Demodulation is quadrature demodulation using the Costas method and is synchronous detection. For this reason, an indefinite phase does not enter. After demodulating, the first transmitter / receiver up-converts to the phase comparison frequency using the PLL. Since the PLL is used, an indefinite phase does not enter at the time of the frequency conversion.
Thus, in the present invention, since the phase of the data signal is not affected at all by using the mixer, a highly accurate phase difference can be detected, and a highly accurate distance measurement can be performed.
In the present invention, the measurable distance can be freely changed by changing the setting of each frequency divider.

第1及び第2の送受信機の変調器への搬送波及びデータ信号の入力及び復調器からのデータ信号の出力と、他の搬送波及びデータ信号の入力及びデータ信号の出力を切り替える構成とし、図1の変復調器、デュプレクサ、アンテナを他の通信装置と共有させた、通信機能の付加された距離測定装置を構成しても良い。通信機能を備えると、まず通信機能によって、測距するタグを確定することができる。   The carrier wave and data signal input to the modulators of the first and second transceivers and the output of the data signal from the demodulator, the other carrier wave and data signal input and the data signal output are switched, FIG. A distance measuring device to which a communication function is added may be configured by sharing the modem, the duplexer, and the antenna with other communication devices. When the communication function is provided, first, the tag for distance measurement can be determined by the communication function.

1.Aは、本発明の具体的な実施例に係る距離測定装置を構成する第1の送受信機1000の構成を示すブロック図、1.Bは、第2の送受信機2000の構成を示すブロック図。1. 1A is a block diagram showing a configuration of a first transceiver 1000 constituting a distance measuring apparatus according to a specific embodiment of the present invention. B is a block diagram showing a configuration of the second transceiver 2000. FIG.

符号の説明Explanation of symbols

1000:第1の送受信機
2000:第2の送受信機
100:発振器(周波数固定)
11、111、171、271:位相比較器
12、172、272:低域濾波器(LPF、積分器)
13、173、273:電圧制御発振器(VCO)
14、15、106、175、275:分周器
110、210:変調器
160、260:同期復調器
170、270:周波数変換回路(周波数変換部)
190、290:デュプレクサ
1、A2:アンテナ
1000: first transceiver 2000: second transceiver 100: oscillator (frequency fixed)
11, 111, 171, 271: Phase comparator 12, 172, 272: Low-pass filter (LPF, integrator)
13, 173, 273: Voltage controlled oscillator (VCO)
14, 15, 106, 175, 275: Frequency divider 110, 210: Modulator 160, 260: Synchronous demodulator 170, 270: Frequency conversion circuit (frequency conversion unit)
190, 290: duplexer A 1 , A 2 : antenna

Claims (4)

第1の送受信機(1000)及び第2の送受信機(2000)から成る距離測定装置であって、
前記第1の送受信機(1000)は、
周波数f0/R(Rは自然数)の参照信号を生成する参照信号発振器(100及び106)と、
2入力の一方が、前記参照信号である位相比較器(11)と、
前記位相比較器(11)の出力が入力される積分器又は低域濾波器(12)と、
前記積分器又は低域濾波器(12)の出力に基づいて、周波数f1=Nf0/Rの搬送波を生成するための電圧制御発振器(13)と、
前記電圧制御発振器(13)の出力する周波数f1=Nf0/Rの前記搬送波から周波数f1/N=f0/Rの信号を生成する1/N分周器(Nは2以上の整数)(14)と、
前記1/N分周器(14)の出力に基づき、周波数f1/MN=f0/MR(Mは1000以上の整数)の送信データ信号DTを生成する1/M分周器(15)と、
前記周波数f1=Nf0/Rの搬送波を送信データ信号DTで変調する第1変調器(110)と、
前記第2の送受信機(2000)から受信した、周波数f2(≠f1)の搬送波を変調した受信信号から、同期復調により周波数f1/MN=f0/MRの受信データ信号DRを復調する第1同期復調器(160)と、
前記第1同期復調器(160)の出力する周波数f1/MN=f0/MRの受信データ信号DRから周波数f1/N=f0/Rの信号を生成するPLLから成る第1周波数変換器(170)とを有し、
前記第2の送受信機(2000)は、
前記第1の送受信機(1000)から受信した、周波数f1の搬送波を変調した受信信号から、同期復調により周波数f1/MN=f0/MRの折返しデータ信号D2を復調する第2同期復調器(260)と、
当該第2同期復調器(260)の出力する周波数f1/MN=f0/MRの折返しデータ信号D2から、周波数変換された周波数f2(≠f1)の搬送波を生成するPLLから成る第2周波数変換器(270)と、
前記周波数f2(≠f1)の搬送波を折返しデータ信号D2で変調する第2変調器(210)とを有し、
前記位相比較器(11)の2入力の他方は、前記第1周波数変換器(170)の出力であって、
前記位相比較器(11)、前記積分器又は低域濾波器(12)、前記電圧制御発振器(13)及び前記1/N分周器(14)は、第1の送受信機の送信データ信号DT、第2の送受信機の折返しデータ信号D2及び第1の送受信機の受信データ信号DRを介して、前記第1周波数変換器(170)の出力する周波数f1/N=f0/Rの信号の位相と前記参照信号発振器(100及び106)の出力する周波数f0/Rの参照信号の位相とを一致させるように、PLLを形成しており、
前記1/N分周器(14)の出力と、前記参照信号発振器(100及び106)の出力する周波数f0/Rの参照信号又は前記第1周波数変換器(170)の出力する周波数f1/N=f0/Rの信号との位相差を検出することで、前記第1の送受信機と前記第2の送受信機との距離を測定することを特徴とする距離測定装置。
A distance measuring device comprising a first transceiver (1000) and a second transceiver (2000),
The first transceiver (1000)
Reference signal oscillators (100 and 106) for generating a reference signal having a frequency f 0 / R (R is a natural number);
A phase comparator (11) in which one of the two inputs is the reference signal;
An integrator or low-pass filter (12) to which the output of the phase comparator (11) is input;
A voltage controlled oscillator (13) for generating a carrier of frequency f 1 = Nf 0 / R based on the output of the integrator or low pass filter (12);
1 / N frequency divider (N is an integer greater than or equal to 2) for generating a signal of frequency f 1 / N = f 0 / R from the carrier wave of frequency f 1 = Nf 0 / R output from the voltage controlled oscillator (13) ) (14)
Based on the output of the 1 / N frequency divider (14), a 1 / M frequency divider (15) that generates a transmission data signal D T of frequency f 1 / MN = f 0 / MR (M is an integer of 1000 or more). )When,
A first modulator (110) for modulating the carrier wave of the frequency f 1 = Nf 0 / R with a transmission data signal D T ;
Received from the second transceiver (2000), from the received signal obtained by modulating a carrier wave of frequency f 2 (≠ f 1), the received data signal D R of the frequency f 1 / MN = f 0 / MR by synchronous demodulation A first synchronous demodulator (160) for demodulating;
First frequency comprising a PLL for generating a signal of the output frequency f 1 / MN = f 0 / frequencies from the received data signal D R of MR f 1 / N = f 0 / R of the first synchronous demodulator (160) A converter (170),
The second transceiver (2000)
Second synchronization for demodulating the folded data signal D 2 of frequency f 1 / MN = f 0 / MR by synchronous demodulation from the received signal obtained by modulating the carrier wave of frequency f 1 received from the first transceiver (1000). A demodulator (260);
It consists of a PLL that generates a carrier wave of frequency f 2 (≠ f 1 ) that has been frequency-converted from the aliasing data signal D 2 of frequency f 1 / MN = f 0 / MR output from the second synchronous demodulator (260). A second frequency converter (270);
A second modulator (210) for modulating the carrier wave of the frequency f 2 (≠ f 1 ) with the folded data signal D 2 ;
The other of the two inputs of the phase comparator (11) is the output of the first frequency converter (170),
The phase comparator (11), the integrator or low-pass filter (12), the voltage-controlled oscillator (13), and the 1 / N frequency divider (14) are transmitted data signals D of the first transceiver. T, via a received data signal D R of the second transceiver of the folded data signal D 2 and the first transceiver, the output frequency f 1 / N = f of the first frequency converter (170) 0 / A PLL is formed so that the phase of the R signal matches the phase of the reference signal of the frequency f 0 / R output from the reference signal oscillator (100 and 106),
The output of the 1 / N divider (14), the reference signal of the frequency f 0 / R output from the reference signal oscillator (100 and 106), or the frequency f 1 output from the first frequency converter (170). A distance measuring apparatus for measuring a distance between the first transceiver and the second transceiver by detecting a phase difference with a signal of / N = f 0 / R.
前記第1変調器(110)と前記第2変調器(210)は、PSK変調器又はQPSK変調器であり、
前記第1同期復調器(160)と前記第2同期復調器(260)は、PSK同期復調器又はQPSK同期復調器であることを特徴とする請求項1に記載の距離測定装置。
The first modulator (110) and the second modulator (210) are PSK modulators or QPSK modulators,
The distance measuring apparatus according to claim 1, wherein the first synchronous demodulator (160) and the second synchronous demodulator (260) are a PSK synchronous demodulator or a QPSK synchronous demodulator.
請求項1に記載の距離測定装置において、
前記第1変調器(110)と前記第2変調器(210)をいずれもFM変調器で、
前記第1同期復調器(160)と前記第2同期復調器(260)をいずれもFM復調器で置き換えたことを特徴とする距離測定装置。
The distance measuring device according to claim 1,
Both the first modulator (110) and the second modulator (210) are FM modulators,
The distance measuring apparatus according to claim 1, wherein both the first synchronous demodulator (160) and the second synchronous demodulator (260) are replaced with FM demodulator.
請求項1乃至請求項3のいずれか1項に記載の距離測定装置において、
前記第1変調器(110)、前記第2変調器(210)、前記第1同期復調器(160)、前記第2同期復調器(260)は、上記構成と、通常の通信装置との切替を可能としたことを特徴とする距離測定装置。
The distance measuring device according to any one of claims 1 to 3,
The first modulator (110), the second modulator (210), the first synchronous demodulator (160), and the second synchronous demodulator (260) switch between the above configuration and a normal communication device. A distance measuring device characterized by that.
JP2007148797A 2007-06-05 2007-06-05 Distance measuring device Expired - Fee Related JP4952387B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007148797A JP4952387B2 (en) 2007-06-05 2007-06-05 Distance measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007148797A JP4952387B2 (en) 2007-06-05 2007-06-05 Distance measuring device

Publications (2)

Publication Number Publication Date
JP2008304192A JP2008304192A (en) 2008-12-18
JP4952387B2 true JP4952387B2 (en) 2012-06-13

Family

ID=40233058

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007148797A Expired - Fee Related JP4952387B2 (en) 2007-06-05 2007-06-05 Distance measuring device

Country Status (1)

Country Link
JP (1) JP4952387B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11560121B2 (en) 2019-09-18 2023-01-24 Kabushiki Kaisha Toshiba Distance measurement device and distance measurement method

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4819067B2 (en) * 2008-01-18 2011-11-16 株式会社豊田中央研究所 Distance measuring device
JP5340212B2 (en) * 2010-03-25 2013-11-13 株式会社豊田中央研究所 Distance measuring device and distance measuring method
JP5549557B2 (en) * 2010-11-19 2014-07-16 株式会社豊田中央研究所 Transceiver and synchronization system
JP5443328B2 (en) * 2010-12-10 2014-03-19 株式会社豊田中央研究所 Transceiver
US20210239784A1 (en) * 2018-07-03 2021-08-05 Lg Electronics Inc. Method for measuring distance in wireless communication system and device therefor
JP7268313B2 (en) * 2018-09-11 2023-05-08 株式会社デンソー PASSIVE ENTRY DEVICE FOR VEHICLE AND DISTANCE MEASUREMENT METHOD IN PASSIVE ENTRY DEVICE FOR VEHICLE
JP2022527310A (en) * 2019-03-29 2022-06-01 株式会社デンソー Passive entry / passive start system that performs carrier phase-based ranging using MUSIC-style eigenvalue decomposition for distance determination
JP7301771B2 (en) * 2020-03-19 2023-07-03 株式会社東芝 PHASE CORRECTOR, RANGING DEVICE AND PHASE VARIATION DETECTION DEVICE

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3100860B2 (en) * 1995-03-10 2000-10-23 株式会社ヨコオ Communication device
JPH11191744A (en) * 1997-12-25 1999-07-13 Fujitsu Ltd Radio equipment
JP5021973B2 (en) * 2006-07-28 2012-09-12 株式会社豊田中央研究所 Distance measuring method and distance measuring device
JP2008122255A (en) * 2006-11-13 2008-05-29 Toyota Central R&D Labs Inc Distance measuring device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11560121B2 (en) 2019-09-18 2023-01-24 Kabushiki Kaisha Toshiba Distance measurement device and distance measurement method

Also Published As

Publication number Publication date
JP2008304192A (en) 2008-12-18

Similar Documents

Publication Publication Date Title
JP4952387B2 (en) Distance measuring device
US10416301B2 (en) Distance measurement between two nodes of a radio network
JP5407856B2 (en) Multiband transceiver and positioning system using the transceiver
JP3649404B2 (en) Ranging and positioning system, ranging and positioning method, and wireless communication apparatus
EP1374499B1 (en) Distance measurement using rf techniques
EP3673286B1 (en) An integrated wireless communication and radar system
Han et al. Radar and radio data fusion platform for future intelligent transportation system
JPH0569471B2 (en)
AU753183B2 (en) Method and apparatus for detecting a frequency synchronization signal
JP6364057B2 (en) Beacon location method
US7242259B2 (en) Active backscatter transponder, communication system comprising the same and method for transmitting data by way of such an active backscatter transponder
JP4819067B2 (en) Distance measuring device
JP5021973B2 (en) Distance measuring method and distance measuring device
JP2009265031A (en) Radar device and radio transmitting characteristic measuring method
JP2003172776A (en) Radar device
JP2008122255A (en) Distance measuring device
JPH05256936A (en) Onboard radar apparatus
US20080008271A1 (en) Dual-system transmitting and receiving device
EP2122387A1 (en) Method and radar system for transmitting information
JP5340414B2 (en) Distance measuring device
JP2011145196A (en) Distance measuring device
US4216428A (en) Pulse signal receiving system employing space diversity
JP2014115225A (en) Inter-distance measuring device using radio signal of relatively narrow band
US8634445B2 (en) Pulse modulation and demodulation in a multiband UWB communication system
JPH0413983A (en) Road beacon position detector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100325

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120214

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120227

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150323

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees