JP4949052B2 - Continuous casting method of steel preventing internal cracking - Google Patents

Continuous casting method of steel preventing internal cracking Download PDF

Info

Publication number
JP4949052B2
JP4949052B2 JP2007026305A JP2007026305A JP4949052B2 JP 4949052 B2 JP4949052 B2 JP 4949052B2 JP 2007026305 A JP2007026305 A JP 2007026305A JP 2007026305 A JP2007026305 A JP 2007026305A JP 4949052 B2 JP4949052 B2 JP 4949052B2
Authority
JP
Japan
Prior art keywords
steel
continuous casting
calculated
εcr
internal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007026305A
Other languages
Japanese (ja)
Other versions
JP2008188640A (en
Inventor
光彦 太田
良之 上島
克巳 近藤
繁和 松葉
大輔 三木
洋二 安井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2007026305A priority Critical patent/JP4949052B2/en
Publication of JP2008188640A publication Critical patent/JP2008188640A/en
Application granted granted Critical
Publication of JP4949052B2 publication Critical patent/JP4949052B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Continuous Casting (AREA)

Description

本発明は、内部割れを発生させない最大鋳造速度で鋼の連続鋳造を行う方法に関するものである。   The present invention relates to a method for continuously casting steel at a maximum casting speed that does not cause internal cracks.

鋼の連続鋳造においては、生産性向上の観点からできるだけ鋳造速度を向上させることが求められている。しかし、鋳造速度を高め過ぎると鋳片に内部割れが発生し、スラブ全体が不良品として廃棄処分される結果となる。このため従来から内部割れを発生させないように鋳造速度の規制が行われているが、鋼種によって内部割れ感受性(内部割れ限界歪εcrで表現される内部割れの発生し易さ)はさまざまであり、内部割れの発生限界を事前に見極めることは困難であった。   In continuous casting of steel, it is required to improve the casting speed as much as possible from the viewpoint of improving productivity. However, if the casting speed is increased too much, an internal crack occurs in the slab, resulting in the entire slab being discarded as a defective product. For this reason, the casting speed has been regulated so as not to generate internal cracks, but the sensitivity to internal cracks (ease of internal cracks expressed by the internal crack limit strain εcr) varies depending on the steel type. It was difficult to determine the limit of occurrence of internal cracks in advance.

従って従来は例えば、鋳造しようとする鋼種のC、P、Sの上限値と最大鋳造速度Vcとの関係を蓄積したデータベースに基づいて、最大鋳造速度Vcが設定されている。しかし、この方法は過去の経験値をベースとするものであるから、鋼種によっては更に高速鋳造が可能であるにもかかわらずそれよりもかなり低速鋳造を行うという生産ロスが生じていたり、設定された最大鋳造速度Vc以下で鋳造したにもかかわらず内部割れを発生させたりする可能性があった。   Therefore, conventionally, for example, the maximum casting speed Vc is set based on a database in which the relationship between the upper limit values of C, P, and S of the steel type to be cast and the maximum casting speed Vc is accumulated. However, since this method is based on past experience values, depending on the type of steel, even though higher speed casting is possible, there is a production loss or setting that is considerably slower than that. In spite of casting at the maximum casting speed Vc or less, internal cracks may occur.

なお特許文献1には、鋼種による内部割れ感受性が鋼中のMn/Sの比及びCによって変化することに着目し、その請求項に記載された数式によって内部割れ限界歪εcrを計算し、この値を考慮して鋳造条件を設定する方法が開示されている。しかしここで考慮されているのは鋼中のMn、S、Cの3元素に過ぎず、現在生産されている多様な鋼種についての最適鋳造条件をこの式によって決定することは不可能であるうえ、用いられている数式も特定制限条件下における実験式であり、普遍性に乏しい。   In Patent Document 1, focusing on the fact that the internal crack susceptibility depending on the steel type varies depending on the ratio of Mn / S in steel and C, the internal crack limit strain εcr is calculated by the mathematical formula described in the claim, and this A method of setting casting conditions in consideration of values is disclosed. However, only three elements of Mn, S and C in the steel are considered here, and it is impossible to determine the optimum casting conditions for various steel types currently produced by this formula. The mathematical formula used is an empirical formula under specific limiting conditions and is not universal.

また本発明者等の経験によれば、同一の鋼種を連続鋳造しているにもかかわらず、チャージ毎に鋼中の成分値、特にP、S等は微妙に変動しており、チャージによって内部割れの発生状況が変化することがある。このため特許文献1のように、鋳造しようとする鋼のMn、S、Cに関する成分規格値を用いて内部割れ限界歪εcrを計算する方法では、内部割れを完全に防止できないことは特許文献1の実施例にも記載されている通りである。
特開平5-185183号公報
Further, according to the experience of the present inventors, although the same steel type is continuously cast, the component values in the steel, especially P, S, etc. fluctuate slightly for each charge. The occurrence of cracking may change. For this reason, as disclosed in Patent Document 1, the method of calculating the internal crack limit strain εcr using the component standard values relating to Mn, S, and C of the steel to be cast cannot completely prevent internal cracking. As described in the examples.
JP-A-5-185183

従って本発明の目的は、上記した従来技術の問題点を解決し、過去に鋳造経験のない鋼種を含む多様な鋼種について、内部割れを発生させるおそれのない最大鋳造速度を事前に計算により正確に求め、生産性を可及的に向上させることができる内部割れを防止した鋼の連続鋳造方法を提供することである。   Therefore, the object of the present invention is to solve the above-mentioned problems of the prior art, and accurately calculate the maximum casting speed at which there is no possibility of generating internal cracks by calculation in advance, for various steel types including those with no casting experience in the past. It is an object of the present invention to provide a continuous casting method of steel that prevents internal cracking and can improve productivity as much as possible.

上記の課題を解決するためになされた本発明は、鋼の連続鋳造を行なうに当たり、二次精錬後の鋼の成分値として、C、Si、Mn、P、Sを含む5以上の元素の成分値をチャージ毎に分析し、それらの値からミクロ偏析を計算して求めた固相率より脆化域幅ηを求め、さらに内部割れ限界歪εcrを計算し、連続鋳造時の鋳片各位置で計算される総合歪εtのうちの最大値が計算された内部割れ限界歪εcrを越えない最大鋳造速度Vcを決定して、その最大鋳造速度Vcで連続鋳造を行なうことを特徴とするものである。 The present invention made in order to solve the above-mentioned problems is a component of five or more elements including C, Si, Mn, P, and S as component values of steel after secondary refining in continuous casting of steel. Analyzing the values for each charge, calculating the embrittlement zone width η from the solid fraction obtained by calculating the microsegregation from those values, and further calculating the internal crack limit strain εcr, each position of the slab during continuous casting in determines the maximum casting speed Vc the maximum value does not exceed the calculated internal cracking limit strain εcr of the total strain εt is calculated, characterized in that the continuous casting at a maximum casting speed Vc is there.

本発明においては、ミクロ偏析の計算は、凝固中におけるデンドライト樹間の溶質元素の濃化を、δ/γ間の溶質分配及び固相内の溶質拡散を考慮した数値計算法により行い、得られた凝固完了までの任意温度におけるデンドライト樹間中心部の固相率から脆化域幅ηを求め、これに基づいて内部割れ限界歪εcrを計算することが好ましい。 In the present invention, the calculation of microsegregation is obtained by performing solute element concentration between dendrite trees during solidification by a numerical calculation method taking into account solute partitioning between δ / γ and solute diffusion in the solid phase. It is preferable to determine the embrittlement zone width η from the solid phase ratio at the center of the dendritic tree at an arbitrary temperature until the completion of solidification, and calculate the internal crack limit strain εcr based on this .

本発明によれば、二次精錬後の鋼の成分値に応じて内部割れ限界歪εcrを計算し、連続鋳造時の総合歪みεtが計算された内部割れ限界歪εcrを越えない最大鋳造速度Vcで連続鋳造を行うので、チャージ毎に変動する鋼の成分値に対応した最大鋳造速度Vcでの連続鋳造が可能となり、生産性を向上させることができる。またC、Si、Mn、P、Sを含む5以上の元素の成分値をチャージ毎に分析し、ミクロ偏析と、固相率との関係から内部割れ限界歪εcrの計算を行うことにより、過去に鋳造経験のない鋼種を含む様々な鋼種に対して事前に精度よく、内部割れを発生させるおそれのない最大鋳造速度Vcを求め、生産性を向上させることができる。   According to the present invention, the internal crack limit strain εcr is calculated according to the component value of the steel after the secondary refining, and the total casting speed Vc at which the total strain εt during continuous casting does not exceed the calculated internal crack limit strain εcr. Since continuous casting is performed at, continuous casting at a maximum casting speed Vc corresponding to the component value of steel that varies with each charge is possible, and productivity can be improved. In addition, by analyzing the component values of five or more elements including C, Si, Mn, P, and S for each charge and calculating the internal crack limit strain εcr from the relationship between microsegregation and solid fraction, Therefore, it is possible to improve the productivity by obtaining the maximum casting speed Vc with high accuracy in advance, without causing the occurrence of internal cracks, for various steel types including those with no casting experience.

以下に本発明の実施形態を示すが、まず本発明において問題としている鋼の連続鋳造時の内部割れについて説明する。内部割れは、凝固初期において鋳片の固液界面に存在する柱状晶(デンドライト樹)が引張り歪により開口し、そこに濃化液相が侵入する現象と考えられる。図1はこの内部割れ発生機構の模式図であり、左側が鋳片の中心側(高温側)、右側が表面側(低温側)である。   Embodiments of the present invention will be described below. First, internal cracks during continuous casting of steel, which is a problem in the present invention, will be described. Internal cracking is considered to be a phenomenon in which columnar crystals (dendritic trees) existing at the solid-liquid interface of the slab are opened due to tensile strain at the initial stage of solidification, and the concentrated liquid phase enters there. FIG. 1 is a schematic diagram of this internal crack generating mechanism, with the left side being the center side (high temperature side) of the slab and the right side being the surface side (low temperature side).

図1中にZDT(Zero Ductility Temperature)として示すのは固相率=1.0となる温度ラインであり、このラインよりも表面側は固相域であり図示のように延性が発現する領域である。またZST(Zero Strength Temperature)として示すのは強度を発現する温度ラインであり、このラインよりも中心側は液相の存在により強度ゼロの領域である。ZSTは固相率=0.7に相当する。これらZDTとZSTとの中間領域、すなわち固相率が0.7〜1.0の領域が脆化域である。   In FIG. 1, ZDT (Zero Ductility Temperature) indicates a temperature line where the solid phase ratio = 1.0, and the surface side of this line is a solid phase region, which is a region where ductility is exhibited as shown. Also, ZST (Zero Strength Temperature) indicates a temperature line that develops strength, and the center side of this line is a zero-strength region due to the presence of a liquid phase. ZST corresponds to a solid phase ratio of 0.7. An intermediate region between these ZDT and ZST, that is, a region having a solid phase ratio of 0.7 to 1.0 is an embrittlement region.

凝固過程においては、図1のように固相域から液相域に向かって柱状晶(デンドライト樹)が生成されていくが、この状態において鋳片に鋳造方向の歪が加えられると、上記したZDTとZSTとの中間の脆化域でデンドライト樹の開口が起こる。この開口を発生させ始める歪が内部割れ限界歪εcrである。従って内部割れ限界歪εcrにより内部割れ感受性を評価することができる。   In the solidification process, columnar crystals (dendritic trees) are generated from the solid phase region to the liquid phase region as shown in FIG. 1, but when a strain in the casting direction is applied to the slab in this state, the above described Opening of dendritic trees occurs in the embrittlement zone between ZDT and ZST. The strain at which this opening begins to occur is the internal crack limit strain εcr. Therefore, the internal crack sensitivity can be evaluated by the internal crack limit strain εcr.

特許文献1ではこの内部割れ限界歪εcrを実験に基づいて、鋼中成分の(Mn/S)及び(C)の関数として求めている。これに対して本発明では二次精錬後の鋼の成分値をC、Si、Mn、P、S、B、Nの7元素につき分析し、それらの値に応じて内部割れ限界歪εcrをミクロ偏析モデルを用いて計算する。ここでミクロ偏析モデルとは、図1に示した凝固過程におけるデンドライト樹間の溶質元素の濃化をシミュレートするための数学モデルであり、それ自体は1987年の「鉄と鋼」第11号に「炭素鋼のデンドライト間ミクロ偏析に対する合金元素の影響」と題する論文中に掲載されている。ただしこのミクロ偏析モデルを内部割れ限界歪εcrの計算に利用することは、本発明において初めて提案されることであり、以前には行われていない。   In Patent Document 1, the internal crack limit strain εcr is obtained as a function of (Mn / S) and (C) of the components in steel based on experiments. On the other hand, in the present invention, the component values of steel after secondary refining are analyzed for 7 elements of C, Si, Mn, P, S, B, and N, and the internal crack limit strain εcr is microscopically determined according to these values. Calculate using a segregation model. Here, the micro-segregation model is a mathematical model for simulating the concentration of solute elements between dendritic trees in the solidification process shown in FIG. 1, and is itself “Iron and Steel” No. 11 in 1987. In the paper entitled "Effects of Alloying Elements on Microsegregation between Dendrites of Carbon Steel". However, the use of this microsegregation model for the calculation of the internal crack limit strain εcr is the first proposal in the present invention and has not been performed before.

以下に、本発明を理解するうえで必要な限度で、ミクロ偏析モデルの概要を説明するが、学術的な詳細は上記論文を参照していただきたい。このミクロ偏析モデルでは、デンドライトの形状を図2に示すように横断面が正六角形で近似する。そして主軸方向の溶質の拡散は無視し、デンドライト間の部分における溶質の三次元拡散を図3に示す三角形OPQの半径方向の一次元拡散で近似する。ここで溶質としては、C、Si、Mn、P、Sを含む5以上の元素を用いることができる。   The outline of the micro-segregation model will be described below to the extent necessary for understanding the present invention. For academic details, please refer to the above paper. In this microsegregation model, the shape of the dendrite is approximated by a regular hexagonal cross section as shown in FIG. Then, the diffusion of the solute in the principal axis direction is ignored, and the three-dimensional diffusion of the solute in the portion between the dendrites is approximated by the one-dimensional diffusion in the radial direction of the triangle OPQ shown in FIG. Here, as the solute, five or more elements including C, Si, Mn, P, and S can be used.

固/液界面及びδ/γ界面においては、局所平衡が成立し、平衡分配係数に対応した溶質の平衡分配が生じるものとする。定性的には、δからγに変態中にはSi、P、Moなどはγ相(樹間)からδ相(樹芯)へ再分配され、C、Mnなどは逆にδ相からγ相に再分配される。このように凝固の進行に伴って逐次進行する界面濃度の変化をコンピュータを用いて数値計算する。計算はデンドライトの横断面をメッシュに分割し、微小時間刻みで物質収支を計算する方法で行う。このように界面濃度を計算するのは、それが凝固点を大きく変えるからである。そして状態図から求められる液相/δ/γの変態温度(下記の1式、2式)に応じて各相が生じるものとし、逐次計算される界面濃度から、各時点での各相の比率と溶質元素濃度を計算する。   It is assumed that local equilibrium is established at the solid / liquid interface and the δ / γ interface, and solute equilibrium distribution corresponding to the equilibrium distribution coefficient occurs. Qualitatively, during the transformation from δ to γ, Si, P, Mo, etc. are redistributed from the γ phase (between trees) to the δ phase (core), while C, Mn, etc. are reversed from the δ phase to the γ phase. Will be redistributed. Thus, the change of the interfacial concentration that progresses sequentially as the solidification progresses is numerically calculated using a computer. The calculation is performed by dividing the cross section of dendrites into meshes and calculating the mass balance in minute time increments. The interface concentration is calculated in this way because it greatly changes the freezing point. Then, each phase is generated according to the transformation temperature of liquid phase / δ / γ obtained from the phase diagram (1 and 2 below), and the ratio of each phase at each time point is calculated from the interfacial concentration calculated sequentially. And calculate the solute element concentration.

固/液界面温度=1536-78(%C)-7.6(%Si)-4.9(%Mn)-34.4(%P)-38(%S)・・・・1式
δ/γ界面温度=1392+1122(%C)-60(%Si)+12(%Mn)-140(%P)-160(%S)・・・・2式
なおこれらの式中の(%C)などは、各溶質の含有率を質量%で表示した値を意味する。なお、C、Si、Mn、P、S以外の元素Xに対してモデルを適用する場合は、Fe-X二元系における固/液界面温度、δ/γ界面温度のX濃度に対する傾きから、近似的に1式、2式の係数を決めることができる。
Solid / liquid interface temperature = 1536-78 (% C) -7.6 (% Si) -4.9 (% Mn) -34.4 (% P) -38 (% S) ... 1 set δ / γ interface temperature = 1392 +1122 (% C) -60 (% Si) +12 (% Mn) -140 (% P) -160 (% S) ··· 2 formulas (% C) in these formulas It means a value expressed by mass% of the content of the solute. In addition, when applying a model to an element X other than C, Si, Mn, P, S, from the slope of the solid / liquid interface temperature in the Fe-X binary system, the δ / γ interface temperature with respect to the X concentration, The coefficients of Formula 1 and Formula 2 can be determined approximately.

このミクロ偏析モデルは、凝固工程中におけるデンドライト内の溶質分布及び溶質の濃化による液相線温度の低下により決定される固液の割合を求めるために作成されたモデルであるが、本発明ではこのミクロ偏析の計算によって求められる凝固工程中における各相の比率から固相率を求め、固相率=1.0なる温度としてZDT,固相率=0.7なる温度としてZSTを求める。上記の式からも明らかなように、界面温度及び界面温度から計算されるこれらの値は二次精錬後の鋼中のC、Si、Mn、P、S、B、N等の値によって変化するのであるが、ミクロ偏析モデルを用いることによって、正確にZDTとZSTを求めることが可能となる。 This micro-segregation model is a model created in order to determine the solid-liquid ratio determined by the solute distribution in the dendrite during the solidification process and the decrease in liquidus temperature due to solute concentration. The solid phase ratio is determined from the ratio of each phase in the solidification process determined by the microsegregation calculation, and ZDT is determined as a temperature where the solid ratio is 1.0, and ZST is determined as a temperature where the solid ratio is 0.7. As is clear from the above formula, these values calculated from the interface temperature and interface temperature vary depending on the values of C, Si, Mn, P, S, B, N, etc. in the steel after secondary refining. However, ZDT and ZST can be accurately obtained by using the micro-segregation model.

次にZDTとZSTから、それらの間の脆化域幅ηを次の式により求める。
η=[1.0-{(ZDT-T0)/ (ZST-T0)}1.291]×d・・・・・3式
ただしT0はスラブ表面温度、dは凝固シェル厚(mm)である。
Next, the embrittlement zone width η between them is obtained from ZDT and ZST by the following equation.
η = [1.0-{(ZDT-T 0 ) / (ZST-T 0 )} 1.291 ] × d (3 formulas) where T 0 is the slab surface temperature and d is the solidified shell thickness (mm).

本発明者等の研究によれば、脆化域幅ηと前記した内部割れ限界歪εcrとの間には図4に示すとおりの関係がある。そこで次の4式により内部割れ限界歪εcrを計算する。
εcr=6.02×η-2.13・・・・・・・・4式
According to the studies by the present inventors, there is a relationship as shown in FIG. 4 between the embrittlement region width η and the above-described internal crack limit strain εcr. Therefore, the internal crack limit strain εcr is calculated by the following four formulas.
εcr = 6.02 × η -2.13・ ・ ・ ・ ・ ・ ・ ・ 4 formula

連続鋳造工程においては、鋳片の曲げ戻し変形による歪、バルジング歪、ロールのミスアライメントに起因する歪などが鋳片に加わり、これらの総和を総合歪εtと呼ぶ。総合歪εtは連続鋳造中の鋳片各位置において計算される。様々な鋼種について実績調査を行った結果、図5に示すように、ミクロ偏析モデルを用いて計算された内部割れ限界歪εcrが総合歪εt以下であれば、内部割れが発生しないことが確認された。 In the continuous casting process, distortion due to bending back deformation of the slab, bulging distortion, distortion due to roll misalignment, and the like are added to the slab, and the sum of these is called the total distortion εt. The total strain εt is calculated at each slab position during continuous casting. As a result of conducting a survey on various steel types, as shown in FIG. 5, it is confirmed that if the internal crack limit strain εcr calculated using the micro-segregation model is equal to or less than the total strain εt, no internal crack occurs. It was.

従って、連続鋳造時の総合歪みεtの最大値が計算された内部割れ限界歪εcrを越えないように鋳造条件を設定すればよい。連続鋳造設備が同一であれば、総合歪みεtは鋳造速度にほぼ比例して増加する。そこで総合歪みεtの最大値が計算された内部割れ限界歪εcrを越えないように最大鋳造速度Vcを決定し、その最大鋳造速度Vcで連続鋳造を行うことにより、内部割れを発生させない限界付近での鋳造が可能となり、生産性を最大限にまで引き上げることができる。 Therefore, the casting conditions may be set so that the maximum value of the total strain εt during continuous casting does not exceed the calculated internal crack limit strain εcr. If the continuous casting equipment is the same, the total strain εt increases in proportion to the casting speed. Therefore, the maximum casting speed Vc is determined so that the maximum value of the total strain εt does not exceed the calculated internal crack limit strain εcr. Casting becomes possible, and productivity can be maximized.

なお、連続鋳造設備の個性によって総合歪みεtと鋳造速度との関係が異なるため、計算された内部割れ限界歪εcrと最大鋳造速度Vcとの関係を一般式により表現することは困難である。しかしばらつきを無視して概略的に表現すれば、出願人会社の連続鋳造設備においては、内部割れ限界歪εcrが0.06%の場合の最大鋳造速度Vcは1.0mpmであり、0.2%では1.4mpm、0.4%では1.8mpm、0.6%では2.2mpm程度である。   Since the relationship between the total strain εt and the casting speed differs depending on the individuality of the continuous casting equipment, it is difficult to express the relationship between the calculated internal crack limit strain εcr and the maximum casting speed Vc by a general formula. However, if it is expressed roughly, ignoring variation, in the continuous casting equipment of the applicant company, the maximum casting speed Vc when the internal crack limit strain εcr is 0.06% is 1.0 mpm, and when 0.2%, 1.4 mpm, At 0.4%, it is 1.8mpm, and at 0.6%, it is around 2.2mpm.

以上に説明した本実施形態の各ステップをブロック図にまとめると、図6のようになる。本発明によれば、過去に鋳造経験のない鋼種を含む多様な鋼種について、内部割れを発生させるおそれのない最大鋳造速度Vcを事前に計算により正確に求め、生産性を可及的に向上させることができる。次に本発明の実施例を示す。   Each step of the present embodiment described above is summarized in a block diagram as shown in FIG. According to the present invention, for a variety of steel types including those with no casting experience in the past, the maximum casting speed Vc without the possibility of causing internal cracks is accurately determined in advance to improve productivity as much as possible. be able to. Next, examples of the present invention will be described.

一般厚板用40kg鋼について、本発明を適用した。この鋼種は、0.13%C-0.10%Si-0.85%Mn-0.02%P-0.01%Sを標準組成とするもので、従来、最大鋳造速度Vc=1.3m/minとして連続鋳造されていたものである。本発明によりミクロ偏析モデルを用いて内部割れ限界歪εcrを計算すると、εcr=0.23%となった。そこでVc=1.4m/minへの増速を実施し、内部割れを発生させることなく連続鋳造が可能であることを確認した。   The present invention was applied to 40 kg steel for general planks. This steel grade has a standard composition of 0.13% C-0.10% Si-0.85% Mn-0.02% P-0.01% S, and was conventionally continuously cast at a maximum casting speed Vc = 1.3m / min. is there. When the internal crack limit strain εcr was calculated using the microsegregation model according to the present invention, εcr = 0.3%. Therefore, the speed was increased to Vc = 1.4 m / min, and it was confirmed that continuous casting was possible without causing internal cracks.

同一の鋼種について、あるチャージの二次精錬後の鋼の成分値を分析したところ、0.13%C-0.10%Si-0.85%Mn-0.02%P-0.008%Sであった。本発明によりミクロ偏析モデルを用いて内部割れ限界歪εcrを計算すると、εcr=0.26%となった。そこでVc=1.5m/minへの増速を実施し、内部割れを発生させることなく連続鋳造が可能であることを確認した。   When the component value of the steel after secondary refining with a certain charge was analyzed for the same steel type, it was 0.13% C-0.10% Si-0.85% Mn-0.02% P-0.008% S. When the internal crack limit strain εcr was calculated using the microsegregation model according to the present invention, εcr = 0.26%. Therefore, the speed was increased to Vc = 1.5 m / min, and it was confirmed that continuous casting was possible without causing internal cracks.

同一の鋼種について、別のチャージの二次精錬後の鋼の成分値を分析したところ、0.13%C-0.10%Si-0.85%Mn-0.015%P-0.008%Sであった。本発明によりミクロ偏析モデルを用いて内部割れ限界歪εcrを計算すると、εcr=0.31%となった。そこでVc=1.6m/minへの増速を実施し、内部割れを発生させることなく連続鋳造が可能であることを確認した。   When the component value of the steel after secondary refining with another charge was analyzed for the same steel type, it was 0.13% C-0.10% Si-0.85% Mn-0.015% P-0.008% S. When the internal crack limit strain εcr was calculated using the microsegregation model according to the present invention, εcr = 0.31%. Therefore, the speed was increased to Vc = 1.6 m / min, and it was confirmed that continuous casting was possible without causing internal cracks.

B含有80kgハイテンについて、本発明を適用した。この鋼種は、0.18%C-0.20%Si-1.50%Mn-0.02%P-0.005%S-0.002%Bを標準組成とするものである。従来、B含有鋼はVc=1.0m/minで鋳造していた。本発明によりミクロ偏析モデルを用いて内部割れ限界歪εcrを計算すると、εcr=0.06%となった。そこで、Vc=1.1m/minへの増速を実施し、内部割れを発生させることなく連続鋳造が可能であることを確認した。   The present invention was applied to B-containing 80 kg high tension. This steel grade has a standard composition of 0.18% C-0.20% Si-1.50% Mn-0.02% P-0.005% S-0.002% B. Conventionally, B-containing steel was cast at Vc = 1.0 m / min. When the internal crack limit strain εcr was calculated using the microsegregation model according to the present invention, εcr = 0.06%. Therefore, the speed was increased to Vc = 1.1 m / min, and it was confirmed that continuous casting was possible without causing internal cracks.

高N含有低炭素鋼について、本発明を適用した。この鋼種は、0.06%C-0.02%Si-0.25%Mn-0.020%P-0.015%S-0.0120%Nを標準組成とするものである。従来、同じ組成でNを含有しない鋼種と同じVc=2.2mpmで鋳造していたが、内部割れが3%程度発生して生産ロスが発生していた。本発明によりミクロ偏析モデルを用いて内部割れ限界歪εcrを計算すると、εcr=0.5%となった。そこで、Vc=2.0mpmへの減速を実施し、内部割れの発生をなくすことができた。   The present invention was applied to a high N content low carbon steel. This steel grade has a standard composition of 0.06% C-0.02% Si-0.25% Mn-0.020% P-0.015% S-0.0120% N. Conventionally, the steel was cast at the same composition as Vc = 2.2mpm, which is the same as the steel type not containing N. However, about 3% of internal cracks occurred, resulting in production loss. When the internal crack limit strain εcr was calculated using the microsegregation model according to the present invention, εcr = 0.5%. Therefore, the speed was reduced to Vc = 2.0 mpm, and internal cracks could be eliminated.

上記したように、本発明によれば二次精錬後の鋼の成分値に応じて最大鋳造速度Vcを内部割れを発生させることのない範囲で最大限まで増速することができ、生産性の向上を図ることが可能となる。また本発明は過去に鋳造実績のない鋼種に対しても適用可能であり、事前に最適な最大鋳造速度Vcを設定することが可能となる。   As described above, according to the present invention, the maximum casting speed Vc can be increased to the maximum without causing internal cracks in accordance with the component values of the steel after secondary refining, and productivity can be increased. It is possible to improve. The present invention can also be applied to steel types that have not been cast in the past, and an optimum maximum casting speed Vc can be set in advance.

内部割れ発生機構の模式図である。It is a schematic diagram of an internal crack generating mechanism. ミクロ偏析モデルにおけるデンドライトの形状を示す図である。It is a figure which shows the shape of the dendrite in a microsegregation model. ミクロ偏析モデルにおける溶質の三次元拡散を示す図である。It is a figure which shows the three-dimensional diffusion of the solute in a microsegregation model. 脆化域幅ηと内部割れ限界歪εcrとの関係を示すグラフである。It is a graph which shows the relationship between the embrittlement zone width | variety (eta) and the internal crack limit strain (epsilon) cr. 内部割れ限界歪εcrと、総合歪εtと、内部割れ発生との関係を示すグラフである。It is a graph which shows the relationship between internal crack limit distortion | strain (epsilon) cr, total distortion (epsilon) t, and internal crack generation | occurrence | production. 本実施形態のステップを示すブロック図である。It is a block diagram which shows the step of this embodiment.

Claims (2)

鋼の連続鋳造を行なうに当たり、二次精錬後の鋼の成分値として、C、Si、Mn、P、Sを含む5以上の元素の成分値をチャージ毎に分析し、それらの値からミクロ偏析を計算して求めた固相率より脆化域幅ηを求め、さらに内部割れ限界歪εcrを計算し、連続鋳造時の鋳片各点で計算される総合歪εtのうちの最大値が計算された内部割れ限界歪εcrを越えない最大鋳造速度Vcを決定して、その最大鋳造速度Vcで連続鋳造を行なうことを特徴とする内部割れを防止した鋼の連続鋳造方法。 When performing continuous casting of steel, component values of five or more elements including C, Si, Mn, P, and S are analyzed for each charge as the component values of steel after secondary refining, and microsegregation is performed from these values. The embrittlement zone width η is calculated from the solid phase ratio obtained by calculating, the internal crack limit strain εcr is calculated, and the maximum value of the total strain εt calculated at each point of the slab during continuous casting is calculated A continuous casting method for steel that prevents internal cracks, wherein a maximum casting speed Vc that does not exceed the internal crack limit strain εcr is determined, and continuous casting is performed at the maximum casting speed Vc. ミクロ偏析の計算は、凝固中におけるデンドライト樹間の溶質元素の濃化を、δ/γ間の溶質分配及び固相内の溶質拡散を考慮した数値計算法により行い、得られた凝固完了までの任意温度におけるデンドライト樹間中心部の固相率から脆化域幅ηを求め、これに基づいて内部割れ限界歪εcrを計算することを特徴とする請求項1に記載の内部割れを防止した鋼の連続鋳造方法。The microsegregation calculation is performed by the numerical calculation method considering the solute distribution between δ / γ and solute diffusion in the solid phase, and the concentration of solute elements between dendrite trees during solidification. 2. The steel according to claim 1, wherein the embrittlement zone width η is determined from the solid phase ratio at the center of the dendritic tree at an arbitrary temperature, and the internal crack limit strain εcr is calculated based on the width η. Continuous casting method.
JP2007026305A 2007-02-06 2007-02-06 Continuous casting method of steel preventing internal cracking Active JP4949052B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007026305A JP4949052B2 (en) 2007-02-06 2007-02-06 Continuous casting method of steel preventing internal cracking

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007026305A JP4949052B2 (en) 2007-02-06 2007-02-06 Continuous casting method of steel preventing internal cracking

Publications (2)

Publication Number Publication Date
JP2008188640A JP2008188640A (en) 2008-08-21
JP4949052B2 true JP4949052B2 (en) 2012-06-06

Family

ID=39749245

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007026305A Active JP4949052B2 (en) 2007-02-06 2007-02-06 Continuous casting method of steel preventing internal cracking

Country Status (1)

Country Link
JP (1) JP4949052B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5351575B2 (en) * 2009-03-24 2013-11-27 株式会社神戸製鋼所 Solidification crack prediction method, casting method using the same, solidification crack prediction device, and solidification crack prediction program
CN108213369B (en) * 2018-01-05 2020-07-17 东北大学 Continuous casting billet solidification structure control method for reducing grade of A-type inclusions in heavy rail steel

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0763827B2 (en) * 1989-02-27 1995-07-12 住友金属工業株式会社 Continuous casting method for steel
JP2917641B2 (en) * 1992-01-10 1999-07-12 住友金属工業株式会社 Steel continuous casting method

Also Published As

Publication number Publication date
JP2008188640A (en) 2008-08-21

Similar Documents

Publication Publication Date Title
US6241004B1 (en) Method and apparatus for continuous casting
CN104874758B (en) Continuous casting weight pressing control method
JP2006206967A (en) Method for continuously casting free-cutting steel for machine structure
JP4949052B2 (en) Continuous casting method of steel preventing internal cracking
El-Bealy Macrosegregation quality criteria and mechanical soft reduction for central quality problems in continuous casting of steel
CN117226059B (en) Reduction control method for improving macro-segregation and semi-macro-segregation of high-carbon low-alloy steel
WO2000040354A1 (en) Continuous casting billet and production method therefor
Sediako et al. Some aspects of thermal analysis and technology upgrading in steel continuous casting
JP2001259810A (en) Continuous casting method
EP0663250B1 (en) Continuous casting method for steels
JP4205652B2 (en) Method for producing bloom slab with few cracks
JP6816523B2 (en) Continuous steel casting method
JP5476959B2 (en) Continuous casting method under light pressure
Birat Continuous casting for tomorrow: Near-Net Shape Casting
Hurtuk et al. Solidification Structures and Continuous Casting of Steel Revisited
Miyazaki et al. Influence of deformation on the internal crack formation in continuously cast bloom
JPH03138056A (en) Method for continuously casting steel
Zeng et al. Analysis of Micro-Segregation of Solute Elements on the Central Cracking of Continuously Cast Bloom. Metals 2021, 11, 382
Rutskii et al. Investigation of Chemical Heterogeneity of Cast Metal Ingots of Different Geometries and Assessment of their Applicability for Producing Round Rolled Products
JP4177541B2 (en) Billet continuous casting method and slab
JP2000094101A (en) Continuously cast slab, continuous casting method thereof and production of thick steel plate
JPH05212517A (en) Method for executing light rolling reduction in continuous casting
JP2966309B2 (en) Continuous casting method of Ni-containing steel
CN114669723A (en) Control method for effective reduction interval of casting blank
Domitner et al. Thermo-mechanical modeling of dendrite deformation in continuous casting of steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120302

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120307

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150316

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4949052

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150316

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150316

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150316

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350