JP4947560B2 - Method for producing dried natto food - Google Patents

Method for producing dried natto food Download PDF

Info

Publication number
JP4947560B2
JP4947560B2 JP2009074867A JP2009074867A JP4947560B2 JP 4947560 B2 JP4947560 B2 JP 4947560B2 JP 2009074867 A JP2009074867 A JP 2009074867A JP 2009074867 A JP2009074867 A JP 2009074867A JP 4947560 B2 JP4947560 B2 JP 4947560B2
Authority
JP
Japan
Prior art keywords
natto
lactic acid
dried
fermentation
acid bacteria
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009074867A
Other languages
Japanese (ja)
Other versions
JP2010226961A (en
Inventor
澄人 山本
有子 佐藤
光 松田
旭 佐藤
明夏 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokushima Prefecture
Original Assignee
Tokushima Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokushima Prefecture filed Critical Tokushima Prefecture
Priority to JP2009074867A priority Critical patent/JP4947560B2/en
Publication of JP2010226961A publication Critical patent/JP2010226961A/en
Application granted granted Critical
Publication of JP4947560B2 publication Critical patent/JP4947560B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Beans For Foods Or Fodder (AREA)
  • Storage Of Fruits Or Vegetables (AREA)

Description

本発明は、粉末状またはフレーク状の乾燥した乾燥納豆食品の製造方法と、該製造方法により製造された乾燥納豆食品に関する。   The present invention relates to a method for producing a powdered or flaky dried natto food and a dried natto food produced by the production method.

従来、納豆の原料となる大豆は畑の肉とも呼ばれ、タンパク質を豊富に含むことが特徴であるが、同時に糖質や食物繊維、脂質等の他の重要な栄養成分もバランス良く含有されている栄養食品である。   Traditionally, soybeans, the raw material of natto, are also called field meat and are characterized by rich protein content, but at the same time other important nutrients such as carbohydrates, dietary fiber, and lipids are contained in a well-balanced manner. It is a nutritional food.

この大豆中に豊富に含まれるタンパク質についてその機能性の向上について考察すると、タンパク質は栄養成分として体内に吸収される場合、胃や腸で分解され、アミノ酸になった後、小腸壁の微絨毛から吸収される。よってタンパク質を構成するアミノ酸への分解(遊離)が促進されれば、より一層吸収性に優れた食品となる。   Considering the improvement in functionality of the protein abundantly contained in soybeans, when protein is absorbed into the body as a nutritional component, it is broken down in the stomach and intestines to become amino acids, and then from the microvilli on the small intestine wall. Absorbed. Therefore, if the decomposition (release) into amino acids constituting the protein is promoted, the food is further excellent in absorbability.

これら種々の遊離アミノ酸の中には、γ-アミノ酪酸(GABA)の血圧降下作用やオルニチンの疲労回復効果など特異的な機能性を持つものがあることが報告されており、それらの特徴により特定保健用食品として認可されたり、サプリメントなどの健康食品に利用されている。   Some of these various free amino acids have been reported to have specific functionalities such as blood pressure lowering effect of γ-aminobutyric acid (GABA) and fatigue recovery effect of ornithine. It is approved as a health food or is used in health foods such as supplements.

また、近年、大豆のイソフラボン等の機能性成分が注目されている。大豆イソフラボンは女性ホルモンのエストロゲンに似た働きをするとされ、骨粗鬆症や更年期障害の緩和に効果があるという報告がされている。   In recent years, functional components such as soybean isoflavones have attracted attention. It has been reported that soy isoflavone works like the female hormone estrogen and is effective in alleviating osteoporosis and menopause.

大豆に含まれる大豆イソフラボンは、ゲニステイン、ダイゼイン、グリシテインの3種類の大豆イソフラボンアグリコンとゲニスチン、ダイジン、グリシチンをはじめとする配糖体が合計12種類存在することが知られている。大豆中ではそのほとんどが配糖体として存在しているが、配糖体は腸内細菌により糖が切り離されてアグリコンに変換された後、腸管から体内に吸収される。配糖体としてではなく、アグリコンの形で摂取することにより、体内への吸収性が優れていることが報告されている。   It is known that soybean isoflavones contained in soybean contain 12 kinds of glycosides including genistein, daidzein, glycitein, soy isoflavone aglycone, genistin, daidzin, and glycitin. Most soybeans exist as glycosides, but the glycosides are absorbed into the body from the intestinal tract after sugars are cut off by intestinal bacteria and converted into aglycones. It has been reported that the absorption into the body is excellent by ingesting it in the form of aglycone rather than as a glycoside.

ところで、このように種々の機能が知られている大豆であるが、その大豆を加工した食品として代表的なものに納豆がある。納豆は、大豆を原料として納豆菌を作用させて発酵させたものである。最近では、納豆の整腸作用等が注目され、広く社会的に健康に良い食品として認知されている。   By the way, soybean is known for various functions as described above, and natto is a representative food processed from the soybean. Natto is fermented by the action of natto bacteria using soybean as a raw material. Recently, attention has been paid to the intestinal regulating action of natto, and it is widely recognized as a food that is socially healthy.

本出願人も、大豆を粉末状又はフレーク状にして納豆菌を植え付け発酵させたあとに乾燥させた納豆食品を提案している(特許文献1参照)。   The present applicant has also proposed a natto food that has been dried after it has been fermented by fermenting and fermenting natto bacteria in the form of powder or flakes (see Patent Document 1).

特開2004−65032号公報JP 2004-65032 A

この粉末状またはフレーク状の乾燥納豆食品は、一般の納豆のような匂いがほとんどなく、栄養価および保存性の高いものとなるが、さらに上述のように遊離アミノ酸や大豆イソフラボンアグリコンの含有量をさらに増加した乾燥納豆食品が望まれるところである。   This powdered or flaky dried natto food has almost no odor like ordinary natto and has high nutritional value and storage stability, but also contains free amino acids and soy isoflavone aglycone as described above. Further increased dry natto food is desired.

本発明は上述の背景技術に鑑みてなされたものであって、遊離アミノ酸や大豆イソフラボンアグリコンの含有量を増加した乾燥納豆食品の製造方法および該製造方法により製造された乾燥納豆食品の提供を課題とする。   The present invention has been made in view of the background art described above, and it is an object to provide a method for producing a dried natto food having an increased content of free amino acids and soybean isoflavone aglycone, and a dried natto food produced by the production method. And

本発明に係る乾燥納豆食品の製造方法は、上述の課題を解決するために、大豆を粉末状またはフレーク状にして、納豆菌および乳酸菌を複合的に植え付けて発酵させた後、乾燥させることを特徴とする。これによれば遊離アミノ酸や大豆イソフラボンアグリコンの含有量を増加した乾燥納豆食品を製造することができる。   In order to solve the above-mentioned problems, the method for producing a dried natto food according to the present invention comprises making soybeans into a powder or flake form, fermenting natto bacteria and lactic acid bacteria in a complex manner, and then drying them. Features. According to this, a dried natto food with an increased content of free amino acids and soybean isoflavone aglycone can be produced.

納豆菌および乳酸菌を複合的に植え付けて発酵するに際しては、例えば納豆菌を植え付けて発酵させた後に乳酸菌を植え付けて発酵させたり、あるいは納豆菌および乳酸菌を同時に植え付けて発酵させたりしてもよい。要は納豆菌および乳酸菌が複合的に順次または同時に植え付けて発酵すればよい。   When fermenting natto bacteria and lactic acid bacteria in a complex manner, for example, natto bacteria may be inoculated and fermented, and then lactic acid bacteria may be inoculated and fermented, or natto and lactic acid bacteria may be inoculated and fermented at the same time. In short, natto and lactic acid bacteria may be combined and sequentially fermented sequentially or simultaneously.

また、乳酸菌としては、特にラクトバチルス・ブレビス(Lactobacillus brevis)、ラクトコッカス・ラクティス・サブスピーシズ・ラクティス(Lactococcus lactis subsp.lactis)、またはラクトバチルス・アシドフィルス(Lactobacillus acidophilus)が好適に用いられる。これらの乳酸菌によると、本乾燥納豆食品中に含まれるγ−アミノ酪酸(GABA)の濃度をさらに高くすることができるとともに、大豆イソフラボンアグリコンへの変換量をさらに多くすることができる。   As lactic acid bacteria, Lactobacillus brevis, Lactococcus lactis subsp. Lactis, or Lactobacillus acidophilus is particularly preferably used. According to these lactic acid bacteria, the concentration of γ-aminobutyric acid (GABA) contained in the present dried natto food can be further increased, and the amount of conversion to soybean isoflavone aglycone can be further increased.

また、乳酸菌は、液体窒素で急速に凍結したものであってもよい。これによれば乳酸菌を保存しやすくなり、適宜、乾燥納豆食品の製造に使用することができる。   The lactic acid bacteria may be rapidly frozen with liquid nitrogen. According to this, it becomes easy to preserve | save lactic acid bacteria, and it can use for manufacture of dry natto food suitably.

また、発酵させるに際しては、常温で一定期間発酵させたあと、さらに低温で一定期間発酵させるのが好ましい。常温とは例えば30℃〜40℃の範囲内、より好ましくは35℃程である。また低温とは、1℃〜10℃の範囲内、より好ましくは4℃程である。また、常温の一定期間は例えば3日〜5日、より好ましくは4日程である。低温の一定期間は例えば5日〜7日、より好ましくは6日程である。これによれば通常の発酵に比べて、乾燥納豆食品に含まれるγ−アミノ酪酸(GABA)の濃度を高くすることができるとともに、大豆イソフラボンアグリコンへの変換量を多くすることができる。   Moreover, when fermenting, it is preferable to ferment for a certain period at normal temperature, and then to ferment for a certain period at a lower temperature. The normal temperature is, for example, in the range of 30 ° C. to 40 ° C., more preferably about 35 ° C. The low temperature is in the range of 1 ° C to 10 ° C, more preferably about 4 ° C. Moreover, the fixed period of normal temperature is 3 to 5 days, for example, More preferably, it is about 4 days. The low temperature constant period is, for example, 5 to 7 days, more preferably about 6 days. According to this, compared with normal fermentation, while the density | concentration of (gamma) -aminobutyric acid (GABA) contained in dry natto food can be made high, the conversion amount to soybean isoflavone aglycone can be increased.

また、発酵を開始したときの水分含有量を60%〜65%にするのが好ましい。これによれば、発酵後の乾燥を効率的に行うことができる。   Moreover, it is preferable to make water content 60 to 65% when fermentation is started. According to this, drying after fermentation can be performed efficiently.

また、発酵させた後に乾燥させるときに際して、40℃〜80℃の温風により水分10%以下になるまで乾燥させるのが好ましい。この場合、40℃以下では風乾の効率が低くなり、また80℃以上では分解が生じ易いので、40℃〜80℃の範囲内、より好ましくは40℃〜50℃の温風で乾燥させる。また、乾燥させることにより大豆の分解を止めて芽胞に代わり、芽胞の密度を増加するため、水分10%以下、より好ましくは5%以下にする。   Moreover, when making it dry after making it ferment, it is preferable to make it dry until it becomes 10% or less of water | moisture content with a warm air of 40 to 80 degreeC. In this case, the efficiency of air drying is low at 40 ° C. or lower, and decomposition is likely to occur at 80 ° C. or higher. Therefore, drying is performed with hot air in the range of 40 ° C. to 80 ° C., more preferably 40 ° C. to 50 ° C. Moreover, in order to stop the decomposition | disassembly of soybean by drying and to replace a spore and to increase the density of a spore, the water | moisture content shall be 10% or less, More preferably, it is 5% or less.

また、乾燥は温風乾燥機を用いることが簡便であるが、温風乾燥機を用いることなく、空気を別途温めて温風として吹き付けて乾燥させてもよいし、その他の手段で乾燥させてもよい。なお、乾燥時における温風は均一乾燥の観点から可及的均一であるのが好ましい。   In addition, it is convenient to use a warm air dryer for drying, but without using a warm air dryer, the air may be separately heated and blown as warm air and dried by other means. Also good. In addition, it is preferable that the warm air at the time of drying is as uniform as possible from the viewpoint of uniform drying.

本発明によれば、納豆菌および乳酸菌を複合的に植え付けて発酵させるため、γ−アミノ酪酸(GABA)をはじめとする各種の遊離アミノ酸を豊富に含ませるとともに、原料の大豆には少量しか含まれていない大豆イソフラボンアグリコンを豊富に含ませることができる。このため人体への吸収性に優れる大豆由来のこれらの機能性成分の増強により、優れた栄養食品としての乾燥納豆食品を製造することができる。   According to the present invention, since natto and lactic acid bacteria are planted in a complex manner and fermented, various free amino acids such as γ-aminobutyric acid (GABA) are contained abundantly, and the raw material soybean contains only a small amount. It can be rich in soy isoflavone aglycone. For this reason, dried natto food as an excellent nutritional food can be produced by enhancing these functional components derived from soybeans that are excellent in absorbability to the human body.

また、発酵させた後に乾燥させるため、納豆特有のアンモニア臭が少なくなり、また保管にも適したものとなる。   Moreover, since it is dried after being fermented, the ammonia odor peculiar to natto is reduced, and it is also suitable for storage.

さらに粉末状またはフレーク状にしているため、様々な料理や飲料に入れることができ、遊離アミノ酸や大豆イソフラボンアグリコンなどの機能性成分を手軽に摂取することが可能となる上に、納豆菌を多く含んでいるために整腸作用も期待できる。   Furthermore, because it is in the form of powder or flakes, it can be put into various dishes and beverages, and it is possible to easily ingest functional components such as free amino acids and soy isoflavone aglycone, as well as many natto bacteria. Because of the inclusion, it can be expected to have an intestinal function.

粉末納豆(従来品)から水抽出されたアミノ酸の抽出量に関するグラフGraph on extraction amount of amino acids extracted from powdered natto (conventional product) with water 各乳酸菌培養液中のγ−アミノ酪酸(GABA)の濃度に関するグラフGraph of γ-aminobutyric acid (GABA) concentration in each lactic acid bacteria culture 原料大豆粉末、粉末納豆(従来品)、乳酸菌(13951)処理した本乾燥納豆食品の遊離アミノ酸の抽出量に関するグラフGraph on the amount of free amino acids extracted from this dried natto food treated with raw soybean powder, powdered natto (conventional product), and lactic acid bacteria (13951)

次の本発明の実施例について図1〜図3及び表1〜6を参照しつつ説明する。   Examples of the present invention will be described with reference to FIGS. 1 to 3 and Tables 1 to 6. FIG.

<乾燥納豆食品の製造に適した乳酸菌の検索>
粉末状またはフレーク状に加工した大豆に納豆菌を植え付け、40℃〜50℃、湿度60%〜85%の雰囲気下で15〜20時間保持して発酵させた後、これを好気環境で35℃〜50℃の温風により風乾し、水分含量を10%以下とした粉末納豆を原料とする。
<Search for lactic acid bacteria suitable for the production of dry natto food>
Natto is planted on soybeans processed into powder or flakes, fermented by holding for 15 to 20 hours in an atmosphere of 40 ° C to 50 ° C and humidity of 60% to 85%, and then fermented in an aerobic environment. Powdered natto with a moisture content of 10% or less is used as a raw material.

この粉末納豆を水抽出(1gあたり50mlの蒸留水で10分間放置)し、抽出液のアミノ酸組成を測定した結果、図1に示すように、他のアミノ酸に比べ、著量のグルタミン酸(Glu)が検出された。   This powdered natto was extracted with water (50 ml of distilled water per gram for 10 minutes) and the amino acid composition of the extract was measured. As a result, as shown in FIG. 1, a significant amount of glutamic acid (Glu) was found compared to other amino acids. Was detected.

そこで、グルタミン酸(Glu)を原料としてグルタミン酸デカルボキシラーゼ(GAD)の作用により、γ−アミノ酪酸(GABA)を効率よく生成する乳酸菌の検索を行った。乳酸菌は表1(供試乳酸菌リスト)に示す菌株(丸数字1〜8)を使用した。
Therefore, a search was conducted for lactic acid bacteria that efficiently produce γ-aminobutyric acid (GABA) by the action of glutamic acid decarboxylase (GAD) using glutamic acid (Glu) as a raw material. For the lactic acid bacteria, the strains (circle numbers 1 to 8) shown in Table 1 (list of lactic acid bacteria to be tested) were used.

また、乳酸菌の培養には、表2(乳酸菌用培地組成 g/100ml)に示す乳酸菌用培地AあるいはBのいずれかを使用した。
For culturing lactic acid bacteria, either medium A or B for lactic acid bacteria shown in Table 2 (Lactic acid bacteria medium composition g / 100 ml) was used.

100mlの乳酸菌用液体培地Aに1gの粉末納豆を添加し、これに各乳酸菌株を接種して30℃で3日間静置培養後、培養液上清をアミノ酸分析用クエン酸緩衝液で2倍希釈してアミノ酸分析を行い、γ−アミノ酪酸(GABA)の含有量を測定した。   Add 1 g of powdered natto to 100 ml of liquid medium A for lactic acid bacteria, inoculate each lactic acid strain, incubate at 30 ° C for 3 days, and then double the culture supernatant with citrate buffer for amino acid analysis. After dilution, amino acid analysis was performed and the content of γ-aminobutyric acid (GABA) was measured.

すると、図2に示すように乳酸菌3、4および5に相当するLactobacillus brevis (NBRC12005)、Lactococcus lactis subsp.lactis(NBRC12007)およびLactobacillus acidophilus(NBRC 13951)を添加した培養液中のγ−アミノ酪酸(GABA)の濃度が高かった。以後はこれら3菌株に絞って粉末納豆を原料とするGABAの生成試験を実施した。   Then, as shown in FIG. 2, γ-aminobutyric acid in the culture solution added with Lactobacillus brevis (NBRC12005), Lactococcus lactis subsp. Lactis (NBRC12007) and Lactobacillus acidophilus (NBRC 13951) corresponding to lactic acid bacteria 3, 4 and 5 The concentration of GABA was high. After that, we conducted a production test of GABA using powdered natto as a raw material, focusing on these three strains.

乳酸菌の保存は、液体培地で培養した菌体を遠心分離により集菌後、滅菌した15%グリセリン溶液に懸濁し、液体窒素で急速に凍結して−75℃の冷凍庫で保存した。   For storage of lactic acid bacteria, the cells cultured in a liquid medium were collected by centrifugation, suspended in a sterilized 15% glycerin solution, rapidly frozen in liquid nitrogen, and stored in a freezer at -75 ° C.

<乳酸菌3菌株による粉末納豆を原料とするγ−アミノ酪酸(GABA)の生成試験>
粉末納豆を原料とするγ−アミノ酪酸(GABA)の生成試験に使用する3種類の乳酸菌3,4,5は表2の培地Aを用いて30℃で2日間培養後、遠心分離(7000rpm、20分、4℃)により集め、菌体を蒸溜水で2回洗浄し、少量の蒸留水に懸濁後、真空凍結乾燥した。γ−アミノ酪酸(GABA)の生成試験の菌体使用量は基質となる粉末納豆100gあたり50mlの培養液から得られた凍結乾燥乳酸菌粉末を用いた。
<Production test of γ-aminobutyric acid (GABA) using powdered natto by three lactic acid bacteria strains>
Three types of lactic acid bacteria 3, 4, and 5 used for the production test of γ-aminobutyric acid (GABA) using powdered natto as a raw material were cultured at 30 ° C. for 2 days using the medium A in Table 2 and then centrifuged (7000 rpm, 20 minutes, 4 ° C.), the cells were washed twice with distilled water, suspended in a small amount of distilled water, and then freeze-dried in vacuo. The amount of cells used in the production test of γ-aminobutyric acid (GABA) was freeze-dried lactic acid bacteria powder obtained from 50 ml of the culture solution per 100 g of powdered natto serving as a substrate.

粉末納豆と3種類の凍結乾燥乳酸菌粉末3,4,5によるγ−アミノ酪酸(GABA)の生成試験の実施例を以下に示す。   An example of a production test of γ-aminobutyric acid (GABA) using powdered natto and three types of freeze-dried lactic acid bacteria powders 3, 4, and 5 is shown below.

100gの粉末納豆にLactobacillus brevis (NBRC12005)、Lactococcus lactis subsp. Lactis (NBRC12007)および Lactobacillus acidophilus (NBRC13951)の3種類の凍結乾燥乳酸菌粉末3,4,5を懸濁した150mlの水道水をよく混和し、35℃で4日間発酵後、さらに4℃で6日間発酵した。なお、発酵開始時の水分は多いほど発酵経過が良好であるが、後の乾燥工程を考慮して発酵開始時の水分含量は60〜65%程度とした。   Mix 100ml of powdered natto with 150ml tap water in which three kinds of freeze-dried lactic acid bacteria powders 3, 4 and 5 of Lactobacillus brevis (NBRC12005), Lactococcus lactis subsp. Lactis (NBRC12007) and Lactobacillus acidophilus (NBRC13951) are suspended. After fermentation at 35 ° C. for 4 days, fermentation was further performed at 4 ° C. for 6 days. In addition, although fermentation progress is so favorable that there is much water | moisture content at the time of fermentation start, the water | moisture content content at the time of fermentation start was made into about 60 to 65% in consideration of the subsequent drying process.

発酵後の試料は、40〜80℃の温風により水分10%以下まで乾燥し、ブレンダーで破砕して粉末状に加工し、乳酸菌複発酵納豆粉末とした。0.4gの乳酸菌複発酵納豆粉末と10mlの8%トリクロロ酢酸(TCA)溶液をよく混和後、20℃で2時間振とうしてγ−アミノ酪酸(GABA)を抽出した。抽出液中の遊離アミノ酸をアミノ酸分析計で分析した。   The sample after fermentation was dried to a water content of 10% or less with warm air of 40 to 80 ° C., crushed with a blender, and processed into a powder form to obtain a lactic acid bacteria double fermented natto powder. After thoroughly mixing 0.4 g of lactic acid bacteria double fermented natto powder and 10 ml of 8% trichloroacetic acid (TCA) solution, the mixture was shaken at 20 ° C. for 2 hours to extract γ-aminobutyric acid (GABA). Free amino acids in the extract were analyzed with an amino acid analyzer.

分析の結果、表3(TCA抽出されたγ−アミノ酪酸(GABA)の量 mg/100g)に示すように試験した3種類のいずれの乳酸菌においてもGABAの生成が認められ、35℃での発酵後、4℃の環境下で放置することでさらにγ−アミノ酪酸(GABA)の濃度が増加することが判明した。粉末納豆の原料大豆と粉末納豆のγ−アミノ酪酸(GABA)の含有量の結果では、原料大豆粉末中には0.1mg/100g以下、粉末納豆中には24.1mg/100gであることから、本方法により、大豆由来以外のγ−アミノ酪酸(GABA)の基質を全く添加することなく、納豆菌と乳酸菌の複合的な発酵により、著量のγ−アミノ酪酸(GABA)の生成が可能であることが判明した。
As a result of analysis, the production of GABA was observed in any of the three types of lactic acid bacteria tested as shown in Table 3 (TCA-extracted amount of γ-aminobutyric acid (GABA) mg / 100 g). Fermentation at 35 ° C Later, it was found that the concentration of γ-aminobutyric acid (GABA) further increased by leaving it in an environment of 4 ° C. As a result of content of raw soybean of powdered natto and γ-aminobutyric acid (GABA) of powdered natto, it is 0.1mg / 100g or less in raw soybean powder and 24.1mg / 100g in powdered natto By this method, it is possible to produce a significant amount of γ-aminobutyric acid (GABA) by the combined fermentation of natto and lactic acid bacteria without adding any substrate of γ-aminobutyric acid (GABA) other than soybean origin. It turned out to be.

さらに、同様に原料大豆粉末、粉末納豆、及び本方法で処理した粉末(乳酸菌株NBRC13951を使用し、常温35℃で4日発酵、さらに低温4℃で6日発酵したもの)から抽出されたγ−アミノ酪酸(GABA)を含む遊離アミノ酸を比較した結果を図3に示した。本方法で処理することにより、γ−アミノ酪酸(GABA)以外の遊離アミノ酸も増加しており、体内へのアミノ酸の吸収性に優れた栄養価値の高い加工品となっていることが結論づけられる。なお、他の2株の乳酸菌においても、同様の傾向が認められた。   Furthermore, γ extracted from raw soybean powder, powdered natto, and powder treated by this method (fermented using lactic acid strain NBRC13951, fermented at room temperature of 35 ° C. for 4 days, and further fermented at low temperature of 4 ° C. for 6 days) -The result of having compared the free amino acid containing aminobutyric acid (GABA) was shown in FIG. By treating with this method, free amino acids other than γ-aminobutyric acid (GABA) are also increased, and it is concluded that the processed product is excellent in absorbability of amino acids into the body and has high nutritional value. The same tendency was observed in the other two strains of lactic acid bacteria.

<大豆イソフラボンのアグリコンへの変換量の測定>
大豆中においてイソフラボンはその多くが配糖体として存在していることが知られているが、本技術による納豆菌と乳酸菌の複合的な発酵の過程で配糖体の糖が切り離されてアグリコンの形に変換できるか否かを検討した。
<Measurement of conversion of soy isoflavone to aglycone>
Many isoflavones are known to exist as glycosides in soybean, but the glycoside sugars are cut off during the combined fermentation of natto and lactic acid bacteria using this technology. We examined whether it could be converted into a shape.

原料大豆、納豆粉末及び各種条件で発酵した試作品より80%メタノールによってイソフラボンを抽出し、代表的な配糖体であるダイジン、グリシチンおよびゲニスチンと各々のアグリコンであるダイゼイン、グリシテインおよびゲニステインを測定した。   Isoflavones were extracted with 80% methanol from raw soybeans, natto powder, and prototypes fermented under various conditions, and the typical glycosides daidin, glycitin and genistin and their respective aglycones, daidzein, glycitein and genistein were measured. .

その結果、表4(大豆イソフラボン含有量の比較 mg/100g)に示すように、原料の大豆中にはアグリコンとして存在するイソフラボンは3種類の合計で0.8mg/100gであったのに対して納豆菌により20時間発酵した粉末納豆(従来品)は、23.0mg/100gに増加していた。さらに、本技術により、乳酸菌5(NBRC13951)を添加し、35℃で4日間、4℃で6日間発酵したものは121.8mg/100gに増加していた。
As a result, as shown in Table 4 (comparison of soy isoflavone content mg / 100g), the total of three types of isoflavones present as aglycone in the raw soybean was 0.8mg / 100g. Powdered natto fermented with natto bacteria for 20 hours (conventional product) increased to 23.0 mg / 100 g. Furthermore, by this technique, lactic acid bacteria 5 (NBRC13951) was added, and what fermented at 35 degreeC for 4 days and 4 degreeC for 6 days was increased to 121.8 mg / 100g.

一方、乳酸菌を添加することなく35℃で4日間発酵、4℃で6日間放置したものは96.6mg/100gまで増加しており、長い時間の納豆菌発酵により、アグリコンが増加する傾向が見られたが、乳酸菌を添加した場合においてアグリコンへの変換量が多いことが確認された。   On the other hand, fermentation for 4 days at 35 ° C without addition of lactic acid bacteria increased to 96.6mg / 100g when left at 4 ° C for 6 days, and aglycone tends to increase due to long-time fermentation of natto bacteria. However, when lactic acid bacteria were added, it was confirmed that the amount of conversion to aglycone was large.

以上の結果より、本技術の納豆菌と乳酸菌の複合的な発酵の過程で配糖体がアグリコンに変換され、種々の機能性が期待されるイソフラボンの体内への吸収性が高められた乾燥納豆食品が試作できた。   Based on the above results, dried natto with improved absorption of isoflavones into the body, where glycosides are converted to aglycones in the combined fermentation process of natto and lactic acid bacteria using this technology. The food was prototyped.

なお、参考までに乾燥納豆として市販されている既製品のイソフラボン含有量を表5(市販の乾燥納豆のイソフラボン含有量の比較 mg/100g)に示すが、いずれもアグリコンの含有量は本技術による試作品に比べてかなり少ない。
For reference, the isoflavone content of off-the-shelf products marketed as dry natto is shown in Table 5 (comparison mg / 100g of isoflavone content of commercially available dry natto). Much less than the prototype.

<納豆菌と乳酸菌の挙動>
乳酸菌(NBRC13951使用の場合)との複合発酵前の粉末納豆、複合発酵過程の試作品、乾燥後の試作品の納豆菌と乳酸菌を測定した。
<Behavior of natto and lactic acid bacteria>
Powdered natto before complex fermentation with lactic acid bacteria (when using NBRC13951), prototype of complex fermentation process, natto bacteria and lactic acid bacteria of prototype after drying were measured.

その結果、表6(納豆菌と乳酸菌の菌数の推移)に示すように、納豆菌は乾燥粉末状態においても、加水し、乳酸菌との複合発酵状況下においても、終始1g当たり108以上の菌数を維持し、乳酸菌は発酵過程においては1g当たり108以上の菌数となっているが、乾燥して粉末とした場合には検出されなかった。   As a result, as shown in Table 6 (transitions in the number of natto and lactic acid bacteria), natto bacteria are hydrated in a dry powder state or in a complex fermentation with lactic acid bacteria. The number of lactic acid bacteria was 108 or more per gram in the fermentation process, but it was not detected when dried to form a powder.

よって、今回の試作で行った乾燥方法では、乳酸菌は死滅していると考えられる。凍結乾燥を行えば、生菌としての乳酸菌のプロバイオティクス効果も期待できる。
Therefore, it is considered that the lactic acid bacteria have been killed by the drying method performed in this trial production. If lyophilization is performed, the probiotic effect of lactic acid bacteria as live bacteria can also be expected.

<分析方法>
以上のアミノ酸の分析には、日本電子(株)製JLC-500/V2型全自動アミノ酸分析機を使用して常法により行った。
<Analysis method>
The above amino acids were analyzed by a conventional method using a JLC-500 / V2 type fully automatic amino acid analyzer manufactured by JEOL Ltd.

また、大豆イソフラボンの分析条件は下記のとおりである。
・カラム:HIKARISIL-C-18(4.6mmID×250mm)
・移動相:MeOH/H2O(30%/70%)→MeOH/H2O(70%/30%)(開始から40分間かけて直線グラジエント)
・カラム温度:40℃
・流速:1.0ml/min
・検出:UV 254nm
Moreover, the analysis conditions of soybean isoflavone are as follows.
・ Column: HIKARISIL-C-18 (4.6mmID × 250mm)
-Mobile phase: MeOH / H2O (30% / 70%) → MeOH / H2O (70% / 30%) (linear gradient over 40 minutes from the start)
・ Column temperature: 40 ℃
・ Flow rate: 1.0ml / min
・ Detection: UV 254nm

Claims (11)

乾燥納豆食品の製造方法であって、
大豆を粉末状またはフレーク状にして、納豆菌および乳酸菌を複合的に植え付けて発酵させた後、乾燥させることを含み、
前記乳酸菌が、ラクトバチルス・ブレビス(Lactobacillus brevis)、ラクトコッカス・ラクティス・サブスピーシズ・ラクティス(Lactococcus lactis subsp.lactis)、またはラクトバチルス・アシドフィルス(Lactobacillus acidophilus)のいずれかであり、
前記発酵において、30℃〜40℃の温度範囲で3日〜5日の期間発酵させた後、さらに1℃〜10℃の温度範囲で5日〜7日の期間発酵させる、
ことを特徴とする乾燥納豆食品の製造方法
A method for producing dry natto food,
Soy bean powder or flakes, fermented with natto and lactic acid bacteria combined and fermented, then dried ,
The lactic acid bacterium is either Lactobacillus brevis, Lactococcus lactis subsp. Lactis, or Lactobacillus acidophilus,
In the fermentation, after fermentation for 3 days to 5 days in a temperature range of 30 ° C. to 40 ° C., further fermentation for 5 to 7 days in a temperature range of 1 ° C. to 10 ° C.,
A method for producing a dried natto food characterized by the above .
前記納豆菌および乳酸菌を複合的に植え付けて発酵することが、納豆菌を植え付けて発酵させた後に乳酸菌を植え付けて発酵させるものである、請求項1に記載の乾燥納豆食品の製造方法。The method for producing a dried natto food according to claim 1, wherein the complexing and fermenting of natto and lactic acid bacteria is performed by planting and fermenting natto bacteria and then fermenting and fermenting lactic acid bacteria. 前記乳酸菌は、液体窒素で急速に凍結したものである請求項1または請求項2に記載の乾燥納豆食品の製造方法。   The method for producing a dried natto food according to claim 1 or 2, wherein the lactic acid bacteria are rapidly frozen with liquid nitrogen. 発酵を開始したときの水分含有量を60%〜65%にする請求項1から請求項のいずれかに記載の乾燥納豆食品の製造方法。 The method for producing a dried natto food according to any one of claims 1 to 3 , wherein the water content at the start of fermentation is 60% to 65%. 発酵させた後に乾燥させるに際して、40℃〜80℃の温風により水分10%以下になるまで乾燥させる請求項1から請求項のいずれかに記載の乾燥納豆食品の製造方法。 The method for producing a dried natto food according to any one of claims 1 to 4 , wherein the dried natto food is dried with warm air of 40 ° C to 80 ° C until the water content becomes 10% or less when dried after fermentation. 請求項1から請求項のいずれかに記載の製造方法により製造された乾燥納豆食品。 The dried natto food manufactured by the manufacturing method in any one of Claims 1-5 . 乾燥納豆食品におけるγ−アミノ酪酸及び大豆イソフラボンアグリコンの増強方法であって、A method for enhancing γ-aminobutyric acid and soy isoflavone aglycone in dry natto food,
大豆を粉末状またはフレーク状にして、納豆菌および乳酸菌を複合的に植え付けて発酵させた後、乾燥させることを含み、Soy bean powder or flakes, fermented with natto and lactic acid bacteria combined and fermented, then dried,
前記乳酸菌が、ラクトバチルス・ブレビス(Lactobacillus brevis)、ラクトコッカス・ラクティス・サブスピーシズ・ラクティス(Lactococcus lactis subsp.lactis)、またはラクトバチルス・アシドフィルス(Lactobacillus acidophilus)のいずれかであり、The lactic acid bacterium is Lactobacillus brevis, Lactococcus lactis subsp. Lactis, or Lactobacillus acidophilus,
前記発酵において、30℃〜40℃の温度範囲で3日〜5日の期間発酵させた後、さらに1℃〜10℃の温度範囲で5日〜7日の期間発酵させる、In the fermentation, after fermentation for 3 days to 5 days in a temperature range of 30 ° C. to 40 ° C., further fermentation for 5 to 7 days in a temperature range of 1 ° C. to 10 ° C.,
ことを特徴とする乾燥納豆食品におけるγ−アミノ酪酸及び大豆イソフラボンアグリコンの増強方法。A method for enhancing γ-aminobutyric acid and soybean isoflavone aglycone in dried natto food.
前記納豆菌および乳酸菌を複合的に植え付けて発酵することが、納豆菌を植え付けて発酵させた後に乳酸菌を植え付けて発酵させるものである、請求項7に記載の増強方法。The enhancement method according to claim 7, wherein the planting and fermenting the natto and lactic acid bacteria in a combined manner is to inoculate and ferment the lactic acid bacteria after planting and fermenting the natto bacteria. 前記乳酸菌は、液体窒素で急速に凍結したものである請求項7または請求項8に記載の増強方法。The enhancement method according to claim 7 or 8, wherein the lactic acid bacteria are rapidly frozen with liquid nitrogen. 発酵を開始したときの水分含有量を60%〜65%にする請求項7から請求項9のいずれかに記載の増強方法。The enhancement method according to any one of claims 7 to 9, wherein the water content at the start of fermentation is 60% to 65%. 発酵させた後に乾燥させるに際して、40℃〜80℃の温風により水分10%以下になるまで乾燥させる請求項7から請求項10のいずれかに記載の増強方法。The enhancement method according to any one of claims 7 to 10, wherein when drying after fermentation, drying is performed with warm air of 40 ° C to 80 ° C until the water content becomes 10% or less.
JP2009074867A 2009-03-25 2009-03-25 Method for producing dried natto food Active JP4947560B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009074867A JP4947560B2 (en) 2009-03-25 2009-03-25 Method for producing dried natto food

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009074867A JP4947560B2 (en) 2009-03-25 2009-03-25 Method for producing dried natto food

Publications (2)

Publication Number Publication Date
JP2010226961A JP2010226961A (en) 2010-10-14
JP4947560B2 true JP4947560B2 (en) 2012-06-06

Family

ID=43043516

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009074867A Active JP4947560B2 (en) 2009-03-25 2009-03-25 Method for producing dried natto food

Country Status (1)

Country Link
JP (1) JP4947560B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103767027A (en) * 2014-01-20 2014-05-07 胡永金 Method for preparing natto oral liquid by utilizing secondary biological fermentation
KR101793123B1 (en) * 2014-11-11 2017-11-03 대한민국(농촌진흥청장) preparing method of fermented soybean enhancing physiological active substance and the physiological active substance thereby
JP6715170B2 (en) * 2016-11-25 2020-07-01 有限会社オトコーポレーション Food manufacturing method
CN110313590A (en) * 2019-03-19 2019-10-11 张涛 A kind of health food and preparation method thereof comprising natto
CN111560406B (en) * 2020-04-27 2023-05-16 黑龙江大学 Method for producing flavonoid substances from external products such as soybean for vegetable by fermenting bacillus natto

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004065032A (en) * 2002-08-02 2004-03-04 Hasu Shokai:Kk Method for producing highly nutritious natto food
JP4928413B2 (en) * 2006-10-03 2012-05-09 一興 石原 Fermented soybean and method for producing the same.
JP2009011227A (en) * 2007-07-04 2009-01-22 Seishoku Sai Lactic acid bacterium-containing useful composition, and method for producing the same

Also Published As

Publication number Publication date
JP2010226961A (en) 2010-10-14

Similar Documents

Publication Publication Date Title
KR101825667B1 (en) Method of Producing Microbial Agent Comprising Intracellular Accumulated Aglycon Therein and Microbial Agent Produced Therefrom
Singh et al. α-Galactosidase activity and oligosaccharides reduction pattern of indigenous lactobacilli during fermentation of soy milk
Tsangalis et al. Biotransformation of isoflavones by bifidobacteria in fermented soymilk supplemented with D‐glucose and L‐cysteine
JP2008061584A (en) Microorganism having equol-producing ability, food and beverage, medicine, animal feed and method for producing the same equol
JP5467433B2 (en) Seaweed fermentation composition and method for producing the same
JP4947560B2 (en) Method for producing dried natto food
Hati et al. β-Glucosidase from almonds and yoghurt cultures in the biotransformation of isoflavones in soy milk
Du et al. Effects of lactiplantibacillus plantarum X7021 on physicochemical properties, purines, isoflavones and volatile compounds of fermented soymilk
WO2015075440A1 (en) Prebiotic composition
Niu et al. Exploring the probiotic and compound feed fermentative applications of Lactobacillus plantarum SK1305 isolated from Korean green chili pickled pepper
Weng et al. Soy yoghurts produced with efficient GABA (γ-aminobutyric acid)-producing Lactiplantibacillus plantarum ameliorate hyperglycaemia and re-establish gut microbiota in streptozotocin (STZ)-induced diabetic mice
KR20100074382A (en) Fermented drinks of ginseng and preparation method thereof
JP5606672B2 (en) Intestinal environment adjustment method using symbiotics
JP5553820B2 (en) Okara Lactic Acid Bacteria Fermentation Using Soy Milk Medium
Mishra et al. Bio-nutritional aspects of Tungrymbai, an ethnic functional fermented soy food of Khasi Hills, Meghalaya, India
JP2014233259A (en) Equol-containing composition with low content of isoflavones other than equol
CN103652346A (en) Method for improving soy isoflavone conversion rate of composite probiotics fermented soybean meal feed
Tsuda et al. Bioconversion of daidzin to daidzein by lactic acid bacteria in fermented soymilk
TWI766184B (en) A kind of Lactobacillus plantarum and its use for preparing vegetable condensed yogurt and improving intestinal flora
CN107771940A (en) A kind of preparation method of oxidation resistant Lactobacillus casei fermentation sheep breast
Prasad et al. Conversion of isoflavone glycoside to aglycones in soy protein isolate (SPI) using crude enzyme extracted from Bifidobacterium animalis Bb12 and Lactobacillus delbrueckii ssp. bulgaricus ATCC 11842
WO2021235278A1 (en) Qol improving composition for 40-year-old or older menopausal women without postmenopausal syndrome
Kim et al. Effects of a soaking-fermentation-drying process on the isoflavone and γ-aminobutyric acid contents of soybean
JP2011512807A (en) Fermented soymilk and method for improving sensory characteristics of fermented soymilk
Kaprelyants et al. Biotechnological aspects of obtaining fermented soybean products with increased phytoestrogenic activity

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100928

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100928

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100928

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110607

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110727

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110908

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120207

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120228

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150316

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4947560

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250