JP4945758B2 - Material generation method by pulse laser - Google Patents
Material generation method by pulse laser Download PDFInfo
- Publication number
- JP4945758B2 JP4945758B2 JP2007057725A JP2007057725A JP4945758B2 JP 4945758 B2 JP4945758 B2 JP 4945758B2 JP 2007057725 A JP2007057725 A JP 2007057725A JP 2007057725 A JP2007057725 A JP 2007057725A JP 4945758 B2 JP4945758 B2 JP 4945758B2
- Authority
- JP
- Japan
- Prior art keywords
- substance
- carbon
- pulse laser
- powdered
- carbonate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Carbon And Carbon Compounds (AREA)
Description
本発明は、炭酸塩物質(特に地殻由来の炭酸塩物質)に衝撃波パルスレーザーを印加することにより、炭素固定をし、少なくとも粉末状炭素含む粉末状物質を生成する物質生成方法に関する。 The present invention relates to a substance generating method for fixing a carbon by applying a shock wave pulse laser to a carbonate substance (particularly a carbonate substance derived from the earth's crust) and generating a powdery substance containing at least powdery carbon.
従来、粉末状炭素(ダイヤモンドを含む)を生成する方法としては、(ダイヤモンド)炭素の高圧高温反応、石炭・石油の高温反応、そして有機物と酸素ガスの化学気相成長法を用いた方法が知られている。従来の(ダイヤモンド)炭素の高圧高温化学反応を用いた方法は、限られた石墨炭素を特殊の高圧高温装置で反応させる(1,200−2,400℃、55,000−100,000気圧)もので、実験装置が特殊で大型であり、汎用性がない。従来の石炭・石油の高温熱処理法は、重質芳香族化合物であるピッチや汎用高分子類等を反応させるので、装置が特殊で大型化し効率的でない。従来の化学気相成長法は、定気圧下で合成が可能で、プラズマ状にしたガス(メタンと水素を混合させたもの、メタン-酸素やエチレン-酸素など)から結晶(粒子)を成長させる方法で、有機物ガスと無機ガス等の二次物質を出発物質とするための前段階反応を経るため(地球環境の元素循環において)複雑で効率的でない。
また従来、粉末状炭酸塩物質を生成する方法としては、化学反応や生物を用いた方法が知られている。従来の化学反応を用いた方法は、炭酸ガスを吹きつける又は塩反応等の特別な反応が必要である。炭酸ガス反応法で既存の試料を焼成・消化・炭酸化と複雑で焼成炉を使用、また可溶性塩反応法はCaCl2 、Ca(OH)2、Na2CO3等の二次物質を使用する必要がある。生物を使う反応では、人工的に生き物を培養し処理する装置が必要で(その準備と維持に)手間がかかる。
炭酸カルシウム等の炭酸塩物質は地殻(地球表層部)に豊富に含まれている炭素含有物質である。本発明者は研究により、隕石衝突等の衝撃波により(天然)地殻の炭酸塩物質から粉末状炭素(粉末状炭化物、炭酸塩物質等)が生成されることを見出した。
Conventional methods for producing powdered carbon (including diamond) include high-pressure and high-temperature reactions of (diamond) carbon, high-temperature reactions of coal and petroleum, and chemical vapor deposition of organic matter and oxygen gas. It has been. The conventional method using high-pressure and high-temperature chemical reaction of (diamond) carbon is a reaction of limited graphite carbon using a special high-pressure and high-temperature apparatus (1,200-2,400 ° C, 55,000-100,000 atmospheres). It is large and not versatile. Conventional high-temperature heat treatment methods for coal and petroleum react with pitch, general-purpose polymers, and the like, which are heavy aromatic compounds, making the apparatus special and large in size and not efficient. The conventional chemical vapor deposition method can be synthesized at a constant pressure, and grows crystals (particles) from a plasma-like gas (mixed methane and hydrogen, methane-oxygen, ethylene-oxygen, etc.). The method is complex and inefficient (in the elemental circulation of the global environment) because it undergoes a pre-stage reaction to start with secondary substances such as organic and inorganic gases.
Conventionally, as a method for producing a powdered carbonate substance, a method using a chemical reaction or a living organism is known. Conventional methods using chemical reactions require special reactions such as blowing carbon dioxide or salt reactions. Baking-digestion and carbonation existing sample with carbon dioxide gas reaction process and use complex and sintering furnace, and soluble salts reaction method using a secondary material such as CaCl 2, Ca (OH) 2 , Na 2 CO 3 There is a need. In the reaction using living organisms, an apparatus for artificially culturing and processing living creatures is necessary (preparing and maintaining it).
Carbonate substances such as calcium carbonate are carbon-containing substances that are abundantly contained in the earth's crust (earth surface layer). The inventor has found through research that powdery carbon (powdered carbide, carbonate material, etc.) is produced from (natural) crust carbonate material by shock waves such as meteorite impact.
従来の粉末状炭素(粉末状炭酸塩)の生成方法は、(高圧高温)化学反応や生物培養(有機物ガス)のために複雑な装置(反応)が必要であった。また、原料に人工的な(二次的)物質が必要であり、物質によっては地球環境に悪影響を及ぼすという問題点があった。従来のこれらの物質の生成法は特定結晶材料にするだけの複雑で効率的でない生成法で、汎用性のない特殊装置や中間物質を反応に使う等、地球の元素循環から見て、無駄の少ない効率的な反応でないという問題点もあった。
本発明は、上記問題点を解決し、地球上に自然に存在する炭酸塩含有物質から(地球の主要な元素循環に沿って)、少なくとも粉末状炭素を含む粉末状物質を生成する方法を提供することを目的とする。
The conventional method for producing powdered carbon (powdered carbonate) required a complicated apparatus (reaction) for chemical reaction (high pressure and high temperature) and biological culture (organic gas). In addition, an artificial (secondary) material is required as a raw material, and depending on the material, there is a problem in that it adversely affects the global environment. The conventional method for producing these substances is a complicated and inefficient production method that requires only a specific crystal material. Use of non-generic special equipment and intermediate materials for the reaction, etc. There was also a problem that the reaction was not efficient.
The present invention solves the above problems and provides a method for producing a powdery substance containing at least powdered carbon from a carbonate-containing substance that naturally exists on the earth (along the main elemental circulation of the earth). The purpose is to do.
上記目的を達成するため、本発明は以下の構成を有する。
炭酸塩含有物質に衝撃波パルスレーザーを印加して、少なくとも粉末状炭素を含む粉末状物質を生成する、パルスレーザーによる物質生成方法。
In order to achieve the above object, the present invention has the following configuration.
A material generation method using a pulse laser, wherein a shock wave pulse laser is applied to a carbonate-containing material to generate a powdered material containing at least powdered carbon.
また、以下の実施態様を有する。
前記炭酸塩含有物質は、地殻由来物質である。前記地殻由来物質は、地球表層物質も含む。
前記炭酸塩含有物質は、炭酸カルシウム含有物質である。前記炭酸カルシウムは、例えば方解石などである。
前記粉末状炭素は、少なくとも粉末状石墨炭素、粉末状不定形炭素、粉末状ダイヤモンドのいずれか1つを含む。
前記粉末状物質は、粉末状炭素以外の粉末状(炭素含有)物質(炭化物、炭酸塩)を更に含む。
前記粉末状物質は、不定比(非化学量論的)化合物を含む。
Moreover, it has the following embodiments.
The carbonate-containing material is a crust-derived material. The crust-derived material also includes earth surface material.
The carbonate-containing material is a calcium carbonate-containing material. The calcium carbonate is, for example, calcite.
The powdery carbon includes at least one of powdered graphite carbon, powdered amorphous carbon, and powdered diamond.
The powdery substance further includes a powdery (carbon-containing) substance (carbide, carbonate) other than powdery carbon.
The powdered material includes non-stoichiometric (non-stoichiometric) compounds.
さらに、以下の実施態様も有する。
前記炭酸塩含有物質としては炭酸カルシウム含有物質が好適であるが、以下の物質のうちいずれか1つを含むものでも良い。
方解石Calcite、霰石Aragonite、バテライトVaterite CaCO3、ドロマイトDolomite CaMg(CO3)2、マグネサイトMagnesite MgCO3、シデライト Siderite Fe++CO3、ロドクロサイトRhodochrosite MnCO3、スミソナイトSmithsonite ZnCO3、ガスパイトGaspeite (Ni,Mg,Fe)CO3、グレゴライトGregoryite(Na2,K2,Ca)CO3、ウィザライトWitherite BaCO3、ストロンチアナイトStrontianite SrCO3、セルッサイトCerussite PbCO3、ラザフォーダインRutherfordine UO2(CO3)、ナトライトNatrite Na2CO3、ザブヤイトZabuyelite Li2CO3、チェッカイトCejkaite Na4(UO2)(CO3)3、アンケライトAnkerite Ca(Fe,Mg,Mn)(CO3)2、クノホライトKutnohorite Ca(Mn,Mg,Fe)(CO3)2、スヘロコバルタイトSphaerocobaltite CoCO3。
前記粉末状物質は、以下の物質のうちいずれか1つを含んでも良い。
炭酸カルシウムCaCO3、ドロマイトDolomite CaMg(CO3)2、マグネサイトMagnesite MgCO3、シデライト Siderite FeCO3、その他の炭酸塩鉱物、炭化物(CaC2、Fe3C、SiC、MgC2など)、非化学量論的物質(Ca(1±x)CO3、Ca(1±x)C2、Si(1±x)C、Fe(3±x)C、Mg(1±x)C2等、0<x<1)。
Furthermore, it has the following embodiments.
The carbonate-containing substance is preferably a calcium carbonate-containing substance, but may include any one of the following substances.
Calcite Calcite, aragonite ARAGONITE, vaterite Vaterite CaCO 3, dolomite Dolomite CaMg (CO 3) 2, magnesite Magnesite MgCO 3, siderite Siderite Fe ++ CO 3, b skull site Rhodochrosite MnCO 3, Sumisonaito Smithsonite ZnCO 3, Gasupaito Gaspeite (Ni , Mg, Fe) CO 3, Guregoraito Gregoryite (Na 2, K 2, Ca) CO 3, withe write Witherite BaCO 3, strontianite strontianite SrCO 3, Serussaito Cerussite PbCO 3, Raza Four dynes Rutherfordine UO 2 (CO 3) , Natrite Na 2 CO 3 , Zabuyelite Li 2 CO 3 , Checkite Cejkaite Na 4 (UO 2 ) (CO 3 ) 3 , Ankerite Ankerite Ca (Fe, Mg, Mn) (CO 3 ) 2 , Kunophorite Ca (Mn, Mg, Fe) (CO 3 ) 2 , Sphaerocobaltite CoCO 3 .
The powdery substance may include any one of the following substances.
Calcium carbonate CaCO 3 , Dolomite CaMg (CO 3 ) 2 , Magnesite Magnesite MgCO 3 , Siderite FeCO 3 , other carbonate minerals, carbides (CaC 2 , Fe 3 C, SiC, MgC 2 etc.), non-stoichiometric amount Theoretical substances (Ca (1 ± x) CO 3 , Ca (1 ± x) C 2 , Si (1 ± x) C, Fe (3 ± x) C, Mg (1 ± x) C 2 etc., 0 < x <1).
本発明の方法は、地球上に自然に存在する炭酸塩含有物質に衝撃波パルスレーザーを印加することで、少なくとも粉末状炭素を含む粉末状物質を生成することができる。これは、本発明者の研究による「隕石衝突等の衝撃波により地殻の炭酸塩物質から粉末状炭素が生成される」という発見に基づいて、実験により検証を行い、見出された効果である。本発明の方法は従来方法に比べて、マイクロメーター単位の粉末状炭素を高純度(約99%)に生成することが可能である。また、本発明の方法により、従来は生成することが困難であった非整数比の化学組成を有する不定比物質(非化学量論的物質(Ca(1±x)CO3、Ca(1±x)C2、Si(1±x)C、Fe(3±x)C、Mg(1±x)C2等、0<x<1)を生成することもできる。さらに、本発明の物質生成方法は、汎用性のない特殊装置や中間物質を反応に使う必要がなく、地球の元素循環から見て無駄の少ない効率的な反応であり、長期的に見て(地球環境に優しく)本生成法は物質的に効率的な生成法である。
本発明の方法により生成される粉末状物質(マイクロメーター単位の物質)は、例えば以下の材料に用いられ得る。
・石墨炭素:機能材料、ダイヤモンド半導体の反応素地、電池材料等。
・不定形炭素:耐火物原料、ダイヤモンド半導体の素地、電池材料炭素等。
・マイクロダイヤモンド:研磨剤、耐摩耗性、耐薬品性材料、宝石ダイヤモンド原料、半導体の素地、電子材料、超硬合金、セラミック・アルミニウム系合金などの高硬度材料・難削材料の研削(ダイヤモンドカッター)、切削用バイト、木材加工等。
・炭酸カルシウムCaCO3:機能材料、結晶化出発物質、建材(コンクリート・セメント微原料等)、チョーク、プラスチック混合剤、ゴム混合剤、塗料・塗工紙用混合剤、塗被顔料、製紙混合剤(プリンター用紙のコーティング剤等)、体質顔料、インキの希釈剤、接着剤、シーラント用材料、食品添加物、医薬品、漢方薬、高級ガラス原料、膠質コロイド材料、石灰華(温泉添加剤)原料、宝石方解石原料、土壌酸度矯正剤等。
・ドロマイトDolomite
CaMg(CO3)2:機能材料、結晶化出発物質、鉄鋼用フラックス添加剤、ガラス添加剤、肥料添加剤、コンクリート原料、道路用骨材添加物等。
・マグネサイトMagnesite
MgCO3:機能材料、結晶化出発物質、農業用肥料添加剤、機能材料粉体、鉄鋼用フラックス添加剤、ガラス添加剤、肥料添加剤、宝石マグネサイト原料等。
・シデライト
Siderite Fe++CO3:機能材料、結晶化出発物質、有機物置換材用、肥料添加剤、機能材料粉体、宝石マグネサイト原料等。
・その他の炭酸塩鉱物:機能材料、結晶化出発物質等。
・炭化物(CaC2、Fe3C、SiC、MgC2等):機能材料、結晶化出発物質、研磨剤、化学反応物原料、耐火物材料等。
・
非化学量論的物質(Ca(1±x)CO3、Ca(1±x)C2、Si(1±x)C、Fe(3±x)C、Mg(1±x)C2等、0<x<1):機能材料、結晶化出発物質、化学反応材料物質、耐火物材料等。
In the method of the present invention, a powdery substance containing at least powdery carbon can be generated by applying a shock wave pulse laser to a carbonate-containing substance naturally existing on the earth. This is an effect that has been verified by experiments based on the discovery that “powdered carbon is generated from the carbonate material of the crust by shock waves such as meteorite impact” according to the research of the present inventors. Compared with the conventional method, the method of the present invention can produce powdery carbon in a micrometer unit with high purity (about 99%). In addition, by the method of the present invention, a non-stoichiometric substance (non-stoichiometric substance (Ca (1 ± x) CO 3 , Ca (1 ±± x) C 2 , Si (1 ± x) C, Fe (3 ± x) C, Mg (1 ± x) C 2, etc., 0 <x <1) Further, the substance of the present invention The production method does not require the use of non-generic special equipment or intermediate substances for the reaction, and is an efficient reaction with little waste as seen from the earth's elemental cycle. The production method is a materially efficient production method.
The powdery material (micrometer unit material) produced by the method of the present invention can be used for the following materials, for example.
-Graphite carbon: functional materials, diamond semiconductor reaction substrates, battery materials, etc.
-Amorphous carbon: refractory raw material, diamond semiconductor substrate, battery material carbon, etc.
・ Microdiamond: Grinding of high hardness materials and difficult-to-cut materials such as abrasives, wear resistance, chemical resistance materials, gem diamond raw materials, semiconductor substrates, electronic materials, cemented carbides, ceramics and aluminum alloys (diamond cutters) ), Cutting tools, wood processing, etc.
-Calcium carbonate CaCO 3 : Functional materials, crystallization starting materials, building materials (concrete / cement fine raw materials, etc.), chalk, plastic admixture, rubber admixture, paint / coating paper admixture, coating pigment, papermaking admixture (Printing paper coating agents, etc.), extender pigments, ink diluents, adhesives, sealant materials, food additives, pharmaceuticals, herbal medicines, high-grade glass raw materials, colloidal colloid materials, lime flower (hot spring additive) raw materials, jewelry Calcite raw material, soil acidity corrector, etc.
Dolomite Dolomite
CaMg (CO 3 ) 2 : Functional materials, crystallization starting materials, steel flux additives, glass additives, fertilizer additives, concrete raw materials, road aggregate additives, etc.
・ Magnesite
MgCO 3 : Functional materials, crystallization starting materials, agricultural fertilizer additives, functional material powders, steel flux additives, glass additives, fertilizer additives, gem magnesite raw materials, etc.
・ Sidelite
Siderite Fe ++ CO 3 : Functional materials, crystallization starting materials, organic substitution materials, fertilizer additives, functional material powders, gem magnesite raw materials, etc.
Other carbonate minerals: functional materials, crystallization starting materials, etc.
· Carbide (CaC 2, Fe 3 C, SiC, MgC 2 , etc.): the functional material, the crystallization starting material, abrasives, chemical reactant source, refractory materials.
・
Non-stoichiometric substances (Ca (1 ± x) CO 3 , Ca (1 ± x) C 2 , Si (1 ± x) C, Fe (3 ± x) C, Mg (1 ± x) C 2 etc. , 0 <x <1): Functional materials, crystallization starting materials, chemically reactive materials, refractory materials, etc.
以下、図面を用いて本発明の実施形態について説明する。
図1は、本発明の実施形態1を表す図である。石灰岩等のターゲットを容器内に入れ、石英ガラス板で蓋をする。石英ガラス板で蓋をすることにより、衝撃波パルスレーザーによってターゲット上の生成物が飛散することを防ぐことができる。生成物の飛散防止には、図2のように水を用いても良い(実施形態2)。このように調整されたターゲットに衝撃波パルスレーザーを印加することで、粉末状炭素等を生成する。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a diagram illustrating Embodiment 1 of the present invention. Put a target such as limestone in the container and cover with a quartz glass plate. By covering with a quartz glass plate, it is possible to prevent the product on the target from being scattered by the shock wave pulse laser. To prevent the product from scattering, water may be used as shown in FIG. 2 (Embodiment 2). By applying a shock wave pulse laser to the target thus adjusted, powdery carbon or the like is generated.
以下に実験結果を示す。
実験条件は以下の通りである。
試料(ターゲット): 白色ステフンス・クリント石灰岩(併用実験で灰色秋吉石灰岩)
レーザー源: Nd:YAG 固体レーザー
ビーム径: 200〜1400μm
パルスエネルギー: 30〜230mJ/pulse
パルス時間: 長時間パルスと短時間パルスの2通りで実験
長時間パルス: 200msパルスの繰り返し
短時間パルス: 8ns(Qスイッチ)の単一パルス
この条件でターゲットに衝撃波パルスレーザーを照射して、ターゲット表面の炭素含有量を、分析走査電子顕微鏡ASEM、X線回折装置X-Ray Diffraction等により解析した。
The experimental results are shown below.
The experimental conditions are as follows.
Sample (target): White Stephen Clint Limestone (Gray Akiyoshi Limestone in combination experiment)
Laser source: Nd: YAG solid-state laser Beam diameter: 200-1400μm
Pulse energy: 30 ~ 230mJ / pulse
Pulse time: Experiment with long pulse and short pulse Long pulse: 200ms pulse repetition Short pulse: 8ns (Q switch) single pulse The target is irradiated with a shock pulse laser under these conditions The carbon content of the surface was analyzed with an analytical scanning electron microscope ASEM, an X-ray diffractometer X-Ray Diffraction and the like.
解析結果は以下の通りである。
図3は、衝撃波パルスレーザー照射位置におけるASEM(分析走査電子顕微鏡)の解析結果である。この図から明らかなように、レーザー照射位置では炭素が多く生成されていることがわかる。図4は、長時間パルスレーザーと短時間パルスレーザーを照射した場合の炭素の生成比(標準の方解石、ダイヤモンド等と比較して)の比較図である。この図から、短時間パルスレーザーの方がより多くの炭素を生成することがわかる。これは、短時間パルスレーザーの方が、瞬間的だがレーザー強度が強く、より大きな衝撃力を与えることができるからだと考えられる。図5は、本実験により生成された3種の炭素含有物質の生成比を表す図である。この図からわかるように、マイクロダイヤモンド生成比の生成率が最も高い。
図6は、Ca-C系の不定比化合物(非化学量論的物質)の生成を表す図である。計算の便宜上、横軸はCO2、縦軸はCaOで規格化してある。このグラフから、様々なCaとCの比率を持つ物質が生成されていることがわかる。これらの物質は(煩雑でない)通常の化学反応では生成することが不可能であり、本発明の(単一の衝撃波反応過程で)方法によってはじめて生成できる物質である。
The analysis results are as follows.
FIG. 3 shows the analysis result of ASEM (analysis scanning electron microscope) at the shock wave pulse laser irradiation position. As is clear from this figure, it can be seen that a large amount of carbon is produced at the laser irradiation position. FIG. 4 is a comparison diagram of carbon production ratios (compared to standard calcite, diamond, etc.) when irradiated with a long-time pulse laser and a short-time pulse laser. From this figure, it can be seen that the short-time pulse laser produces more carbon. This is thought to be because the short-time pulse laser is instantaneous but has a stronger laser intensity and can give a larger impact force. FIG. 5 is a diagram showing the production ratio of the three types of carbon-containing substances produced by this experiment. As can be seen from this figure, the production rate of the microdiamond production ratio is the highest.
FIG. 6 is a diagram showing the generation of a Ca—C-based non-stoichiometric compound (non-stoichiometric substance). For convenience of calculation, the horizontal axis is normalized by CO 2 and the vertical axis is normalized by CaO. From this graph, it can be seen that substances with various ratios of Ca and C are generated. These substances cannot be produced by ordinary chemical reactions (not complicated), and can be produced only by the method of the present invention (in a single shock wave reaction process).
以上、本発明の実施形態の一例を説明したが、本発明はこれに限定されるものではなく、特許請求の範囲に記載された技術的思想の範疇において各種の変更が可能であることは言うまでもない。
Although an example of the embodiment of the present invention has been described above, the present invention is not limited to this, and it goes without saying that various modifications can be made within the scope of the technical idea described in the claims. Yes.
Claims (6)
The said powdery substance is a substance production | generation method by the pulse laser of Claim 5 containing a nonstoichiometric compound.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007057725A JP4945758B2 (en) | 2007-03-07 | 2007-03-07 | Material generation method by pulse laser |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007057725A JP4945758B2 (en) | 2007-03-07 | 2007-03-07 | Material generation method by pulse laser |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2008214170A JP2008214170A (en) | 2008-09-18 |
JP4945758B2 true JP4945758B2 (en) | 2012-06-06 |
Family
ID=39834660
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007057725A Active JP4945758B2 (en) | 2007-03-07 | 2007-03-07 | Material generation method by pulse laser |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4945758B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6331995B2 (en) * | 2014-03-11 | 2018-05-30 | 新日鐵住金株式会社 | Method for producing free carbon from carbonate |
JP6547633B2 (en) * | 2015-09-04 | 2019-07-24 | 日本製鉄株式会社 | Process for producing filmy free carbon from carbon oxides |
FR3061052B1 (en) | 2016-12-28 | 2019-05-31 | Commissariat A L'energie Atomique Et Aux Energies Alternatives | METHOD FOR LASER MACHINING A DIAMOND FOR OBTAINING A SMOOTH AND TRANSPARENT SURFACE |
CN116283174A (en) * | 2022-09-09 | 2023-06-23 | 华中科技大学 | Method for accelerating mineralization of calcium carbonate by using pulse normal stress |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3099539B2 (en) * | 1992-07-22 | 2000-10-16 | 三菱マテリアル株式会社 | Manufacturing method of artificial diamond powder |
JPH08104509A (en) * | 1994-09-30 | 1996-04-23 | Toyo Tanso Kk | Carbon cluster, starting material for production thereof and production of the carbon cluster |
US6183714B1 (en) * | 1995-09-08 | 2001-02-06 | Rice University | Method of making ropes of single-wall carbon nanotubes |
JPH09309711A (en) * | 1996-03-18 | 1997-12-02 | Toyo Tanso Kk | Carbon cluster, raw material for producing the same and production of the same carbon cluster |
JP2001262367A (en) * | 2000-03-21 | 2001-09-26 | Laser Oyo Kogaku Kenkyusho:Kk | Rigid material having corrosion resistance and method for manufacturing the same |
JP4000367B2 (en) * | 2002-09-05 | 2007-10-31 | 独立行政法人産業技術総合研究所 | New carbon material conversion method and carbon material obtained thereby |
US20080135398A1 (en) * | 2005-01-06 | 2008-06-12 | Takeshi Azami | Method For Manufacturing Carbonaceous Material |
-
2007
- 2007-03-07 JP JP2007057725A patent/JP4945758B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2008214170A (en) | 2008-09-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Ji et al. | Effects of fly ash properties on carbonation efficiency in CO2 mineralisation | |
Ding et al. | Modified mineral carbonation of phosphogypsum for CO2 sequestration | |
Soong et al. | CO2 sequestration with brine solution and fly ashes | |
Walling et al. | Magnesia-based cements: a journey of 150 years, and cements for the future? | |
Ferrini et al. | Synthesis of nesquehonite by reaction of gaseous CO2 with Mg chloride solution: Its potential role in the sequestration of carbon dioxide | |
Azdarpour et al. | CO2 sequestration through direct aqueous mineral carbonation of red gypsum | |
Wang et al. | Effect of impure components in flue gas desulfurization (FGD) gypsum on the generation of polymorph CaCO3 during carbonation reaction | |
De Beer et al. | Synthesis of high-purity precipitated calcium carbonate during the process of recovery of elemental sulphur from gypsum waste | |
Juan et al. | Synthesis of granular zeolitic materials with high cation exchange capacity from agglomerated coal fly ash | |
Yang et al. | Biocarbonation of reactive magnesia for soil improvement | |
JP4945758B2 (en) | Material generation method by pulse laser | |
Chen et al. | Synthesis of anhydrite from red gypsum and acidic wastewater treatment | |
Hay et al. | Filler effects of CaCO3 polymorphs derived from limestone and seashell on hydration and carbonation of reactive magnesium oxide (MgO) cement (RMC) | |
Altiner et al. | Production of precipitated calcium carbonate particles from gypsum waste using venturi tubes as a carbonation zone | |
Uzarowicz et al. | Technogenic soils (Technosols) developed from fly ash and bottom ash from thermal power stations combusting bituminous coal and lignite. Part II. Mineral transformations and soil evolution | |
Mucsi et al. | Control of carbon dioxide sequestration by mechanical activation of red mud | |
Ji et al. | Kinetics of enhanced magnesium carbonate formation for CO2 storage via mineralization at 200° C | |
Smalakys et al. | The synthesis of 1.13 nm tobermorite from carbonated opoka | |
Yu et al. | A novel treatment processes of struvite with pretreated magnesite as a source of low-cost magnesium | |
del Bosque et al. | Activation temperature-mediated mineralogical transformations in slate quarry sludge: pozzolanic properties | |
Liu et al. | Hydrothermal reaction of K‐feldspar powder in NaOH Ca (OH) 2 mixed medium | |
Galan et al. | On the hydration of ternesite and the formation of thaumasite | |
Sun et al. | Precipitation and in-situ surface modification of calcium carbonate in synthetic seawater: Polymorph control, crystallization kinetics, and hydrophobic vaterite preparation | |
Williams et al. | Stabilization of pure vaterite during carbon mineralization: Defining critical activities, additive concentrations, and gas flow conditions for carbon utilization | |
Li et al. | Production, characterisation, and application of titanium gypsum: A review |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20091014 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20120123 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120207 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |