JP4944641B2 - Automatic detection of positive cells in stained tissue specimens - Google Patents

Automatic detection of positive cells in stained tissue specimens Download PDF

Info

Publication number
JP4944641B2
JP4944641B2 JP2007054606A JP2007054606A JP4944641B2 JP 4944641 B2 JP4944641 B2 JP 4944641B2 JP 2007054606 A JP2007054606 A JP 2007054606A JP 2007054606 A JP2007054606 A JP 2007054606A JP 4944641 B2 JP4944641 B2 JP 4944641B2
Authority
JP
Japan
Prior art keywords
image
stained
positive
positive cell
density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007054606A
Other languages
Japanese (ja)
Other versions
JP2008216077A (en
Inventor
真 和田
茂 北澤
達樹 谷口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Juntendo University
Original Assignee
Juntendo University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Juntendo University filed Critical Juntendo University
Priority to JP2007054606A priority Critical patent/JP4944641B2/en
Publication of JP2008216077A publication Critical patent/JP2008216077A/en
Application granted granted Critical
Publication of JP4944641B2 publication Critical patent/JP4944641B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating Or Analysing Biological Materials (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Description

本発明は、組織学、病理学の分野における染色された組織標本における陽性細胞を客観的に定量するための方法に関する。   The present invention relates to a method for objectively quantifying positive cells in stained tissue specimens in the fields of histology and pathology.

組織学、病理学の分野において、組織標本を免疫学的手段やハイブリダイゼーション等により染色し、その陽性細胞を定量解析することは、これらの分野における研究手段として、また病理学的診断の手段として極めて重要であり、広く実施されている。陽性細胞数の定量については、画像から実験者自ら設定した領域について、計数するという方法が用いられている(非特許文献1、2)。
Perrotti et al,J.Neuroscience,24(47):10594−10602(2005) Lai et al,J.Neuroscience,25(49):11239−11247(2005)
In the fields of histology and pathology, staining tissue specimens by immunological means or hybridization, etc. and quantitatively analyzing the positive cells are a means of research in these areas and a means of pathological diagnosis. Very important and widely implemented. For the quantification of the number of positive cells, a method of counting the area set by the experimenter himself from the image is used (Non-Patent Documents 1 and 2).
Perrotti et al, J. MoI. Neuroscience, 24 (47): 10594-10602 (2005). Lai et al, J.A. Neuroscience, 25 (49): 11239-11247 (2005).

しかしながら、従来の定量方法では、実験者自らが設定した領域のみを定量するので、実験者が注目していない場所のデータを得ることができない、得られるデータは計数データのみであり設定した領域内の空間の情報が失われてしまうという問題があった。
そこで、本発明者は、染色された組織標本における陽性細胞数を定量解析するにあたり、画像処理工程において一定の閾値以上に染色された領域の検出に加えて、細胞の大きさによる検出を組み合せて染色陽性細胞を検出し、さらに陽性細胞像を擬似カラー化して陽性細胞密度として検出し、さらにその着色像を標準化するとともに、複数の標本を用いて平均値によるマップを作成することにより、領域設定が客観的になるとともに標準化と平均値マップの作成により空間情報を維持した上での定量データが可視化できることを見出し、先に出願した(特願2006−13465)。この方法により、標本の領域設定及び定量がコンピュータにより自動的にでき、かつ複数の標本のデータが同時に解析できるため一点だけのデータでなく空間情報を加味したデータの可視化が可能となった。
しかし、細胞密度が高い領域(>800/mm2)では、細胞の重なりが測定誤差の要因となり、正確に染色陽性細胞を検出できず、細胞密度が高い領域に関して云えば測定した染色陽性細胞の計数値は信頼性の低いものであった(Wada et al., Neuroscience Research, 56: 96-102 2006)。
However, in the conventional quantification method, only the area set by the experimenter himself is quantified, so it is not possible to obtain the data of the place where the experimenter is not paying attention. The obtained data is only the count data and is within the set area. There was a problem that the information of the space was lost.
Therefore, the present inventor, in quantitative analysis of the number of positive cells in a stained tissue sample, combines detection based on cell size in addition to detection of a region stained above a certain threshold in the image processing step. Region detection is performed by detecting positive staining cells, pseudo-coloring positive cell images and detecting them as positive cell density, standardizing the colored images, and creating a map with average values using multiple specimens Has been found that it is possible to visualize quantitative data while maintaining spatial information by standardization and creation of an average value map, and filed earlier (Japanese Patent Application No. 2006-13465). By this method, the sample area setting and quantification can be automatically performed by a computer, and the data of a plurality of samples can be analyzed simultaneously, so that it is possible to visualize not only single-point data but also spatial data.
However, in the region where the cell density is high (> 800 / mm 2 ), the overlap of the cells causes a measurement error, and the staining positive cells cannot be detected accurately. Counts were unreliable (Wada et al., Neuroscience Research, 56: 96-102 2006).

したがって、本発明の目的は、細胞が密集して存在する領域においても、精度良く染色陽性細胞数を定量解析する新たな方法を提供することにある。   Therefore, an object of the present invention is to provide a new method for quantitatively analyzing the number of staining positive cells even in an area where cells are densely present.

本発明者は、染色された組織標本を撮像した画像における染色陽性細胞の検出方法について種々検討したところ、取り込んだ画像の最も高い濃度(低輝度)より低濃度(高輝度)側に閾値を設定し、該一定の閾値まで、高濃度側から低濃度側へ検出閾値を徐々に変動させて、各閾値で初めて検出される陽性細胞像のみを陽性細胞像として検出することにより、細胞同士の重なりの見られるような高密度の領域であっても、従来の方法に比較して極めて高感度で陽性細胞を検出できることを見出した。   The present inventor has examined various methods for detecting staining positive cells in an image obtained by imaging a stained tissue specimen, and has set a threshold value on the lower concentration (high luminance) side than the highest concentration (low luminance) of the captured image. Then, by gradually changing the detection threshold from the high concentration side to the low concentration side up to the certain threshold value, only the positive cell image detected for the first time at each threshold is detected as a positive cell image, thereby overlapping the cells. It was found that positive cells can be detected with extremely high sensitivity as compared with the conventional method even in a high-density region such as that shown in FIG.

すなわち、本発明は、染色された組織標本を撮像し、得られた画像をコンピュータにより処理して染色陽性細胞を検出する方法であって、(1)画像の最も輝度分布の多い濃度を背景濃度として検出して標準化を行う工程、(2)画像の最も高い濃度より低濃度側に閾値を設定し、該一定の閾値まで、高濃度側から低濃度側へ検出閾値を徐々に変動させて、各閾値で初めて検出される陽性細胞像のみを陽性細胞像として選択する工程を含み、前記工程(2)は、(a)検出閾値以上に染色された領域を検出する工程と、(b)検出された領域のうち、一定の大きさの細胞が染色された部分のみを陽性細胞像として選択する工程と、(c)検出された陽性細胞像の数及び重心の座標を記録する工程とを含むことを特徴とする染色された組織標本の陽性細胞の検出方法を提供するものである。
また、本発明は、前記工程(2)により選択された各閾値における陽性細胞像の計数値を合計して、撮像した組織標本中における陽性細胞の計数値として採用する染色された組織標本の陽性細胞の計数方法を提供するものである。
That is, the present invention is a method of detecting a stained positive cell by imaging a stained tissue specimen and processing the obtained image by a computer, and (1) a density having the highest luminance distribution in the image is determined as a background density. (2) A threshold value is set on the lower density side than the highest density of the image, and the detection threshold value is gradually changed from the higher density side to the lower density side until the predetermined threshold value. Selecting only positive cell images detected for the first time at each threshold as positive cell images, the step (2) comprising: (a) detecting a region stained above the detection threshold; and (b) detecting A step of selecting only a portion where cells of a certain size are stained as positive cell images, and (c) a step of recording the number of detected positive cell images and the coordinates of the center of gravity. Of stained positive tissue cells characterized by It is to provide a method out.
In addition, the present invention adds the counts of positive cell images at each threshold selected in the step (2), and adopts the positive value of the stained tissue sample to be used as the count value of positive cells in the imaged tissue sample. A method for counting cells is provided.

本発明によれば、細胞が密集して存在する領域においても、精度良く染色陽性細胞を自動検出できる。また、本発明によれば、組織全体で陽性細胞数の計数を行うことや、複数グループ間の統計比較も容易にできるので、実験者の意図しない領域の組織変化等を明瞭にかつ客観的に観察できる。さらに、病理診断の現場においてもこの方法を適用することで、客観的な診断が可能になる。また、本発明方法は、stereologyを利用した細胞計数や核医学等における粒子解析での定量へ応用することも可能である。   According to the present invention, staining-positive cells can be automatically detected with high accuracy even in a region where cells are densely present. In addition, according to the present invention, it is possible to count the number of positive cells in the whole tissue and to easily perform statistical comparison between a plurality of groups, so that tissue changes in regions not intended by the experimenter can be clearly and objectively performed. I can observe. Furthermore, objective diagnosis is possible by applying this method also in the pathological diagnosis site. In addition, the method of the present invention can be applied to quantification in particle analysis in cell counting, nuclear medicine or the like using stereology.

本発明においては、まず、染色された組織標本を撮像し、得られた画像をコンピュータに入力する。ここで、組織標本としては、ヒトを含む動物、植物等の生体組織から採取した組織標本が用いられる。例えば、臓器全体像の凍結切片、手術により摘出した組織の切片等が挙げられる。また、染色手段としては、細胞核や細胞体のみが濃染する対象に対する免疫染色、in situ hybridizationあるいは、核染色等が挙げられる。撮像には、顕微鏡と撮像装置を用いるのが好ましい。撮像装置としては、例えばカラーCCDカメラ等のディジタル画像撮影が行えるカメラが用いられる。撮像装置により得られた画像は、ディジタル信号の画像データに変換されたコンピュータに送られる。   In the present invention, first, a stained tissue specimen is imaged, and the obtained image is input to a computer. Here, as the tissue specimen, a tissue specimen collected from biological tissues such as animals including humans and plants is used. For example, a frozen section of a whole organ image, a section of tissue removed by surgery, and the like can be mentioned. Examples of staining means include immunostaining, in situ hybridization, nuclear staining, and the like for a target in which only cell nuclei and cell bodies are stained. For imaging, a microscope and an imaging device are preferably used. As the imaging device, for example, a camera capable of taking a digital image such as a color CCD camera is used. An image obtained by the imaging device is sent to a computer converted into image data of a digital signal.

コンピュータによる画像処理は、入力装置、表示装置及びコンピュータにより行われる。   Image processing by a computer is performed by an input device, a display device, and a computer.

入力装置は、本発明方法の実施に関する指示入力の受付、各種文字及び記号を含むデータの入力等を行うための装置である。具体的には、前述した指示、データ等の入力に用いることができる、キーボード、マウス、タッチパネル、音声入力機器等の機器の組合せにより構成される。   The input device is a device for receiving an instruction input related to the implementation of the method of the present invention, inputting data including various characters and symbols, and the like. Specifically, it is configured by a combination of devices such as a keyboard, a mouse, a touch panel, and a voice input device that can be used for inputting the above-described instructions and data.

表示装置は、メニュー画面、操作画面、指示画面等の他、取得した画像、計測結果、着色像等の表示を行うためのものである。具体的には、液晶、プラズマ等のフラットパネルディスプレイ、CRT等の表示管により画像の表示が行える装置が用いられる。この他に、拡大投影表示するための、スライドプロジェクタ等を接続することもできる。   The display device is for displaying an acquired image, a measurement result, a colored image, and the like in addition to a menu screen, an operation screen, an instruction screen, and the like. Specifically, a device capable of displaying an image using a flat panel display such as liquid crystal or plasma, or a display tube such as a CRT is used. In addition, a slide projector or the like for displaying an enlarged projection can be connected.

コンピュータは、中央処理ユニット(CPU)と、メモリと、補助記憶装置とを有する。補助記憶装置には、CPUが実行するプログラム群、各種データ等が格納される。   The computer has a central processing unit (CPU), a memory, and an auxiliary storage device. The auxiliary storage device stores a program group executed by the CPU, various data, and the like.

以下の画像処理は、すべてコンピュータ上で行われる。   The following image processing is all performed on a computer.

まず、染色された組織標本を撮像して得られた画像(図1)から、輝度分布を調べ、(1)最も輝度分布の多い濃度を背景濃度として検出してこれを最高値(例えば、8Bitの場合は255)とする標準化を行う(図2)。この操作は、例えばMATLABソフトウェア上で画像を行列データとして表現し、演算処理を加える事により行うことができ、これにより、細胞の検出条件を合わせるが可能となる。
この際、画像にバックグラウンドの染めムラ等ノイズが認められるときには、予め公知の画像処理ソフトウェア(NIH−image)等を用いて取り除いておくことが好ましい。
First, a luminance distribution is examined from an image obtained by imaging a stained tissue specimen (FIG. 1). (1) A density having the highest luminance distribution is detected as a background density, and this is detected as a maximum value (for example, 8 bits). In this case, standardization of 255) is performed (FIG. 2). This operation can be performed, for example, by expressing an image as matrix data on the MATLAB software and adding arithmetic processing, thereby making it possible to match cell detection conditions.
At this time, when noise such as background dyeing unevenness is recognized in the image, it is preferably removed in advance using a known image processing software (NIH-image) or the like.

次に、(2)画像の最も高い濃度(輝度0/255)より低濃度側(高輝度側)に閾値を設定し、該一定の閾値まで、高濃度側から低濃度側へ検出閾値を徐々に変動させて、それぞれの閾値で陽性細胞を検出する。検出閾値は、一定の閾値までの間に1〜20程度の間隔、すなわち「0,20,40,60,80,100,120」(20間隔)といった具合に設定されるが、その変動の割合や設定数は、切片の状況、コンピュータの処理速度と検出精度の兼ね合いによって適宜決めることが可能である。
ここで、一定の閾値(最終検出閾値)は、実験者の経験から通常判断される閾値でよいが、背景値を基準にその半分から2/3程度(背景値が255の場合は120〜160程度)の濃度とするのが好ましい。
各閾値における陽性細胞の検出は、次のように行われる。
Next, (2) a threshold value is set on the lower density side (high luminance side) than the highest density (luminance 0/255) of the image, and the detection threshold value is gradually increased from the higher density side to the lower density side until the predetermined threshold value. And positive cells are detected at each threshold. The detection threshold is set to an interval of about 1 to 20 before reaching a certain threshold, that is, “0, 20, 40, 60, 80, 100, 120” (20 intervals). The set number can be determined as appropriate depending on the condition of the intercept, the balance between the processing speed of the computer and the detection accuracy.
Here, the constant threshold value (final detection threshold value) may be a threshold value that is normally determined based on the experience of the experimenter, but about half to about 2/3 based on the background value (120 to 160 when the background value is 255). It is preferable to set the concentration to the extent of approximately.
Detection of positive cells at each threshold is performed as follows.

画像から、(a)検出閾値以上に染色された領域を検出する。この操作は、例えばMATLABソフトウェア上で行列データとして表現された画像から一定の数値以上のデータを選び出してくる操作を行うことで実現可能である。   From the image, (a) a region stained above the detection threshold is detected. This operation can be realized, for example, by performing an operation of selecting data of a certain numerical value or more from an image expressed as matrix data on the MATLAB software.

この際、標本中のゴミや切片の傷などのノイズのデータへの混入を防ぐために、陽性細胞としてふさわしい(b)サイズの一定の大きさの細胞が染色された部分のみを陽性細胞として選択する。この部分のみを陽性像と判定する。ここで、一定の大きさの細胞の選択は、細胞サイズの大きさ、又は細胞核の大きさで判定することができる。この操作は、例えばMATLABソフトウェアに付加することができるimage processing toolboxに含まれる選択領域の面積を計算するライブラリ関数を利用することで実現できる。このようにして計算した各領域の面積のうち一定の範囲内のもののみを陽性細胞像として選び出すことが可能である。   At this time, in order to prevent contamination of the sample with noise such as dust in the specimen and scratches on the section, select only the portion that is suitable for positive cells (b) stained with a certain size of cells as positive cells. . Only this part is determined as a positive image. Here, selection of cells having a certain size can be determined by the size of the cell size or the size of the cell nucleus. This operation can be realized, for example, by using a library function that calculates the area of the selected region included in the image processing toolbox that can be added to the MATLAB software. Only areas within a certain range among the areas of the respective areas calculated in this way can be selected as positive cell images.

次に、(c)検出された陽性細胞像の数及び重心の座標を記録する。この操作は、例えばMATLABソフトウェア上で画像と等しいサイズの空行列を用意し、重心の座標に一致した箇所にのみ数値を代入し変数として記録を行うことで実現可能である。   Next, (c) the number of detected positive cell images and the coordinates of the center of gravity are recorded. This operation can be realized, for example, by preparing an empty matrix having the same size as the image on the MATLAB software, and substituting numerical values only for locations that coincide with the coordinates of the center of gravity and recording them as variables.

同様の操作を次の検出閾値においても行い、その閾値での陽性細胞を検出する。その際、既に検出され記録された陽性細胞像の重心座標を含む陽性領域を省いて、その閾値で初めて検出された陽性細胞像のみを陽性細胞像として選択する。これにより、細胞同士が重なりあう高密度の領域であっても、正確に陽性細胞を検出できる。   The same operation is performed at the next detection threshold value, and positive cells at the threshold value are detected. At that time, the positive region including the barycentric coordinates of the positive cell image already detected and recorded is omitted, and only the positive cell image detected for the first time at the threshold is selected as the positive cell image. Thereby, even if it is a high-density area | region where cells overlap, a positive cell can be detected correctly.

以上のようにして各閾値で検出された陽性細胞像の計数値の合計を計算して、その領域における計数値として採用する。
複数の濃度の閾値を元に分析を行うことで、従来の2値化による検出法と比較して、薄い像や細胞密度の高い領域であっても高精度に陽性細胞を自動検出できるので、組織全体で陽性細胞計数を行ったり、複数の個体のデータを合算してグループ比較を行ったりでき、細胞数の微妙な変化も検出可能である。また、本発明の検出法により検出した陽性細胞を特願2006−13465に記載の方法により可視化解析することや、本発明の方法をstereology等を利用した細胞計数、核医学等における粒子解析での定量等へ応用することも可能である。
As described above, the sum of the count values of the positive cell images detected at the respective threshold values is calculated and adopted as the count value in that region.
By performing analysis based on multiple concentration thresholds, positive cells can be automatically detected with high accuracy even in thin images and areas with high cell density compared to conventional detection methods based on binarization. A positive cell count can be performed for the entire tissue, or a group comparison can be performed by adding data of a plurality of individuals, and subtle changes in the number of cells can be detected. In addition, the positive cells detected by the detection method of the present invention can be visualized and analyzed by the method described in Japanese Patent Application No. 2006-13465, or the method of the present invention can be used for cell counting using stereology, particle analysis in nuclear medicine, etc. It can also be applied to quantification and the like.

本発明の方法を用いて検出された染色陽性細胞を、特願2006−13465に記載の方法により可視化解析する場合は、次のように行う。
すなわち、(3)画像を碁盤目状のピクセルに区切り、各ピクセル内の陽性細胞密度を測定する(図7(A))。この陽性細胞密度の計数は、計数ソフトウェアにより自動的に行われる。各ピクセルの大きさは、例えば示した例の場合、200μmブロックによって9等分とすることができる。この操作は、例えば、MATLABソフトウェアに付加することができるimage processing toolboxに含まれるライブラリ関数群によって実現できる。選択領域の重心を計算する関数によって各領域を1点で表すように変換し、この変換データに対してブロックごとに任意の数値演算を行うことが可能な関数によってブロック内の平均値を求めることで陽性細胞密度を計算することができる。
When the staining positive cells detected using the method of the present invention are visualized and analyzed by the method described in Japanese Patent Application No. 2006-13465, the following is performed.
That is, (3) the image is divided into grid-like pixels, and the positive cell density in each pixel is measured (FIG. 7A). This counting of positive cell density is performed automatically by counting software. For example, in the case of the illustrated example, the size of each pixel can be divided into nine equal parts by a 200 μm block. This operation can be realized by, for example, a library function group included in an image processing toolbox that can be added to the MATLAB software. Convert each area to be represented by one point using a function that calculates the center of gravity of the selected area, and obtain an average value in the block using a function that can perform arbitrary numerical operations on this converted data for each block. To calculate the positive cell density.

(4)各ピクセルを、陽性細胞密度に応じた擬似カラーを付し(図7(B))、組織標本全体の着色像を得る(図8)。これにより、組織標本全体で陽性細胞密度の高い領域がスクリーニングでき、それを着色で可視化した画像が得られる。この操作は、例えば、MATLABソフトウェアに含まれる画像データを任意のカラーマップによって表示する機能によって実現できる。   (4) Each pixel is given a pseudo color corresponding to the positive cell density (FIG. 7B) to obtain a colored image of the entire tissue specimen (FIG. 8). Thereby, the area | region with a high positive cell density can be screened in the whole tissue specimen, and the image which visualized it by coloring is obtained. This operation can be realized by, for example, a function of displaying image data included in the MATLAB software with an arbitrary color map.

しかし、前記工程(4)で得られた画像は1個体1切片の結果である。全体の傾向をするには複数の切片、複数の個体から得られたデータを平均化する必要がある。しかし組織標本は、個体、条件によって形状が微妙に異なるので、そのままの形では複数の標本の画像と重ねあわせることができない。そこで、(5)組織標本全体の形状を既知の組織標本形状に合わせて標準化を行う工程が必要となる。この標準化は、既知の組織標本形状のデータ、例えば既知の脳地図のデータ(非特許文献2)をもとに、前記(4)の着色像を回転、拡大、縮小等を行って、データの標準化を行う(図9)。この標準化により、(4)で得られた着色画像を他の標本の画像と重ねあわせて平均値マップを作成可能なもととなる。この操作は、例えばMATLABソフトウェアに付加することができるimage processing toolboxに含まれるライブラリ関数群によって実現できる。任意の領域を選択する関数により切片全体像を選び出し、これを楕円に近似して特徴抽出する関数により長軸と短軸、回転角度を算出する。この値に基づき画像操作を行う関数により変換することで標準化データを得ることができる。MATLABソフトウェア上でこの情報は行列データとして表現されており、行列演算という形で各々のマップから平均値マップを計算することが可能である。   However, the image obtained in the step (4) is the result of one slice per individual. To obtain the overall trend, it is necessary to average data obtained from a plurality of sections and a plurality of individuals. However, since the shape of the tissue sample is slightly different depending on the individual and conditions, it cannot be overlaid with the images of a plurality of samples as it is. Therefore, (5) a step of standardizing the shape of the entire tissue specimen in accordance with the known tissue specimen shape is required. This standardization is based on known tissue specimen shape data, for example, known brain map data (Non-Patent Document 2), by rotating, enlarging, reducing, etc. the colored image of (4) above. Standardization is performed (FIG. 9). By this standardization, the colored image obtained in (4) can be overlaid with the image of another sample to create an average value map. This operation can be realized by a library function group included in an image processing toolbox that can be added to, for example, MATLAB software. An entire section image is selected by a function for selecting an arbitrary region, and a major axis, a short axis, and a rotation angle are calculated by a function for extracting features by approximating the slice. Standardized data can be obtained by conversion using a function that performs image manipulation based on this value. This information is expressed as matrix data on the MATLAB software, and an average value map can be calculated from each map in the form of matrix operation.

(6)複数の個体由来の組織標本について、前記(1)〜(5)の操作を行い、得られた複数の組織標本についての着色像の平均値マップを得る。これは、複数の個体由来の組織標本についての着色像を重ねあわせて、各ポイントごとの平均値を求め、それをマップ化すればよい(図10(A)及び(B))。   (6) For the tissue specimens derived from a plurality of individuals, the operations (1) to (5) are performed, and an average value map of colored images for the obtained plurality of tissue specimens is obtained. This can be done by superimposing colored images of tissue specimens derived from a plurality of individuals, obtaining an average value for each point, and mapping it (FIGS. 10A and 10B).

さらに、(7)複数の条件の個体群について、前記(1)〜(6)の操作を行い、群間の比較を行えば、群間の比較が可能である。図10(A)及び(B)は、異なる実験操作を行った群についての着色像である。図10(A)及び(B)では、陽性細胞密度が大きく異なる領域が腹側に存在することが判る。また、陽性細胞密度は、擬似カラー化されているが、定量化されており、定量解析もできる。ここで、組織標本の数は、統計学的有意差検定できる数、例えば5以上が好ましい。   Further, (7) comparison between groups is possible by performing the operations (1) to (6) and comparing the groups of individuals with a plurality of conditions. FIGS. 10A and 10B are colored images for groups in which different experimental operations were performed. 10 (A) and 10 (B), it can be seen that there is a region on the ventral side where the positive cell density is greatly different. The positive cell density is pseudo-colored, but is quantified and can be quantitatively analyzed. Here, the number of tissue samples is preferably a number that can be statistically significant, for example, 5 or more.

さらに、群間比較の結果を、統計的パラメータとして数値化し、各ピクセルに擬似カラーを付せば、有意差検定で有意差があった部分のみを可視化することもできる。例えば、図10(B)のデータをもとに有意差がある部分(t検定)を擬似カラー化した図が図11である。図11によれば、右下の部分のみが、有意に陽性細胞が存在する部分であることがわかる。この操作は、例えばMATLABソフトウェアに含まれるt検定を行うための関数により実現できる。計算した統計量を対数値に変換する関数を利用し、前記工程(4)に記した方法で計算結果を可視的に表示することが可能である。   Furthermore, if the result of comparison between groups is digitized as a statistical parameter and a pseudo color is assigned to each pixel, it is possible to visualize only a portion where there is a significant difference in the significant difference test. For example, FIG. 11 is a diagram in which a portion having a significant difference (t-test) is pseudo-colored based on the data in FIG. 10B. According to FIG. 11, it can be seen that only the lower right portion is a portion where positive cells are significantly present. This operation can be realized by, for example, a function for performing a t-test included in the MATLAB software. Using a function for converting the calculated statistic into a logarithmic value, it is possible to display the calculation result visually by the method described in the step (4).

次に実施例を挙げて本発明をさらに詳細に説明する。なお、画像解析をプログラミング上で表現する手段としてMATLABソフトウェアを用いた。   EXAMPLES Next, an Example is given and this invention is demonstrated still in detail. Note that MATLAB software was used as a means for expressing image analysis in programming.

実施例1
(1)図3−Aに示すように、図の直線下(黄色)に4つの陽性細胞が目視可能である。しかしながら、従来の2値化による検出法では、この4つの細胞を分離検出することは極めて困難である。また、閾値を高濃度側(輝度0側)に設定すれば、グラフ左に示す比較的低濃度に染色された細胞像を検出できず、他方、閾値を低濃度側に設定すれば、グラフ右に示す密集する細胞像が一つに融合されてしまい、個々を検出できない。本発明は、高濃度側より複数設定した閾値においてそれぞれ陽性細胞を検出することで、検出精度の向上を実現している。
(2)神経細胞に特異的な標識蛋白NeuNに対する免疫染色を行った組織標本(マウス脳)に対して本発明を適用し、神経細胞核の自動検出を行った。具体的には、取り込んだ画像から検出した背景値を最高輝度(255)として標準化し、最終検出閾値を140に設定し、閾値20、40、120及び140でそれぞれ陽性細胞を検出した(図3−B)。比較例1として、閾値120でのみ陽性細胞を検出した。
Example 1
(1) As shown in FIG. 3A, four positive cells are visible under the straight line (yellow) in the figure. However, it is extremely difficult to separate and detect these four cells by the conventional detection method using binarization. If the threshold value is set to the high density side (luminance 0 side), the cell image stained at a relatively low density shown on the left of the graph cannot be detected. On the other hand, if the threshold value is set to the low density side, the graph right The dense cell images shown in Fig. 1 are fused into one and cannot be detected individually. In the present invention, detection accuracy is improved by detecting positive cells at a plurality of threshold values set from the high concentration side.
(2) The present invention was applied to a tissue specimen (mouse brain) that had been immunostained with a neuron-specific labeled protein NeuN, and automatic detection of nerve cell nuclei was performed. Specifically, the background value detected from the captured image is standardized as the maximum luminance (255), the final detection threshold is set to 140, and positive cells are detected at the thresholds 20, 40, 120, and 140, respectively (FIG. 3). -B). As Comparative Example 1, positive cells were detected only at the threshold 120.

検出された陽性細胞像を計数したところ、比較例1では41であり、目視による場合の50%程度の計数値だったのに対し(図4左)、本発明の検出法によれば66であり、目視による場合の85%程度の検出が可能であった(図4右)。   When the detected positive cell images were counted, it was 41 in Comparative Example 1, which was about 50% of the counted value by visual observation (left of FIG. 4), but 66 according to the detection method of the present invention. Yes, it was possible to detect about 85% when visually observed (right side of FIG. 4).

実施例2
(1)実施例1と同様の組織標本(マウス脳)に対して本発明を適用し、神経細胞核の自動検出を行った。具体的には、標準化された背景値255に対して、最終検出閾値を160に設定し、閾値0、20、40、60、80、100、120、140、160でそれぞれ陽性細胞像を検出した。各閾値では面積2ピクセル以上の像を陽性細胞像と判定した。また、比較例2として、閾値120又は閾値160の各1点のみで陽性細胞像を検出した。
結果を図5A、Bに示す。図中、赤い丸は本発明の検出法によって検出された陽性細胞像を示し、青い丸は従来の2値化(比較例2)によって検出された陽性細胞像を示す。図5から明らかなように、薄い像や細胞が融合して1つになってしまったりした領域においても本発明の検出法により細胞像を分離でき、正確な陽性細胞像のカウントが可能であった。
Example 2
(1) The present invention was applied to a tissue specimen (mouse brain) similar to that in Example 1, and automatic detection of nerve cell nuclei was performed. Specifically, with respect to the standardized background value 255, the final detection threshold is set to 160, and positive cell images were detected with the thresholds 0, 20, 40, 60, 80, 100, 120, 140, and 160, respectively. . For each threshold, an image having an area of 2 pixels or more was determined as a positive cell image. Further, as Comparative Example 2, positive cell images were detected at only one point of the threshold 120 or the threshold 160.
The results are shown in FIGS. In the figure, red circles indicate positive cell images detected by the detection method of the present invention, and blue circles indicate positive cell images detected by conventional binarization (Comparative Example 2). As is clear from FIG. 5, the cell image can be separated by the detection method of the present invention even in a thin image or a region where cells are fused and become one, and accurate positive cell image count is possible. It was.

(2)また、切片像から任意に抽出した100×100μmの領域で目視(×20対物レンズ想到の解像度での計数)により陽性細胞像を計数し、前記自動検出法(閾値0〜160)及び従来の2値化(閾値120又は160)による検出法と比較した。その結果、図5Cに示すように、従来の2値化による検出法では細胞が20個を超えた密集領域になると目視に比して精度が大幅に低下するのに対し、本発明の検出法では目視の結果と強く相関しており、回帰直線が示すとおり、細胞が密集した領域であっても平均して目視の90%程度の値を確保していた。なお、実施例では比較的低解像度(対物×4に相当する1pixel=2.5μm)による解析を行ったが、解析画像の解像度は任意に設定可能である。 (2) Further, positive cell images are counted by visual observation (counting at a resolution conceivable by a × 20 objective lens) in a 100 × 100 μm region arbitrarily extracted from the section image, and the automatic detection method (threshold value 0 to 160) and The detection method was compared with conventional binarization (threshold 120 or 160). As a result, as shown in FIG. 5C, in the conventional detection method based on binarization, when the density of the cells exceeds 20 cells, the accuracy is greatly reduced as compared with visual observation. In this case, there is a strong correlation with the visual result, and as shown by the regression line, an average of about 90% of the visual value was secured even in a densely packed region. In the embodiment, analysis was performed with a relatively low resolution (1 pixel = 2.5 μm corresponding to objective × 4), but the resolution of the analysis image can be arbitrarily set.

(3)前記NeuN染色切片のうち細胞が密集している領域(図6(A)中黒三角で示す領域;皮質IV層)の画像を取り込み(1pixel=2.5μm)、前記自動検出法(閾値0〜160)と従来の2値化による検出法(閾値120)でそれぞれ染色陽性細胞を検出した。
特願2006−13465に記載の方法を適用して、取り込んだ画像を100×100μmの領域(40×40ピクセル)に区切り、各領域内の陽性細胞密度を計測した。計測した結果は、陽性細胞密度の高い領域を赤〜黄とした擬似カラーとして陽性細胞密度マップとして表示した。
従来の2値化による検出法により検出され作成された陽性細胞密度マップを図6(B)に示し、本発明の検出法によって検出され作成された陽性細胞密度マップを図6(C)に示す。従来の2値化による検出法では、黒三角で示した領域は細胞密度が高いにもかかわらず、正しく認識できなかった(図6(B))。他方、本発明の検出法によれば、従来の方法ではうまく検出できなかった高密度の領域でも個々の細胞が検出できた(図6(C))。結果として、大脳皮質の層構造による神経細胞密度の違いを示す事が可能となった。
(3) An image of a region where cells are densely packed in the NeuN-stained section (region indicated by black triangles in FIG. 6A; cortical layer IV) (1 pixel = 2.5 μm) is taken, and the automatic detection method ( Staining positive cells were detected by the threshold value 0-160) and the conventional binarization detection method (threshold value 120).
By applying the method described in Japanese Patent Application No. 2006-13465, the captured image was divided into 100 × 100 μm regions (40 × 40 pixels), and the positive cell density in each region was measured. The measurement result was displayed as a positive cell density map as a pseudo color in which a region having a high positive cell density was red to yellow.
FIG. 6B shows a positive cell density map detected and created by the conventional binarization detection method, and FIG. 6C shows a positive cell density map detected and created by the detection method of the present invention. . In the conventional binarization detection method, the region indicated by the black triangle could not be correctly recognized although the cell density was high (FIG. 6B). On the other hand, according to the detection method of the present invention, individual cells could be detected even in a high-density region that could not be detected well by the conventional method (FIG. 6C). As a result, it became possible to show the difference in nerve cell density due to the layer structure of the cerebral cortex.

神経細胞に特異的な標識蛋白NeuNに対する免疫染色を行った組織標本(ラット脳)の染色陽性細胞像を示す図である。グラフ中の矢印は、細胞密度の高い領域での測定誤差を示す。It is a figure which shows the dyeing | staining positive cell image of the tissue specimen (rat brain) which performed the immuno-staining with respect to the labeled protein NeuN specific to a nerve cell. Arrows in the graph indicate measurement errors in a region with a high cell density. 染色された組織標本を撮像して得られた画像(左)と、画像のうち最も輝度分布の多い濃度を背景濃度として自動検出して標準化した画像(右)を示す図である。FIG. 4 is a diagram showing an image (left) obtained by imaging a stained tissue specimen and an image (right) that is automatically detected and standardized as a background density at a density having the highest luminance distribution among the images. 本発明の陽性細胞検出法の概念図を示す図である。It is a figure which shows the conceptual diagram of the positive cell detection method of this invention. 各検出閾値において神経細胞核(NeuN)を自動検出した図である。It is the figure which detected the neuron nucleus (NeuN) automatically in each detection threshold value. 従来の2値化による検出法により検出された陽性細胞像(左)と、本発明の検出法により検出された陽性細胞像(右)を計数した結果を示す図である。It is a figure which shows the result of having counted the positive cell image (left) detected by the detection method by the conventional binarization, and the positive cell image (right) detected by the detection method of this invention. (A)閾値120で検出された陽性細胞像を計数した結果(青丸)と、本発明の検出法により検出された陽性細胞像を計数した結果(赤丸)を示す図である。(B)閾値160で検出された陽性細胞像を計数した結果(青丸)と、本発明の検出法により検出された陽性細胞像を計数した結果(赤丸)を示す図である。(C)従来の2値化による検出法により検出された陽性細胞像の計数値と、本発明の検出法により検出された陽性細胞像の計数値とを、それぞれ目視による計数値と比較したグラフである。(A) It is a figure which shows the result (red circle) which counted the positive cell image detected by the threshold value 120 (blue circle), and the positive cell image detected by the detection method of this invention. (B) It is a figure which shows the result (red circle) which counted the result (red circle) which counted the positive cell image detected with the threshold value 160, and the positive cell image detected by the detection method of this invention. (C) A graph in which the count value of the positive cell image detected by the conventional binarization detection method and the count value of the positive cell image detected by the detection method of the present invention are respectively compared with the count value by visual observation. It is. (A)NeuN染色切片の画像を示す図である。(B)従来の2値化による検出法により検出され、作成された陽性細胞密度マップを示す図である。(C)本発明の検出法により検出され、作成された陽性細胞密度マップを示す図である。(A) It is a figure which shows the image of a NeuN dyeing | staining section | slice. (B) It is a figure which shows the positive cell density map detected and produced by the detection method by the conventional binarization. (C) It is a figure which shows the positive cell density map detected and produced by the detection method of this invention. (A)画像をピクセルに区切り、ピクセル内の陽性細胞密度を計測した結果の一例を示す図である。(B)iba−1陽性細胞密度に応じた擬似カラーを付した状態の一例を示す図である。(A) It is a figure which shows an example of the result of having divided the image into pixels and measuring the positive cell density in the pixels. (B) It is a figure which shows an example of the state which attached | subjected the pseudo color according to the iba-1 positive cell density. 切片全体についてiba−1陽性細胞密度の高い領域が可視化された状態の一例を示す図である。It is a figure which shows an example of the state by which the area | region with a high iba-1 positive cell density was visualized about the whole section. データの標準化を行った画像の一例を示す図である。It is a figure which shows an example of the image which performed standardization of data. (A)複数の個体由来の組織標本の着色像の平均値マップの一例を示す図である(統制群)。(B)複数の個体由来の組織標本の着色像の平均値マップの一例を示す図である(薬物投与群)。(A) It is a figure which shows an example of the average value map of the coloring image of the tissue sample derived from several individuals (control group). (B) It is a figure which shows an example of the average value map of the coloring image of the tissue sample derived from several individuals (drug administration group). t−検定によりP値に基づいて擬似カラー化した画像の一例を示す図である(P<0.01)。It is a figure which shows an example of the image pseudo-colored based on P value by t-test (P <0.01).

Claims (5)

染色された組織標本を撮像し、得られた画像をコンピュータにより処理して染色陽性細胞を検出する方法であって、(1)画像の最も輝度分布の多い濃度を背景濃度として検出して標準化を行う工程、(2)標準化を行った画像の最も高い濃度より低濃度側に最終検出閾値を設定し、該最終検出閾値まで、高濃度側から低濃度側へ検出閾値を徐々に変動させて、各閾値で初めて検出される陽性細胞像のみを陽性細胞像として選択する工程を含み、前記工程(2)は、(a)検出閾値以上に染色された領域を検出する工程と、(b)検出された領域のうち、一定の大きさの細胞が染色された部分のみを陽性細胞像として選択する工程と、(c)検出された陽性細胞像の数及び重心の座標を記録する工程とを含むことを特徴とする染色された組織標本の陽性細胞の検出方法。 A method for detecting stained positive cells by imaging a stained tissue specimen and processing the obtained image by a computer. (1) Standardization is performed by detecting a density having the highest luminance distribution as a background density. (2) A final detection threshold is set on the lower density side than the highest density of the standardized image, and the detection threshold is gradually changed from the higher density side to the lower density side until the final detection threshold, Selecting only positive cell images detected for the first time at each threshold as positive cell images, the step (2) comprising: (a) detecting a region stained above the detection threshold; and (b) detecting A step of selecting only a portion where cells of a certain size are stained as positive cell images, and (c) a step of recording the number of detected positive cell images and the coordinates of the center of gravity. Stained tissue specimen characterized by The method of detection. 前記工程(2)により選択された各閾値における陽性細胞像の計数値を合計して、撮像した組織標本中における陽性細胞の計数値として採用する染色された組織標本の陽性細胞の計数方法。   A method of counting positive cells in a stained tissue sample, which is used as a count value of positive cells in an imaged tissue sample by summing the counts of positive cell images at each threshold selected in the step (2). 請求項1記載の方法により検出された染色陽性細胞を可視化して解析する方法であって、(3)得られた画像を碁盤目状のピクセルに区切り、各ピクセル内の陽性細胞密度を測定する工程、(4)陽性細胞密度に応じた擬似カラーを付し、組織標本全体の着色像を得る工程、(5)組織標本全体の形状を既知の組織標本形状に合わせて標準化を行う工程、及び(6)複数の個体由来の組織標本について前記(1)〜(5)の操作を行い、複数の組織標本についての着色像の平均値マップを得る工程を含む、染色された組織標本の陽性細胞の可視化解析方法。   A method for visualizing and analyzing stained positive cells detected by the method according to claim 1, wherein (3) the obtained image is divided into grid-like pixels, and the density of positive cells in each pixel is measured. A step, (4) attaching a pseudo color according to the positive cell density, obtaining a colored image of the entire tissue specimen, (5) performing a standardization according to a known tissue specimen shape, and (6) A positive cell of a stained tissue sample, comprising the steps of (1) to (5) for a tissue sample derived from a plurality of individuals to obtain an average value map of colored images for the plurality of tissue samples. Visualization analysis method. さらに、(7)複数の条件の個体群について前記(1)〜(6)の操作を行い、群間の比較を行うことを特徴とする請求項3記載の染色された組織標本の陽性細胞の可視化解析方法。   Further, (7) performing the operations (1) to (6) on a group of individuals under a plurality of conditions, and comparing the groups, the positive cells of the stained tissue sample according to claim 3 Visualization analysis method. さらに、群間比較の結果を、統計的パラメータとして数値化し、各ピクセルに擬似カラーを付すことを特徴とする請求項4記載の染色された組織標本の陽性細胞の可視化解析方法。   5. The method for visualizing and analyzing positive cells of a stained tissue sample according to claim 4, further comprising the step of digitizing a result of comparison between groups as a statistical parameter and adding a pseudo color to each pixel.
JP2007054606A 2007-03-05 2007-03-05 Automatic detection of positive cells in stained tissue specimens Expired - Fee Related JP4944641B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007054606A JP4944641B2 (en) 2007-03-05 2007-03-05 Automatic detection of positive cells in stained tissue specimens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007054606A JP4944641B2 (en) 2007-03-05 2007-03-05 Automatic detection of positive cells in stained tissue specimens

Publications (2)

Publication Number Publication Date
JP2008216077A JP2008216077A (en) 2008-09-18
JP4944641B2 true JP4944641B2 (en) 2012-06-06

Family

ID=39836284

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007054606A Expired - Fee Related JP4944641B2 (en) 2007-03-05 2007-03-05 Automatic detection of positive cells in stained tissue specimens

Country Status (1)

Country Link
JP (1) JP4944641B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6090770B2 (en) * 2012-10-25 2017-03-08 大日本印刷株式会社 Cell behavior analysis apparatus, cell behavior analysis method, and program
CN110956605B (en) * 2018-09-27 2023-07-14 艾托金生物医药(苏州)有限公司 Cervical cancer cytology detection method based on protein antibody reagent
WO2023276254A1 (en) * 2021-06-29 2023-01-05 ソニーグループ株式会社 Information processing device, microscope system, and information processing method
CN113903030A (en) * 2021-10-12 2022-01-07 杭州迪英加科技有限公司 Liquid-based cell pathology image generation method based on weak supervised learning

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02269967A (en) * 1989-04-12 1990-11-05 Hitachi Ltd Cell observing method and cell observing system
GB0226787D0 (en) * 2002-11-18 2002-12-24 Qinetiq Ltd Measurement of mitotic activity
GB0227160D0 (en) * 2002-11-21 2002-12-24 Qinetiq Ltd Histological assessment of pleomorphism
JP2004286666A (en) * 2003-03-24 2004-10-14 Olympus Corp Pathological diagnosis support apparatus and pathological diagnosis support program
JP4242796B2 (en) * 2004-03-12 2009-03-25 パナソニック株式会社 Image recognition method and image recognition apparatus
JP2005283490A (en) * 2004-03-30 2005-10-13 Japan Tobacco Inc Micronuclei automatic counting program, computer-readable storage medium recording the program, and micronuclei automatic counting device
JP4744187B2 (en) * 2005-05-10 2011-08-10 オリンパス株式会社 Cell observation device

Also Published As

Publication number Publication date
JP2008216077A (en) 2008-09-18

Similar Documents

Publication Publication Date Title
US9298968B1 (en) Digital image analysis of inflammatory cells and mediators of inflammation
Rangan et al. Quantification of renal pathology by image analysis (Methods in Renal Research)
EP3127084B1 (en) Examining device for processing and analyzing an image
JP6235886B2 (en) Biological tissue image reconstruction method and apparatus, and image display apparatus using the biological tissue image
Cordelieres et al. Experimenters' guide to colocalization studies: finding a way through indicators and quantifiers, in practice
JP5878981B2 (en) Image evaluation apparatus for medical diagnosis support, medical diagnosis support system, and operation control method thereof
JP4791900B2 (en) Image processing apparatus and image processing program
JP2019211468A (en) Image processing method, chemical sensitivity testing method and image processing device
JPWO2008108059A1 (en) Breast cancer pathological image diagnosis support system, breast cancer pathological image diagnosis support method, breast cancer pathological image diagnosis support program, and recording medium recording breast cancer pathological image diagnosis support program
WO2019230447A1 (en) Image processing method, medicine sensitivity test method and image processing device
US20180011000A1 (en) Methods for quantitative assessment of muscle fibers in muscular dystrophy
JP4944641B2 (en) Automatic detection of positive cells in stained tissue specimens
JP2012008027A (en) Pathological diagnosis support device, pathological diagnosis support method, control program for supporting pathological diagnosis, and recording medium recorded with control program
JP7026694B2 (en) Image analyzers, methods and programs
JP7114323B2 (en) Medical information processing system and medical information processing device
KR20110054092A (en) Void ratio measuring method using x-ray ct scan
CN111656393A (en) Histological image analysis
WO2017171720A1 (en) Digital image analysis of inflammatory cells and mediators of inflammation
JP6039132B2 (en) Method for measuring volume ratio of each pure medium existing in minimum unit of X-ray CT image for specimen made of composite medium
US11776115B2 (en) System and method for estimating a quantity of interest based on an image of a histological section
EP2927684B1 (en) Image measuring device and image measuring method
KR20110072098A (en) Method for normalizing image in digital pathology
US20180040120A1 (en) Methods for quantitative assessment of mononuclear cells in muscle tissue sections
JP3958340B2 (en) Visualization analysis method for positive cells in stained tissue specimens
JPH10185911A (en) Device for analyzing cell and method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090508

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111025

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120228

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120302

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150309

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees