JP4943957B2 - 3-core batch connection box - Google Patents

3-core batch connection box Download PDF

Info

Publication number
JP4943957B2
JP4943957B2 JP2007173718A JP2007173718A JP4943957B2 JP 4943957 B2 JP4943957 B2 JP 4943957B2 JP 2007173718 A JP2007173718 A JP 2007173718A JP 2007173718 A JP2007173718 A JP 2007173718A JP 4943957 B2 JP4943957 B2 JP 4943957B2
Authority
JP
Japan
Prior art keywords
core
connection
cable
conductor
bulging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007173718A
Other languages
Japanese (ja)
Other versions
JP2009017623A (en
Inventor
和市 苅谷
辰雄 中西
雄裕 苗崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
J Power Systems Corp
Original Assignee
Kansai Electric Power Co Inc
J Power Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Electric Power Co Inc, J Power Systems Corp filed Critical Kansai Electric Power Co Inc
Priority to JP2007173718A priority Critical patent/JP4943957B2/en
Publication of JP2009017623A publication Critical patent/JP2009017623A/en
Application granted granted Critical
Publication of JP4943957B2 publication Critical patent/JP4943957B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、例えば3心OFケーブルと3心CVケーブルとを接続するための3心一括型接続箱に関する。特に、充分なスペースのないマンホール内での接続作業を容易とするために軽量・コンパクト化を図った3心一括型接続箱に関する。   The present invention relates to a three-core batch type connection box for connecting, for example, a three-core OF cable and a three-core CV cable. In particular, the present invention relates to a three-core collective junction box that is lightweight and compact in order to facilitate connection work in a manhole without sufficient space.

導体の外周に絶縁油が含浸された絶縁層を具えたOFケーブルの構成は、例えば特許文献1に開示されている。このようなOFケーブルで、導体を内蔵した3本のケーブルコアを具えた3心OFケーブル(以下、OFケーブルという)は、大電力の長距離輸送に広く用いられている。今日では、その老朽化した部分が、CVケーブル(架橋ボリエチレンケーブル)と置き換えられることが多い。その際の接続作業では、OFケーブルに充填されている絶縁油に対する油止め措置が必要とされ、従来、例えば図12に示すように、OFケーブル51とCVケーブル52の3本の導体53,54同士をそれぞれ油止めユニット55に嵌挿された導体接続金具56を介して導通状態に接続し、そのOFケーブル51の導体53と導体接続金具56の接続部の外周をそれぞれ別々の遮蔽筒58で覆うようにしていた。その油止めユニット55は、合成樹脂材により先尖りの円筒状に形成され、本体カバー59内に立設された金属製の継ぎフランジ60の3つの孔部にそれぞれ密嵌状態に保持されることによって油止め措置が施されていた。   A configuration of an OF cable including an insulating layer in which an insulating oil is impregnated on the outer periphery of a conductor is disclosed in Patent Document 1, for example. Among such OF cables, a three-core OF cable (hereinafter, referred to as an OF cable) having three cable cores with a built-in conductor is widely used for long-distance transportation of high power. Today, the aging parts are often replaced with CV cables (bridged polyethylene cables). In the connection work at that time, it is necessary to take an oil stop measure against the insulating oil filled in the OF cable. Conventionally, for example, as shown in FIG. 12, three conductors 53 and 54 of the OF cable 51 and the CV cable 52 are used. They are connected to each other in a conductive state through conductor connection fittings 56 fitted in oil stop units 55, and the outer periphery of the connection portion of the conductor 53 of the OF cable 51 and the conductor connection fitting 56 is separated by a separate shielding cylinder 58. I was trying to cover it. The oil stop unit 55 is formed of a synthetic resin material in a pointed cylindrical shape, and is held in close contact with the three holes of the metal joint flange 60 erected in the main body cover 59. An oil stop was taken.

その接続作業では、OFケーブル51の金属シース57は所定長だけ切断除去され、その金属シース57の切断部に被嵌されたセミストップ装置61によって、セミストップ装置61内に開口する油通路62が閉塞される。そのセミストップ装置61は、連通配管62によってOF側ケース63に設けたセミストッパバルブ64に接続される。以上のような構成により、OFケーブル51の油通路62を流通する絶縁油に対するセミストップ装置61と油止めユニット55による二重の油止め措置が施されると共に、OFケーブル51の3本の導体53とCVケーブル52の3本の導体54が導体接続金具56を介して導通状態に接続される。このような接続作業が完了した後は、OF側ケース63内に絶縁油が充填され、通電使用可能な状態となる。
特開2001−93352号公報
In the connection work, the metal sheath 57 of the OF cable 51 is cut and removed by a predetermined length, and the oil passage 62 opened in the semi-stop device 61 is opened by the semi-stop device 61 fitted on the cut portion of the metal sheath 57. Blocked. The semi-stop device 61 is connected to a semi-stopper valve 64 provided on the OF side case 63 by a communication pipe 62. With the configuration as described above, double oil stop measures are taken by the semi-stop device 61 and the oil stop unit 55 against the insulating oil flowing through the oil passage 62 of the OF cable 51, and the three conductors of the OF cable 51 are provided. 53 and the three conductors 54 of the CV cable 52 are connected to each other through the conductor fitting 56. After such connection work is completed, the OF side case 63 is filled with insulating oil, and the power supply is ready for use.
JP 2001-93352 A

ところで、上述のような接続作業は、OFケーブル専用のマンホール(図示省略)内で行われる。図12に示す従来の接続構造では、その長さL1が比較的に長いため、マンホール内で良好な作業性が得られなかった。従って、マンホールの拡張工事を余儀なくされることもあった。このようなことから、接続構造全体(特に軸方向の長さ)のコンパクト化が求められていた。また、油止めユニット55と遮蔽筒58を3つの接続部それぞれに設けていたため、部品点数が多く、接続作業も煩瑣であった。そして、3つの油止めユニット55を密嵌状態に保持する金属製の継ぎフランジ60は重量が大で高価であった。このようなことから、接続作業の容易化を図るため及び原材料コストの低減化を図るために、部品点数の削減化や軽量化が求められていた。このような接続構造の問題は、OFケーブルとCVケーブルのような異種ケーブル同士の接続だけでなく、OFケーブル同士の場合にも共通する問題であった。   By the way, the connection work as described above is performed in a manhole (not shown) dedicated to the OF cable. In the conventional connection structure shown in FIG. 12, since the length L1 is relatively long, good workability cannot be obtained in the manhole. Therefore, manhole expansion work was sometimes forced. For this reason, there has been a demand for downsizing of the entire connection structure (particularly the length in the axial direction). Further, since the oil stopper unit 55 and the shielding cylinder 58 are provided in each of the three connecting portions, the number of parts is large and the connecting work is troublesome. The metal joint flange 60 that holds the three oil stop units 55 in a close-fitted state is heavy and expensive. For this reason, in order to facilitate the connection work and to reduce the raw material cost, reduction in the number of parts and weight reduction have been demanded. Such a problem of the connection structure is a problem common not only to the connection of different types of cables such as the OF cable and the CV cable, but also to the case of the OF cables.

本発明は、このような事情に鑑みてなされ、特に長さ方向のコンパクト化と部品点数の削減化及び軽量化が図られた3心一括型接続箱を提供することを目的とする。   The present invention has been made in view of such circumstances, and an object of the present invention is to provide a three-core batch type connection box that is particularly compact in the length direction, reduced in the number of parts, and reduced in weight.

本発明の3心一括型接続箱は、導体を有する3本のケーブルコアを具えた3心ケーブル同士を接続するための3心一括型接続箱であって、前記3心ケーブルの少なくとも一方はOFケーブルであり、少なくともOFケーブル側のケーブル接続部を油密状態に覆うOF側ケースと、前記OF側ケースとの間での油止め機能を備え、対向し合う3本の導体同士を絶縁状態下で導通状態に接続保持するための3心一括絶縁接続ユニットと、を備え、前記3心一括絶縁接続ユニットは、導体接続方向に直交する方向に起立して配設され、前記OF側ケースに対して油密状に接続されるフランジ部と、該フランジ部からOFケーブル側の導体接続方向に向けて突出形成される3つの膨出部と、3本の導体が接続されている導体接続部全体を、絶縁層を介して、覆う遮蔽筒と、を有した3心一括型接続箱において、前記3心一括絶縁接続ユニットのフランジ部の周縁には、前記OF側ケースのリング状に形成された接続部に接続される接続縁部が形成され、該接続縁部の内側には、前記遮蔽筒の基部を被嵌させるための円盤状の掛止段部が形成され、その掛止段部の表面に、それぞれ先細りの円筒状に形成された前記3つの膨出部が立設され、前記フランジ部の接続縁部と掛止段部との間に形成される凹R部は、その一部を前記フランジ部の周縁表面よりも内側に食い込ませて曲率を小さく設定したことを特徴とする。 The three-core batch type connection box of the present invention is a three-core batch type connection box for connecting three-core cables having three cable cores having conductors, and at least one of the three-core cables is OF. The cable is provided with an oil stop function between the OF side case and the OF side case that covers at least the cable connection portion on the OF cable side in an oil-tight state, and the three conductors facing each other are insulated. And a three-core collective insulation connection unit for maintaining connection in a conductive state, and the three-core collective insulation connection unit is disposed upright in a direction perpendicular to the conductor connection direction, and is connected to the OF-side case. A flange portion connected in an oil-tight manner, three bulging portions formed to project from the flange portion toward the conductor connection direction on the OF cable side, and the entire conductor connection portion to which the three conductors are connected Through the insulation layer In the three-core collective junction box having a shielding cylinder to cover, the peripheral edge of the flange portion of the three-core collective insulation connection unit is connected to the connection portion formed in the ring shape of the OF side case. A connection edge is formed, and inside the connection edge is formed a disk-shaped latching step for fitting the base of the shielding tube, and each of the surfaces of the latching step is tapered. The three bulging portions formed in a cylindrical shape are erected, and the concave R portion formed between the connecting edge portion of the flange portion and the latching step portion is part of the periphery of the flange portion. It is characterized in that the curvature is set to be small by biting inward from the surface .

このような構成によれば、3心一括絶縁接続ユニットによって、OF側ケース内の油止め措置が施されると共に、接続すべき対向し合う3本のケーブルコアの導体同士を絶縁状態下で一括して接続することができる。これにより、従来の高価で重量大な金属製の継ぎフランジが不要となり、部品点数を削減することもでき、部材費を低減できると共に、現場での施工作業も容易となる。また、3つの導体接続部全体を一括して接続するので、各導体接続部の径方向の間隔を詰めることができる。これにより、分岐点から引き出される個々のケーブルコアの曲げ角度の許容限度内において、ケーブルコアの分岐点から3心一括絶縁接続ユニットに至る間の距離を短縮して接続構造全体(3心一括型接続箱)の軸方向長さを短縮化することができる。   According to such a configuration, the oil stop measures in the OF side case are applied by the three-core collective insulation connection unit, and the conductors of the three cable cores facing each other to be connected are collectively in an insulated state. Can be connected. This eliminates the need for a conventional expensive and heavy metal joint flange, reduces the number of parts, reduces member costs, and facilitates construction work on site. Moreover, since the whole three conductor connection parts are connected collectively, the space | interval of the radial direction of each conductor connection part can be shortened. This reduces the distance from the cable core branch point to the three-core batch insulated connection unit within the allowable limit of the bending angle of each cable core drawn from the branch point. The axial length of the junction box) can be shortened.

前記3心一括絶縁接続ユニットは、導体接続方向に直交する方向に起立して配設され、前記OF側ケースに対して油密状に接続されるフランジ部と、該フランジ部からOFケーブル側の導体接続方向に向けて突出形成される3つの膨出部と、を備え、各膨出部は、同心円上に等間隔で配設されて貫通孔を有し、該貫通孔内に導体同士を接続するための導体接続手段を内蔵するようにしてもよい。このようにすれば、フランジ部と導体接続手段を内蔵した3つの膨出部からなる3心一括絶縁接続ユニットを、例えばエポキシ樹脂等の合成樹脂材の一体成形によって形成することができる。   The three-core collective insulation connection unit is disposed upright in a direction perpendicular to the conductor connection direction, and is connected to the OF side case in an oil-tight manner, and the flange portion is connected to the OF cable side. Three bulging portions that protrude in the conductor connecting direction, and each bulging portion is disposed on the concentric circle at equal intervals and has through holes, and the conductors are arranged in the through holes. You may make it incorporate the conductor connection means for connecting. If it does in this way, the 3 core collective insulation connection unit which consists of three bulging parts which incorporated the flange part and the conductor connection means can be formed by integral molding of synthetic resin materials, such as an epoxy resin, for example.

3本の導体が接続されている導体接続部全体を、絶縁層を介して、覆う遮蔽筒を備えてもよい。このようにすれば、また、3つの導体接続部全体をまとめて遮蔽筒で覆うので、各導体接続部の径方向の間隔を詰めることができる。これにより、導体接続部全体の径方向のコンパクト化を図り、導体接続部でのケーブルコア間の間隔を縮小できるので、3心一括型接続箱の軸方向長さのコンパクト化が容易となる。そして、3つの導体接続部全体をまとめて遮蔽筒で覆うため、導体接続を個別の遮蔽筒で覆っていた従来よりも部品点数を削減することができ、部材費を低減できると共に、その被覆作業も簡素化される。   You may provide the shielding cylinder which covers the whole conductor connection part to which three conductors are connected through an insulating layer. If it does in this way, since the whole three conductor connection part is collectively covered with a shielding cylinder, the space | interval of the radial direction of each conductor connection part can be shortened. As a result, the entire conductor connecting portion can be made compact in the radial direction, and the distance between the cable cores at the conductor connecting portion can be reduced, so that the axial length of the three-core batch type connection box can be made compact. And since the entire three conductor connection portions are collectively covered with a shielding cylinder, the number of parts can be reduced as compared with the conventional case where the conductor connection is covered with an individual shielding cylinder, and the member cost can be reduced, and the covering work Is also simplified.

前記3心一括絶縁接続ユニットのフランジ部の周縁には、前記OF側ケースのリング状に形成された接続部に接続される接続縁部が形成され、該接続縁部の内側には、前記遮蔽筒の基部を被嵌させるための円盤状の掛止段部が形成され、その掛止段部の表面に、それぞれ先細りの円筒状に形成された前記3つの膨出部が立設され、前記フランジ部の接続縁部と掛止段部との間に形成される凹R部の一部を前記フランジ部の周縁表面よりも内側に食い込ませて、前記凹R部の曲率を小さく設定してもよい。このように、凹R部の一部をフランジ部の周縁表面に食い込ませるように構成し、該凹R部に導電性塗料を塗布しアースラインを形成すれば、3心一括絶縁接続ユニットが大きな電界ストレスの影響を受けてもフランジ部の接続縁部と掛止段部との間で絶縁破壊を誘発する電気ストレスの局部的な集中が発生しない程度に凹R部の曲率を小さく設定することができる。これにより、3心一括絶縁接続ユニットのフランジ部の外径を小さくすることができる。   A connection edge to be connected to the ring-shaped connection portion of the OF case is formed on the periphery of the flange portion of the three-core collective insulation connection unit, and the shielding is provided inside the connection edge. A disc-shaped latching step for fitting the base of the tube is formed, and the three bulging portions each formed in a tapered cylindrical shape are erected on the surface of the latching step, A part of the concave R portion formed between the connection edge portion of the flange portion and the latching step portion is bitten inward from the peripheral surface of the flange portion, and the curvature of the concave R portion is set to be small. Also good. In this way, if a part of the concave R portion is configured to bite into the peripheral surface of the flange portion, and a conductive paint is applied to the concave R portion to form an earth line, the three-core collective insulation connection unit is large. The curvature of the concave R portion should be set so small that local concentration of electrical stress that induces dielectric breakdown does not occur between the connection edge of the flange portion and the latching step portion even under the influence of electric field stress. Can do. Thereby, the outer diameter of the flange part of a 3 core collective insulation connection unit can be made small.

前記膨出部の基部外周が前記フランジ部の掛止段部外周から離間する部位における前記膨出部の立ち上がり部分には、前記膨出部の立ち上がり部分と、前記掛止段部の表面とを、電界ストレスの局部的な集中による絶縁破壊を回避できる程度になだらかな傾斜面を介して、連続させるようにしてもよい。このようにすれば、3心一括絶縁接続ユニットが電界ストレスの影響を受けても、膨出部の立ち上がり部分と、掛止段部の表面との間で絶縁破壊を誘発するような電気ストレスの局部的な集中が発生しにくくなる。   The rising portion of the bulging portion at the portion where the base outer periphery of the bulging portion is separated from the outer periphery of the latching step portion of the flange portion includes the rising portion of the bulging portion and the surface of the hooking step portion. Further, it may be made continuous through an inclined surface that is gentle enough to avoid dielectric breakdown due to local concentration of electric field stress. In this way, even if the three-core collective insulation connection unit is affected by electric field stress, an electrical stress that induces dielectric breakdown between the rising portion of the bulging portion and the surface of the latching step portion. Local concentration is less likely to occur.

前記3心一括絶縁接続ユニットは、エポキシ樹脂の一体成形により形成されるようにしてもよい。エポキシ樹脂は、電気的な絶縁特性と成形性が良好で耐油性に富むため、性能品質と耐久性の良好な3心一括絶縁接続ユニットを安価に形成することができる。   The three-core collective insulation connection unit may be formed by integral molding of epoxy resin. Epoxy resin has good electrical insulation characteristics and moldability and is excellent in oil resistance, so that a three-core collective insulation connection unit with good performance quality and durability can be formed at low cost.

前記遮蔽筒は、円筒状に保形可能な半割れ状の平滑な金属製の板部材からなるようにしてもよい。絶縁油によって高い絶縁耐力を確保するためには、遮蔽筒の内表面に高い平滑度が求められる。しかし、従来の銅材からなる遮蔽筒は、銀ロウ付けによる接合が行われるため、内表面の平滑度を充分に確保することができなかった。このことが3心一括の遮蔽筒の形成を困難にしている理由でもあった。そこで、本発明では、表面の高い平滑度を容易に得られる真鍮製の板部材を半割れ状に形成して、これを銀ロウ付け等の接合を行うことなく、円筒状に保形可能に構成することによって、その内表面の高い平滑度を確保できるようにしている。このような遮蔽筒で導体接続部の全体を覆うことによって、3心の中央部では、3心個々に遮蔽筒を設けていた従来型の36%程度にまで電気的なストレス(電界ストレス)を低減することができる。これにより、その中央部辺りでのストレス障害、例えば絶縁紙の破損や異物の介在によるストレス破壊の発生等の電気的なトラブルを少なくすることができる。また、スペースが狭隘で作業性がよくない中央部での作業をなくすこともできる。   The shielding cylinder may be formed of a half-cracked smooth metal plate member that can be retained in a cylindrical shape. In order to ensure high dielectric strength with insulating oil, high smoothness is required for the inner surface of the shielding cylinder. However, since the conventional shielding cylinder made of a copper material is joined by silver brazing, the smoothness of the inner surface cannot be sufficiently ensured. This is also the reason why it is difficult to form a three-core shielding cylinder. Therefore, in the present invention, a brass plate member that can easily obtain high smoothness of the surface is formed in a half-crack shape, and this can be held in a cylindrical shape without joining such as silver brazing. By comprising, the high smoothness of the inner surface can be ensured. By covering the entire conductor connecting portion with such a shielding cylinder, electrical stress (electric field stress) is applied to the central part of the three cores up to about 36% of the conventional type in which the shielding cores are provided for the three cores individually. Can be reduced. As a result, it is possible to reduce electrical troubles such as stress failure around the center, such as breakage of insulating paper and occurrence of stress breakdown due to the presence of foreign matter. Further, it is possible to eliminate the work in the central portion where the space is narrow and the workability is not good.

前記板部材を円筒状に保形するために、板部材の端縁に形成された被掛止辺部同士を掛止する掛止部材は、隣接し合う2つの膨出部間の中間部位に沿って配設されるようにしてもよい。3心一括絶縁接続ユニットによって3本のケーブルコアを一括して接続する場合、各導体接続部を内蔵する膨出部は120°の位相間隔をおいて等間隔に配設される。その場合、遮蔽筒に作用する電界ストレス(沿層ストレス)の強度は、各膨出部の最外側部分で最も強くなり、隣接し合う膨出部間の中間位相の部位が最も低くなる。従って、その中間位相部位に沿って、両被掛止辺部を掛止部材で掛止するようにすれば、その両被掛止辺部と掛止部材が電界ストレスの影響を受けることが少なくなり安定な掛止状態を確保することができる。このように、半割れ状の板部材の対向し合う両端縁を外方に折り曲げて被掛止辺部を形成し、その両被掛止辺部に対して掛止部材を軸方向にスライドさせて両被掛止辺を掛止させる構成では、半田やロウ付け等が不要であるため、その内面は、高い平滑度が得られるので、高い絶縁耐力を確保することができる。また、その製作が容易で安価に得ることができ、かつ現場での施工作業も容易となる。   In order to retain the plate member in a cylindrical shape, the latch member that latches the latched side portions formed on the edge of the plate member is located at an intermediate portion between two adjacent bulging portions. You may make it arrange | position along. When three cable cores are connected together by the three-core collective insulation connection unit, the bulging portions containing the respective conductor connection portions are arranged at equal intervals with a phase interval of 120 °. In that case, the strength of the electric field stress (layering stress) acting on the shielding cylinder is the strongest at the outermost part of each bulging part, and the intermediate phase part between the adjacent bulging parts is the lowest. Therefore, if both the latching side portions are latched by the latching member along the intermediate phase portion, both the latching side portions and the latching member are less affected by the electric field stress. Therefore, a stable latching state can be secured. In this way, the opposite edges of the half-cracked plate member are bent outward to form the hooked side portions, and the hooking member is slid in the axial direction with respect to both the hooked side portions. In the configuration in which both the sides to be latched are engaged, soldering, brazing, or the like is unnecessary, and therefore, high smoothness can be obtained on the inner surface, so that high dielectric strength can be ensured. Moreover, the manufacture is easy and can be obtained at low cost, and the construction work on site is also easy.

前記3心ケーブルの他方は3心CVケーブルであってもよい。上述のように、3心一括絶縁接続ユニットによって、OF側ケース内に油止め措置を施すことができるので、OFケーブル同士の接続作業が完了した後は、OF側ケース内を真空引きした後に絶縁油を充填させて導体接続部を絶縁すれば、使用可能な状態となる。   The other of the three-core cables may be a three-core CV cable. As described above, since the oil stop measures can be taken in the OF side case by the three-core collective insulation connection unit, after the connection work between the OF cables is completed, the OF side case is evacuated and then insulated. If the conductor connection part is insulated by filling with oil, it is ready for use.

本発明の3心一括型接続箱は、3心一括絶縁接続ユニットによって、OF側ケース内に油止め措置を施して接続すべき対向し合う3本のケーブルコアの導体同士を一括して接続することができるので、従来の高価で重量大な金属製の継ぎフランジが不要となり、部品点数を削減することができる。また、3つの導体接続部全体を一括して接続するので、各導体接続部の径方向の間隔を詰めることができるため、3心一括型接続箱の長さを短縮化することができ、狭いマンホール内での施工作業が容易となる。   The three-core collective junction box of the present invention collectively connects the conductors of the three cable cores facing each other to be connected by applying an oil stop in the OF case by the three-core collective insulation connection unit. Therefore, the conventional expensive and heavy metal splicing flange becomes unnecessary, and the number of parts can be reduced. In addition, since the entire three conductor connection portions are connected together, the distance between the conductor connection portions in the radial direction can be reduced, so that the length of the three-core batch type connection box can be shortened and narrow. Construction work in the manhole is easy.

以下に、本発明の実施の形態に係る3心一括型接続箱について説明する。
図1は、円筒状に形成された3心一括型接続箱の断面図である。図示のように、この3心一括型接続箱の内部では、3心OFケーブル(以下、OFケーブルという)1と3心CVケーブル(以下、CVケーブルという)2の対向し合う3本の導体3a,4a同士が、3心一括絶縁接続ユニット5によって一括して導通状態に接続されると共に、3本の導体3a,4aが接続されている導体接続部6の全体が単一の遮蔽筒7によって覆われる。その3心一括絶縁接続ユニット5は、油止め機能を有し、導体接続方向に直交する方向に起立して配設される円板状のフランジ部8と、そのフランジ部8から、OFケーブル1側に向けて突出形成される先細りの円筒状に形成された3つの膨出部9Aと、その膨出部9Aに対応してCVケーブル2側に突出する突出部9Bと、を具え、例えばエポキシ樹脂の一体成形により形成され、その表面には、絶縁性を維持するために導電性塗料が焼き付けられる。
Hereinafter, the three-core collective junction box according to the embodiment of the present invention will be described.
FIG. 1 is a cross-sectional view of a three-core collective junction box formed in a cylindrical shape. As shown in the figure, inside this three-core collective junction box, three opposing conductors 3a of a three-core OF cable (hereinafter referred to as OF cable) 1 and a three-core CV cable (hereinafter referred to as CV cable) 2 are opposed. , 4a are connected together in a conductive state by the three-core collective insulation connection unit 5, and the entire conductor connection portion 6 to which the three conductors 3a, 4a are connected is formed by a single shielding cylinder 7. Covered. The three-core collective insulation connection unit 5 has an oil stop function and is provided with a disc-shaped flange portion 8 erected in a direction orthogonal to the conductor connection direction, and the OF cable 1 from the flange portion 8. Three bulging portions 9A formed in a tapered cylindrical shape protruding toward the side, and a protruding portion 9B protruding toward the CV cable 2 corresponding to the bulging portion 9A, for example, epoxy It is formed by integral molding of resin, and a conductive paint is baked on its surface in order to maintain insulation.

そのフランジ部8は、OFケーブル1側の導体接続部6を含むケーブル接続部を油密状態に覆うOF側ケース10とCVケーブル2のケーブル接続部を覆うCV側ケース30との間に挟まれた状態に立設される。OFケーブル1側に向けて突出形成される各膨出部9Aは、図2に示すように、フランジ部8の片面(表面側)の同心円上に等間隔(120°)に配設されて、その貫通孔内に導体3a,4a同士を接続するたの導体接続金具(本発明の導体接続手段)11を内蔵した状態で一体成形される。このフランジ部8の周縁には、OF側ケース10の接続端に形成された接続リング10eにボルト締結により接続される接続縁部8aが形成され、その接続縁部8aの内側には、遮蔽筒7の基部を被嵌させるための円盤状の掛止段部8bが形成される。その掛止段部8b内に3つの膨出部9Aが立設される。フランジ部8の裏面側には、膨出部9Aと対応する位置に突出部9Bが形成される。 The flange portion 8 is sandwiched between an OF side case 10 that covers the cable connection portion including the conductor connection portion 6 on the OF cable 1 side in an oil-tight state and a CV side case 30 that covers the cable connection portion of the CV cable 2. Standing up. As shown in FIG. 2, each bulging portion 9 </ b> A that protrudes toward the OF cable 1 side is arranged at equal intervals (120 °) on a concentric circle on one side (front side) of the flange portion 8. conductors 3a to the through hole, is integrally molded in a state in which a built-in 11 (conductor connecting means of the present invention) conductor fittings in order to connect 4a together. On the periphery of the flange portion 8, a connection edge portion 8a connected to a connection ring 10e formed at a connection end of the OF side case 10 by bolt fastening is formed. Inside the connection edge portion 8a, a shielding cylinder is formed. A disc-shaped latching step portion 8b for fitting the base portion 7 is formed. Three bulging portions 9A are erected in the latching step portion 8b. On the back side of the flange portion 8, a protruding portion 9B is formed at a position corresponding to the bulging portion 9A.

そのフランジ部8の表面側の接続縁部8aと掛止段部8bとの間には、例えば図3(a)(b)に示すように、凹R部rが形成され、該凹R部rの一部をフランジ部8の周縁表面よりも内側に食い込ませて、凹R部rの曲率を小さく設定し、当該部に導電性塗料を塗布しアースラインを形成している。つまり、凹R部rの一部をフランジ部8の周縁表面よりも内側に食い込ませることなくフランジ部8の接続縁部8aと掛止段部8bとの間に凹R部を形成すると、図3(b)に一点鎖線で示すように、曲率が大きくなり電気ストレスが外側に回り込みやすくなる。尚、図3(a)は、図4(a)のIII−III線矢視断面図である。また、図示は省略するが、凹R部rの一部をフランジ部8の周縁表面よりも内側に食い込ませることなく、食い込ませた場合と同等の曲率を設定しようとすると、フランジ部8の外径が大きくなるだけでなく、膨出部9Aの位置が軸方向左方向に伸びるため、3心一括絶縁接続ユニット5の軸方向の長さが大きくなり、コンパクト化の妨げとなる。また、フランジ部8の裏面側の接続縁部8cと突出部9Bが立設されている円盤状の段状部8dとの間にも同様の凹R部sが形成される(図3(c)参照)。このように、フランジ部8の表裏に形成される凹R部r,sの一部をフランジ部8の周縁の表面と裏面に食い込ませるように構成することによって、凹R部r,sの曲率を小さく設定することができ、3心一括絶縁接続ユニット5の全長を短くすることができる。また、3心一括絶縁接続ユニット5が、雷インパルス等による大きな電界ストレスの影響を受けても、フランジ部8の周縁と、膨出部9A及び突出部9Bとの間で電気ストレスの局部的な集中による絶縁破壊が発生しない程度に、フランジ部8の外径を短縮化することができる。このような3心一括絶縁接続ユニット5を設けたことによって、そのユニット長さ(図7(a)(b)に示すD)を37.8%(434mm→270mm)程度短縮することができた。   A concave R portion r is formed between the connecting edge portion 8a on the surface side of the flange portion 8 and the latching step portion 8b, for example, as shown in FIGS. A part of r is bitten inward from the peripheral surface of the flange portion 8, the curvature of the concave R portion r is set small, and a conductive paint is applied to the portion to form an earth line. That is, when the concave R portion is formed between the connection edge portion 8a of the flange portion 8 and the latching step portion 8b without causing a portion of the concave R portion r to enter the inner side of the peripheral surface of the flange portion 8, FIG. As indicated by the alternate long and short dash line in FIG. 3 (b), the curvature is increased and the electrical stress is likely to go outside. 3A is a cross-sectional view taken along the line III-III in FIG. Moreover, although illustration is omitted, if a curvature equivalent to the case where the concave portion R is ripped without biting inward from the peripheral surface of the flange portion 8 is set, Not only does the diameter increase, but the position of the bulging portion 9A extends to the left in the axial direction, so the axial length of the three-core collective insulation connection unit 5 increases, which hinders downsizing. A similar concave R portion s is also formed between the connection edge portion 8c on the back surface side of the flange portion 8 and the disk-like stepped portion 8d on which the protruding portion 9B is erected (FIG. 3 (c). )reference). In this way, by forming a part of the concave R portions r, s formed on the front and back surfaces of the flange portion 8 into the front and back surfaces of the peripheral edge of the flange portion 8, the curvature of the concave R portions r, s is configured. Can be set small, and the overall length of the three-core collective insulation connection unit 5 can be shortened. Even if the three-core collective insulation connection unit 5 is affected by a large electric field stress due to lightning impulse or the like, a local electric stress is generated between the peripheral edge of the flange portion 8 and the bulging portion 9A and the protruding portion 9B. The outer diameter of the flange portion 8 can be shortened to such an extent that dielectric breakdown due to concentration does not occur. By providing such a three-core collective insulation connection unit 5, the unit length (D shown in FIGS. 7A and 7B) could be reduced by about 37.8% (434 mm → 270 mm). .

そして、膨出部9Aの基部外周がフランジ部8の掛止段部8bの外周から離間する部位においては、図4(a)(b)に示すように、膨出部9Aの立ち上がり部分と、掛止段部8bの表面とを、電界ストレスの局部的な集中による絶縁破壊を回避できる程度になだらかな傾斜面を介して連続させている。3心一括絶縁接続ユニット5の3心の中心から10°20°,30°,40°,60°の角度で半径方向に引いた直線が、3つの膨出部9Aが立設されている掛止段部8bの外周と交わる交点と、図示最上部の膨出部9Aの中心(導体の中心)を結ぶ線で導体の軸方向に切った5つの断面の形状を引き出して拡大して図示している(図4(a)には、10°,30°,60°に対応する断面、図4(b)には20°,40°に対応する断面を図示)。各断面では、凹R部を仮想線で図示している。例えば77kV用3心ケーブルを接続する3心一括型接続箱では、その傾斜面は、曲率の異なる複数の曲面が連続して形成されてもよいが、電気ストレスの集中を発生させない程度に曲率を小さく設定した曲面で構成されるのが好ましい。このような構成により、3心一括絶縁接続ユニット5が雷インパルス等による大きな電界ストレスの影響を受けても、膨出部9Aの立ち上がり部分周辺に、絶縁破壊を誘発するような電気ストレスの局部的な集中が発生しにくくなる。尚、このような形状を決定するに際して、実施した〔雷インパルス耐圧試験〕については後で説明する。   And in the site | part which the base outer periphery of the bulging part 9A separates from the outer periphery of the latching step part 8b of the flange part 8, as shown to Fig.4 (a) (b), the rising part of the bulging part 9A, The surface of the latching step portion 8b is made continuous through an inclined surface that is gentle enough to avoid dielectric breakdown due to local concentration of electric field stress. A straight line drawn in the radial direction at an angle of 10 °, 20 °, 30 °, 40 °, and 60 ° from the center of the three cores of the three-core collective insulation connection unit 5 has three bulging portions 9A erected. The cross section of the cross section cut in the axial direction of the conductor is drawn and enlarged by a line connecting the intersection intersecting with the outer periphery of the stop portion 8b and the center (center of the conductor) of the bulging portion 9A at the top of the drawing. (FIG. 4A shows cross sections corresponding to 10 °, 30 ° and 60 °, and FIG. 4B shows cross sections corresponding to 20 ° and 40 °). In each cross section, the concave R portion is illustrated by a virtual line. For example, in a three-core collective junction box for connecting a 77-kV three-core cable, a plurality of curved surfaces having different curvatures may be continuously formed on the inclined surface, but the curvature is set so as not to cause concentration of electrical stress. It is preferable that the curved surface is set small. With such a configuration, even if the three-core collective insulation connection unit 5 is affected by a large electric field stress due to lightning impulse or the like, local electrical stress that induces dielectric breakdown around the rising portion of the bulging portion 9A Concentration is less likely to occur. Note that the [lightning impulse withstand voltage test] performed when determining such a shape will be described later.

遮蔽筒7は、円筒状に保形可能な半割れ状の平滑な真鍮製の板部材7aからなり、例えば図5(a)(b)に示すように、板部材7aの周面には、3本のリング状の補強板7bが貼り付けられ、対向し合う半割れ状の端縁には、外側に折り返し形成された被掛止辺部7c,7cが形成され、その両被掛止辺部7c,7cに掛止する掛止辺部を両側に有する掛止部材13が、筒軸方向にスライド動作することによって、両被掛止辺部7c,7cが掛脱自在に掛止される。従って、現場では、板部材7aの基部をフランジ部8の掛止段部8bに被嵌させた後、両被掛止辺部7c,7cを近接させた状態として、両被掛止辺部7c,7cに掛止部材13をスライドさせて掛止すればよい。その際に、掛止部材13は、隣接し合う2つの膨出部9,9間の中間(60°)の部位に沿って配設するのが好ましい(図11(b)参照)。このような中間部位では、後で説明するように、導体接続部6から受ける電界ストレスの影響が最も少なく、掛止部材13による安定な掛止状態を得ることができる。尚、両被掛止辺部12,12間の間隔dは、例えば3.0mm〜5.0mm程度に設定することができる。また、掛止部材13は、作業性を考慮して例えば3乃至4等分等に分割されてよい。このような遮蔽筒7で導体接続部6の全体を覆うことによって、3心の中央部では、3心個々に遮蔽筒を設けていた従来の構成に比べ64%程度まで電気的なストレス(電界ストレス)を低減することができる。これにより、その中央部辺りでのストレス障害、例えば絶縁紙の破損や異物の介在によるストレス破壊の発生等の電気的なトラブルを少なくすることができる。また、遮蔽筒7を単一にしたので部品点数を削減することもでき、その取り付け作業も容易となる。   The shielding cylinder 7 includes a half-cracked smooth brass plate member 7a that can be held in a cylindrical shape. For example, as shown in FIGS. 5 (a) and 5 (b), the peripheral surface of the plate member 7a includes: Three ring-shaped reinforcing plates 7b are attached, and opposite half-cracked edges are formed with hooked side portions 7c and 7c that are folded back to the outer sides. The latching member 13 having latching sides on both sides latching on the portions 7c and 7c slides in the cylinder axis direction, so that both the latched sides 7c and 7c are latched and detachable. . Therefore, at the site, after the base portion of the plate member 7a is fitted on the latching step portion 8b of the flange portion 8, both the latched side portions 7c and 7c are brought close to each other, and both the latched side portions 7c are placed. , 7c may be slid and latched. In that case, it is preferable to arrange | position the latching member 13 along the intermediate | middle (60 degree) site | part between the two adjacent bulging parts 9 and 9 (refer FIG.11 (b)). In such an intermediate portion, as will be described later, the influence of the electric field stress received from the conductor connecting portion 6 is the least, and a stable latching state by the latching member 13 can be obtained. In addition, the space | interval d between both the latching edge parts 12 and 12 can be set to about 3.0 mm-5.0 mm, for example. Further, the latch member 13 may be divided into, for example, three to four equal parts in consideration of workability. By covering the entire conductor connection portion 6 with such a shielding cylinder 7, the electrical stress (electric field) is reduced to about 64% in the central part of the three cores compared to the conventional configuration in which the shielding cores are provided for the three cores individually. Stress) can be reduced. As a result, it is possible to reduce electrical troubles such as stress failure around the center, such as breakage of insulating paper and occurrence of stress breakdown due to the presence of foreign matter. Further, since the shielding cylinder 7 is made single, the number of parts can be reduced, and the mounting work is facilitated.

以上のように、本実施の形態の3心一括型接続箱では、対向し合う導体3,4同士を導通状態に接続保持する3心一括絶縁接続ユニット5によって、OF側ケース10内に油止め措置を施して、対向し合う3本のケーブルコア3,4の導体3a,4a同士を一括して導通状態に接続することができるため、従来の重量大で高価な金属製の継ぎフランジは不要となり、部品点数を削減することができ部材費を低減することができる。また、3つの導体接続部6の全体を、まとめて単一の遮蔽筒7で覆うため、個別に3つの遮蔽筒を設けていた従来よりも各導体接続部6間の径方向の間隔を詰めることができ、3心一括型接続箱内において、導体接続部6全体の径方向のコンパクト化を図ることができる。ケーブルコア3の曲げ角度には許容限度があるため、導体接続部6でのケーブルコア3,3間の間隔が大になるほど分岐点14から3心一括絶縁接続ユニット5に至るまでの距離が長くなる。本実施の形態では、上述のように、導体接続部6でのケーブルコア3,3間の間隔を縮小することができるため、ケーブルコア3の分岐点14から3心一括絶縁接続ユニット5に至る間の距離(図7(a)(b)に示すB)を従来の油止めユニットよりも21.3%程度(445mm→350mm)短縮化することができた。   As described above, in the three-core collective junction box according to the present embodiment, the oil-stopping is provided in the OF side case 10 by the three-core collective insulated connection unit 5 that connects and holds the opposing conductors 3 and 4 in a conductive state. By taking measures, the conductors 3a and 4a of the three cable cores 3 and 4 facing each other can be connected to each other in a conductive state, so that a conventional heavy and expensive metal joint flange is unnecessary. Thus, the number of parts can be reduced, and the member cost can be reduced. Moreover, since the whole three conductor connection parts 6 are collectively covered with the single shielding cylinder 7, the radial interval between the respective conductor connection parts 6 is reduced as compared with the conventional case in which the three shielding cylinders are individually provided. It is possible to reduce the size of the entire conductor connection portion 6 in the radial direction in the three-core batch connection box. Since the bending angle of the cable core 3 has an allowable limit, the distance from the branch point 14 to the three-core collective insulation connection unit 5 increases as the distance between the cable cores 3 and 3 at the conductor connection portion 6 increases. Become. In the present embodiment, as described above, the distance between the cable cores 3 and 3 in the conductor connection portion 6 can be reduced, so that the branch point 14 of the cable core 3 reaches the three-core collective insulation connection unit 5. The distance between them (B shown in FIGS. 7A and 7B) could be shortened by about 21.3% (445 mm → 350 mm) as compared with the conventional oil stop unit.

その他の構成等についてさらに詳しく説明すると(図1参照)、OFケーブル1の接続端では、金属シース15が所定長だけ切断除去され、その金属シース15の切断部の外周に座鉛工(スペーサ座)を設け、その座鉛工に、パッキンを介して、セミストップ装置16が被嵌され半田付け等によって接合される。そのセミストップ装置16内では、3本のケーブルコア3aがそれぞれ分岐されると共に、セミストップ装置16内に開口する油通路17は、各ケーブルコア3aを分岐させて排出させるための3つの分岐口16aに設けたパッキンによって閉塞される。そのセミストップ装置16は、連通配管18によってOF側ケース10に設けたセミストッパバルブ19に接続される。従って、セミストップ装置16内に開口した油通路17は、セミストッパバルブ19によって開閉自在に閉塞される。そして、分岐された3本のケーブルコア3は、所定の間隔に拡げられて、OF側ケース10内に立設された心線保持金具20に形成された3つの孔部(図示省略)に挿通保持される。その孔部の間隔、つまりケーブルコア3間の間隔は、遮蔽筒を個々に設けていた従来よりも短縮することができる。従って、セミストップ装置16内の分岐点14から引き出される3本のケーブルコア3は、この心線保持金具20に至るまでに僅かに曲げられればよく、分岐点14と心線保持金具20の間の距離が、上述のように、従来よりも短くて済む。   The other structure and the like will be described in more detail (see FIG. 1). At the connection end of the OF cable 1, the metal sheath 15 is cut and removed by a predetermined length, and the lead is placed on the outer periphery of the cut portion of the metal sheath 15 (spacer seat). ), And the semi-stop device 16 is fitted to the seat lead work through packing and joined by soldering or the like. In the semi-stop device 16, the three cable cores 3a are branched, and the oil passage 17 opened in the semi-stop device 16 has three branch ports for branching and discharging each cable core 3a. It is closed by a packing provided on 16a. The semi-stop device 16 is connected to a semi-stopper valve 19 provided in the OF side case 10 by a communication pipe 18. Accordingly, the oil passage 17 opened in the semi-stop device 16 is closed by the semi-stopper valve 19 so as to be freely opened and closed. The three branched cable cores 3 are expanded at a predetermined interval and are inserted into three holes (not shown) formed in the core wire holding bracket 20 erected in the OF side case 10. Retained. The interval between the hole portions, that is, the interval between the cable cores 3 can be shortened as compared with the conventional case in which the shielding cylinders are individually provided. Accordingly, the three cable cores 3 drawn out from the branch point 14 in the semi-stop device 16 may be bent slightly until reaching the core wire holding fitting 20, and between the branch point 14 and the core wire holding fitting 20. This distance can be shorter than the conventional distance as described above.

分岐点14から引き出されたケーブルコア3の先端の絶縁層3bは段剥ぎされて導体3の先端が露出され、その導体3の先端が、接続スリーブ21を介して、3心一括絶縁接続ユニット5の膨出部9から突出している導体接続金具11の一端(図示左側)に導通状態に接続される。即ち、接続スリーブ21の両端が、かしめ工具によって導体3の先端と導体接続金具11の一端にかしめ固定される。その接続スリーブ11を挟んだケーブルコア3の先端と膨出部9Aの大部分の外周に絶縁油浸紙22が巻回された後、遮蔽筒7内に立設された金属ベルマウス23によって、3本のケーブルコア3が固定支持される。   The insulating layer 3b at the tip of the cable core 3 drawn out from the branch point 14 is stripped to expose the tip of the conductor 3, and the tip of the conductor 3 is connected to the three-core collective insulation connection unit 5 via the connection sleeve 21. Is connected to one end (left side in the figure) of the conductor connection fitting 11 protruding from the bulging portion 9. That is, both ends of the connection sleeve 21 are caulked and fixed to the tip of the conductor 3 and one end of the conductor connecting metal 11 by caulking tools. After the insulating oil-impregnated paper 22 is wound around the tip of the cable core 3 sandwiching the connection sleeve 11 and the outer periphery of most of the bulging portion 9A, the metal bell mouth 23 erected in the shielding cylinder 7 Three cable cores 3 are fixedly supported.

一方、導体接続金具11の他端(図示右側)に形成された凹部には、導体接続管25が埋設されており、その導体接続管25に対して、CVケーブル2のケーブルコア4の先端から露出され導体4aの先端が、押圧状態に嵌挿されている。即ち、ケーブルコア4の先端には、プレモールド絶縁体(ストレスコーン)28が外嵌状態に固定されており、そのプレモールド絶縁体28のテーパー状に形成された後部が、すり鉢状の押当部材27を介して、押し金具26のスプリング29によってケーブルコア4の先端方向に付勢され、プレモールド絶縁体28の前半部が、3心一括絶縁接続ユニット5の各突出部9Bの開口に押圧状態に嵌挿される。押し金具26は、詳細な図示は省略するが、8本のガイドロッドに案内される8本のスプリング29によって押当部材27をケーブルコア4の先端方向に付勢するように構成され、3本のケーブルコア4にそれぞれ各1基の押し金具26が被嵌して軸方向への移動を阻止された状態で3心一括型接続箱内に配設される。このような構成により、OFケーブル1の導体3aとCVケーブル2の導体4aとが緊密な導通状態に接続される。   On the other hand, a conductor connection pipe 25 is embedded in a recess formed in the other end (right side in the figure) of the conductor connection fitting 11, and the conductor connection pipe 25 extends from the tip of the cable core 4 of the CV cable 2. The exposed end of the conductor 4a is inserted in a pressed state. That is, a pre-mold insulator (stress cone) 28 is fixed to the end of the cable core 4 in an externally fitted state, and the tapered rear portion of the pre-mold insulator 28 has a mortar-shaped pressing. Via the member 27, the spring 29 of the metal fitting 26 is biased toward the distal end of the cable core 4, and the front half of the pre-molded insulator 28 is pressed against the opening of each protrusion 9 </ b> B of the three-core insulating connection unit 5. Inserted into the state. Although not shown in detail, the pressing bracket 26 is configured to urge the pressing member 27 toward the distal end of the cable core 4 by eight springs 29 guided by eight guide rods. Each of the cable cores 4 is fitted with a respective one of the metal fittings 26 so as to be prevented from moving in the axial direction. With such a configuration, the conductor 3a of the OF cable 1 and the conductor 4a of the CV cable 2 are connected in a close conductive state.

OFケーブル1の接続部を覆うOF側ケース10は(図1参照)、防食カバー10a内に銅管10bを一体化した二重構造に形成され、その円筒状に形成された基部10Aと、先尖りのテーパー状に形成された先端部10Bと、が接続部10Cにおいて一体化されて構成される。その基部10Aが、3心一括絶縁接続ユニット5のフランジ部8において、3心CVケーブル2の接続部を覆うCV側ケース(3又防食カバー)30と接合される。このOF側ケース10とCV側ケース30によって、両ケーブル1,2の接続部全体を覆う3心一括型接続箱の本体ケース40が構成される。より詳しくは、OF側ケース10の基部10Aにおいては、銅管10bの基部に一体化された接続リング10eが、Oリングを介したボルト締結によって、3心一括絶縁接続ユニット5のフランジ部8の表面側に一体化され、かつ防食カバー10aと銅管10b及びフランジ部8の間の空隙には防水用のコンパウンドが充填され水密構造とされる。また、基部10Aの上下には、OF側ケース10内への絶縁油の供給と排出を可能とするためのコネクター37,38が取り付けられ、先端部10Bには、接地端子39が取り付けられている。   The OF side case 10 that covers the connection portion of the OF cable 1 (see FIG. 1) is formed in a double structure in which the copper tube 10b is integrated in the anticorrosion cover 10a, and the base 10A formed in the cylindrical shape, The tip portion 10B formed in a sharp tapered shape is integrated with the connection portion 10C. The base portion 10 </ b> A is joined to a CV side case (three-corrosion protection cover) 30 that covers the connection portion of the three-core CV cable 2 in the flange portion 8 of the three-core collective insulation connection unit 5. The OF side case 10 and the CV side case 30 constitute a main body case 40 of a three-core batch type connection box that covers the entire connection portion of both cables 1 and 2. More specifically, in the base portion 10A of the OF side case 10, the connection ring 10e integrated with the base portion of the copper tube 10b is connected to the flange portion 8 of the three-core collective insulation connection unit 5 by bolt fastening via the O-ring. It is integrated on the surface side, and the gap between the anticorrosion cover 10a, the copper tube 10b and the flange portion 8 is filled with a waterproofing compound to form a watertight structure. Further, connectors 37 and 38 for enabling supply and discharge of insulating oil into and from the OF side case 10 are attached to the top and bottom of the base portion 10A, and a ground terminal 39 is attached to the tip portion 10B. .

他方、CVケーブル2の接続部を覆うCV側ケース30内には、CVケーブル2の金属シースで覆われた3本のケーブルコア4にそれぞれ被嵌する3基の押し金具26を導体接続方向に位置固定の状態に支持するためのCV側本体ケース32が立設状態に設けられている。そのCV側本体ケース32は、図6に示すように、リング状のスペーサ33を介して、接続リング30eに接続され、その接続リング30eは、3心一括絶縁接続ユニット5のフランジ部8の裏面側の接続縁部8aに、Oリングを介したボルト締結によって一体化される。そのCV側本体ケース32の片面(図示右側)には、押し金具26の基部がボルト締結により固定されている。そして、CV側ケース30の端縁(図示右側)は(図1参照)、押し金具26の外側周縁を包み込むように縮径されて、その縮径端に、3本のケーブルコア4を導入するための3つの分岐口35aを有する端末部材35が接続されている。このような構成により、押し金具26のスプリング29によって、押当部材27を介して、プレモールド絶縁体28が図示左方向に押圧状態に付勢され、CVケーブル2の導体4aをOFケーブル1の導体3aに緊密な導通状態に接続することができる。   On the other hand, in the CV-side case 30 that covers the connection portion of the CV cable 2, three pressing metal fittings 26 respectively fitted to the three cable cores 4 covered with the metal sheath of the CV cable 2 are provided in the conductor connecting direction. A CV-side main body case 32 for supporting the position in a fixed state is provided in a standing state. As shown in FIG. 6, the CV-side body case 32 is connected to a connection ring 30 e via a ring-shaped spacer 33, and the connection ring 30 e is the back surface of the flange portion 8 of the three-core collective insulation connection unit 5. It is integrated with the side connection edge 8a by bolt fastening via an O-ring. On one side (right side in the figure) of the CV-side main body case 32, the base portion of the press fitting 26 is fixed by bolt fastening. The edge (right side in the figure) of the CV-side case 30 is reduced in diameter so as to wrap around the outer peripheral edge of the press fitting 26, and the three cable cores 4 are introduced into the reduced diameter end. A terminal member 35 having three branch ports 35a is connected. With such a configuration, the pre-mold insulator 28 is urged to the left in the figure by the spring 29 of the pressing metal 26 via the pressing member 27, and the conductor 4 a of the CV cable 2 is connected to the OF cable 1. The conductor 3a can be connected in a tight conduction state.

このような押し金具26をCV側ケース30内にコンパクトに収納することによって、左右のケーブルコア3,4を突き合わせ状態に接続することができ、その部分の長さ(図7(a)(b)に示すE)を従来よりも29%程度(356mm→254mm)短縮することができた。尚、本実施の形態に係る3心一括型接続箱の長さ方向のコンパクト化の達成について要約すると、図7(a)(b)に示す長さA(金属被端)の短縮化も含めて、各長さB(OF分岐部),C(OF絶縁部),D(3心一括絶縁接続ユニット)及びE(CV銅管部)の合計長さ(全長)は、従来の全長L1(2100mm)から本実施の形態ではL2(1580mm)に短縮することができた。即ち、25%程度の短縮化を実現することができた。外径については従来と同じであった。   By compactly storing such a metal fitting 26 in the CV-side case 30, the left and right cable cores 3 and 4 can be connected to each other in the butted state, and the lengths of the portions (FIGS. 7A and 7B). E) shown in FIG. 4) can be shortened by about 29% (356 mm → 254 mm). To summarize the achievement of downsizing in the length direction of the three-core batch type connection box according to the present embodiment, including shortening of the length A (metal end) shown in FIGS. 7 (a) and 7 (b). The total length (total length) of each length B (OF branching portion), C (OF insulating portion), D (3-core batch insulation connecting unit) and E (CV copper tube portion) is the conventional total length L1 ( 2100 mm) in this embodiment could be shortened to L2 (1580 mm). In other words, a reduction of about 25% could be realized. The outer diameter was the same as before.

〔雷インパルス耐圧試験〕
上記のような3心一括絶縁接続ユニット(エポキシ樹脂ユニット)5と単一の遮蔽筒7を具えた3心一括型接続箱を設計するに際して、従来型の3次元モデル(77kV3心OF用)をテストピースとして雷インパルス耐圧試験を行い、その問題点を追求して改良を行うことで、充分な絶縁耐力を確保できる構成を見出すことができた。以下、その試験について説明する。
[Lightning impulse pressure resistance test]
When designing a three-core batch type connection box having the three-core batch insulation connection unit (epoxy resin unit) 5 and the single shielding cylinder 7 as described above, a conventional three-dimensional model (for 77 kV three-core OF) is used. A lightning impulse withstand voltage test was conducted as a test piece, and by pursuing the problems, improvements were made to find a structure capable of ensuring sufficient dielectric strength. The test will be described below.

(1)沿層ストレスの最大値(対Imp480kV)
従来型の3次元モデルでは、例えば図8に示す3心一括絶縁接続ユニット5の5つの断面、即ち、3心の中心から0°,10°20°,30°,60°の角度で半径方向に引いた直線が、3つの膨出部9Aが立設されている掛止段部8bの外周と交わる交点と、図示最上部の膨出部9Aの中心(導体接続金具11の中心)を結ぶ線で同軸方向に切った5つの断面について、Imp480kVを印加した場合の沿層ストレスの最大値を求めて表1にその結果を示す。また、0°位置、20°位置及び30°位置の断面における電界解析の結果を図9(a)(b)(c)に示す。
(1) Maximum creepage stress (vs. Imp 480 kV)
In the conventional three-dimensional model, for example, five cross sections of the three-core collective insulation connection unit 5 shown in FIG. 8, that is, radial directions at angles of 0 °, 10 ° 20 °, 30 °, 60 ° from the center of the three cores. The straight line drawn on the line connects the intersection point of the outer periphery of the latching step part 8b on which the three bulging parts 9A are erected and the center of the uppermost bulging part 9A (the center of the conductor connection fitting 11). Table 1 shows the maximum value of the creeping stress when Imp 480 kV is applied to five cross sections cut in the same direction along the line. Moreover, the result of the electric field analysis in the cross section of a 0 degree position, a 20 degree position, and a 30 degree position is shown to Fig.9 (a) (b) (c).

0°の断面では沿層ストレスが低いのに対して、10°〜20°の断面で沿層ストレスが高くなっている理由は、以下のように考えられる。即ち、0°の位置では、図9(a)に示すように、3心中央部と突起根元部(膨出部9Aの立ち上がり部分)が滑らかに連続しているのに対して、0°からずれた位置では、突起根元部が半径の小さな凹R形状をなしているためであると考えられる。10°,20°の断面における沿層ストレス最大値は、絶縁破壊を発生させない許容(最大)ストレスの値(12.5kV/mm)を超えている。また、30°の断面における沿層ストレス最大値は、許容値を超えていないが、0°位置より高い値になっている。従って、0°から外れた部位の膨出部9Aの立ち上がり部分では、最終形状として、凹R形状を形成することなく、図9(b)(c)に破線で示すように、突起根元部をなだらかな傾斜面に形成することにより、許容(最大)ストレス内に納めることができた(図4(a)(b)参照)。   The reason why the creepage stress is high in the cross section of 10 ° to 20 °, while the creepage stress is low in the cross section of 0 °, is considered as follows. That is, at the position of 0 °, as shown in FIG. 9 (a), the center portion of the three centers and the projection root portion (the rising portion of the bulging portion 9A) are smoothly continuous, whereas This is probably because the base of the protrusion has a concave R shape with a small radius at the shifted position. The maximum creepage stress value in the 10 ° and 20 ° cross sections exceeds the allowable (maximum) stress value (12.5 kV / mm) that does not cause dielectric breakdown. Further, the maximum stress along the 30 ° cross section does not exceed the allowable value, but is higher than the 0 ° position. Therefore, at the rising portion of the bulging portion 9A at a portion deviated from 0 °, the projection root portion is not formed as a final shape, as shown by a broken line in FIGS. 9B and 9C, without forming a concave R shape. By forming it on a gently sloping surface, it was possible to fit within the allowable (maximum) stress (see FIGS. 4A and 4B).

(2)遮蔽筒に起因するストレス上昇
(2−1)遮蔽筒と3心一括絶縁接続ユニットとの間に隙間が発生した場合の塗料(導電性塗料)先端部のストレス集中(絶対ストレス)
遮蔽筒7を3心一括絶縁接続ユニット5のフランジ部8の掛止段部8bに被嵌させたときに発生する隙間を確認した結果、製作誤差等に起因する隙間の最大値は2mmであった。このとき、0°の位置における塗料先端部の最大ストレスは、隙間の存在によって上昇し、19.5kV/mm(対Imp480kV)となった。しかしながら、油膜2mmの許容ストレスは40kV/mmであるから、この程度の隙間が発生しても2倍以上の安全率を確保できることを確認することができた。その電界解析の結果を図10に示す。尚、油膜の許容ストレス(対Imp):τ=50×L1/3kV/mm(L:油膜の厚さ)である。
(2) Increase in stress due to the shielding cylinder (2-1) Stress concentration (absolute stress) at the tip of the paint (conductive paint) when a gap occurs between the shielding cylinder and the three-core collective insulation connection unit
As a result of confirming the gap generated when the shielding cylinder 7 is fitted on the latching step portion 8b of the flange portion 8 of the three-core collective insulation connection unit 5, the maximum value of the gap due to manufacturing error is 2 mm. It was. At this time, the maximum stress at the front end of the paint at the position of 0 ° increased due to the presence of the gap and became 19.5 kV / mm (vs. Imp 480 kV). However, since the allowable stress of the oil film of 2 mm is 40 kV / mm, it has been confirmed that a safety factor of 2 times or more can be secured even when such a gap is generated. The result of the electric field analysis is shown in FIG. Note that the allowable stress (vs. Imp) of the oil film is τ = 50 × L 1/3 kV / mm (L: the thickness of the oil film).

(2−2)遮蔽筒のサヤ(掛止部材13)直下のストレス(絶対ストレス)
遮蔽筒のサヤが電界に与える影響を確認するために、サヤの取付位置ごとに電界解析を行い、サヤがない場合と比較して、その結果を、図11(a)(b)及び表2に示す。
(2-2) Stress (absolute stress) just below the sheath cylinder (hanging member 13)
In order to confirm the influence of the sheath cylinder on the electric field, an electric field analysis is performed for each position where the sheath is attached, and the results are compared with the case without the sheath, as shown in FIGS. Shown in

電界解析の結果、サヤ直下のストレスは、平坦部の2〜3.5倍程度大きくなることが判った。但し、破壊点である20°位置のサヤ直下ストレス(36.7kV/mm)は、1mm油膜の許容ストレス50kV/mmよりも低く、許容値以下に納まっている。しかしながら、ストレス上昇は好ましくないため、絶対ストレスの低い60°位置にサヤを取り付けるようにした(図11(b)参照)。   As a result of the electric field analysis, it was found that the stress directly under the sheath is about 2 to 3.5 times larger than the flat portion. However, the stress immediately below the shear at the 20 ° position (36.7 kV / mm), which is the breaking point, is lower than the allowable stress 50 kV / mm of the 1 mm oil film and is below the allowable value. However, since an increase in stress is not preferable, the sheath is attached at a position where the absolute stress is low (see FIG. 11B).

(2−3)前記2項の乗畳による影響
前記(2−1)(2−2)項共に、単独では、許容ストレス以下に納まっている場合であっても、両者が乗畳されると安全率が低下し、許容レベルを超えることが懸念される。そこで、本実施の形態では、その対策として、(2−2)項に記載したように、サヤ位置を60°に設定することとした。具体的には、3心一括絶縁接続ユニット5の60°位置にマーキングを付し、施工時にサヤ取付位置の管理を徹底することとした。
(2-3) Influence of the above two terms of riding and folding Both of the above (2-1) and (2-2) terms can be used when both are folded, even if they are below the allowable stress. There is concern that the safety factor will fall and exceed the acceptable level. Therefore, in the present embodiment, as a countermeasure, the sheath position is set to 60 ° as described in the section (2-2). Specifically, marking was made at the 60 ° position of the three-core collective insulation connection unit 5 and thorough management of the sheath mounting position during construction was decided.

(3)高ストレス発生原因と対策のまとめ
高ストレス発生の原因については、まず、3心一括絶縁接続ユニット5の20°位置で特有の高いストレス(沿層ストレス)が発生する。より広くは、膨出部9Aの基部外周がフランジ部8の掛止段部8Bの外周から離間する部位においては膨出部9Aの立ち上がり部分に、破壊原因になると考えられる高いストレスが発生する。従って、その対策として、膨出部9Aの立ち上がり部分(突起根元)には、曲率の大きな凹R形状を形成することなく、膨出部9Aの立ち上がり部分と、掛止段部8bの表面とを、なだらかな傾斜面を介して連続させるように構成することとした。このように構成すれば、膨出部9Aの立ち上がり部分の周辺部で局部的な電気ストレス集中が発生しにくくなり、絶縁破壊を免れることができる。次いで、遮蔽筒7と掛止段部8bとの隙間に起因して塗料先端部に発生する電気ストレス集中(2−1)と、遮蔽筒7のサヤ直下のストレスの乱れ(2−2)とが重畳することが、高ストレス発生の原因になると考えられる。その対策として、施工時に、サヤを60°の位置に取り付けるように、マーキング等を施して管理することとした。このような試験結果を踏まえて、前述したような3心一括型接続箱を設計した。尚、本発明は、実施の形態に限定されることなく、発明の要旨を逸脱しない限りにおいて、適宜、必要に応じて改良、変更等は自由である。例えば、OFケーブル同士の接続に本発明の3心一括型接続箱を適用してもよい。その場合、3心一括絶縁接続ユニットや遮蔽筒の構成は適宜に変更されてよい。
(3) Summary of causes of high stress and countermeasures As for the cause of high stress, first, a specific high stress (layering stress) occurs at the 20 ° position of the three-core collective insulation connection unit 5. More broadly, at the part where the outer periphery of the base part of the bulging part 9A is separated from the outer periphery of the latching step part 8B of the flange part 8, high stress is generated at the rising part of the bulging part 9A. Therefore, as a countermeasure, the rising portion of the bulging portion 9A and the surface of the latching step portion 8b are not formed on the rising portion (protrusion root) of the bulging portion 9A without forming a concave R shape with a large curvature. Therefore, it is configured to be continuous through a gentle inclined surface. If comprised in this way, it will become difficult to generate | occur | produce local electrical stress concentration in the peripheral part of the standup | rising part of 9 A of bulging parts, and it can avoid a dielectric breakdown. Next, the electrical stress concentration (2-1) generated at the coating tip due to the gap between the shielding cylinder 7 and the latching step portion 8b, and the disturbance of stress (2-2) immediately below the sheath of the shielding cylinder 7 It is thought that the superposition of causes high stress. As a countermeasure, at the time of construction, it was decided to carry out markings and manage so that the sheath is attached at a position of 60 °. Based on such test results, a three-core collective junction box as described above was designed. It should be noted that the present invention is not limited to the embodiment, and can be freely improved, changed, etc. as necessary without departing from the gist of the invention. For example, the three-core collective junction box of the present invention may be applied to connection between OF cables. In that case, the configuration of the three-core collective insulation connection unit and the shielding cylinder may be changed as appropriate.

本発明の3心一括型接続箱は、特に長さ方向のコンパクト化と部品点数の削減化及び軽量化が図られるので、マンホール内での作業性が良好であるため、老朽化したOFケーブルの置き換え施工に好適となる。   The three-core batch type junction box of the present invention is particularly compact in the length direction, reduced in the number of parts, and reduced in weight. Therefore, the workability in the manhole is good. Suitable for replacement construction.

本発明の実施の形態に係る3心一括型接続箱の断面図である。It is sectional drawing of the 3 core collective type | mold connection box which concerns on embodiment of this invention. 同3心一括絶縁接続ユニットの斜視図である。It is a perspective view of the 3 core collective insulation connection unit. (a)は同3心一括絶縁接続ユニットの断面図、(b)は凹R部の拡大図である。(A) is sectional drawing of the 3 core collective insulation connection unit, (b) is an enlarged view of a concave R part. (a)(b)は同異なる角度における膨出部の立ち上がり部分と掛止段部の表面との間に形成される傾斜面の断面図である。(A) (b) is sectional drawing of the inclined surface formed between the standup | rising part of the bulging part and the surface of a latching step part in the same different angle. (a)は同遮蔽筒の断面図、(b)はその平面図である。(A) is sectional drawing of the shielding cylinder, (b) is the top view. 同押し金具の取付構造の説明図である。It is explanatory drawing of the attachment structure of the same metal fitting. 同本発明の実施の形態に係る3心一括型接続箱と従来の3心一括型接続箱の寸法を比較した説明図である。It is explanatory drawing which compared the dimension of the 3 core collective type connection box which concerns on embodiment of the same invention, and the conventional 3 core collective type connection box. 雷インパルス耐圧試験に適用した3心一括絶縁接続ユニットの切断箇所の説明図である。It is explanatory drawing of the cutting | disconnection location of the 3 core collective insulation connection unit applied to the lightning impulse pressure | voltage resistant test. 同電界解析の説明図で、(a)は0°、(b)は20°、(c)は30°の切断箇所のデータを示す。It is explanatory drawing of the same electric field analysis, (a) is 0 degree, (b) is 20 degrees, (c) shows the data of the cutting part of 30 degrees. 同遮蔽筒の基部周辺の電界解析の説明図である。It is explanatory drawing of the electric field analysis around the base of the shielding cylinder. 同(a)は20°の位置に遮蔽筒のサヤを取り付けた場合、(b)は60°の位置にサヤの取付位置の電界解析の説明図である。(A) is an explanatory view of an electric field analysis of the mounting position of the sheath at a position of 60 ° when the sheath of the shielding cylinder is mounted at a position of 20 °. 従来の3心一括型接続箱の断面図である。It is sectional drawing of the conventional 3 core collective connection box.

符号の説明Explanation of symbols

1 3心OFケーブル(OFケーブル) 2 3心CVケーブル(CVケーブル)3,4 ケーブルコア 3a,4a 導体 3b,4b 絶縁層
5 3心一括絶縁接続ユニット 6 導体接続部(ケーブル接続部)
7 遮蔽筒 7a 板部材 7b補強板 7c 被掛止辺部7c,7c
8 フランジ部 8a 接続縁部 8b 掛止段部 9A 膨出部
9B 突出部 10 OF側ケース 10A 基部 10B 先端部
10a 防食カバー 10b 銅管 10e 接続リング
11 導体接続金具(導体接続手段) 13 掛止部材(サヤ)
14 分岐点 15 金属シース 16 セミストップ装置
16a 分岐口 17 油通路 18 連通配管 19 セミストッパバルブ
20 心線保持金具 21 接続スリーブ 22 絶縁油浸紙(絶縁層)
23 金属ベルマウス 24 カーボンロール紙 25 導体接続管
26 押し金具 27 押当部材 28 プレモールド絶縁体(ストコン)
29 スプリング 30 CV側ケース(3又防食カバー)
30a 分岐口 30e 接続リング
32 CV側本体ケース 33 スペーサ 35 端末部材 39 接地端子 40 本体ケース r,s 凹R部
A 金属被端部の長さ B OF分岐部の長さ C OF絶縁部の長さ
D 3心一括絶縁接続ユニットの長さ E CV銅管部の長さ
L1 従来の3心一括型接続箱の全長 L2 本発明の実施の形態に係る3心一括型接続箱の全長
51 OFケーブル 52 CVケーブル 53,54 導体
55 油止めユニット 56 導体接続金具57 金属シース 58 遮蔽筒
59 本体カバー 60 継ぎフランジ 61 セミストップ装置
62 油通路 63 OF側ケース 64 セミストッパバルブ
1 3-core OF cable (OF cable) 2 3-core CV cable (CV cable) 3, 4 Cable core 3a, 4a Conductor 3b, 4b Insulation layer 5 3-core collective insulation connection unit 6 Conductor connection (cable connection)
7 Shielding tube 7a Plate member 7b Reinforcement plate 7c Hooked side 7c, 7c
DESCRIPTION OF SYMBOLS 8 Flange part 8a Connection edge part 8b Engagement step part 9A Expansion part 9B Protrusion part 10 OF side case 10A Base part 10B Tip part 10a Corrosion protection cover 10b Copper pipe 10e Connection ring 11 Conductor connection metal fitting (conductor connection means) 13 Latching member (Saya)
14 Branch point 15 Metal sheath 16 Semi-stop device 16a Branch port 17 Oil passage 18 Communication pipe 19 Semi-stopper valve 20 Core wire holding fitting 21 Connection sleeve 22 Insulating oil-impregnated paper (insulating layer)
23 Metal bell mouth 24 Carbon roll paper 25 Conductor connecting pipe 26 Press fitting 27 Pushing member 28 Pre-mold insulator (Stocon)
29 Spring 30 CV side case (3 or anticorrosion cover)
30a Branch 30e Connection ring
32 CV side main body case 33 spacer 35 terminal member 39 ground terminal 40 main body case r, s concave R portion A length of metal end B length of OF branching portion C length of OF insulating portion D 3-core collective insulation connection Length of unit E Length of CV copper tube portion L1 Overall length of conventional 3-core batch type connection box L2 Overall length of 3-core batch type connection box according to the embodiment of the present invention 51 OF cable 52 CV cable 53, 54 Conductor 55 Oil stop unit 56 Conductor connection fitting 57 Metal sheath 58 Shielding cylinder 59 Main body cover 60 Joint flange 61 Semistop device 62 Oil passage 63 OF side case 64 Semistopper valve

Claims (7)

導体を有する3本のケーブルコアを具えた3心ケーブル同士を接続するための3心一括型接続箱であって、
前記3心ケーブルの少なくとも一方はOFケーブルであり、
少なくともOFケーブル側のケーブル接続部を油密状態に覆うOF側ケースと、
前記OF側ケースとの間での油止め機能を備え、対向し合う3本の導体同士を絶縁状態下で導通状態に接続保持するための3心一括絶縁接続ユニットと、を備え
前記3心一括絶縁接続ユニットは、導体接続方向に直交する方向に起立して配設され、前記OF側ケースに対して油密状に接続されるフランジ部と、
該フランジ部からOFケーブル側の導体接続方向に向けて突出形成される3つの膨出部と、
3本の導体が接続されている導体接続部全体を、絶縁層を介して、覆う遮蔽筒と、を有した3心一括型接続箱において、
前記3心一括絶縁接続ユニットのフランジ部の周縁には、前記OF側ケースのリング状に形成された接続部に接続される接続縁部が形成され、該接続縁部の内側には、前記遮蔽筒の基部を被嵌させるための円盤状の掛止段部が形成され、その掛止段部の表面に、それぞれ先細りの円筒状に形成された前記3つの膨出部が立設され、前記フランジ部の接続縁部と掛止段部との間に形成される凹R部は、その一部を前記フランジ部の周縁表面よりも内側に食い込ませて曲率を小さく設定したことを特徴とする3心一括型接続箱。
A three-core batch-type connection box for connecting three-core cables having three cable cores having conductors,
At least one of the three-core cables is an OF cable;
An OF-side case that covers at least the cable connection on the OF cable side in an oil-tight state;
A three-core collective insulation connection unit having an oil stop function with the OF side case, and connecting and holding three opposing conductors in a conductive state under an insulating state ;
The three-core collective insulation connection unit is disposed upright in a direction perpendicular to the conductor connection direction, and a flange portion connected in an oil-tight manner to the OF-side case;
Three bulges that project from the flange toward the conductor connection direction on the OF cable side;
In a three-core collective junction box having a shielding tube that covers an entire conductor connection portion to which three conductors are connected via an insulating layer,
A connection edge to be connected to the ring-shaped connection portion of the OF case is formed on the periphery of the flange portion of the three-core collective insulation connection unit, and the shielding is provided inside the connection edge. A disc-shaped latching step for fitting the base of the tube is formed, and the three bulging portions each formed in a tapered cylindrical shape are erected on the surface of the latching step, The concave R portion formed between the connecting edge portion of the flange portion and the latching step portion is characterized in that a part of the concave R portion is cut inwardly from the peripheral surface of the flange portion and the curvature is set small. 3-core batch connection box.
前記先細り円筒状の前記膨出部の外周表面は、その膨出部の立ち上がり部分から前記掛止段部の表面にかけて、電界ストレスの局部的な集中による絶縁破壊を回避できる程度に曲率の異なる複数の曲面が連続してなだらかな傾斜面が形成されたことを特徴とする請求項に記載の3心一括型接続箱。 A plurality of outer peripheral surfaces of the tapered cylindrical bulging portion have different curvatures from the rising portion of the bulging portion to the surface of the latching step portion so that dielectric breakdown due to local concentration of electric field stress can be avoided. 3-core-in-one-type connection box according to claim 1, the curved surface of which is characterized in that gentle inclined surface is continuously formed. 前記なだらかな傾斜面は、前記フランジの中心と前記膨出部の中心とを結ぶ線を0度としてそのフランジ部の中心からの角度が10度から30度の角度位置には凹R形状を形成していないことを特徴とする請求項2に記載の3心一括型接続箱。The gentle inclined surface forms a concave R shape at an angle position where the angle from the center of the flange portion is 10 degrees to 30 degrees with the line connecting the center of the flange and the center of the bulging portion being 0 degrees. The three-core batch type connection box according to claim 2, wherein the three-core connection box is not provided. 前記3心一括絶縁接続ユニットは、エポキシ樹脂の一体成形により形成されることを特徴とする請求項1乃至の何れか1項に記載の3心一括型接続箱。 The three cores collectively insulating connection unit, 3-core-in-one-type connection box according to any one of claims 1 to 3, characterized in that it is formed by integral molding of an epoxy resin. 前記遮蔽筒は、円筒状に保形可能な半割れ状の平滑な金属製の板部材からなることを特徴とする請求項1乃至の何れか1項に記載の3心一括型接続箱。 The shielding cylinder, the three cores collectively junction box according to any one of claims 1 to 4, characterized in that it consists of shape-retaining possible half-split shape smooth metal plate member into a cylindrical shape. 前記板部材を円筒状に保形するために、板部材の端縁に形成された被掛止辺部同士を掛止する掛止部材は、隣接し合う2つの膨出部間の中間部位に沿って配設されることを特徴とする請求項に記載の3心一括型接続箱。 In order to retain the plate member in a cylindrical shape, the latch member that latches the latched side portions formed on the edge of the plate member is located at an intermediate portion between two adjacent bulging portions. The three-core collective junction box according to claim 5 , wherein the three-core junction box is disposed along the connection box. 前記3心ケーブルの他方は3心CVケーブルであることを特徴とする請求項1乃至の何れか1項に記載の3心一括型接続箱。 The three-core batch type connection box according to any one of claims 1 to 6 , wherein the other of the three-core cables is a three-core CV cable.
JP2007173718A 2007-07-02 2007-07-02 3-core batch connection box Active JP4943957B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007173718A JP4943957B2 (en) 2007-07-02 2007-07-02 3-core batch connection box

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007173718A JP4943957B2 (en) 2007-07-02 2007-07-02 3-core batch connection box

Publications (2)

Publication Number Publication Date
JP2009017623A JP2009017623A (en) 2009-01-22
JP4943957B2 true JP4943957B2 (en) 2012-05-30

Family

ID=40357856

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007173718A Active JP4943957B2 (en) 2007-07-02 2007-07-02 3-core batch connection box

Country Status (1)

Country Link
JP (1) JP4943957B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103474944B (en) * 2013-08-19 2015-03-04 广东电网公司电力科学研究院 Great creep distance direct current cable outdoor terminal
CN110474284B (en) * 2019-09-07 2020-07-24 埃塞克斯电气(南京)有限公司 Three-core cable terminal shaping device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS466181Y1 (en) * 1966-07-01 1971-03-04
JPS6244016A (en) * 1985-07-04 1987-02-26 住友電気工業株式会社 Cable connection box using shape memory alloy

Also Published As

Publication number Publication date
JP2009017623A (en) 2009-01-22

Similar Documents

Publication Publication Date Title
CN101669178B (en) A bushing and a method for producing the same
US9306382B2 (en) Joints for high voltage cables insulated with impregnated paper or paper-polypropylene laminate (PPL)
JP6658443B2 (en) Conductive path
JP6258715B2 (en) Inner connection of inner protective tube and power cable
CN108242786B (en) Wire harness
JP6567682B2 (en) High voltage cable set
JP4943957B2 (en) 3-core batch connection box
JP4746656B2 (en) 3-core lump-type junction box, withstand voltage test method for test cable, and 3-core lump-type junction box assembly method
EP2772995B1 (en) Multipolar single-head plug and method for manufacturing same
CN106300216A (en) Insulation terminal assembly
KR101823814B1 (en) Joint part for superconducting cable and joint structure for superconducting cable
WO2018080880A1 (en) Connector
JP4751424B2 (en) Superconducting cable core connection structure
CN101540522B (en) Method for assembling cable in cable connector of flameproof motor
CN205070381U (en) Insulating terminal subassembly
JP4795123B2 (en) Return conductor connection method for DC coaxial cable for electric power
CN214850429U (en) Glue injection type cold-shrinkable cable intermediate joint
JP2015072810A (en) Connection sleeve, and coupling structure of synthetic wire by connection sleeve
JP5761535B2 (en) Power cable connection structure and insulation member
EP3934039A1 (en) Conductor connector and cable joint system
JP6245442B2 (en) Superconducting cable connection structure and manufacturing method of superconducting cable connection structure
JP2019524042A (en) Cable junction, termination or cross-connection mechanism, and method for providing cable junction, termination or cross-connection mechanism
JP5137623B2 (en) DC coaxial cable connection for power
JP2018137070A (en) Connection structure for superconducting cable, and connection member for superconducting cable
JP2014517471A (en) Dead front cable terminal with insulation shield

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091002

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110719

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110914

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120228

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120301

R150 Certificate of patent or registration of utility model

Ref document number: 4943957

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150309

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250