JP4943516B2 - Silver-titanium oxide-zeolite adsorptive decomposition material - Google Patents

Silver-titanium oxide-zeolite adsorptive decomposition material Download PDF

Info

Publication number
JP4943516B2
JP4943516B2 JP2009551616A JP2009551616A JP4943516B2 JP 4943516 B2 JP4943516 B2 JP 4943516B2 JP 2009551616 A JP2009551616 A JP 2009551616A JP 2009551616 A JP2009551616 A JP 2009551616A JP 4943516 B2 JP4943516 B2 JP 4943516B2
Authority
JP
Japan
Prior art keywords
titanium oxide
zeolite
composite
silver
toluene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009551616A
Other languages
Japanese (ja)
Other versions
JPWO2009096548A1 (en
Inventor
昌也 植木
彰男 逸見
暁 福垣内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ehime University NUC
Original Assignee
Ehime University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ehime University NUC filed Critical Ehime University NUC
Priority to JP2009551616A priority Critical patent/JP4943516B2/en
Publication of JPWO2009096548A1 publication Critical patent/JPWO2009096548A1/en
Application granted granted Critical
Publication of JP4943516B2 publication Critical patent/JP4943516B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • B01J35/39
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8668Removing organic compounds not provided for in B01D53/8603 - B01D53/8665
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/0211Compounds of Ti, Zr, Hf
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/16Alumino-silicates
    • B01J20/18Synthetic zeolitic molecular sieves
    • B01J20/186Chemical treatments in view of modifying the properties of the sieve, e.g. increasing the stability or the activity, also decreasing the activity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/064Crystalline aluminosilicate zeolites; Isomorphous compounds thereof containing iron group metals, noble metals or copper
    • B01J29/068Noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • B01J29/10Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y containing iron group metals, noble metals or copper
    • B01J29/12Noble metals
    • B01J29/126Y-type faujasite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/89Silicates, aluminosilicates or borosilicates of titanium, zirconium or hafnium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/106Silica or silicates
    • B01D2253/108Zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/112Metals or metal compounds not provided for in B01D2253/104 or B01D2253/106
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/104Silver
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20707Titanium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/50Zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/80Type of catalytic reaction
    • B01D2255/802Photocatalytic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/702Hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/702Hydrocarbons
    • B01D2257/7027Aromatic hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/80Employing electric, magnetic, electromagnetic or wave energy, or particle radiation
    • B01D2259/804UV light
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/42Materials comprising a mixture of inorganic materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/18After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/20After treatment, characterised by the effect to be obtained to introduce other elements in the catalyst composition comprising the molecular sieve, but not specially in or on the molecular sieve itself
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/30After treatment, characterised by the means used
    • B01J2229/42Addition of matrix or binder particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/48Silver or gold
    • B01J23/50Silver

Description

本発明は、ゼオライトの結晶体中に酸化チタンが分散してなる酸化チタン−ゼオライト複合体を骨格構造とする吸着分解素材に関する。 The present invention relates to an adsorptive decomposition material having a framework structure of a titanium oxide-zeolite composite formed by dispersing titanium oxide in a zeolite crystal.

従来より、有機物の吸着分解素材の開発は、活性炭、シリカゲル、ゼオライト等の吸着剤からなる担体に触媒金属を担持させ、有機物を吸着分解する試みが多くなされてきた。これらの従来技術では、担体である吸着剤表面に触媒金属を担持させることから、吸着剤素材のもつ吸着機能の阻害や、吸着剤に触れていない触媒金属表面においては反応物が分解しないことによる酸化分解機能の低下等の問題があった。   In the past, many attempts have been made to develop organic materials for adsorption and decomposition by adsorbing and decomposing organic materials by supporting a catalyst metal on a support made of an adsorbent such as activated carbon, silica gel, and zeolite. In these conventional techniques, since the catalyst metal is supported on the surface of the adsorbent that is the carrier, the adsorption function of the adsorbent material is inhibited, and the reactant is not decomposed on the surface of the catalyst metal not touching the adsorbent. There were problems such as deterioration of the oxidative decomposition function.

本発明者らは、そのような担持触媒の問題を解決するために、ゼオライトを担体としてそれに酸化チタンを担持させる方法ではなく、ゼオライトを人工的に合成するための原料組成物中に酸化チタンを存在させた状態でゼオライトを合成することを試みた(特許文献1参照。)。その後、本合成方法に改良を重ね、酸化チタンとゼオライトが複合化した酸化チタン−ゼオライト複合体を得るに至った。この複合体は、ゼオライトの諸特性に加えて、酸化チタンの光触媒活性を兼ね備えているので、例えば、悪臭物である有機物(アルデヒド類やアミン類など)をゼオライトの細孔内に吸着し、光触媒活性を有する酸化チタンで効率よく分解する機能等に優れ、環境分野を初め種々の分野での応用が期待されている。   In order to solve the problem of such a supported catalyst, the present inventors have not used a method in which a zeolite is used as a support and titanium oxide is supported on the zeolite, but titanium oxide is contained in a raw material composition for artificially synthesizing the zeolite. An attempt was made to synthesize zeolite in the existing state (see Patent Document 1). Thereafter, the present synthesis method was repeatedly improved to obtain a titanium oxide-zeolite composite in which titanium oxide and zeolite were combined. In addition to the various characteristics of zeolite, this composite has the photocatalytic activity of titanium oxide. For example, organic matter (aldehydes, amines, etc.), which are malodorous substances, are adsorbed in the pores of the zeolite, It has an excellent function of efficiently decomposing with active titanium oxide, and is expected to be applied in various fields including the environmental field.

特許第3994096号公報Japanese Patent No. 3994096

酸化チタン−ゼオライト複合体は親水性であるために、トルエンやキシレン等の極性の低い有機化合物に対しては、その吸着分解機能を発揮することは難しい。   Since the titanium oxide-zeolite composite is hydrophilic, it is difficult to exert its adsorptive decomposition function for organic compounds with low polarity such as toluene and xylene.

ゼオライトを担体としてそれに酸化チタンを担持したものと酸化チタン−ゼオライト複合体との中間の構造として、ゼオライトと酸化チタンの混合物が考えられる。この混合物もやはり親水性であるため、酸化チタン−ゼオライト複合体と同様に極性の低い有機化合物に対しては吸着分解機能を発揮することは期待できない。   A mixture of zeolite and titanium oxide can be considered as an intermediate structure between a zeolite supported on titanium oxide and a titanium oxide-zeolite composite. Since this mixture is also hydrophilic, it cannot be expected to exhibit an adsorptive decomposition function for an organic compound having a low polarity like the titanium oxide-zeolite composite.

そこで、その解決方法として、ゼオライトを疎水性にすることが考えられる。例えば、ゼオライトにおけるシリカの割合を高めた高シリカゼオライト(ケイバン比(Si/Al原子比数)10以上)を合成することである。高シリカゼオライトの合成は可能ではあるが、合成が極めて困難であること、合成物の収量が1/10程度というように合成効率が極端に低下する等の問題がある。   Therefore, as a solution, it is conceivable to make the zeolite hydrophobic. For example, it is to synthesize a high-silica zeolite having a high silica ratio in the zeolite (Kayban ratio (Si / Al atomic ratio) of 10 or more). Although synthesis of high silica zeolite is possible, there are problems such as extremely difficult synthesis and extremely low synthesis efficiency such that the yield of the synthesized product is about 1/10.

本発明は、酸化チタン−ゼオライト複合体を含む骨格構造が、それに含まれるゼオライトを疎水性にする方法ではなく、他の方法によって極性の低い有機化合物を吸着できるようにすることを目的とするものである。 It is an object of the present invention to enable a framework structure containing a titanium oxide-zeolite complex to adsorb an organic compound having a low polarity by another method, not by making the zeolite contained therein hydrophobic. It is.

そこで、酸化チタン−ゼオライト複合体中にアルカリ金属イオンが結合している状態になるように酸化チタン−ゼオライト複合体を合成し、それを様々な金属イオン溶液に浸漬して金属イオンをアルカリ金属イオンと交換させることにより、金属イオンの種類によっては極性の低い有機化合物の吸着分解が可能になるとの知見を得て本発明をなすに至った。ゼオライト−酸化チタン混合物に対しても同様の知見を得た。   Therefore, the titanium oxide-zeolite composite was synthesized so that the alkali metal ions were bonded to the titanium oxide-zeolite composite and immersed in various metal ion solutions to convert the metal ions into alkali metal ions. As a result, the inventors have obtained the knowledge that, depending on the type of metal ion, it is possible to adsorb and decompose an organic compound having a low polarity. Similar findings were obtained for the zeolite-titanium oxide mixture.

すなわち、本発明は、酸化チタンとゼオライトからなる骨格構造に銀(Ag)イオンが結合している吸着分解素材である。   That is, the present invention is an adsorptive decomposition material in which silver (Ag) ions are bonded to a skeleton structure composed of titanium oxide and zeolite.

好ましくは、骨格構造はゼオライトの結晶体中に酸化チタンが分散してなる酸化チタン−ゼオライト複合体である。   Preferably, the framework structure is a titanium oxide-zeolite composite in which titanium oxide is dispersed in a zeolite crystal.

本発明の酸化チタン−ゼオライト複合体骨格を有する吸着分解素材を製造する方法、以下の工程(A)及び(B)を備えている。
(A)酸化チタン、並びにゼオライトを構成する組成に調製されたアルミニウム成分及び珪素成分を含む混合物をアルカリで処理して光触媒活性を有する酸化チタン−ゼオライト複合体を製造する工程、及び
(B)前記工程(A)で得られた酸化チタン−ゼオライト複合体を、銀イオンを含む溶液に浸漬してイオン交換により酸化チタン−ゼオライト複合体中のアルカリ金属イオンを銀イオンで置換する工程。
The method for producing an adsorptive decomposition material having a titanium oxide-zeolite composite framework of the present invention includes the following steps (A) and (B).
(A) a step of producing a titanium oxide-zeolite composite having photocatalytic activity by treating a mixture containing titanium component and an aluminum component and a silicon component prepared in a composition constituting zeolite with an alkali; and (B) A step of immersing the titanium oxide-zeolite composite obtained in the step (A) in a solution containing silver ions and replacing alkali metal ions in the titanium oxide-zeolite composite with silver ions by ion exchange.

工程(A)で酸化チタン−ゼオライト複合体を製造するためのアルカリとしては、アルカリ金属水酸化物が好ましい。アルカリ金属水酸化物を使用すれば合成された酸化チタン−ゼオライト複合体中にアルカリ金属イオンが取り込まれる。アルカリ金属イオンであれば、工程(B)での銀イオンとのイオン交換反応が容易に進行するからである。   As the alkali for producing the titanium oxide-zeolite composite in the step (A), an alkali metal hydroxide is preferable. If an alkali metal hydroxide is used, alkali metal ions are taken into the synthesized titanium oxide-zeolite composite. This is because if it is an alkali metal ion, the ion exchange reaction with the silver ion in the step (B) easily proceeds.

また、ゼオライトとしては、多孔質のものや、ケイバン比(Si/Al原子数比)10未満のものが望ましい。ケイバン比の低いゼオライトは、親水性が高く、液相での処理を容易に受け付けるからである。   Moreover, as a zeolite, a thing with a porous thing and a less than 10 kaiban ratio (Si / Al atom number ratio) is desirable. This is because zeolite with a low Keiban ratio has high hydrophilicity and easily accepts treatment in a liquid phase.

工程(A)で酸化チタン−ゼオライト複合体を製造する材料は、所定の組成になるように純粋試薬を用いて調製することもできるが、その混合物に製紙スラッジ又は製紙スラッジ焼却灰等の無機成分を含む廃棄物や焼成メタカオリンを用いることにより、実用上のコストメリットを得ることも可能である。   The material for producing the titanium oxide-zeolite composite in the step (A) can be prepared using a pure reagent so as to have a predetermined composition, but the mixture contains inorganic components such as paper sludge or paper sludge incineration ash. It is also possible to obtain a practical cost merit by using waste containing sinter or calcined metakaolin.

本発明は、工程(A)として特許文献1に記載の発明の方法を適用することを含む。その場合は、酸化チタン、並びにゼオライトを構成する組成に調製されたアルミニウム成分及び珪素成分を含む混合物は、(a)酸化チタン及びアルミニウム成分を含有する製紙スラッジ又はその焼却灰に珪素成分を添加して得られる混合物、(b)アルミニウム成分を含有する製紙スラッジ又はその焼却灰に珪素成分及び酸化チタンを添加して得られる混合物、(c)酸化チタンを含有する製紙スラッジ又はその焼却灰に珪素成分及びアルミニウム成分を添加して得られる混合物、又は(d)アルミニウム成分及び珪素成分を含む廃棄物又は該廃棄物の焼却灰に酸化チタンを添加して得られる混合物として調製することができる。   The present invention includes applying the method of the invention described in Patent Document 1 as step (A). In that case, a mixture containing titanium oxide and an aluminum component and a silicon component prepared in a composition constituting the zeolite is obtained by adding a silicon component to (a) papermaking sludge containing titanium oxide and an aluminum component or its incinerated ash. A mixture obtained by adding a silicon component and titanium oxide to (b) a papermaking sludge containing aluminum component or its incinerated ash, and (c) a silicon component containing papermaking sludge containing titanium oxide or its incinerated ash. And a mixture obtained by adding an aluminum component, or (d) a waste product containing an aluminum component and a silicon component, or a mixture obtained by adding titanium oxide to incineration ash of the waste product.

本発明により、極性の低い有機化合物の吸着分解が可能となり、かつ安定的に合成可能な吸着分解素材を得ることができる。   According to the present invention, an adsorptive decomposition material capable of adsorbing and decomposing an organic compound having a low polarity and capable of being stably synthesized can be obtained.

実施例1における酸化チタン−ゼオライト複合体の走査型電子顕微鏡像である。2 is a scanning electron microscope image of the titanium oxide-zeolite composite in Example 1. FIG. ゼオライトの走査型電子顕微鏡像である。It is a scanning electron microscope image of zeolite. 実施例1における酸化チタン−ゼオライト複合体の銀担持前後のESCAスペクトルであり、下が担持前、上が担持後である。It is an ESCA spectrum before and after silver loading of the titanium oxide-zeolite composite in Example 1, with the bottom before loading and the top after loading. 実施例1における酸化チタン−ゼオライト複合体の銀担持前後のX線回折スペクトルであり、上が担持前、下が担持後である。It is an X-ray-diffraction spectrum before and behind silver carrying | support of the titanium oxide-zeolite complex in Example 1, the upper is before carrying | supporting, and the lower is after carrying | supporting. 参考例における酸化チタン−ゼオライト混合物の走査型電子顕微鏡像である。 It is a scanning electron microscope image of the titanium oxide-zeolite mixture in a reference example . 実施例1のAg−酸化チタン−ゼオライト複合体によるトルエン吸着分解試験結果を示すグラフである。3 is a graph showing the results of a toluene adsorption decomposition test using the Ag-titanium oxide-zeolite composite of Example 1. FIG. 実施例1のAg−酸化チタン−ゼオライト複合体中の銀の担持量とトルエン吸着性能の関係を示すグラフである。2 is a graph showing the relationship between the amount of silver supported in the Ag-titanium oxide-zeolite composite of Example 1 and toluene adsorption performance. 実施例1のAg−酸化チタン−ゼオライト複合体と実施例3のAg−酸化チタン−ゼオライト混合物についてのトルエン吸着分解試験結果を示すグラフであり、下が実施例1のもの、上が実施例3のものである。It is a graph which shows the toluene adsorption-decomposition test result about the Ag-titanium oxide-zeolite complex of Example 1 and the Ag-titanium oxide-zeolite mixture of Example 3, the bottom is that of Example 1, and the top is Example 3. belongs to. 比較例1のNa−酸化チタン−ゼオライト複合体によるトルエン吸着分解試験結果を示すグラフである。4 is a graph showing the results of a toluene adsorption decomposition test using a Na-titanium oxide-zeolite composite of Comparative Example 1. 比較例2のCa置換−酸化チタン−ゼオライト複合体によるトルエン吸着分解試験結果を示すグラフである。6 is a graph showing the results of a toluene adsorption decomposition test using a Ca-substituted-titanium oxide-zeolite composite of Comparative Example 2. 比較例3のFe置換−酸化チタン−ゼオライト複合体によるトルエン吸着分解試験結果を示すグラフである。6 is a graph showing the results of a toluene adsorption decomposition test using an Fe-substituted titanium oxide-zeolite composite of Comparative Example 3. 比較例4のCu置換−酸化チタン−ゼオライト複合体によるトルエン吸着分解試験結果を示すグラフである。It is a graph which shows the toluene adsorption decomposition test result by the Cu substitution-titanium oxide-zeolite complex of the comparative example 4.

(実施例1)
実施例1として、純粋試薬を用いてAg−酸化チタン−ゼオライト複合体を合成した製造方法を説明する。
(Example 1)
As Example 1, a production method in which an Ag-titanium oxide-zeolite composite was synthesized using a pure reagent will be described.

以下において、具体的な原料組成及び反応条件を示すが、本発明はそのような具体的な範囲に限定されるものではない。   In the following, specific raw material compositions and reaction conditions are shown, but the present invention is not limited to such specific ranges.

水ガラス40〜400mg/mlとアルミン酸ナトリウム30〜300mg/ml含む溶液に酸化チタン粉末を1〜90重量%の範囲で加え、水酸化ナトリウム3Nになるように調製し、エイジングを行った。   Titanium oxide powder was added in a range of 1 to 90% by weight to a solution containing 40 to 400 mg / ml water glass and 30 to 300 mg / ml sodium aluminate to prepare sodium hydroxide 3N, followed by aging.

珪酸源としては、水ガラスのほか、コロイダルシリカ等の試薬、又は焼成メタカオリン等水溶液中にて珪酸を生じる珪素源を含む素材を用いてもよい。また、アルミニウム源としては、アルミン酸ナトリウムに替えて水酸化アルミニウム等の試薬、又はアルミ屑等水溶液中にてアルミニウムイオンを生じるアルミニウム源を用いてもよい。いずれにしても、水溶液中でゼオライトの組成になるように珪酸源とアルミニウム源を調製する。   As a silicic acid source, you may use the raw material containing the silicon source which produces a silicic acid in aqueous solutions, such as reagents, such as colloidal silica, or baking metakaolin other than water glass. In addition, as the aluminum source, a reagent such as aluminum hydroxide or an aluminum source that generates aluminum ions in an aqueous solution such as aluminum scrap may be used instead of sodium aluminate. In any case, a silicic acid source and an aluminum source are prepared so as to have a zeolite composition in an aqueous solution.

エイジングは、静置・振盪・攪拌の何れかの条件下にて行い、室温〜100℃までの温度範囲内で行うのが望ましい。エイジングは、1時間以上行うことが望ましい。ここでは、室温下24時間静置の条件で行った。   The aging is preferably performed under any one of standing, shaking, and stirring, and is performed within a temperature range from room temperature to 100 ° C. It is desirable to perform aging for 1 hour or more. Here, it was performed under the condition of standing at room temperature for 24 hours.

上記の方法によって得られたエイジング後の溶液を、70℃以上の温度で加熱し、ゼオライト−酸化チタン複合体を得た。   The solution after aging obtained by the above method was heated at a temperature of 70 ° C. or higher to obtain a zeolite-titanium oxide composite.

Ag−酸化チタン−ゼオライト複合体は酸化チタン−ゼオライト複合体内のナトリウムイオンを銀イオンとイオン交換することにより製造した。すなわち、上記の工程で得た酸化チタン−ゼオライト複合体1gと0.1MのAgNO3水溶液30mlを50ml遠沈管に入れ、1分間の振とう後、遠心分離を3回繰り返してイオン交換反応を行わせた。その後、30mlの蒸留水で3回程度洗浄し、105℃で12時間乾燥してAg−酸化チタン−ゼオライト複合体を得た。この時、ゼオライト及び酸化チタン−ゼオライト複合体の結晶構造を壊さないために、含浸する溶液はpH4以上であることが望ましく、この実施例でも実施例2,3でもpH5となるように調製した。The Ag-titanium oxide-zeolite composite was produced by ion exchange of sodium ions in the titanium oxide-zeolite composite with silver ions. That is, 1 g of the titanium oxide-zeolite complex obtained in the above step and 30 ml of a 0.1 M AgNO 3 aqueous solution are placed in a 50 ml centrifuge tube, shaken for 1 minute, and then centrifuged three times to carry out an ion exchange reaction. I let them. Then, it was washed about 30 times with 30 ml of distilled water and dried at 105 ° C. for 12 hours to obtain an Ag-titanium oxide-zeolite composite. At this time, in order not to break the crystal structure of the zeolite and the titanium oxide-zeolite composite, it is desirable that the solution to be impregnated has a pH of 4 or more, and the pH was adjusted to 5 in this example as well as in Examples 2 and 3.

実施例1の製造方法の途中で得られた酸化チタン−ゼオライト複合体(銀置換前)の走査型電子顕微鏡による画像を図1に示す。図2は比較のために示したゼオライトのみの走査型電子顕微鏡写真である。ゼオライトの結晶表面は平滑で、球状のナノ粒子は見受けられない。結晶の形状から、図1中での大きな結晶はゼオライトであり、微粉状の結晶は酸化チタンであることがわかる。   The image by the scanning electron microscope of the titanium oxide-zeolite composite body (before silver substitution) obtained in the middle of the manufacturing method of Example 1 is shown in FIG. FIG. 2 is a scanning electron micrograph of only zeolite shown for comparison. The crystal surface of the zeolite is smooth and no spherical nanoparticles can be seen. From the crystal shape, it can be seen that the large crystal in FIG. 1 is zeolite and the fine powder crystal is titanium oxide.

図1の画像からは、酸化チタン−ゼオライト複合体では、ゼオライト結晶の表面に酸化チタンが万遍なく存在しているのが確認される。ゼオライト結晶面の割れ目の中にも酸化チタン粒子の存在が確認されることから、ゼオライト結晶の内部にも酸化チタンが入り込んでいることがうかがえる。   From the image of FIG. 1, it is confirmed that titanium oxide is uniformly present on the surface of the zeolite crystal in the titanium oxide-zeolite composite. Since the presence of titanium oxide particles is also confirmed in the cracks in the zeolite crystal surface, it can be seen that titanium oxide has also entered the inside of the zeolite crystal.

実施例1において、銀担持前後における酸化チタン−ゼオライト複合体の元素分析を行った結果を図3に示す。図3はESCA(Electron Spectroscopy for Chemical Analysis)による分析結果である。下側のスペクトルは銀担持前のもの、上側のスペクトルは銀担持後のものである。350〜380eV付近の2本のピークは銀の3d軌道由来のピークである。銀担持後のAg−酸化チタン−ゼオライト複合体には確かに銀が存在していることがこのESCA分析結果から確認できる。   The results of elemental analysis of the titanium oxide-zeolite composite before and after silver loading in Example 1 are shown in FIG. FIG. 3 shows the results of analysis by ESCA (Electron Spectroscopy for Chemical Analysis). The lower spectrum is before silver support, and the upper spectrum is after silver support. Two peaks in the vicinity of 350 to 380 eV are peaks derived from silver 3d orbitals. It can be confirmed from this ESCA analysis result that silver is surely present in the Ag-titanium oxide-zeolite composite after silver is supported.

次に酸化チタン−ゼオライト複合体に対し、銀担持前後で結晶の骨格構造に変化が起こっているかどうかをX線回折により調べた。図4は実施例1の酸化チタン−ゼオライト複合体のX線回折スペクトルであり、上のスペクトルは銀担持前、下のスペクトルは銀担持後のものである。この2つのスペクトルを比較するといくつかのピークに変化は見られるものの、大型分子の吸着が可能なサイトである2θ=6°付近のピークには大きな変化はなく、酸化チタンとゼオライトの結晶構造は銀の担持前後でほとんど変化していないと考えることができる。   Next, the titanium oxide-zeolite composite was examined by X-ray diffraction to determine whether or not the crystal skeleton structure had changed before and after silver loading. FIG. 4 is an X-ray diffraction spectrum of the titanium oxide-zeolite composite of Example 1. The upper spectrum is before carrying silver and the lower spectrum is after carrying silver. When these two spectra are compared, there are some changes in the peaks, but there is no significant change in the peak around 2θ = 6 °, which is the site where large molecules can be adsorbed, and the crystal structures of titanium oxide and zeolite are It can be considered that there is almost no change before and after the loading of silver.

銀イオンは酸化チタン−ゼオライト複合体中のナトリウムイオンが銀イオンで置換されることにより複合体中に取り込まれたものと考えられる。しかしながら、置換以外の反応より銀イオンが複合体中に取り込まれている部分も可能性としては考えられる。いずれにしても銀が酸化チタン−ゼオライト複合体の表面に存在していることがESCA分析結果から確認されており、この銀が吸着分解反応に寄与している。   The silver ions are considered to be taken into the composite by replacing sodium ions in the titanium oxide-zeolite composite with silver ions. However, a portion in which silver ions are incorporated into the complex by a reaction other than substitution is also possible. In any case, it is confirmed from the ESCA analysis results that silver is present on the surface of the titanium oxide-zeolite composite, and this silver contributes to the adsorption decomposition reaction.

(実施例2)
製造方法の実施例2として製紙スラッジ(PS:Paper Sludge)をゼオライト原料としてAg−酸化チタン−ゼオライト複合体を製造する方法を説明する。
(Example 2)
As Example 2 of the production method, a method for producing an Ag-titanium oxide-zeolite composite using paper sludge (PS) as a zeolite raw material will be described.

製紙スラッジは製紙工場において紙の製造過程で沈殿物もしくは懸濁物として発生する不要分、又は製紙工場からの排水中に生じる沈殿物又は懸濁物である。製紙スラッジ焼却灰は製紙スラッジを焼却したものである。   Paper sludge is an unnecessary part generated as a precipitate or a suspension in a paper manufacturing process in a paper mill, or a precipitate or a suspension generated in waste water from a paper mill. Papermaking sludge incineration ash is the incineration of papermaking sludge.

製紙スラッジの焼却灰の主成分は、珪酸(SiO2)、酸化アルミニウム(Al23)、酸化マグネシウム(MgO)等である。これらの成分は、製紙工程でパルプ等の紙原料に添加される填料に由来する。填料としては、カオリン、クレー又は粘土等の白土のほか、タルク(滑石)、炭酸カルシウム、二酸化チタン、水酸化アルミニウム等が用いられる。製紙スラッジ又は製紙スラッジ焼却灰中のこれらの成分の割合は、無機成分全体に対して、珪酸が10〜40重量%、酸化アルミニウムが15〜75重量%、酸化マグネシウムが7〜20重量%程度である。The main components of the incinerated ash of papermaking sludge are silicic acid (SiO 2 ), aluminum oxide (Al 2 O 3 ), magnesium oxide (MgO), and the like. These components are derived from fillers added to paper raw materials such as pulp in the papermaking process. As the filler, talc (talc), calcium carbonate, titanium dioxide, aluminum hydroxide and the like are used in addition to white clay such as kaolin, clay or clay. The ratio of these components in papermaking sludge or papermaking sludge incineration ash is 10 to 40% by weight of silicic acid, 15 to 75% by weight of aluminum oxide, and 7 to 20% by weight of magnesium oxide with respect to the entire inorganic components. is there.

製紙工程において白色顔料として酸化チタンが使用された場合には、その製紙スラッジには酸化チタンが含まれる。酸化チタンを含有する製紙スラッジ中の酸化チタンの含有量は、無機成分全体に対して通常1〜35重量%である。製紙工程において酸化チタンが使用されない場合やその使用量が少ない場合は、酸化チタン−ゼオライト複合体を合成する際に製紙スラッジ又はその焼却灰に所望量の酸化チタンを添加する。使用する酸化チタンとしては、白色顔料として製紙スラッジ中に含まれるような光触媒活性がほとんどないか、あるいは光触媒活性を有する酸化チタンであってもよい。   When titanium oxide is used as a white pigment in the papermaking process, the papermaking sludge contains titanium oxide. The content of titanium oxide in the papermaking sludge containing titanium oxide is usually 1 to 35% by weight based on the whole inorganic component. When titanium oxide is not used in the papermaking process or when the amount used is small, a desired amount of titanium oxide is added to the papermaking sludge or its incinerated ash when the titanium oxide-zeolite composite is synthesized. The titanium oxide to be used may be a titanium oxide having almost no photocatalytic activity as contained in papermaking sludge as a white pigment, or having photocatalytic activity.

原料として、製紙スラッジを焼却して得た製紙スラッジ焼却灰(PS ash)のうち、アナターゼ型酸化チタンを約20重量%含有するものを使用した。その原料製紙スラッジ焼却灰の組成は次の通りであった。
焼成カオリン(2SiO2−Al23) …… 50.6重量%、
アナターゼ型酸化チタン(TiO2) …… 21.5重量%、
タルク(4Si02−3MgO) …… 15.6重量%、
非晶質酸化アルミニウム(Al23) …… 12.2重量%。
As a raw material, a paper sludge incinerated ash (PS ash) obtained by incinerating paper sludge was used containing about 20% by weight of anatase type titanium oxide. The composition of the raw papermaking sludge incineration ash was as follows.
Calcined kaolin (2SiO 2 —Al 2 0 3 ) 50.6% by weight,
Anatase type titanium oxide (TiO 2 ) 21.5% by weight,
Talc (4Si0 2 -3MgO) ...... 15.6% by weight,
Amorphous aluminum oxide (Al 2 0 3) ...... 12.2% by weight.

この中で、焼成カオリン、アナターゼ型酸化チタン及びタルクは製紙用填料として用いられたものが製紙スラッジとして排出されたと考えられ、非晶質酸化アルミニウムは排水処理の際の凝集剤として使用された硫酸バンド(Al2(SO4)3)が焼成されたことにより生じたと考えられる。ゼオライト原料として期待される鉱物は、Si、Alを含んだ焼成メタカオリンと非晶質酸化アルミニウムの非晶質物質である。Of these, calcined kaolin, anatase-type titanium oxide and talc were considered to have been used as papermaking sludge and were discharged as papermaking sludge. Amorphous aluminum oxide was sulfuric acid used as a flocculant during wastewater treatment. It is considered that the band (Al 2 (SO 4 ) 3 ) was produced by firing. Minerals expected as a raw material for zeolite are amorphous substances such as calcined metakaolin and amorphous aluminum oxide containing Si and Al.

上記の合成原料を調製するために、300ml三角フラスコにこの製紙スラッジ焼却灰、水ガラス、NaOH及び水を入れた。その組成は次の通りであった。
製紙スラッジ焼却灰 …… 5.0g、
水ガラス …… 5.9g、
NaOH …… 6.3g、
水 ……55 g。
In order to prepare the above synthetic raw material, the papermaking sludge incineration ash, water glass, NaOH and water were put into a 300 ml Erlenmeyer flask. Its composition was as follows.
Papermaking sludge incineration ash …… 5.0g,
Water glass 5.9g,
NaOH ............ 6.3g,
Water ... 55 g.

水ガラスとしては、三ツ輸化学工業株式会社の製品水ガラス3号(SiO2:28.5重量%,Na2O:9.30重量%,H20:62.2重量%)を使用した。As water glass, product water glass No. 3 (SiO 2 : 28.5% by weight, Na 2 O: 9.30% by weight, H 2 0: 62.2% by weight) manufactured by Mitsuru Chemical Industry Co., Ltd. is used. did.

この酸化チタン−ゼオライト複合体原料を反応前に室温下で24時間放置した後、常圧下95〜100℃で4時間沸点維持させて反応させた。反応中は水分の蒸発を防ぐために三角フラスコに冷却管を取り付け、攪拌は行わなかった。反応物は遠心分離法により固液分離し、約30mlの蒸留水で3回程度洗浄後,105℃で12時間乾燥し、乳白色粉末の酸化チタン−ゼオライト複合体を得た。   This titanium oxide-zeolite composite raw material was allowed to stand at room temperature for 24 hours before the reaction, and then reacted at 95-100 ° C. under normal pressure for 4 hours. During the reaction, a condensing tube was attached to the Erlenmeyer flask to prevent evaporation of water, and stirring was not performed. The reaction product was subjected to solid-liquid separation by centrifugation, washed about 3 times with about 30 ml of distilled water, and then dried at 105 ° C. for 12 hours to obtain a milky white powder titanium oxide-zeolite complex.

得られたゼオライト−酸化チタン複合体を、実施例1と同様に、ナトリウムイオンと置換しようとする銀イオンを含む溶液に含浸させ、目的のAg−酸化チタン−ゼオライト複合体を得た。   The obtained zeolite-titanium oxide composite was impregnated in a solution containing silver ions to be replaced with sodium ions in the same manner as in Example 1 to obtain the target Ag-titanium oxide-zeolite composite.

参考例
参考例としてAg−酸化チタン−ゼオライト混合物を作成した。
( Reference example )
As a reference example , an Ag-titanium oxide-zeolite mixture was prepared.

酸化チタン−ゼオライト混合物の原料として酸化チタン粉末(アナターゼ型、粒径20nm)とゼオライト結晶粉末(Na型フォージャサイト型、粒径3μm)を重量比が1:4となるように乳鉢で混合した。   As raw materials for the titanium oxide-zeolite mixture, titanium oxide powder (anatase type, particle size 20 nm) and zeolite crystal powder (Na type faujasite type, particle size 3 μm) were mixed in a mortar so that the weight ratio was 1: 4. .

このようにして調製した酸化チタン−ゼオライト混合物を、実施例1と同様に、ナトリウムイオンと置換しようとする銀イオンを含む溶液に含浸させ、目的のAg−酸化チタン−ゼオライト混合物を得た。   The titanium oxide-zeolite mixture thus prepared was impregnated in a solution containing silver ions to be replaced with sodium ions in the same manner as in Example 1 to obtain the target Ag-titanium oxide-zeolite mixture.

参考例における銀担持前の酸化チタン−ゼオライト混合物の走査型電子顕微鏡による画像を図5に示す。図5の画像から、酸化チタンの微粒子は固まり状となってゼオライト結晶の外周に不均一に接していることがわかる。 The image by the scanning electron microscope of the titanium oxide-zeolite mixture before silver carrying | support in a reference example is shown in FIG. From the image of FIG. 5, it can be seen that the fine particles of titanium oxide are in a solid form and are in non-uniform contact with the outer periphery of the zeolite crystal.

これらの実施例及び参考例のAg−酸化チタン−ゼオライト複合体及びAg−酸化チタン−ゼオライト混合物からなる吸着分解素材による非極性分子の吸着分解性能を確かめるために、銀置換していない酸化チタン−ゼオライト複合体、他の金属で置換した金属置換−酸化チタン−ゼオライト複合体を比較例として用意した。 In order to confirm the adsorptive decomposition performance of non-polar molecules by the adsorptive decomposition material composed of the Ag-titanium oxide-zeolite composite and the Ag-titanium oxide-zeolite mixture of these examples and reference examples , titanium oxide not substituted with silver- A zeolite composite and a metal-substituted titanium oxide-zeolite composite substituted with another metal were prepared as comparative examples.

(比較例1)
実施例1として記載した酸化チタン−ゼオライト複合体の製造工程で製造した金属置換前の酸化チタン−ゼオライト複合体を比較例1とする。本試料をNa−酸化チタン−ゼオライト複合体と表記する。
(Comparative Example 1)
The titanium oxide-zeolite composite before metal substitution produced in the production process of the titanium oxide-zeolite composite described as Example 1 is referred to as Comparative Example 1. This sample is referred to as Na-titanium oxide-zeolite composite.

(比較例2)
比較例2はCa−酸化チタン−ゼオライト複合体である。その製造方法として、実施例1でのAg−酸化チタン−ゼオライト複合体の製造工程におけるAgNO3水溶液を0.5MのCaCl2水溶液に置き換えて実施例1と同じ方法によりCa−酸化チタン−ゼオライト複合体を得た。
(Comparative Example 2)
Comparative Example 2 is a Ca-titanium oxide-zeolite composite. As the production method, a Ca-titanium oxide-zeolite composite was prepared in the same manner as in Example 1 except that the AgNO 3 aqueous solution in the production process of the Ag-titanium oxide-zeolite composite in Example 1 was replaced with a 0.5 M CaCl 2 aqueous solution. Got the body.

(比較例3)
比較例3はFe−酸化チタン−ゼオライト複合体である。その製造方法として、比較例2で得たCa置換−酸化チタン−ゼオライト複合体1gと0.01MのFe2(N033水溶液30mlを50ml遠沈管に入れ、実施例1と同じ方法によりFe−酸化チタン−ゼオライト複合体を得た。
(Comparative Example 3)
Comparative Example 3 is an Fe-titanium oxide-zeolite composite. As a production method thereof, 1 g of the Ca-substituted titanium oxide-zeolite composite obtained in Comparative Example 2 and 30 ml of 0.01 M Fe 2 (N 0 3 ) 3 aqueous solution were placed in a 50 ml centrifuge tube, and Fe was prepared in the same manner as in Example 1. -A titanium oxide-zeolite composite was obtained.

(比較例4)
比較例4はCu−酸化チタン−ゼオライト複合体である。その製造方法として、実施例1でのAg−酸化チタン−ゼオライト複合体の製造工程におけるAgNO3水溶液を0.5MのCuCl2水溶液に置き換えて実施例1と同じ方法によりCu−酸化チタン−ゼオライト複合体を得た。
(Comparative Example 4)
Comparative Example 4 is a Cu-titanium oxide-zeolite composite. As the production method, the Cu-titanium oxide-zeolite composite was prepared in the same manner as in Example 1 except that the AgNO 3 aqueous solution in the production process of the Ag-titanium oxide-zeolite composite in Example 1 was replaced with a 0.5 M CuCl 2 aqueous solution. Got the body.

(トルエン吸着分解試験)
非極性分子としてトルエンを選び、実施例1及び参考例の吸着分解素材と比較例1〜4の酸化チタン−ゼオライト複合体についてトルエン吸着分解試験を行った。
(Toluene adsorption decomposition test)
Toluene was selected as a nonpolar molecule, and a toluene adsorptive decomposition test was performed on the adsorptive decomposition materials of Example 1 and Reference Example and the titanium oxide-zeolite composites of Comparative Examples 1 to 4.

メノウ乳鉢で細かく磨砕した各種酸化チタンーゼオライト複合体又は酸化チタンーゼオライト混合物の0.10gをそれぞれ25mm×77mmのプレパラート上に展開し、蒸留水を加えて懸濁液とし、それぞれ全量を面積が19.25cm2になるように塗布した。105℃で2時間乾燥後、デシケーター中で30分間冷却したものを試料とした。各試料を容積1000mlのポリエチレン製ガスバッグ中に静置した後、ガスバッグを密閉して脱気した。脱気後、ガスバッグに室内空気を500ml導入した。その後、900ppmトルエン標準ガスをシリンジでガスバッグに注入してガスバッグ中のトルエン初期濃度が約15から80ppmになるようにし、時間経過に伴なうガスバッグ中のトルエンガス濃度を測定した。トルエンガス濃度の測定はガスバッグからガスを採取してガスクロマトグラフで行った。試料に含まれる酸化チタンの光触媒活性能を確認するために、トルエン濃度変化が小さくなった時点から、ガスバッグ外側より試料から高さ5cmの位置に設置された紫外線ランプにより波長365nm、強度4.0mW/cm2の紫外線を照射した。0.10 g of various titanium oxide-zeolite composites or titanium oxide-zeolite mixtures finely ground in an agate mortar are spread on a 25 mm x 77 mm preparation, and distilled water is added to form a suspension. Was applied so as to be 19.25 cm 2 . A sample was dried at 105 ° C. for 2 hours and then cooled for 30 minutes in a desiccator. Each sample was allowed to stand in a polyethylene gas bag having a volume of 1000 ml, and then the gas bag was sealed and degassed. After deaeration, 500 ml of room air was introduced into the gas bag. Thereafter, 900 ppm toluene standard gas was injected into the gas bag with a syringe so that the initial concentration of toluene in the gas bag was about 15 to 80 ppm, and the toluene gas concentration in the gas bag was measured over time. Toluene gas concentration was measured by collecting gas from a gas bag and using a gas chromatograph. In order to confirm the photocatalytic activity of titanium oxide contained in the sample, a wavelength of 365 nm and an intensity of 4. with an ultraviolet lamp installed at a position 5 cm high from the outside of the gas bag from the time when the change in toluene concentration became small. Ultraviolet rays of 0 mW / cm 2 were irradiated.

測定結果を図6から図12に示す。図6は実施例1のAg−酸化チタン−ゼオライト複合体によるトルエン吸着分解試験結果である。   The measurement results are shown in FIGS. 6 shows the results of a toluene adsorption decomposition test using the Ag-titanium oxide-zeolite composite of Example 1. FIG.

図7は実施例1において銀イオンの担持量を変化させた場合のトルエン吸着性能を示したものである。銀担持量が複合体全体に対する重量%として2%、8%及び15%と増加するに従ってトルエンの吸着性能が増大していることが分かる。このことから銀イオンの存在が極性の低い分子に対する吸着性能を高めることが確認できた。   FIG. 7 shows the toluene adsorption performance in Example 1 when the amount of silver ions supported was changed. It can be seen that the toluene adsorption performance increases as the silver loading increases by 2%, 8%, and 15% in terms of weight% with respect to the entire composite. From this, it was confirmed that the presence of silver ions enhances the adsorption performance for molecules with low polarity.

図8は参考例のAg−酸化チタン−ゼオライト混合物のトルエン吸着性能を実施例1と比較したものである。下側のグラフは実施例1のものであり、上側のグラフは参考例のものである。紫外線を照射するまでのトルエン吸着性能は実施例1の複合体の方が参考例の混合物よりも優れていることが分かる。このことからトルエンの吸着性能は単に銀イオンの存在のみでなく、銀イオンと結晶骨格との相互作用が寄与していることも考えられるが、詳しい機構は不明である。参考例においても、実施例1の複合体に比べるとトルエンの吸着能自体は小さいものの、紫外線照射後のトルエンの分解能力は同様に備えていることが分かる。これは、参考例のようにトルエンの吸着能自体は小さくても、紫外線照射により吸着していたトルエンが分解されて吸着サイトから除去されると、その跡に新たなトルエン分子が吸着して紫外線により分解されるので、分解性能に関しては十分な能力を発揮しているものと考えられる。 FIG. 8 compares the toluene adsorption performance of the Ag-titanium oxide-zeolite mixture of Reference Example with that of Example 1. The lower graph is that of Example 1, and the upper graph is that of the reference example . It can be seen that the toluene adsorption performance until irradiation with ultraviolet rays is superior to the mixture of the reference example in the composite of Example 1. From this, it is considered that the adsorption performance of toluene is not only the presence of silver ions but also the interaction between silver ions and the crystal skeleton, but the detailed mechanism is unknown. Also in the reference example , it can be seen that although the adsorption ability of toluene itself is smaller than that of the composite of Example 1, the decomposition ability of toluene after irradiation with ultraviolet rays is similarly provided. This is because even if the adsorption capacity of toluene itself is small as in the reference example , when toluene that was adsorbed by ultraviolet irradiation is decomposed and removed from the adsorption site, new toluene molecules are adsorbed on the trace and ultraviolet light is absorbed. Therefore, it is considered that the decomposition performance is sufficient.

図9は比較例1のNa−酸化チタン−ゼオライト複合体によるトルエン吸着分解試験結果である。   FIG. 9 shows the results of a toluene adsorption decomposition test using the Na-titanium oxide-zeolite composite of Comparative Example 1.

図10は比較例2のCa−酸化チタン−ゼオライト複合体によるトルエン吸着分解試験結果である。   10 shows the results of a toluene adsorption decomposition test using the Ca-titanium oxide-zeolite composite of Comparative Example 2. FIG.

図11は比較例3のFe−酸化チタン−ゼオライト複合体によるトルエン吸着分解試験結果である。   FIG. 11 shows the results of a toluene adsorption decomposition test using the Fe-titanium oxide-zeolite composite of Comparative Example 3.

図12は比較例4のCu−酸化チタン−ゼオライト複合体によるトルエン吸着分解試験結果である。   FIG. 12 shows the results of a toluene adsorption decomposition test using the Cu-titanium oxide-zeolite composite of Comparative Example 4.

これらの測定結果によれば、実施例1のAg−酸化チタン−ゼオライト複合体と参考例のAg−酸化チタン−ゼオライト混合物では、紫外線非照射下において一旦トルエンの濃度低下が緩やかになった後、紫外線照射によりさらなるトルエンの濃度減少がみられ、Ag−酸化チタン−ゼオライト複合体及びAg−酸化チタン−ゼオライト混合物はトルエンの吸着分解機能を有することが確認できる。このことから、実施例2のAg−酸化チタン−ゼオライト複合体は、製造方法は実施例1とは異なるものの、実施例1と同様のトルエンの吸着分解機能をもつことは推定できる。 According to these measurement results, in the Ag-titanium oxide-zeolite complex of Example 1 and the Ag-titanium oxide-zeolite mixture of the reference example , after the concentration decrease of toluene once moderated without ultraviolet irradiation, Further reduction in toluene concentration was observed by ultraviolet irradiation, and it can be confirmed that the Ag-titanium oxide-zeolite complex and the Ag-titanium oxide-zeolite mixture have an adsorption decomposition function of toluene. From this, it can be presumed that the Ag-titanium oxide-zeolite composite of Example 2 has the same adsorption and decomposition function of toluene as in Example 1, although the production method is different from that in Example 1.

それに対し、比較例1の金属置換していない酸化チタン−ゼオライト複合体、及び比較例2〜4のCa、Fe又はCuで置換した酸化チタン−ゼオライト複合体では、紫外線非照射下、及び紫外線照射によってもトルエン濃度に有意な減少がみられないことから、これらの酸化チタン−ゼオライト複合体はトルエンの吸着分解機能を有していないことがわかる。   On the other hand, in the titanium oxide-zeolite composite not substituted with metal of Comparative Example 1 and the titanium oxide-zeolite composite substituted with Ca, Fe or Cu of Comparative Examples 2 to 4, ultraviolet irradiation was not performed and ultraviolet irradiation was performed. As a result, no significant decrease in the toluene concentration was observed, indicating that these titanium oxide-zeolite composites did not have an adsorption decomposition function of toluene.

吸着分解機能をトルエンについて測定したが、トルエンは極性の低い有機化合物の一例にすぎず、本発明の吸着分解素材は他の低極性有機化合物に対しても吸着分解機能を発揮することは容易に推定できる。   The adsorptive decomposition function was measured for toluene, but toluene is only an example of an organic compound with low polarity, and the adsorptive decomposition material of the present invention can easily exhibit the adsorptive decomposition function for other low polar organic compounds. Can be estimated.

本発明のAg−酸化チタン−ゼオライト複合体は、装置・工場排ガスや大気中又は河川や湖沼の水中に存在するトルエンなどの低極性又は非極性の有機化合物を吸着分解する触媒として利用することができる。 The Ag-titanium oxide-zeolite composite of the present invention can be used as a catalyst for adsorbing and decomposing low-polar or non-polar organic compounds such as toluene present in apparatus / factory exhaust gas, air or water of rivers and lakes. it can.

Claims (2)

酸化チタンとゼオライトからなる骨格構造に銀イオンが結合している吸着分解素材において、
前記骨格構造はゼオライトの結晶体中に酸化チタンが分散してなる酸化チタン−ゼオライト複合体からなり、
該吸着分解素材はトルエン又はキシレンからなる低極性有機化合物のための吸着分解素材であることを特徴とする吸着分解素材。
In the adsorptive decomposition material in which silver ions are bonded to the framework structure consisting of titanium oxide and zeolite,
The skeletal structure is composed of a titanium oxide-zeolite composite in which titanium oxide is dispersed in a zeolite crystal.
The adsorptive decomposition material is an adsorptive decomposition material for a low-polar organic compound comprising toluene or xylene .
前記ゼオライトはケイバン比が10未満のものである請求項1に記載の吸着分解素材。  The adsorptive decomposition material according to claim 1, wherein the zeolite has a Keiban ratio of less than 10.
JP2009551616A 2008-02-01 2009-01-30 Silver-titanium oxide-zeolite adsorptive decomposition material Expired - Fee Related JP4943516B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009551616A JP4943516B2 (en) 2008-02-01 2009-01-30 Silver-titanium oxide-zeolite adsorptive decomposition material

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008022526 2008-02-01
JP2008022526 2008-02-01
JP2009551616A JP4943516B2 (en) 2008-02-01 2009-01-30 Silver-titanium oxide-zeolite adsorptive decomposition material
PCT/JP2009/051629 WO2009096548A1 (en) 2008-02-01 2009-01-30 Silver-(titanium oxide)-zeolite adsorbent/decomposing material and process for production thereof

Publications (2)

Publication Number Publication Date
JPWO2009096548A1 JPWO2009096548A1 (en) 2011-05-26
JP4943516B2 true JP4943516B2 (en) 2012-05-30

Family

ID=40912891

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009551616A Expired - Fee Related JP4943516B2 (en) 2008-02-01 2009-01-30 Silver-titanium oxide-zeolite adsorptive decomposition material

Country Status (3)

Country Link
JP (1) JP4943516B2 (en)
CN (1) CN101909750A (en)
WO (1) WO2009096548A1 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102266753B (en) * 2011-07-18 2013-01-09 福建师范大学 Preparation method and application of efficient active dye absorbent
ITFI20130049A1 (en) * 2013-03-07 2014-09-08 Onofrio Daniele D GRANULAR COMPOSITION AND ITS USES
WO2016034911A1 (en) * 2014-09-04 2016-03-10 D Onofrio Daniele Granular composition and use thereof
CN110709166A (en) 2017-05-31 2020-01-17 古河电气工业株式会社 Methanol reforming catalyst structure, apparatus for methanol reforming, method for producing methanol reforming catalyst structure, and method for producing at least one of olefin and aromatic hydrocarbon
JP7306990B2 (en) 2017-05-31 2023-07-11 古河電気工業株式会社 CO-shift or reverse-shift catalyst structures and methods for making same, CO-shift or reverse-shift reactors, methods for producing carbon dioxide and hydrogen, and methods for producing carbon monoxide and water
WO2018221690A1 (en) 2017-05-31 2018-12-06 国立大学法人北海道大学 Functional structure and production method for functional structure
JP7316935B2 (en) 2017-05-31 2023-07-28 古河電気工業株式会社 Catalytic cracking or hydrodesulfurization catalyst structure, catalytic cracking apparatus and hydrodesulfurization apparatus having the catalyst structure, and method for producing catalytic cracking or hydrodesulfurization catalyst structure
WO2018221693A1 (en) * 2017-05-31 2018-12-06 国立大学法人北海道大学 Functional structure and production method for functional structure
JP7340198B2 (en) 2017-05-31 2023-09-07 国立大学法人北海道大学 Functional structure and method for manufacturing functional structure
EP3632555A4 (en) 2017-05-31 2021-01-27 Furukawa Electric Co., Ltd. Hydrodesulfurization catalyst structure, hydrodesulfurization device provided with said catalyst structure, and production method of hydrodesulfurization catalyst structure
JPWO2018221702A1 (en) * 2017-05-31 2020-03-26 古河電気工業株式会社 Photocatalyst structure, photocatalyst structure composition, photocatalyst coating material, method for producing photocatalyst structure, and method for decomposing aldehydes
US11161101B2 (en) 2017-05-31 2021-11-02 Furukawa Electric Co., Ltd. Catalyst structure and method for producing the catalyst structure
CN110678262A (en) 2017-05-31 2020-01-10 古河电气工业株式会社 Exhaust gas purifying oxidation catalyst structure, method for producing same, exhaust gas treatment device for automobile, catalyst molded body, and gas purifying method
EP3632548A4 (en) 2017-05-31 2021-03-03 National University Corporation Hokkaido University Functional structure and production method for functional structure
CN114522500A (en) * 2020-11-23 2022-05-24 中国科学院城市环境研究所 Deodorization and sterilization equipment and method and application for purifying gas by using same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11319570A (en) * 1998-05-15 1999-11-24 Daikin Ind Ltd Composite photocatalyst
JP2003305371A (en) * 1996-09-20 2003-10-28 Hitachi Ltd Photocatalyst thin film and article equipped therewith
JP2007260603A (en) * 2006-03-29 2007-10-11 Suminoe Textile Co Ltd Filter unit for air cleaner
JP3994096B2 (en) * 2004-04-19 2007-10-17 愛媛県 Method for regenerating titanium oxide having photocatalytic activity and method for producing titanium oxide-zeolite composite

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998012048A1 (en) * 1996-09-20 1998-03-26 Hitachi, Ltd. Thin photocatalytic film and articles provided with the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003305371A (en) * 1996-09-20 2003-10-28 Hitachi Ltd Photocatalyst thin film and article equipped therewith
JPH11319570A (en) * 1998-05-15 1999-11-24 Daikin Ind Ltd Composite photocatalyst
JP3994096B2 (en) * 2004-04-19 2007-10-17 愛媛県 Method for regenerating titanium oxide having photocatalytic activity and method for producing titanium oxide-zeolite composite
JP2007260603A (en) * 2006-03-29 2007-10-11 Suminoe Textile Co Ltd Filter unit for air cleaner

Also Published As

Publication number Publication date
CN101909750A (en) 2010-12-08
WO2009096548A1 (en) 2009-08-06
JPWO2009096548A1 (en) 2011-05-26

Similar Documents

Publication Publication Date Title
JP4943516B2 (en) Silver-titanium oxide-zeolite adsorptive decomposition material
Brião et al. Adsorption of crystal violet dye onto a mesoporous ZSM-5 zeolite synthetized using chitin as template
Abdelrahman et al. Utilization of rice husk and waste aluminum cans for the synthesis of some nanosized zeolite, zeolite/zeolite, and geopolymer/zeolite products for the efficient removal of Co (II), Cu (II), and Zn (II) ions from aqueous media
Sacco et al. ZnO supported on zeolite pellets as efficient catalytic system for the removal of caffeine by adsorption and photocatalysis
Singh et al. Atomic layer deposited (ALD) TiO2 on fibrous nano-silica (KCC-1) for photocatalysis: nanoparticle formation and size quantization effect
Wang et al. Enhanced mineralization of atrazine by surface induced hydroxyl radicals over light-weight granular mixed-quartz sands with ozone
Shaban et al. Recycling of glass in synthesis of MCM-48 mesoporous silica as catalyst support for Ni 2 O 3 photocatalyst for Congo red dye removal
Sajjad et al. Bismuth‐doped ordered mesoporous TiO2: visible‐light catalyst for simultaneous degradation of phenol and chromium
Zhang et al. Zeolite‐Supported Gold Nanoparticles for Selective Photooxidation of Aromatic Alcohols under Visible‐Light Irradiation
Al-Jubouri et al. Hierarchically porous zeolite X composites for manganese ion-exchange and solidification: Equilibrium isotherms, kinetic and thermodynamic studies
Sabri et al. Synthesis of ordered mesoporous SBA-15 and its adsorption of methylene blue
Jantawasu et al. Photocatalytic activity of nanocrystalline mesoporous-assembled TiO2 photocatalyst for degradation of methyl orange monoazo dye in aqueous wastewater
Guillaume et al. Titanium oxide-clay” as adsorbent and photocatalysts for wastewater treatment
Jing et al. Synthesis of Ag and AgCl co-doped ZIF-8 hybrid photocatalysts with enhanced photocatalytic activity through a synergistic effect
Huang et al. Photocatalytic degradation of methylene blue by UV‐assistant TiO2 and natural sericite composites
Lee et al. Adsorption properties of arsenic on sulfated TiO2 adsorbents
Mohammed et al. Enhanced removal efficiency of NaY zeolite toward phenol from aqueous solution by modification with nickel (Ni-NaY)
Zain et al. Synergistic effect of TiO2 size on activated carbon composites for ruthenium N-3 dye adsorption and photocatalytic degradation in wastewater treatment
Al-Awaji et al. Green Ca-Loaded MgO Nanoparticles as an Efficient Adsorbent for Organic Hazardous Dyes
Liu et al. Boron vacancies of mesoporous MnO2 with strong acid sites, free Mn3+ species and macropore decoration for efficiently decontaminating organic and heavy metal pollutants in black-odorous waterbodies
Shaba et al. Adsorptive potential of ZnO/SiO2 nanorods prepared via the sol–gel method for the removal of Pb (II) and Cd (II) from petroleum refinery wastewater
Magnacca et al. Bio-based substances from compost as reactant and active phase for selective capture of cationic pollutants from waste water
Nath et al. Eggshell powder as an efficient recyclable catalyst generates H2O2 prompted radicals for selective oxidative mineralization of crystal violet dye at room temperature
Ajala et al. Development of titanium dioxide pillared clay adsorbent for removal of lead (II), zinc (II), and copper (II) ions from aqueous solution
Samuel et al. Zinc oxide nanoparticles functionalized with chelating nitrogenous groups for the adsorption of methyl violet in aqueous solutions

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110823

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120228

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120229

R150 Certificate of patent or registration of utility model

Ref document number: 4943516

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150309

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees