JP4943203B2 - Gas adsorption recovery container - Google Patents

Gas adsorption recovery container Download PDF

Info

Publication number
JP4943203B2
JP4943203B2 JP2007080259A JP2007080259A JP4943203B2 JP 4943203 B2 JP4943203 B2 JP 4943203B2 JP 2007080259 A JP2007080259 A JP 2007080259A JP 2007080259 A JP2007080259 A JP 2007080259A JP 4943203 B2 JP4943203 B2 JP 4943203B2
Authority
JP
Japan
Prior art keywords
gas
gas recovery
recovery container
pressure
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007080259A
Other languages
Japanese (ja)
Other versions
JP2008240833A (en
Inventor
匠 西井
一弘 金澤
威文 石倉
安彦 浦邊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Original Assignee
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd filed Critical Tokyo Gas Co Ltd
Priority to JP2007080259A priority Critical patent/JP4943203B2/en
Publication of JP2008240833A publication Critical patent/JP2008240833A/en
Application granted granted Critical
Publication of JP4943203B2 publication Critical patent/JP4943203B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Description

本発明は、ガス吸着回収容器に関し、より詳しくはガス導管工事等に際し導管内に残存するガス、その他の回収対象ガスのガス吸着回収容器に関する。   The present invention relates to a gas adsorption and recovery container, and more particularly to a gas adsorption and recovery container for gas remaining in a conduit and other recovery target gases during construction of a gas conduit and the like.

従来、回収対象ガスが残存する閉空間と吸着材を充填した減圧容器を接続してガスを吸着させる方法(特開2004−132662号公報)や、閉鎖空間内のガスを圧縮機を用いて圧縮し、回収対象部位以外のガス流路に移送する方法(特許第3868282号公報)が知られている。   Conventionally, a closed space in which the recovery target gas remains and a decompression vessel filled with an adsorbent are connected to adsorb the gas (Japanese Patent Application Laid-Open No. 2004-132661), or the gas in the closed space is compressed using a compressor. And the method (patent 3868282) which transfers to gas flow paths other than collection | recovery object site | parts is known.

図1は、特開2004−132662号公報に記載のガス回収例を説明する図である。図1(a)のとおり、ガス回収対象閉空間に吸着材を充填した減圧容器であるガス回収容器を連結し、差圧のみを駆動力として、ガス回収対象閉空間から回収容器にガスを回収する。図1(b)はそのような構成をとった場合の回収ガス量と圧力との関係を示した図で、図中、縦軸はガス回収対象閉空間内及びガス回収容器内の圧力、横軸は回収ガス量である。   FIG. 1 is a diagram for explaining an example of gas recovery described in Japanese Patent Application Laid-Open No. 2004-132661. As shown in FIG. 1A, a gas recovery container, which is a decompression container filled with an adsorbent, is connected to the gas recovery target closed space, and gas is recovered from the gas recovery target closed space to the recovery container using only the differential pressure as a driving force. To do. FIG. 1 (b) is a diagram showing the relationship between the amount of recovered gas and the pressure in such a configuration. In the figure, the vertical axis represents the pressure in the gas recovery target closed space and the gas recovery container, the horizontal The axis is the amount of recovered gas.

図1(b)のとおり、ガス回収対象閉空間の圧力が低い場合は、図1(b)中aとして示すように、圧力が大気圧となるまでガスを回収できる。これに対して、ガス回収対象閉空間の圧力が高い場合には、図1(b)中bとして示すように、同一の容器では大気圧までガスを回収することができず、また、ガス回収対象閉空間内のガス量が多い場合には、当該ガス回収対象閉空間が大気圧となるまでガスを回収するためには、ガス回収容器を大きくする必要がある。   As shown in FIG. 1 (b), when the pressure in the gas recovery target closed space is low, the gas can be recovered until the pressure reaches atmospheric pressure, as indicated by a in FIG. 1 (b). On the other hand, when the pressure in the gas recovery target closed space is high, the gas cannot be recovered up to atmospheric pressure in the same container, as indicated by b in FIG. When the amount of gas in the target closed space is large, it is necessary to enlarge the gas recovery container in order to recover gas until the gas recovery target closed space reaches atmospheric pressure.

また、特許第3868282号公報の方法は、圧縮機を用いるので、ガス回収対象閉空間とガス回収容器との差圧のみを駆動力として回収する場合に比べて装置が大型で、イニシアル、ランニング共にコストがかかることになる。さらに、近くにガス移送先がなければこの技術は適用できないといった問題や圧縮機で圧縮する工程があるのでガスの処理速度が上がらず、作業時間が長くなるという問題がある。   In addition, since the method of Japanese Patent No. 3868282 uses a compressor, the apparatus is larger than the case where only the differential pressure between the gas recovery target closed space and the gas recovery container is recovered as a driving force, and both initial and running are performed. It will be costly. Furthermore, there is a problem that this technique cannot be applied if there is no gas transfer destination nearby, and there is a problem that the processing speed of the gas does not increase because the process of compressing with a compressor, and the working time becomes long.

特開2004−132662号公報JP 2004-132661 A 特許第3868282号公報Japanese Patent No. 3868282

本発明は、ガス回収対象閉空間の圧力が高い場合でも、当該ガス回収対象閉空間内の圧力が大気圧になるまでガスを回収することができるガス吸着回収容器を提供することを目的とするものである。   An object of the present invention is to provide a gas adsorption and recovery container that can recover gas until the pressure in the gas recovery target closed space reaches atmospheric pressure even when the pressure of the gas recovery target closed space is high. Is.

本発明は、ガス回収対象閉空間内からガスを回収するための、吸着材を充填してなるガス回収容器であって、ガス回収容器の総容量を変えずにガス回収容器を複数としてなることを特徴とするガス吸着回収容器である。   The present invention is a gas recovery container filled with an adsorbent for recovering gas from a gas recovery target closed space, and the gas recovery container is made into a plurality without changing the total capacity of the gas recovery container. A gas adsorption recovery container characterized by the above.

また、本発明は、ガス回収対象閉空間内からガスを回収するための、吸着材を充填してなるガス回収容器であって、ガス回収容器の総容量を変えずに、当該ガス回収容器を複数のガス回収容器に区画してなることを特徴とするガス吸着回収容器である。   The present invention also provides a gas recovery container filled with an adsorbent for recovering a gas from the gas recovery target closed space, and the gas recovery container is not changed without changing the total capacity of the gas recovery container. A gas adsorption and recovery container characterized in that it is partitioned into a plurality of gas recovery containers.

ここで、“ガス回収対象閉空間”とは、導管工事等に際し導管内に残存するガスを含む空間、その他の回収対象ガスが収容された空間を意味し、また“ガス回収容器の総容量を変えずに”とは、本発明に係る複数のガス回収容器における各ガス回収容器の容量の総和を、本発明適用前の先行技術における一個のガス回収容器の容量と同じ容量ないし実質的に同じ容量にすることを意味する。   Here, the “closed space for gas recovery” means a space containing gas remaining in the conduit during conduit construction, etc., and a space in which other recovery target gas is accommodated. “Without changing” means that the sum of the capacities of the gas recovery containers in the plurality of gas recovery containers according to the present invention is the same or substantially the same as the capacity of one gas recovery container in the prior art prior to the application of the present invention. Means capacity.

本発明のガス吸着回収容器によれば、ガス回収対象閉空間の圧力が高い場合でも、当該ガス回収対象閉空間内の圧力が大気圧になるまでガスを回収することができる。   According to the gas adsorption recovery container of the present invention, even when the pressure in the gas recovery target closed space is high, the gas can be recovered until the pressure in the gas recovery target closed space becomes atmospheric pressure.

本発明は、ガス回収容器の機構やガス回収容器とガス回収対象閉空間との接続方法は先行技術と同じであるが、先行技術のようにガス回収容器を一個用いるのではなく、ガス回収容器の総容量を変えずにガス回収容器を複数としてなるガス吸着回収容器である。   In the present invention, the mechanism of the gas recovery container and the method of connecting the gas recovery container and the gas recovery target closed space are the same as in the prior art, but instead of using one gas recovery container as in the prior art, the gas recovery container This is a gas adsorption / recovery container having a plurality of gas recovery containers without changing the total capacity.

図2〜3は本発明を説明する図である。図2(a)、(b)は一つのガス回収対象閉空間に対するガス回収容器の構成態様例を示し、図3はそのような構成をとった場合における回収ガス量と圧力との関係を示した図である。図2〜3には図1(a)にある2m3の回収容器一つでは大気圧まで回収できない様子も比較として示している。 2 to 3 are diagrams for explaining the present invention. 2 (a) and 2 (b) show an example of the configuration of the gas recovery container for one gas recovery target closed space, and FIG. 3 shows the relationship between the amount of recovered gas and the pressure in such a configuration. It is a figure. FIGS. 2 to 3 also show, as a comparison, how one 2 m 3 recovery container shown in FIG. 1A cannot be recovered to atmospheric pressure.

図2(a)のとおり、一つの回収対象閉空間に対してガス回収容器A、B、Cというようにガス回収容器を複数個用意する。複数個のガス回収容器の総容量は図2(a)中、比較として示すガス回収容器の容量と同じである。図2(a)では3個の場合を示しているが、必要に応じて2個、4個、5個というように複数個用意する。   As shown in FIG. 2A, a plurality of gas recovery containers such as gas recovery containers A, B, and C are prepared for one recovery target closed space. The total capacity of the plurality of gas recovery containers is the same as the capacity of the gas recovery containers shown as a comparison in FIG. Although FIG. 2A shows the case of three, a plurality such as two, four, and five are prepared as necessary.

図2(b)は一つのガス回収容器を区画して複数個のガス回収容器を構成する場合を示している。この態様の場合も、区画して構成された複数個のガス回収容器の総容量は図2(a)中、比較として示すガス回収容器の容量と同じである。図2(b)では3個の場合を示しているが、必要に応じて2個、4個、5個というように複数個に区画してガス回収容器を構成する。   FIG. 2B shows a case where a plurality of gas recovery containers are configured by dividing one gas recovery container. Also in this embodiment, the total capacity of the plurality of gas recovery containers divided and configured is the same as the capacity of the gas recovery container shown as a comparison in FIG. FIG. 2B shows the case of three, but the gas recovery container is configured by dividing into two, four, five, etc. as necessary.

そして、図2(a)のように用意した複数個のガス回収容器または図2(b)のように一つのガス回収容器を区画して構成した複数個のガス回収容器のうち、まず一番目の回収容器Aにより、回収対象閉空間と回収容器Aの差圧がなくなるまでガスを回収する。この時、回収対象閉空間の圧力は回収前よりは低くなるが、大気圧よりは高い。   The first of the plurality of gas recovery containers prepared as shown in FIG. 2 (a) or the plurality of gas recovery containers configured by dividing one gas recovery container as shown in FIG. 2 (b). The recovery container A recovers the gas until the differential pressure between the recovery target closed space and the recovery container A disappears. At this time, the pressure in the collection target closed space is lower than that before the collection, but is higher than the atmospheric pressure.

これを図3で言えば、Aとして示すように、ガス回収容器Aの圧力は−0.1MPaGから上昇して0.7MPaGで回収対象閉空間の圧力と同圧となり差圧がなくなる。この時点でガス回収容器Aによるガス回収能は限度となるので、回収対象閉空間に連結するガス回収容器をガス回収容器Bに切り替える。   In FIG. 3, as indicated by A, the pressure in the gas recovery container A rises from −0.1 MPaG and becomes 0.7 MPaG, which is the same as the pressure in the recovery target closed space, and there is no differential pressure. At this time, the gas recovery capacity of the gas recovery container A is limited, so the gas recovery container connected to the recovery target closed space is switched to the gas recovery container B.

そして、回収容器Bにより回収対象閉空間と回収容器Bの差圧がなくなるまでガスを回収する。これにより回収対象閉空間の圧力はさにら低下するが、まだ大気圧より少し高い。これを図3で言えば、Bとして示すように、ガス回収容器Bの圧力は−0.1MPaGから上昇して0.06MPaGで回収対象閉空間の圧力と同圧となり差圧がなくなる。この時点でガス回収容器Bによるガス回収能は限度となるので、回収対象閉空間に連結するガス回収容器をガス回収容器Cに切り替える。   Then, gas is recovered by the recovery container B until the differential pressure between the recovery target closed space and the recovery container B disappears. As a result, the pressure in the collection target closed space is reduced, but is still slightly higher than the atmospheric pressure. In FIG. 3, as indicated by B, the pressure in the gas recovery container B rises from −0.1 MPaG and becomes 0.06 MPaG, which is the same as the pressure in the recovery target closed space, and there is no differential pressure. At this time, the gas recovery capacity of the gas recovery container B is limited, so that the gas recovery container connected to the recovery target closed space is switched to the gas recovery container C.

そして、回収容器Cにより回収対象閉空間と回収容器Cの差圧がなくなるまでガスを回収する。これにより回収対象閉空間の圧力はさらに低下する。これを図3で言えば、Cとして示すように、ガス回収容器Cの圧力は−0.1MPaGから上昇して0MPaGで回収対象閉空間の圧力と同圧となる。この時点でガス回収容器操作を終了する。   Then, gas is recovered by the recovery container C until the differential pressure between the recovery target closed space and the recovery container C disappears. As a result, the pressure in the collection target closed space further decreases. In FIG. 3, as indicated by C, the pressure in the gas recovery container C rises from −0.1 MPaG and becomes the same as the pressure in the recovery target closed space at 0 MPaG. At this point, the operation of the gas recovery container is finished.

図3には、先行技術の説明図にある2m3のガス回収容器一つで大気圧まで回収できない様子も比較として示している。すなわち、回収容器Aと回収容器Bと回収容器Cの総容量は比較のガス回収容器一つの容量と同じく2.0m3であるが、図3のとおり、比較のガス回収容器一つでは、回収対象閉空間中のガス圧は0.062MPaGまでしか下がらないが、比較のガス回収容器一つの総容量を変えずにガス回収容器を回収容器A、B、Cと複数にすることにより、回収対象閉空間中のガス圧を0MPaGまで下げることができる。そしてこのことは、回収対象閉空間中のガスをその差圧に対応する分、多く回収できたことになる。 FIG. 3 also shows, as a comparison, a state in which recovery to atmospheric pressure is not possible with one 2 m 3 gas recovery container in the explanatory diagram of the prior art. That is, the total capacity of the recovery container A, the recovery container B, and the recovery container C is 2.0 m 3 , which is the same as the capacity of one comparative gas recovery container, but as shown in FIG. The gas pressure in the target closed space can only be reduced to 0.062 MPaG, but by changing the total capacity of one comparative gas recovery container to multiple recovery containers A, B, and C, the recovery target The gas pressure in the closed space can be reduced to 0 MPaG. This means that a large amount of gas in the collection target closed space can be collected corresponding to the differential pressure.

本態様例では、ガス回収容器を3つに分け、一番目と二番目のガス回収容器が同体積であるが、実施の形態としてガス回収容器の数、各々のガス回収容器の容積、使用する順序に特に限定はないが、できるだけ多くのガス回収容器に分割するのが好ましい。   In this example, the gas recovery container is divided into three, and the first and second gas recovery containers have the same volume. However, as an embodiment, the number of gas recovery containers, the volume of each gas recovery container, and the use are used. There is no particular limitation on the order, but it is preferable to divide into as many gas recovery containers as possible.

また、すべてのガス回収容器を真空で再生する必要はなく、例えば1番目のガス回収容器は大気圧以上で運用専用とすることも可能である。この場合、当該ガス回収容器の再生に真空ポンプを用いる必要がなくコストダウンが見込める。   In addition, it is not necessary to regenerate all the gas recovery containers in a vacuum. For example, the first gas recovery container can be dedicated for operation at atmospheric pressure or higher. In this case, it is not necessary to use a vacuum pump for regeneration of the gas recovery container, and cost reduction can be expected.

さらに、上記3つのガス回収容器に充填する吸着材は、3ガス回収容器とも同じであってもよく、ガス回収容器ごとに異なってもよい。この点、ガス回収容器を2個、あるいは4個以上使用する場合も同様である。ガス回収容器ごとに異ならせる場合、3つのガス回収容器の場合を例にすると、ガス回収容器Aには圧力が高いときに良い性能を発揮する吸着材、ガス回収容器Bには大気圧付近で良い性能を発揮する吸着材、ガス回収容器Cには大気圧以下で良い性能を発揮する吸着材という組み合わせにすることができる。   Further, the adsorbent filled in the three gas recovery containers may be the same for the three gas recovery containers, or may be different for each gas recovery container. This also applies to the case where two or four or more gas recovery containers are used. When different for each gas recovery container, taking the case of three gas recovery containers as an example, the gas recovery container A is an adsorbent that exhibits good performance when the pressure is high, and the gas recovery container B is near atmospheric pressure. The adsorbent exhibiting good performance and the gas recovery container C can be combined with an adsorbent exhibiting good performance under atmospheric pressure.

図4は、吸着材のガス吸着性能の一例として、活性炭吸着材の細孔径の如何によるガス吸着特性例を示す図である。図4のとおり、メタンを吸着する場合、細孔径が小さい方が低圧での立ち上がりが大きく高圧になると圧力が上昇しても吸着量があまり増加しないが、細孔径が大きくなると低圧での圧力上昇に対する吸着量の増加の傾きと高圧でのそれにあまり差がない。   FIG. 4 is a diagram showing an example of gas adsorption characteristics depending on the pore diameter of the activated carbon adsorbent as an example of the gas adsorption performance of the adsorbent. As shown in FIG. 4, when adsorbing methane, the smaller the pore size, the larger the rise at low pressure and the higher the pressure, the amount of adsorption does not increase even if the pressure increases, but the pressure increases at a lower pressure when the pore size increases. There is not much difference between the increase in the amount of adsorption with respect to that at high pressure.

このように吸着材を使用する圧力つまり回収対象閉空間中のガス圧に応じて変えることで、より多くのガスを回収することができ、あるいはまた、ある一定量のガスを回収するのに要するガス回収容器体積を小さくすることができる。   By changing the pressure depending on the pressure at which the adsorbent is used, that is, the gas pressure in the recovery target closed space, more gas can be recovered, or it is necessary to recover a certain amount of gas. The volume of the gas recovery container can be reduced.

本発明において、ガス回収容器に充填する吸着材としては、活性炭のほか、ゼオライト、シリカゲル、粘土鉱物、金属酸化物、有機金属錯体、あるいは多孔質ガラスなどを使用することができる。   In the present invention, as the adsorbent filled in the gas recovery container, zeolite, silica gel, clay mineral, metal oxide, organometallic complex, or porous glass can be used in addition to activated carbon.

また、本発明においては、ガス導管工事等の際に導管内に残存するガスその他、回収する必要のあるガスであればいずれも回収対象とするが、その例としては、メタンガス、エタンガス、プロパンガス、ブタンガス、それらの混合ガス〔例えば、タクシーなどの燃料であるオートガス(プロパン20〜30%、ブタン80〜70%)〕、天然ガス、都市ガス、あるいはバイオガス、炭酸ガスなどが挙げられる。   In addition, in the present invention, any gas remaining in the conduit during gas conduit construction or any other gas that needs to be recovered is subject to recovery. Examples thereof include methane gas, ethane gas, and propane gas. , Butane gas, and mixed gas thereof [for example, autogas (propane 20 to 30%, butane 80 to 70%) as fuel for taxis, etc.], natural gas, city gas, biogas, carbon dioxide gas and the like.

先行技術のガス回収例を説明する図Illustration explaining gas recovery example of the prior art 本発明を説明する図The figure explaining this invention 本発明を説明する図The figure explaining this invention 吸着材のガス吸着特性の一例を示す図The figure which shows an example of the gas adsorption characteristic of adsorbent

Claims (5)

ガス回収対象閉空間内からガスを回収するための、吸着材を充填してなるガス回収容器であって、前記ガス回収対象閉空間内の全ガス量を差圧のみにより回収するのに必要なガス回収容器の総容量を変えずにガス回収容器を複数としてなることを特徴とするガス吸着回収容器。 A gas recovery container filled with an adsorbent for recovering gas from the gas recovery target closed space, which is necessary for recovering the total gas amount in the gas recovery target closed space only by the differential pressure. A gas adsorption recovery container comprising a plurality of gas recovery containers without changing the total capacity of the gas recovery containers. ガス回収対象閉空間内からガスを回収するための、吸着材を充填してなるガス回収容器であって、前記ガス回収対象閉空間内の全ガス量を差圧のみにより回収するのに必要なガス回収容器の総容量を変えずに、当該ガス回収容器を複数のガス回収容器に区画してなることを特徴とするガス吸着回収容器。 A gas recovery container filled with an adsorbent for recovering gas from the gas recovery target closed space, which is necessary for recovering the total gas amount in the gas recovery target closed space only by the differential pressure. A gas adsorption / recovery container, wherein the gas recovery container is divided into a plurality of gas recovery containers without changing the total capacity of the gas recovery container. 請求項1または2において、複数個の各ガス回収容器に充填する吸着材を各ガス回収容器ごとに異ならせてなることを特徴とするガス吸着回収容器。   3. The gas adsorption / recovery container according to claim 1, wherein an adsorbent filled in each of the plurality of gas recovery containers is different for each gas recovery container. 請求項3において、比較的圧力が高いときに用いるガス回収容器には、圧力が高いときに良い性能を発揮する吸着材を充填し、比較的圧力が低いときに用いるガス回収容器には圧力の低いときに良い性能を発揮する吸着材を充填してなることを特徴とするガス吸着回収容器。   In claim 3, the gas recovery container used when the pressure is relatively high is filled with an adsorbent that exhibits good performance when the pressure is high, and the gas recovery container used when the pressure is relatively low A gas adsorption / recovery container filled with an adsorbent that exhibits good performance when it is low. 請求項3において、前記ガス回収容器の数を3個とし、各ガス回収容器のうち、第一のガス回収容器には圧力が高いときに良い性能を発揮する吸着材を充填し、第二のガス回収容器には大気圧付近で良い性能を発揮する吸着材を充填し、第三のガス回収容器には大気圧以下で良い性能を発揮する吸着材を充填してなることを特徴とするガス吸着回収容器。
4. The gas recovery container according to claim 3, wherein the number of the gas recovery containers is three, and among the gas recovery containers, the first gas recovery container is filled with an adsorbent that exhibits good performance when the pressure is high, A gas recovery container is filled with an adsorbent that exhibits good performance near atmospheric pressure, and a third gas recovery container is filled with an adsorbent that exhibits good performance below atmospheric pressure Adsorption collection container.
JP2007080259A 2007-03-26 2007-03-26 Gas adsorption recovery container Active JP4943203B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007080259A JP4943203B2 (en) 2007-03-26 2007-03-26 Gas adsorption recovery container

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007080259A JP4943203B2 (en) 2007-03-26 2007-03-26 Gas adsorption recovery container

Publications (2)

Publication Number Publication Date
JP2008240833A JP2008240833A (en) 2008-10-09
JP4943203B2 true JP4943203B2 (en) 2012-05-30

Family

ID=39912440

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007080259A Active JP4943203B2 (en) 2007-03-26 2007-03-26 Gas adsorption recovery container

Country Status (1)

Country Link
JP (1) JP4943203B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103822093A (en) * 2013-10-18 2014-05-28 中国石油化工股份有限公司 Natural gas adsorptive recycling method for compressed natural gas station

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002037611A (en) * 2000-07-26 2002-02-06 Toshiba Corp Gas recovery equipment and method of using it
JP4313123B2 (en) * 2003-09-09 2009-08-12 東京瓦斯株式会社 Existing piping, vacuum purging method for gas in existing tank, and system therefor

Also Published As

Publication number Publication date
JP2008240833A (en) 2008-10-09

Similar Documents

Publication Publication Date Title
CA2633676C (en) The use of mofs in pressure swing adsorption
CA2633652A1 (en) The use of mofs in pressure swing adsorption
CN102883791B (en) The method cleared the pollution off from natural gas
CN101978234B (en) Separation method for blast furnace gas
EP2085355A1 (en) Method and apparatus for separating hydrogen gas
US8888895B1 (en) Method of CO2 removal from a gasesous stream at reduced temperature
JP5319140B2 (en) Blast furnace gas separation method and blast furnace gas separation system
US11779876B2 (en) Combined thermal energy storage and contaminant removal
CN103068778B (en) Method and apparatus for recovering ethylene from fluidized catalytic cracking (fcc) off-gas
WO2019018047A1 (en) Use of type v adsorbent and gas concentration for c02 adsorption and capture
JP4943203B2 (en) Gas adsorption recovery container
Yang et al. Separation of CO2–N2 using zeolite NaKA with high selectivity
EP2719437A1 (en) Target gas separation method and target gas separation device
JP2000262806A (en) Adsorbent regeneration method
JP2008240835A (en) Method and system for recovering gas using adsorbent for reuse
US11980841B2 (en) Two-system gas stream separation
CN103282099B (en) Fine preparation method for gas
JP2012106961A (en) Method and apparatus for separating methane
WO2019160074A1 (en) Gas refining apparatus, gas refining method, propene manufacturing apparatus, and propane manufacturing apparatus
RU2701016C2 (en) Method of producing oxygen by vpsa
CN203558848U (en) Three-tower type nitrogen or oxygen generation system
JP5603614B2 (en) Methane purification method
JP2001334117A (en) Process and system for recovering mixed gas
Ayasse et al. New Economical Process to Monetize High-CO2 Natural Gas
Giesy et al. Virtual Design of a Four-Bed Molecular Sieve for Exploration

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090314

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110906

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111101

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120228

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120229

R150 Certificate of patent or registration of utility model

Ref document number: 4943203

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150309

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250