JP4942980B2 - Method and apparatus for detecting the degree of progress of thermal decomposition of waste, and method and apparatus for thermal decomposition of waste - Google Patents

Method and apparatus for detecting the degree of progress of thermal decomposition of waste, and method and apparatus for thermal decomposition of waste Download PDF

Info

Publication number
JP4942980B2
JP4942980B2 JP2005298935A JP2005298935A JP4942980B2 JP 4942980 B2 JP4942980 B2 JP 4942980B2 JP 2005298935 A JP2005298935 A JP 2005298935A JP 2005298935 A JP2005298935 A JP 2005298935A JP 4942980 B2 JP4942980 B2 JP 4942980B2
Authority
JP
Japan
Prior art keywords
gas
waste
pyrolysis
tar
separation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005298935A
Other languages
Japanese (ja)
Other versions
JP2007105628A (en
Inventor
秀生 西村
一雄 大貫
忠司 真鍋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2005298935A priority Critical patent/JP4942980B2/en
Publication of JP2007105628A publication Critical patent/JP2007105628A/en
Application granted granted Critical
Publication of JP4942980B2 publication Critical patent/JP4942980B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Gasification And Melting Of Waste (AREA)

Description

本発明は可燃性廃棄物、特に廃タイヤをはじめとするゴム系廃棄物を燃料や原料として有効利用するための廃棄物の熱分解処理方法及び装置に関するものである。   TECHNICAL FIELD The present invention relates to a waste pyrolysis treatment method and apparatus for effectively using combustible waste, particularly rubber waste such as waste tires, as fuel and raw material.

廃タイヤ等のゴム系廃棄物や廃プラスチックなどに代表される可燃性廃棄物の処理方法は従来単純焼却や埋立てが中心であったが、循環型社会促進が近年の大きな社会的課題となっていることから、これら可燃性廃棄物の有効利用技術が求められている。可燃性廃棄物の有効利用を目的とした廃棄物処理方法としては、例えば非特許文献1、2、3に記載されているように廃棄物を熱分解炉で加熱して熱分解ガスと熱分解残渣とを生成した後、熱分解ガスを後段で冷却し熱分解ガス中に含まれるタール成分を液化して分離回収し、タール分離後の熱分解ガスは燃料ガスや化学原料ガスとして利用し、タールは燃料油等として利用し、熱分解残渣は炭素質燃料や金属原料等として利用する廃棄物熱分解法が提案されている。廃棄物熱分解法の熱分解炉の方式にはロータリーキルン熱分解炉に代表される外熱式熱分解法、流動床熱分解炉や移動床熱分解炉等などに代表される部分燃焼式熱分解法など一般的な方式が適用可能であるが、高カロリーガス回収を目的とする場合には燃焼空気導入による熱分解ガス部分燃焼や流動化ガス導入に伴う熱分解ガス希釈がない外熱式熱分解法が特に適した方式である。熱分解温度は廃棄物の種類によって異なるがゴム系廃棄物やプラスチック系廃棄物では通常500〜700℃程度である。   Conventional methods for treating combustible waste such as rubber waste such as waste tires and plastics have been mainly incineration or landfill, but promotion of a recycling-oriented society has become a major social issue in recent years. Therefore, effective utilization technology of these combustible wastes is required. As a waste processing method for the purpose of effective use of combustible waste, for example, as described in Non-Patent Documents 1, 2, and 3, the waste is heated in a pyrolysis furnace to generate pyrolysis gas and pyrolysis. After generating the residue, the pyrolysis gas is cooled in the latter stage, and the tar component contained in the pyrolysis gas is liquefied and separated and recovered, and the pyrolysis gas after tar separation is used as fuel gas or chemical raw material gas, A waste pyrolysis method has been proposed in which tar is used as fuel oil and the like, and pyrolysis residue is used as carbonaceous fuel or metal raw material. The pyrolysis furnace of the waste pyrolysis method includes an external heating pyrolysis method represented by a rotary kiln pyrolysis furnace, a partial combustion pyrolysis represented by a fluidized bed pyrolysis furnace, a moving bed pyrolysis furnace, etc. However, when recovering high-calorie gas, it is possible to apply externally-heated heat that does not involve the partial decomposition of pyrolysis gas by introducing combustion air or dilution of pyrolysis gas by introducing fluidized gas. The decomposition method is a particularly suitable method. The thermal decomposition temperature varies depending on the type of waste, but is usually about 500 to 700 ° C. for rubber waste and plastic waste.

「日本ゴム協会誌」第59巻、第10号、P565-567(1986)、565頁、図1Japan Rubber Association Journal, Vol. 59, No. 10, P565-567 (1986), page 565, Fig. 1 「リサイクル技術研究発表会講演論文集」6th、P89-92(1998)、92頁、図4"Recycling Technology Research Presentation Proceedings" 6th, P89-92 (1998), p. 92, Fig. 4 「セメント製造技術シンポジウム報告集」No.57 、P90-P97 (2000)、91頁、Fig.1"Cement Manufacturing Technology Symposium" No.57, P90-P97 (2000), p.91, Fig.1 特開2003-139314公報JP2003-139314 特開平11-344213公報JP-A-11-344213

しかしながらロータリーキルン熱分解炉に代表される既存の外熱式熱分解炉を用いた廃棄物熱分解方法の抱える課題として、廃棄物の供給速度や粒度等の処理条件が変化した場合に、熱分解炉内での熱分解進行度が変化して熱分解炉出口の熱分解生成物の収率や性状が変動することが挙げられる。   However, as a problem with waste pyrolysis methods using existing external thermal pyrolysis furnaces, such as rotary kiln pyrolysis furnaces, when the processing conditions such as waste feed rate and particle size change, the pyrolysis furnace It is mentioned that the degree of progress of pyrolysis in the interior changes and the yield and properties of the pyrolysis product at the outlet of the pyrolysis furnace vary.

そこで廃棄物の熱分解進行度を検知する方法として例えば特許文献1に記載されているように熱分解炉出口配管内で熱分解ガス温度を測定し、熱分解ガス温度に応じて熱分解炉の加熱量を調整する方法や、特許文献2に記載されているように熱分解炉内の特定箇所で熱分解残渣温度を測定し、熱分解残渣温度に応じて熱分解炉への廃棄物供給量を調整する方法が提案されている。しかしながら特許文献1の方法の抱える問題点として、炉出口の熱分解ガス温度が同じでも出口温度条件に至るまでの炉内温度履歴や炉出口温度条件下での滞留時間が異なる場合、例えば昇温速度が速くて炉出口温度条件での滞留時間が長くなる場合と昇温速度が遅くて炉出口温度条件での滞留時間が短くなる場合等には炉内での熱分解進行度、即ち炉内での廃棄物中揮発分(VM)のガス化反応進行度や発生した熱分解ガスの2次分解反応、重縮合反応の進行度等に差が生じるため、炉出口ガス温度のみを測定しても廃棄物の熱分解進行度を把握することが難しい点が挙げられる。一方、特許文献2の方法の抱える問題点として、炉内に局所的な温度分布がある場合の熱分解進行度の検知が難しいことが挙げられる。例えば通常のロータリーキルン熱分解炉は炉内への侵入空気を完全に遮断することができないため、キルン回転体シール部や廃棄物供給部等から空気が侵入して熱分解ガスの一部が炉内燃焼して炉内にヒートスポット等の局所的な温度分布が形成されやすく、侵入空気量条件の変動が生じるとヒートスポット等の局所的な温度分布状況の変動に伴い炉内の熱分解進行度が変化する。しかしながら、炉内の特定箇所で熱分解残渣温度を測定する特許文献2の方法では前述の侵入空気量条件の変動による熱分解進行度変化を検知することが困難である。さらに特許文献2の方法の抱える別の問題点として、ワイヤー類による炉内閉塞を生じやすい廃タイヤ等の廃棄物へ適用した場合、熱分解残渣温度測定のために炉内に挿入した熱電対にワイヤー類がからみついて熱分解残渣の排出安定性が悪化する点が挙げられる。   Therefore, as a method for detecting the degree of progress of the thermal decomposition of waste, for example, as described in Patent Document 1, the pyrolysis gas temperature is measured in the pyrolysis furnace outlet pipe, and the pyrolysis furnace temperature is determined according to the pyrolysis gas temperature. A method for adjusting the amount of heating and a temperature of pyrolysis residue measured at a specific location in the pyrolysis furnace as described in Patent Document 2, and the amount of waste supplied to the pyrolysis furnace according to the pyrolysis residue temperature A method of adjusting is proposed. However, the problem of the method of Patent Document 1 is that, even if the pyrolysis gas temperature at the furnace outlet is the same, when the furnace temperature history and the residence time under the furnace outlet temperature condition are different until reaching the outlet temperature condition, When the speed is high and the residence time under the furnace outlet temperature condition is long, or when the temperature rise rate is slow and the residence time under the furnace outlet temperature condition is short, the degree of thermal decomposition in the furnace, that is, the inside of the furnace Because there is a difference in the progress of gasification reaction of volatile matter (VM) in waste, the secondary decomposition reaction of generated pyrolysis gas, the progress of polycondensation reaction, etc., measure only the furnace outlet gas temperature. However, it is difficult to grasp the degree of thermal decomposition of waste. On the other hand, the problem of the method of Patent Document 2 is that it is difficult to detect the degree of thermal decomposition when there is a local temperature distribution in the furnace. For example, a normal rotary kiln pyrolysis furnace cannot completely block air entering the furnace, so air enters from the kiln rotor seal part, waste supply part, etc., and part of the pyrolysis gas enters the furnace. When a local temperature distribution such as a heat spot is likely to be formed in the furnace due to combustion, and the fluctuation of the intrusion air amount condition occurs, the degree of thermal decomposition progress in the furnace accompanying the fluctuation of the local temperature distribution condition such as the heat spot Changes. However, it is difficult for the method of Patent Document 2 that measures the pyrolysis residue temperature at a specific location in the furnace to detect a change in the degree of progress of pyrolysis due to the variation in the intrusion air amount condition described above. Furthermore, as another problem that the method of Patent Document 2 has, when applied to waste such as waste tires that are prone to blockage in the furnace due to wires, a thermocouple inserted in the furnace for measuring the pyrolysis residue temperature is used. The point which wires get entangled and the discharge stability of a thermal decomposition residue deteriorates is mentioned.

そこで本発明は従来の方法では困難であった外熱式熱分解炉内の熱分解進行度を簡便に検知することが可能な方法及び装置を提供し、更には、狙いのガス収率、油収率を達成可能な廃棄物の熱分解方法及び装置を提供することを目的とする。   Therefore, the present invention provides a method and an apparatus capable of easily detecting the degree of progress of pyrolysis in an external heating type pyrolysis furnace, which has been difficult with the conventional method, and further provides a target gas yield, oil It is an object of the present invention to provide a waste pyrolysis method and apparatus capable of achieving a yield.

係る課題を解決するため、本発明の要旨とするところは以下(1)〜(5)に示す通りである。
(1)第1の発明は、ゴム系廃棄物を外熱式熱分解炉に供給して熱分解し、タール成分を含有する熱分解ガスを生成し、当該熱分解ガスからタールを分離して、分離後のタールおよび熱分解ガスとする熱分解方法における廃棄物の熱分解進行度の検知方法であって、前記分離後の熱分解ガスの流量、前記分離後の熱分解ガスに含まれるCH4ガス濃度、及び前記廃棄物の供給流量を測定し、当該測定した熱分解ガスの流量、熱分解ガス中のCH 4 ガス濃度、及び、廃棄物の供給流量から、廃棄物投入量当たりのCH 4 ガス発生量であるCH4ガス発生原単位を算出し、当該算出したCH4ガス発生原単位をモニタリングして、その変動によって、前記熱分解炉内での熱分解進行度を検知することを特徴とする廃棄物の熱分解進行度の検知方法である。
(2)第2の発明は、ゴム系廃棄物を外熱式熱分解炉に供給して熱分解し、タール成分を含有する熱分解ガスを生成し、当該熱分解ガスからタールを分離して、分離後のタールおよび熱分解ガスとする熱分解方法であって、前記分離後の熱分解ガスの流量と、前記分離後の熱分解ガスに含まれるCH4ガス濃度と、前記廃棄物の供給流量とを測定し、当該測定した熱分解ガスの流量、熱分解ガス中のCH 4 ガス濃度、及び、廃棄物の供給流量から、廃棄物投入量当たりのCH 4 ガス発生量であるCH4ガス発生原単位を算出し、予め調査したCH 4 ガス発生原単位と分離後の熱分解ガス収率の関係に基づいて、前記分離後の熱分解ガス収率が狙いの範囲になるようなCH 4 ガス発生原単位の範囲を求め、又は、予め調査したCH 4 ガス発生量と分離後のタール収率の関係に基づいて、前記分離後のタール収率が狙いの範囲になるようなCH 4 ガス発生原単位の範囲を求め、前記熱分解炉の外熱温度、前記熱分解炉内の廃棄物移動速度、又は、前記熱分解炉への廃棄物供給速度を調整して、前記算出したCH 4 ガス発生原単位が前記求めたCH 4 ガス発生原単位の範囲になるように制御することを特徴とする廃棄物の熱分解方法である。
(3)第3の発明は、前記廃棄物が廃タイヤであることを特徴とする前記(2)記載の廃棄物の熱分解方法である。
(4)第4の発明は、ゴム系廃棄物の熱分解進行度の検知装置であって、廃棄物供給速度測定装置と、廃棄物供給装置と、外熱式熱分解炉と、当該外熱式熱分解炉にて生成したタール成分を含有する熱分解ガスからタールを分離するタール分離装置と、当該タール分離装置でタール分離後の熱分解ガスの流量測定装置と、前記タール分離後の熱分解ガス中のCH4ガスの濃度測定装置と、前記各測定装置にて測定された廃棄物供給速度、熱分解ガス流量、及び熱分解ガス中のCH4ガス濃度の各測定値を取り込んで廃棄物投入量当たりのCH 4 ガス発生量であるCH4ガス発生原単位を算出するCH4ガス発生原単位演算装置と、を有することを特徴とする廃棄物の熱分解進行度の検知装置である。
(5)第5の発明は、ゴム系廃棄物の熱分解装置であって、廃棄物供給速度測定装置と、廃棄物供給速度を調整可能な廃棄物供給装置と、外熱温度及び廃棄物移動速度を調整可能な外熱式熱分解炉と、当該外熱式熱分解炉にて生成したタール成分を含有する熱分解ガスからタールを分離するタール分離装置と、当該タール分離装置でタール分離後の熱分解ガスの流量測定装置と、前記タール分離後の熱分解ガス中のCH4ガスの濃度測定装置と、前記各測定装置にて測定された廃棄物供給速度、熱分解ガス流量、及び熱分解ガス中のCH4ガス濃度の各測定値を取り込んで廃棄物投入量当たりのCH 4 ガス発生量であるCH4ガス発生原単位を算出するCH4ガス発生原単位演算装置と、当該算出したCH4ガス発生原単位が、予め定めたCH4ガス発生原単位の範囲となるように、前記廃棄物供給速度、前記外熱温度、又は前記廃棄物移動速度の少なくともいずれかを制御する操業条件制御装置と、を有することを特徴とする廃棄物の熱分解装置である。
In order to solve the problem, the gist of the present invention is as follows (1) to (5).
(1) In the first invention, a rubber waste is supplied to an external heating type pyrolysis furnace and pyrolyzed to generate a pyrolysis gas containing a tar component, and tar is separated from the pyrolysis gas. , A method for detecting the degree of thermal decomposition of waste in a thermal decomposition method using tar and pyrolysis gas after separation , the flow rate of the pyrolysis gas after separation, and the CH contained in the pyrolysis gas after separation 4 Measure the gas concentration and the supply flow rate of the waste. From the measured pyrolysis gas flow rate, CH 4 gas concentration in the pyrolysis gas , and the waste supply flow rate, the CH per waste input amount 4 Calculate the CH 4 gas generation unit, which is the amount of gas generated , monitor the calculated CH 4 gas generation unit , and detect the degree of thermal decomposition in the pyrolysis furnace based on the fluctuation. This is a characteristic method for detecting the degree of thermal decomposition of waste. The
(2) In the second invention, the rubber waste is supplied to an external heating type pyrolysis furnace and pyrolyzed to generate a pyrolysis gas containing a tar component, and the tar is separated from the pyrolysis gas. , A pyrolysis method using tar and pyrolysis gas after separation , the flow rate of pyrolysis gas after separation , the CH 4 gas concentration contained in the pyrolysis gas after separation , and the supply of waste a flow rate measurement, the flow rate of the measured pyrolysis gas, CH 4 gas concentration of the pyrolysis gases, and, CH 4 gas from the supply flow rate of the waste, a CH 4 gas emission per waste input amount calculating an occurrence intensity, CH 4 based on the relationship between the pyrolysis gas yield after separation gas generating intensity, the pyrolysis gas yield after separation as is in the range of aim CH 4 was investigated in advance determined the range of the gas generating intensity or amount in advance investigated CH 4 gas generation amount Based on the relationship of the tar yield after, the tar yield after separation sought range of CH 4 gas generating intensity such that the range of aim, external heat temperature of the pyrolysis furnace, wherein the pyrolysis furnace waste moving speed of the inner, or, by adjusting the waste feed rate to the pyrolysis furnace, so that the calculated CH 4 gas generation intensity is in the range of CH 4 gas generation intensity obtained the control This is a method for thermally decomposing waste.
(3) A third invention is the waste pyrolysis method according to (2), wherein the waste is a waste tire .
(4) The fourth invention is a device for detecting the degree of thermal decomposition of rubber-based waste, which is a waste supply rate measuring device, a waste supply device, an external thermal pyrolysis furnace, and the external heat A tar separation device for separating tar from a pyrolysis gas containing a tar component generated in a pyrolysis furnace, a flow measurement device for pyrolysis gas after tar separation by the tar separation device, and heat after the tar separation The CH 4 gas concentration measurement device in cracked gas, and the waste supply rate, pyrolysis gas flow rate, and CH 4 gas concentration in pyrolysis gas measured by each measurement device are taken and discarded. is thermal decomposition degree of progress of the detection device of waste, comprising a, a CH 4 gas generation intensity calculation unit for calculating a CH 4 gas generation intensity is CH 4 gas emission per object input amount .
(5) A fifth invention is a thermal decomposition apparatus for rubber waste, a waste supply speed measuring apparatus, a waste supply apparatus capable of adjusting a waste supply speed, an external heat temperature and waste movement External heat pyrolysis furnace with adjustable speed, tar separator for separating tar from pyrolysis gas containing tar components generated in the external heat pyrolysis furnace, and after tar separation with the tar separator a flow measuring device of the thermal decomposition gas, the tar CH 4 gas pyrolysis in the gas after separation and concentration measuring device, waste feed rate the measured at each measuring apparatus, pyrolysis gas flow, and heat and CH 4 gas generation intensity calculation unit for calculating a CH 4 gas generation intensity is CH 4 gas emission per waste input amount takes in the measured values of the CH 4 gas concentration in the cracked gas was the calculated CH 4 gas generation intensity is, CH 4 a predetermined An operation condition control device for controlling at least one of the waste supply speed, the external heat temperature, and the waste movement speed so as to be within the range of the generation unit of waste. Is a thermal decomposition apparatus.

尚、本発明で言うところの「熱分解ガス」とは、外熱式熱分解炉から出た直後のガスだけでなく、後工程での各種ガス処理後のガス、例えば、タール成分を分離した後のタール分解後ガスや、H2SやHClを除去してガス精製した後の精製ガス、を含むものである。 The “pyrolysis gas” as used in the present invention refers to not only the gas immediately after coming out of the external heat pyrolysis furnace, but also the gas after various gas treatments in the post-process, for example, tar components are separated. It includes a gas after tar decomposition after that, and a purified gas after gas purification by removing H 2 S and HCl.

本発明により従来の方法では困難であった外熱式熱分解炉内の熱分解進行度を簡便に検知でき、更には、狙いのガス収率、油収率を達成できる廃棄物熱分解処理が可能となる。   According to the present invention, it is possible to easily detect the degree of progress of pyrolysis in an external thermal pyrolysis furnace, which has been difficult with the conventional method, and further, it is possible to perform a waste pyrolysis process that can achieve a target gas yield and oil yield. It becomes possible.

本発明者らは外熱式の熱分解炉を用いた可燃性廃棄物、特にゴム系廃棄物の熱分解特性および熱分解進行度検知方法について鋭意検討した結果、ゴム系廃棄物の熱分解で生成するタール成分は主に脂肪族側鎖を有する芳香族炭化水素類から構成されていること、外熱式熱分解炉は部分燃焼式熱分解炉に比べ炉内滞留時間が長いために500〜700℃程度の低温条件下でも廃棄物熱分解で生成したタール成分の2次分解反応が進行しやすいこと、タール成分の2次分解に伴い芳香族炭化水素類の脂肪族側鎖の脱離反応が生じてCH4ガスが生成し、CH4ガス生成量はタール成分の2次分解の進行度に応じて変化することを見出し、廃棄物単位処理量あたりのCH4ガス発生量を測定して熱分解炉内熱分解進行度の検知や制御に利用する本方法を発明した。 As a result of intensive investigations on the pyrolysis characteristics and the pyrolysis progress detection method of combustible waste, particularly rubber waste, using an external heat type pyrolysis furnace, the present inventors have The generated tar component is mainly composed of aromatic hydrocarbons having an aliphatic side chain, and the external heat type pyrolysis furnace has a longer residence time in the furnace than the partial combustion type pyrolysis furnace. The secondary decomposition reaction of tar components generated by waste pyrolysis tends to proceed even under low temperature conditions of around 700 ° C, and the elimination of the aliphatic side chains of aromatic hydrocarbons accompanying secondary decomposition of tar components And CH 4 gas is produced, and the amount of CH 4 gas produced varies depending on the degree of progress of the secondary decomposition of the tar component, and the amount of CH 4 gas generated per unit amount of waste is measured. This method is used to detect and control the degree of pyrolysis in the pyrolysis furnace. Invented.

図1は本発明の廃棄物の熱分解進行度の検出方法及び装置、並びに廃棄物の熱分解方法及び装置を実施するための設備例を示すブロック図である。廃棄物1は破砕装置17で破砕後、廃棄物供給速度測定装置14を経て廃棄物供給装置2を用いて外熱式熱分解炉3内に装入する。廃棄物供給速度測定装置14は、廃棄物供給装置2に内蔵されていても構わない。外熱式熱分解炉3の方式としては外熱式であれば特に限定するところはなく、最も広く用いられているロータリーキルン熱分解炉の他、プッシャー式熱分解炉など既存の外熱炉が使用可能である。廃棄物供給速度測定方法としては例えばロードセル式秤量機をはじめとした既存の廃棄物供給速度測定方法が適用可能である。   FIG. 1 is a block diagram showing an example of equipment for carrying out the method and apparatus for detecting the degree of progress of thermal decomposition of waste and the method and apparatus for thermal decomposition of waste according to the present invention. The waste 1 is crushed by the crushing device 17, and then charged into the external heat pyrolysis furnace 3 using the waste supply device 2 through the waste supply speed measuring device 14. The waste supply speed measuring device 14 may be built in the waste supply device 2. There is no particular limitation on the method of the external heat type pyrolysis furnace 3 as long as it is an external heat type, and an existing external heat furnace such as a pusher type pyrolysis furnace is used in addition to the most widely used rotary kiln pyrolysis furnace. Is possible. As a waste supply rate measuring method, for example, an existing waste supply rate measuring method such as a load cell type weighing machine can be applied.

外熱式熱分解炉3内は加熱炉12により廃棄物の熱分解温度以上に加熱され、熱分解ガス(生成直後)6と熱分解残渣7とを生成する。熱分解ガス(生成直後)6はタール分離装置4で冷却しタール成分8を分離回収した後、タール分離後ガス9はガス精製装置5へ導入してH2S やHCl等の有害ガス成分およびダスト類、ミスト類を除去し精製ガス10を回収する。精製ガス10の一部はCH4ガス分析装置11へ導入され、CH4ガス濃度を測定する。さらに熱分解ガス流量測定装置15により精製ガス流量を測定する。測定したCH4ガス濃度、精製ガス流量、廃棄物供給速度からCH4発生原単位を算出する。CH4ガス濃度測定方法としては例えばガスクロマトグラフ分析法や赤外線吸収式ガス分析法など既存のガス分析法が適用可能である。精製ガス流量測定方法としては例えばオリフィス式流量計をはじめとした既存のガス流量測定法が適用可能であるほか、熱分解ガスと反応しないHeガス等の不活性ガスを熱分解ガス中にトレーサーガスとして連続的に少量定量添加し、熱分解ガス中のトレーサーガス濃度を測定してガス流量を算定しても良い。 The inside of the external heat type pyrolysis furnace 3 is heated to a temperature equal to or higher than the thermal decomposition temperature of the waste by the heating furnace 12 to generate a pyrolysis gas (immediately after generation) 6 and a pyrolysis residue 7. The pyrolysis gas (immediately after generation) 6 is cooled by the tar separation device 4 to separate and recover the tar component 8 and then the tar separation gas 9 is introduced into the gas purification device 5 to introduce harmful gas components such as H 2 S and HCl and Dusts and mists are removed and the purified gas 10 is recovered. A part of the purified gas 10 is introduced into the CH 4 gas analyzer 11 to measure the CH 4 gas concentration. Further, the purified gas flow rate measuring device 15 measures the purified gas flow rate. The CH 4 generation unit is calculated from the measured CH 4 gas concentration, purified gas flow rate, and waste supply rate. As the CH 4 gas concentration measurement method, for example, an existing gas analysis method such as a gas chromatograph analysis method or an infrared absorption gas analysis method can be applied. As a method for measuring the flow rate of the purified gas, for example, an existing gas flow rate measurement method such as an orifice type flow meter can be applied, and an inert gas such as He gas that does not react with the pyrolysis gas is tracer gas in the pyrolysis gas. The gas flow rate may be calculated by adding a small amount continuously and measuring the tracer gas concentration in the pyrolysis gas.

得られた熱分解生成物は熱分解ガスについては燃料ガスや化学原料ガスとして利用し、タール成分は重油や軽油等の代替燃料油として利用し、熱分解残渣については炭素質燃料や金属原料等として利用する。   The obtained pyrolysis products are used as fuel gas and chemical raw material gas for pyrolysis gas, tar components are used as alternative fuel oil such as heavy oil and light oil, and carbonaceous fuel and metal raw material are used for pyrolysis residue Use as

廃棄物の供給速度変化や粒度変化などにより熱分解炉内での熱分解条件が変動した場合、熱分解ガス中タール成分の2次分解の程度が変化してCH4ガス発生量が変化するので、熱分解炉後段のCH4ガス発生原単位(廃棄物投入量当たりのCH4ガス発生量:例えば、Nm3−CH4ガス/t−廃棄物)をモニタリングすることにより炉内の熱分解進行度変化を検知できる。例えば処理量を一時的に下げた操業を行う必要が生じて熱分解炉への廃棄物供給速度を落とした場合、熱分解炉出口温度近傍における滞留時間が長くなって熱分解進行度が上昇しやすくなるが、熱分解炉後段のCH4ガス発生原単位をモニタリングすることにより熱分解進行度の上昇の程度をCH4ガス発生原単位の増加割合から簡便に検知することができる。また、例えば破砕装置17のトラブルにより破砕性能が低下して廃棄物が十分破砕されず熱分解炉内で処理する廃棄物の粒度が大きくなってしまった場合には、廃棄物昇温に要する時間が長くなり熱分解炉内での熱分解進行度が低下しやすいが、熱分解炉後段のCH4ガス発生原単位をモニタリングすることによりCH4ガス発生原単位の減少として簡便に検知することができる。 If the pyrolysis conditions in the pyrolysis furnace fluctuate due to changes in the waste supply rate or particle size, etc., the degree of secondary decomposition of tar components in the pyrolysis gas will change, and the amount of CH 4 gas generated will change. , pyrolysis furnace downstream of CH 4 gas generation intensity (CH 4 gas emission per waste charging amount: for example, Nm 3 -CH 4 gas / t-waste) pyrolysis proceeds in the furnace by monitoring the A change in degree can be detected. For example, when it becomes necessary to perform operations with a temporarily reduced throughput and the waste supply rate to the pyrolysis furnace is reduced, the residence time near the pyrolysis furnace outlet temperature becomes longer and the pyrolysis progress increases. However, by monitoring the CH 4 gas generation basic unit at the latter stage of the pyrolysis furnace, the degree of increase in the degree of thermal decomposition can be easily detected from the rate of increase of the CH 4 gas generation basic unit. Further, for example, when the crushing performance is reduced due to a trouble of the crushing device 17 and the waste is not sufficiently crushed and the particle size of the waste to be processed in the pyrolysis furnace is increased, the time required for raising the temperature of the waste However, the progress of pyrolysis in the pyrolysis furnace tends to decrease, but it can be easily detected as a decrease in the CH 4 gas generation intensity by monitoring the CH 4 gas generation intensity at the latter stage of the pyrolysis furnace. it can.

廃棄物を熱分解処理してガスや油等の熱分解生成物を製造する場合には各製品の生成量や品質が一定となるような操業を行うことが重要である。従来の熱分解方法が熱分解炉内での廃棄物の熱分解進行度の変動を検知し難いために熱分解生成物の収率や性状にばらつきが生じ易いのに対し、本発明による廃棄物の熱分解方法は熱分解炉内での廃棄物の熱分解進行度を検知できるため熱分解生成物の生成量や品質を揃えた操業が可能となる。   When producing thermal decomposition products such as gas and oil by thermally decomposing waste, it is important to carry out operations so that the production amount and quality of each product are constant. The conventional pyrolysis method is difficult to detect the fluctuation of the pyrolysis progress of the waste in the pyrolysis furnace, so the yield and properties of the pyrolysis products are likely to vary. This pyrolysis method can detect the progress of thermal decomposition of waste in the pyrolysis furnace, so that it is possible to operate with the same amount and quality of pyrolysis products.

図2〜図4に一例としてゴム系廃棄物の一種である廃タイヤを熱分解処理したときのCH4発生原単位の変化とタール収率、ガス収率、タール中重質油成分の動粘度の変化との関係を示す。炉内で熱分解が進行するとタール成分が2次分解し、芳香族炭化水素類の脂肪族側鎖の脱離反応によってCH4ガスを主としたガスが発生するため、図2〜図3に示すようにタール収率低下あるいはガス収率上昇に伴ってCH4発生原単位が上昇する。従って熱分解ガス流量、CH4ガス濃度、廃棄物供給速度を測定してCH4発生源単位を算出することによって熱分解進行度の検出が可能である。またタール成分の2次分解で芳香族炭化水素類の脂肪族側鎖が脱離する際に芳香族炭化水素類同士の重縮合反応が生じて高分子量化するため、図4に示すように熱分解の進行が進むに連れてタール中重質油成分の動粘度は高くなる。この変化をCH4発生原単位の変化から予測して品質管理に活用することが可能である。 As an example in FIGS. 2 to 4, changes in CH 4 generation unit, tar yield, gas yield, and kinematic viscosity of heavy oil components in tar when a waste tire, which is a kind of rubber waste, is pyrolyzed. The relationship with changes in As pyrolysis proceeds in the furnace, the tar component is secondarily decomposed, and a gas mainly composed of CH 4 gas is generated by the elimination reaction of the aliphatic side chains of the aromatic hydrocarbons. As shown, the CH 4 generation unit increases with a decrease in tar yield or an increase in gas yield. Therefore, it is possible to detect the degree of progress of pyrolysis by measuring the pyrolysis gas flow rate, CH 4 gas concentration, and waste supply rate to calculate the CH 4 generation source unit. In addition, when the aliphatic side chain of the aromatic hydrocarbon is eliminated by secondary decomposition of the tar component, a polycondensation reaction between the aromatic hydrocarbons occurs to increase the molecular weight. As the progress of decomposition proceeds, the kinematic viscosity of the heavy oil component in tar increases. This change can be predicted from the change in the basic unit of CH 4 generation and used for quality control.

制御の方法としては、狙いのガス収率及び油収率を安定して(所定範囲)制御するためには、CH4発生原単位が一定値、又はある一定範囲内となるように熱分解処理装置の操業条件をフィードバック制御する。この際、狙いのCH4発生原単位は、予め、図2、図3のような検量線に相当するグラフを事前試験で作成しておくことが好ましい。特に、品種変更を伴う場合は、CH4発生原単位と熱分解ガス収率・タール収率の関係が変化するため、予め検量線に相当するグラフを作成することはより望ましい。 As a control method, in order to stably control the target gas yield and oil yield (predetermined range), thermal decomposition treatment is performed so that the CH 4 generation unit is within a certain value or within a certain range. Feedback control of equipment operating conditions. At this time, CH 4 generation per unit aim is previously 2, it is preferable to create in advance test chart corresponding to the calibration curve as shown in Figure 3. In particular, in the case of changing the product type, it is more desirable to prepare a graph corresponding to the calibration curve in advance because the relationship between the CH 4 generation basic unit and the pyrolysis gas yield / tar yield changes.

また図5〜図7は第2〜第3の発明を実施するための設備例を示すブロック図である。   5 to 7 are block diagrams showing examples of equipment for carrying out the second to third inventions.

図5の例では、CH4ガス分析装置11で検出されたCH4ガス濃度信号A1および熱分解ガス流量測定装置15で検出されたガス流量信号A2および廃棄物供給量測定装置14で検出された廃棄物供給速度信号A3をCH4ガス発生原単位演算装置16に入力してCH4ガス発生原単位を算出し、所定のCH4ガス発生原単位の範囲となるように外熱式熱分解炉3へ熱分解炉外熱温度制御信号A4を送って外熱温度をフィードバック制御等して加熱量を制御する。 In the example of FIG. 5, the CH 4 gas concentration signal A 1 detected by the CH 4 gas analyzer 11, the gas flow rate signal A 2 detected by the pyrolysis gas flow rate measuring device 15, and the waste supply amount measuring device 14 are detected. the waste feed rate signal A3 is input to the CH 4 gas generation intensity calculation unit 16 calculates the CH 4 gas generating intensity, externally heated pyrolysis furnace so that a predetermined range of CH 4 gas generation intensity 3 is sent to the pyrolysis furnace outside heat temperature control signal A4, and the amount of heating is controlled by feedback control of the outside heat temperature.

図6の例ではCH4ガス分析装置11で検出されたCH4ガス濃度信号A1および熱分解ガス流量測定装置15で検出されたガス流量信号A2および廃棄物供給量測定装置14で検出された廃棄物供給速度信号A3をCH4ガス発生原単位演算装置16に入力してCH4ガス発生原単位を算出し、所定のCH4ガス発生原単位の範囲となるように熱分解炉回転速度調整装置13へ熱分解炉回転速度制御信号A5を送って熱分解炉の回転速度を制御し外熱式熱分解炉3内の廃棄物移動速度を調整する。 In the example of FIG. 6, the CH 4 gas concentration signal A 1 detected by the CH 4 gas analyzer 11, the gas flow rate signal A 2 detected by the pyrolysis gas flow rate measuring device 15, and the waste detected by the waste supply amount measuring device 14. enter the object feed velocity signal A3 to CH 4 gas generation intensity calculation unit 16 calculates the CH 4 gas generating intensity, predetermined CH 4 gas generating intensity range and so as to pyrolysis furnace rotational speed adjustment device A pyrolysis furnace rotation speed control signal A5 is sent to 13 to control the rotation speed of the pyrolysis furnace and adjust the waste movement speed in the external heating pyrolysis furnace 3.

図7の例ではCH4ガス分析装置11で検出されたCH4ガス濃度信号A1および熱分解ガス流量測定装置15で検出された熱分解ガス流量信号A2および廃棄物供給量測定装置14で検出された廃棄物供給速度信号A3をCH4ガス発生原単位演算装置16に入力してCH4ガス発生原単位を算出し、所定のCH4ガス発生原単位の範囲となるように廃棄物供給装置2へ廃棄物供給速度制御信号A6を送って外熱式熱分解炉3内への廃棄物供給速度を調整する。廃棄物供給速度制御方法としては例えば廃棄物移送コンベア等への廃棄物切出し量を増減させたり、スクリューフィーダー等の廃棄物供給装置の切出し速度を調整したりするなど一般的な廃棄物供給速度調整手段が適用可能である。 In the example of FIG. 7, the CH 4 gas concentration signal A 1 detected by the CH 4 gas analyzer 11 and the pyrolysis gas flow rate signal A 2 detected by the pyrolysis gas flow rate measuring device 15 and the waste supply amount measuring device 14 are detected. waste feed speed signal A3 is input to the CH 4 gas generation intensity calculation unit 16 calculates the CH 4 gas generating intensity, predetermined CH 4 gas generating wastes to be in the range of intensity feeder 2 A waste supply speed control signal A6 is sent to the external heat pyrolysis furnace 3 to adjust the waste supply speed. General waste supply speed adjustment methods such as increasing or decreasing the amount of waste cut out to a waste transfer conveyor or adjusting the cutting speed of a waste feeder such as a screw feeder Means are applicable.

ここで、熱分解生成物のガス収率、又はタール収率のどちらかを主体に安定化を図る場合は、上述の3つの操業条件である、外熱式熱分解炉の外熱温度、外熱式熱分解炉の回転速度(廃棄物移動速度)、又は廃棄物供給速度のどの条件を1つ又は2つ以上制御しても構わないが、ガス収率とタール収率の両方を安定化させるためには、廃棄物供給速度を減少させる制御は好ましくなく、外熱式熱分解炉の外熱温度、外熱式熱分解炉の回転速度(廃棄物移動速度)の少なくともいずれかで制御することが好ましい。又、1つの操業条件のみでは制御しきれない場合は、2つ以上を組み合わせて制御することで対応可能である。   Here, in the case of stabilizing mainly the gas yield of the pyrolysis product or the tar yield, the external heat temperature of the external thermal pyrolysis furnace, which is the above three operating conditions, You can control any one or more conditions of rotational speed (waste transfer speed) or waste feed speed of the thermal pyrolysis furnace, but stabilize both gas yield and tar yield In order to achieve this, control for reducing the waste supply rate is not preferable, and control is performed by at least one of the external heat temperature of the external thermal pyrolysis furnace and the rotational speed (waste transfer speed) of the external thermal pyrolysis furnace. It is preferable. Moreover, when it is not possible to control with only one operating condition, it can be handled by combining two or more.

尚、図5〜図7の例ではCH4ガス分析濃度測定や熱分解ガス流量測定をガス精製装置5後の精製ガスを用いて行ったが、CH4ガス発生原単位はタール分離装置およびガス精製装置を通過しても変化しないためCH4ガス分析濃度測定や熱分解ガス流量測定の位置は外熱式熱分解炉3の後段であれば特に限定するところはなく、外熱式熱分解炉3後の熱分解ガス6、タール分離装置4後のタール分離後ガス9、ガス精製装置5後の精製ガス10を適用することが可能である。 5 to 7, CH 4 gas analysis concentration measurement and pyrolysis gas flow rate measurement were performed using the purified gas after the gas purification device 5, but the CH 4 gas generation unit is a tar separation device and a gas. Since the position of CH 4 gas analysis concentration measurement and pyrolysis gas flow rate measurement is subsequent to the external heating pyrolysis furnace 3, there is no particular limitation because it does not change even after passing through the refining device. It is possible to apply a pyrolysis gas 6 after 3, a gas 9 after tar separation after the tar separation device 4, and a purification gas 10 after the gas purification device 5.

図5に示した本発明を用いて、ゴム系廃棄物である廃タイヤを処理規模100t/日で熱分解処理した例を示す。熱分解炉は外熱式ロータリーキルンを用い、加熱炉はLNG焚き熱風発生炉を用い、タール分離装置は直接冷却式のクウェンチングタワーおよび間接冷却式のコンデンサ−を用い、ガス精製装置は湿式脱硫装置および湿式電気集塵機を用い、CH4ガス分析装置にはオートサンプラーを備えた熱伝導度検出器式のガスクロマトグラフ分析計を用い、熱分解ガス流量測定には熱分解ガス中にHeガスをトレーガスとして0.25Nm3/hrマスフローコントローラを用いて定量供給し、熱分解ガス中He濃度をオートサンプラーを備えた熱伝導度検出器式のガスクロマトグラフ分析計を用いて測定した。各熱分解生成物の収率目標値はガス収率20±2質量%、タール収率32±2質量%とした。廃棄物は熱分解炉に装入されて熱分解ガス(生成直後)と熱分解残渣を生成し、熱分解ガスをクウェンチングタワーで冷却してタール中の重質油成分を分離回収した後コンデンサ−で冷却して軽質油成分を分離回収し、タール分離後ガスをガス精製装置で処理してH2Sを10ppm以下まで除去すると共にダスト類、ミスト類を除去して精製ガスを得た。廃棄物供給速度はロードセル式秤量機を用いて測定した。CH4濃度は精製ガスの一部を10分間周期でサンプリングしガスクロマトグラフ分析計へ導入して測定した。熱分解ガス流量は精製ガスの一部を10分間周期でサンプリングしてガスクロマトグラフ分析計へ導入してHe濃度を測定し、得られたHe濃度分析値より算出した。廃棄物供給速度、CH4濃度、熱分解ガス流量データをCH4ガス発生原単位演算装置に取り込みCH4ガス発生原単位を算出した。得られたCH4ガス発生原単位信号を加熱炉に送信し、CH4発生原単位が55〜75Nm3/tの範囲となるように加熱炉温度を制御し、CH4発生原単位が上昇したら加熱炉温度を下げ、CH4発生原単位が低下したら加熱炉温度を上げる運転を行った。CH4原単位目標値は試運転時に予めCH4発生量とガス収率および油収率の関係を調査し前述の範囲に選定した。 An example in which a waste tire, which is a rubber waste, is pyrolyzed at a treatment scale of 100 t / day using the present invention shown in FIG. The pyrolysis furnace uses an externally heated rotary kiln, the heating furnace uses an LNG-fired hot air generator, the tar separator uses a direct cooling type quenching tower and an indirect cooling type condenser, and the gas purification unit uses wet desulfurization. Equipment and wet electrostatic precipitator, CH 4 gas analyzer uses thermal conductivity detector type gas chromatograph analyzer equipped with auto sampler, and pyrolysis gas flow rate measurement uses He gas in the pyrolysis gas as a tray gas As a fixed amount using a 0.25 Nm 3 / hr mass flow controller, and the He concentration in the pyrolysis gas was measured using a thermal conductivity detector type gas chromatograph analyzer equipped with an autosampler. The target yield of each pyrolysis product was set to a gas yield of 20 ± 2% by mass and a tar yield of 32 ± 2% by mass. Waste is charged into a pyrolysis furnace to produce pyrolysis gas (immediately after generation) and pyrolysis residue, and the pyrolysis gas is cooled in a quenching tower to separate and recover heavy oil components in tar. Light oil components were separated and recovered by cooling with a condenser. After tar separation, the gas was treated with a gas purifier to remove H 2 S to 10 ppm or less, and dust and mist were removed to obtain a purified gas. . The waste supply rate was measured using a load cell type weighing machine. The CH 4 concentration was measured by sampling a part of the purified gas at a cycle of 10 minutes and introducing it into a gas chromatograph analyzer. The pyrolysis gas flow rate was calculated from the obtained He concentration analysis value by sampling a part of the purified gas at a period of 10 minutes and introducing it into a gas chromatograph analyzer to measure the He concentration. The waste supply rate, CH 4 concentration, and pyrolysis gas flow rate data were loaded into a CH 4 gas generation unit calculation device to calculate the CH 4 gas generation unit. After the resulting CH 4 gas generating intensity signals transmitted to the heating furnace to control the furnace temperature to CH 4 generation per unit is in the range of 55~75Nm 3 / t, CH 4 generation per unit rises When the heating furnace temperature was lowered and the CH 4 generation unit decreased, an operation was carried out to raise the heating furnace temperature. The CH 4 basic unit target value was selected in the above-mentioned range by investigating the relationship between the CH 4 generation amount, gas yield, and oil yield in advance during trial operation.

表1に示すように、得られた熱分解生成物は精製ガス19〜21t/日、タール31〜33t/日、熱分解残渣46〜48t/日、ダスト約1t/日となり、生成物収率が目標値の範囲内となる操業ができた。タールは重質油約15〜16t/日、軽質油約16〜17t/日として夫々回収し、重質油は発熱量約1万kcal/kgで1ヶ月間の期間内で評価した50℃での動粘度は7〜15cStの範囲であり、A重油代替として有効利用することができた。軽質油は発熱量約1万kcal/kgで軽油代替として有効利用することができた。精製ガスは発熱量約1万kcal/Nm3でありLNG代替として有効利用することができた。熱分解残渣はワイヤー類起因の金属約15t/日を製鉄原料として、カーボン約31〜33t/日を微粉炭燃料代替としてそれぞれ有効利用することができた。またダスト約1t/日は主成分カーボンであり微粉炭燃料代替として有効利用できた。 As shown in Table 1, the obtained pyrolysis products were purified gas 19 to 21 t / day, tar 31 to 33 t / day, pyrolysis residue 46 to 48 t / day, dust about 1 t / day, and product yield. Was able to operate within the target value range. Tar is recovered as heavy oil about 15-16 t / day and light oil about 16-17 t / day, respectively. Heavy oil is calorific value is about 10,000 kcal / kg and evaluated at 50 ° C within one month. The kinematic viscosity was in the range of 7 to 15 cSt and could be effectively used as a substitute for A heavy oil. Light oil can be effectively used as a light oil substitute with a calorific value of about 10,000 kcal / kg. The purified gas has a calorific value of about 10,000 kcal / Nm 3 and could be used effectively as an alternative to LNG. The pyrolysis residue was able to effectively use about 15 tons / day of metal derived from wires as an iron-making raw material and about 31 to 33 tons / day of carbon as an alternative to pulverized coal fuel. Moreover, about 1 t / day of dust is the main component carbon, which can be effectively used as a pulverized coal fuel substitute.

このように、実施例では、CH4ガス発生原単位を算出して、廃棄物の熱分解進行度の変動を検知し、更に、CH4ガス発生原単位を所定の範囲となるように制御しているため、熱分解生成物の収率や性状を安定化することができた。
(比較例)
比較例として、熱分解炉出口の配管内でガス温度を測定しガス温度に応じて熱分解炉の加熱量を調整する従来の熱分解進行度の検知および制御方法を用い、その他条件は実施例と同一条件とし、実施例と同じ廃タイヤを同一処理量100t/日で処理した。比較例の方法は表1に示すように実施例に比べて各熱分解生成物の収率の変動が大きく、各熱分解生成物製品の生成量管理性能が低い結果となった。また得られた重質油の50℃での動粘度は1ヶ月間の期間内で評価したところ10〜50cStの範囲にばらつき、A重油のJIS規格K2205に適合した品質の重質油(50℃での動粘度20cSt以下)を安定的に製造することが困難であった。重質油の元素分析を実施したところ動粘度が高い重質油はC/H比が上昇しており、従来の方法では熱分解進行度の差を検知できないために過乾留が生じやすく、熱分解ガス中タール分の炉内2次分解進行に伴ってタール成分を構成している芳香族炭化水素の重縮合が進行し動粘度の上昇を招いていることがわかった。
As described above, in the embodiment, the CH 4 gas generation unit is calculated, the change in the thermal decomposition progress of the waste is detected, and the CH 4 gas generation unit is controlled to be within a predetermined range. Therefore, the yield and properties of the thermal decomposition product could be stabilized.
(Comparative example)
As a comparative example, a conventional pyrolysis progress detection and control method that measures the gas temperature in the piping of the pyrolysis furnace outlet and adjusts the heating amount of the pyrolysis furnace according to the gas temperature is used. The same waste tire as in the example was processed at the same processing amount of 100 t / day. As shown in Table 1, the method of the comparative example had a large variation in the yield of each pyrolysis product as compared with the examples, and the production amount management performance of each pyrolysis product was low. Further, the kinematic viscosity at 50 ° C. of the obtained heavy oil was evaluated within a period of 1 month. As a result, it varied within the range of 10 to 50 cSt, and heavy oil having a quality conforming to JIS standard K2205 of heavy oil A (50 ° C. It was difficult to stably produce a kinematic viscosity at 20 cSt or less). As a result of elemental analysis of heavy oil, heavy oil with high kinematic viscosity has an increased C / H ratio, and the conventional method cannot detect the difference in the degree of thermal decomposition, so that overdrying tends to occur. It was found that the polycondensation of aromatic hydrocarbons constituting the tar component proceeded with the progress of secondary decomposition of the tar in the cracked gas in the furnace, leading to an increase in kinematic viscosity.

熱分解炉出口ガス温度のみで管理する比較例の方法では、侵入空気量変動によるヒートスポット等の炉内の局所的な温度分布状況の変化や、熱分解炉内に装入される廃棄物の形状、水分濃度等の原料条件ばらつきによる熱分解炉内での温度履歴や炉出口温度条件下での滞留時間変化等に起因する熱分解進行度の変動を検知できないため、熱分解生成物の収率や性状の安定性が実施例に比べ低い結果となった。   In the method of the comparative example managed only by the pyrolysis furnace outlet gas temperature, changes in local temperature distribution conditions in the furnace such as heat spots due to fluctuations in the amount of intrusion air, and the waste charged in the pyrolysis furnace It is impossible to detect changes in the degree of thermal decomposition due to temperature history in the pyrolysis furnace due to variations in raw material conditions such as shape and moisture concentration, and changes in residence time under furnace outlet temperature conditions. The rate and stability of properties were lower than in the examples.

Figure 0004942980
Figure 0004942980

本発明に係る装置の設備例を示すブロック図である。It is a block diagram which shows the installation example of the apparatus which concerns on this invention. ゴム系廃棄物熱分解時のタール収率とCH4発生原単位の関係例を示す図である。Is a diagram illustrating an example of the relationship between the tar yield and CH 4 generation per unit of time of the rubber waste pyrolysis. ゴム系廃棄物熱分解時のガス収率とCH4発生原単位の関係例を示す図である。Is a diagram illustrating an example of the relationship between the gas yield and CH 4 generation per unit of time of the rubber waste pyrolysis. ゴム系廃棄物熱分解時のタール中重質油成分の動粘度とCH4発生原単位の関係例を示す図である。Is a diagram illustrating an example of the relationship between the kinematic viscosity and the CH 4 generation per unit tar Medium Heavy Shitsuyu components during rubber waste pyrolysis. 本発明に係る装置の別の設備例を示すブロック図である。It is a block diagram which shows another example of an installation of the apparatus which concerns on this invention. 本発明に係る装置の別の設備例を示すブロック図である。It is a block diagram which shows another example of an installation of the apparatus which concerns on this invention. 本発明に係る装置の別の設備例を示すブロック図である。It is a block diagram which shows another example of an installation of the apparatus which concerns on this invention.

符号の説明Explanation of symbols

1 廃棄物
2 廃棄物供給装置
3 外熱式熱分解炉
4 タール分離装置
5 ガス精製装置
6 熱分解ガス(生成直後)
7 熱分解残渣
8 タール成分
9 タール分離後ガス
10 精製ガス
11 CH4ガス分析装置
12 加熱炉
13 熱分解炉回転速度調整装置
14 廃棄物供給速度測定装置
15 熱分解ガス流量測定装置
16 CH4ガス発生原単位演算装置
17 破砕装置
A1 CH4ガス濃度信号
A2 熱分解ガス流量信号
A3 廃棄物供給速度信号
A4 熱分解炉外熱温度制御信号
A5 熱分解炉回転速度制御信号
A6 廃棄物供給速度制御信号
DESCRIPTION OF SYMBOLS 1 Waste 2 Waste supply device 3 External-heat-type pyrolysis furnace 4 Tar separation device 5 Gas purification device 6 Pyrolysis gas (immediately after production)
7 Pyrolysis residue 8 Tar component 9 Gas after tar separation 10 Purified gas 11 CH 4 gas analyzer 12 Heating furnace 13 Pyrolysis furnace rotation speed adjusting device 14 Waste supply rate measuring device 15 Pyrolysis gas flow rate measuring device 16 CH 4 gas generating intensity calculation device 17 crushing apparatus A1 CH 4 gas concentration signal A2 pyrolysis gas flow signal A3 waste feed rate signal A4 pyrolysis furnace externally heated temperature control signal A5 pyrolysis furnace rotational speed control signal A6 waste feed rate control signal

Claims (5)

ゴム系廃棄物を外熱式熱分解炉に供給して熱分解し、タール成分を含有する熱分解ガスを生成し、当該熱分解ガスからタールを分離して、分離後のタールおよび熱分解ガスとする熱分解方法における廃棄物の熱分解進行度の検知方法であって、
前記分離後の熱分解ガスの流量、前記分離後の熱分解ガスに含まれるCH4ガス濃度、及び前記廃棄物の供給流量を測定し、当該測定した熱分解ガスの流量、熱分解ガス中のCH 4 ガス濃度、及び、廃棄物の供給流量から、廃棄物投入量当たりのCH 4 ガス発生量であるCH4ガス発生原単位を算出し、当該算出したCH4ガス発生原単位をモニタリングして、その変動によって、前記熱分解炉内での熱分解進行度を検知することを特徴とする廃棄物の熱分解進行度の検知方法。
The rubber waste is supplied to an external thermal pyrolysis furnace and pyrolyzed to generate a pyrolysis gas containing a tar component. The tar is separated from the pyrolysis gas, and the tar and pyrolysis gas after separation are separated. A method for detecting the degree of thermal decomposition of waste in the thermal decomposition method,
The flow rate of the pyrolysis gas after the separation, CH 4 gas concentration contained in the pyrolysis gas after the separation, and to measure the flow rate of the waste pyrolysis gas the measured flow rate, during pyrolysis gas CH 4 gas concentration, and, from the supply flow rate of the waste, to calculate the CH 4 gas generation intensity is CH 4 gas emission per waste input amount, by monitoring the CH 4 gas generation intensity which the calculated A method for detecting the degree of thermal decomposition of waste , wherein the degree of thermal decomposition in the pyrolysis furnace is detected based on the variation .
ゴム系廃棄物を外熱式熱分解炉に供給して熱分解し、タール成分を含有する熱分解ガスを生成し、当該熱分解ガスからタールを分離して、分離後のタールおよび熱分解ガスとする熱分解方法であって、
前記分離後の熱分解ガスの流量と、前記分離後の熱分解ガスに含まれるCH4ガス濃度と、前記廃棄物の供給流量とを測定し、当該測定した熱分解ガスの流量、熱分解ガス中のCH 4 ガス濃度、及び、廃棄物の供給流量から、廃棄物投入量当たりのCH 4 ガス発生量であるCH4ガス発生原単位を算出し、
予め調査したCH 4 ガス発生原単位と分離後の熱分解ガス収率の関係に基づいて、前記分離後の熱分解ガス収率が狙いの範囲になるようなCH 4 ガス発生原単位の範囲を求め、
又は、予め調査したCH 4 ガス発生量と分離後のタール収率の関係に基づいて、前記分離後のタール収率が狙いの範囲になるようなCH 4 ガス発生原単位の範囲を求め、
前記熱分解炉の外熱温度、前記熱分解炉内の廃棄物移動速度、又は、前記熱分解炉への廃棄物供給速度を調整して、前記算出したCH 4 ガス発生原単位が前記求めたCH 4 ガス発生原単位の範囲になるように制御することを特徴とする廃棄物の熱分解方法。
The rubber waste is supplied to an external thermal pyrolysis furnace and pyrolyzed to generate a pyrolysis gas containing a tar component. The tar is separated from the pyrolysis gas, and the tar and pyrolysis gas after separation are separated. A thermal decomposition method,
And the flow rate of the pyrolysis gas after the separation, the a CH 4 gas concentration contained in the pyrolysis gas after separation, the a supply flow rate of waste was measured, the pyrolysis gas the measured flow rate, pyrolysis gas CH 4 gas concentration in, and, from the supply flow rate of the waste, to calculate the CH 4 gas generation intensity is CH 4 gas emission per waste input amount,
Based on the previously investigated CH 4 relationship pyrolysis gas yield after separation gas generating intensity, the range of CH 4 gas generating intensity as pyrolysis gas yield after the separation is in the range of aim Seeking
Or, based on the relationship between the CH 4 gas generation amount and the tar yield after separation investigated in advance, the range of the CH 4 gas generation unit so that the tar yield after separation is within the target range is obtained,
Adjusting the external heat temperature of the pyrolysis furnace, the waste moving speed in the pyrolysis furnace, or the waste supply speed to the pyrolysis furnace, the calculated CH 4 gas generation basic unit was obtained. A method for thermally decomposing waste, characterized in that control is performed so as to be within a range of the basic unit of CH 4 gas generation .
前記廃棄物が廃タイヤであることを特徴とする請求項2に記載の廃棄物の熱分解方法。The waste pyrolysis method according to claim 2, wherein the waste is a waste tire. ゴム系廃棄物の熱分解進行度の検知装置であって、
廃棄物供給速度測定装置と、廃棄物供給装置と、外熱式熱分解炉と、当該外熱式熱分解炉にて生成したタール成分を含有する熱分解ガスからタールを分離するタール分離装置と、当該タール分離装置でタール分離後の熱分解ガスの流量測定装置と、前記タール分離後の熱分解ガス中のCH4ガスの濃度測定装置と、前記各測定装置にて測定された廃棄物供給速度、熱分解ガス流量、及び熱分解ガス中のCH4ガス濃度の各測定値を取り込んで廃棄物投入量当たりのCH 4 ガス発生量であるCH4ガス発生原単位を算出するCH4ガス発生原単位演算装置と、を有することを特徴とする廃棄物の熱分解進行度の検知装置。
A device for detecting the degree of thermal decomposition of rubber waste,
Waste supply rate measuring device, waste supply device, external thermal pyrolysis furnace, tar separation device for separating tar from pyrolysis gas containing tar components generated in the external thermal pyrolysis furnace , A flow measurement device for pyrolysis gas after tar separation by the tar separation device, a concentration measurement device for CH 4 gas in the pyrolysis gas after tar separation, and a waste supply measured by each of the measurement devices CH 4 gas generation that calculates the CH 4 gas generation basic unit that is the amount of CH 4 gas generation per waste input by taking in the measured values of velocity, pyrolysis gas flow rate, and CH 4 gas concentration in the pyrolysis gas An apparatus for detecting the degree of progress of thermal decomposition of waste.
ゴム系廃棄物の熱分解装置であって、
廃棄物供給速度測定装置と、廃棄物供給速度を調整可能な廃棄物供給装置と、外熱温度及び廃棄物移動速度を調整可能な外熱式熱分解炉と、当該外熱式熱分解炉にて生成したタール成分を含有する熱分解ガスからタールを分離するタール分離装置と、当該タール分離装置でタール分離後の熱分解ガスの流量測定装置と、前記タール分離後の熱分解ガス中のCH4ガスの濃度測定装置と、前記各測定装置にて測定された廃棄物供給速度、熱分解ガス流量、及び熱分解ガス中のCH4ガス濃度の各測定値を取り込んで廃棄物投入量当たりのCH 4 ガス発生量であるCH4ガス発生原単位を算出するCH4ガス発生原単位演算装置と、当該算出したCH4ガス発生原単位が、予め定めたCH4ガス発生原単位の範囲となるように、前記廃棄物供給速度、前記外熱温度、又は前記廃棄物移動速度の少なくともいずれかを制御する操業条件制御装置と、を有することを特徴とする廃棄物の熱分解装置。
A thermal decomposition apparatus for rubber waste,
Waste supply rate measuring device, waste supply device capable of adjusting waste supply rate, external heat pyrolysis furnace capable of adjusting external heat temperature and waste transfer speed, and external heat pyrolysis furnace Separation apparatus for separating tar from the pyrolysis gas containing the tar component produced in the above, a flow measurement apparatus for pyrolysis gas after tar separation by the tar separation apparatus, and CH in the pyrolysis gas after tar separation 4 and concentration measuring device of the gas, the measured waste feed rate in each measuring device, the pyrolysis gas flow, and the CH 4 gas concentration of the pyrolysis gas per waste input amount takes in the measured values and CH 4 gas generation intensity calculation unit for calculating a CH 4 CH 4 gas generation intensity is the gas generation amount, the calculated CH 4 gas generating intensity becomes a predetermined range of CH 4 gas generation intensity The waste feed rate, Kigainetsu temperature, or thermal cracker waste and having an a operation condition control device for controlling at least one of the waste movement speed.
JP2005298935A 2005-10-13 2005-10-13 Method and apparatus for detecting the degree of progress of thermal decomposition of waste, and method and apparatus for thermal decomposition of waste Active JP4942980B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005298935A JP4942980B2 (en) 2005-10-13 2005-10-13 Method and apparatus for detecting the degree of progress of thermal decomposition of waste, and method and apparatus for thermal decomposition of waste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005298935A JP4942980B2 (en) 2005-10-13 2005-10-13 Method and apparatus for detecting the degree of progress of thermal decomposition of waste, and method and apparatus for thermal decomposition of waste

Publications (2)

Publication Number Publication Date
JP2007105628A JP2007105628A (en) 2007-04-26
JP4942980B2 true JP4942980B2 (en) 2012-05-30

Family

ID=38031902

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005298935A Active JP4942980B2 (en) 2005-10-13 2005-10-13 Method and apparatus for detecting the degree of progress of thermal decomposition of waste, and method and apparatus for thermal decomposition of waste

Country Status (1)

Country Link
JP (1) JP4942980B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009191304A (en) * 2008-02-13 2009-08-27 Fuji Electric Holdings Co Ltd Monitor method and monitor device in nanoparticle synthesis process
JP5997482B2 (en) * 2012-04-06 2016-09-28 株式会社日省エンジニアリング Organic matter processing equipment
JP6821164B1 (en) * 2020-02-25 2021-01-27 ゾンデックス株式会社 Magnetic flow type low temperature decomposition device

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5753397B2 (en) * 1974-03-29 1982-11-12
DE4234385A1 (en) * 1992-10-06 1994-04-07 Formex Trading Gmbh Process for the pyrolysis of organic substances
JPH06134434A (en) * 1992-10-20 1994-05-17 Houjiyou:Kk Apparatus for treating waste and treatment method with the same
JP3017661B2 (en) * 1994-07-13 2000-03-13 株式会社キンセイ産業 Dry distillation gasification and incineration of waste
SE513063C2 (en) * 1998-08-21 2000-06-26 Bengt Sture Ershag Process for the recovery of carbon and hydrocarbon compounds from polymeric material, preferably in the form of discarded tires, by pyrolysis in a pyrolysis reactor
JP2004144375A (en) * 2002-10-23 2004-05-20 Jfe Engineering Kk Control device for waste gasifying melting furnace
JP2004269811A (en) * 2003-03-12 2004-09-30 Nippon Steel Corp Method for recycling waste product mainly comprising plastic resin
JP2005179509A (en) * 2003-12-19 2005-07-07 Matsushita Electric Ind Co Ltd Method of heating

Also Published As

Publication number Publication date
JP2007105628A (en) 2007-04-26

Similar Documents

Publication Publication Date Title
Scaccia TG–FTIR and kinetics of devolatilization of Sulcis coal
EP0451323B1 (en) Method for preheating scrap iron by pyrolysis of resinous residues contained therein, with total recovery of their energy content and improvement of the steelmaking cycle
US6736940B2 (en) Process for pyrolyzing tire shreds and tire pyrolysis systems
Ma et al. Study of the fast pyrolysis of oilfield sludge with solid heat carrier in a rotary kiln for pyrolytic oil production
JP2005298602A (en) Method for thermally decomposing combustible waste and apparatus for the same
KR100385154B1 (en) Method of treating resin or organic compound, or waste plastics containing them
US20060228294A1 (en) Process and apparatus using a molten metal bath
US20110289845A1 (en) Method for controlling syngas production in a system with multiple feed materials using a molten metal bath
Kaminsky Pyrolysis of plastic waste and scrap tyres in a fluid bed reactor
WO2004026992A2 (en) Method of producing charcoal from biomass
JP2005263983A (en) Method for recycling organic waste using coke oven
WO2006114818A1 (en) Method and apparatus for supplying waste to gasification melting furnace
GB2480752A (en) Sensing and control for plasma-assisted waste gasification
Haydary et al. Pyrolysis of automobile shredder residue in a laboratory scale screw type reactor
JP4942980B2 (en) Method and apparatus for detecting the degree of progress of thermal decomposition of waste, and method and apparatus for thermal decomposition of waste
RU2464295C2 (en) Method for thermochemical processing of biomass to produce synthesis gas
Ren et al. Transformation behavior and fate of chlorine in polychloroprene (PCP) during its pyrolysis
EP1114123B1 (en) Method for processing chlorine-containing organic compounds
WO2012166606A2 (en) Coal processing to upgrade low rank coal having low oil content
JPH07216361A (en) Preparation of coke
JP6676756B2 (en) Method and apparatus for modifying carbonaceous material
Yan et al. Experimental studies on low-temperature pyrolysis of municipal household garbage—temperature influence on pyrolysis product distribution
JP2017180922A (en) Waste tire gasification melting device and waste tire gasification melting method
JPH09235559A (en) Utilization of residue and waste in terms of material and energy in upright furnace
UA107661C2 (en) Rubber granulate conversion process for producing a semi-active carbonized substance and a plasticizer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080303

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090430

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110301

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110502

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120221

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120229

R151 Written notification of patent or utility model registration

Ref document number: 4942980

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150309

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150309

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150309

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350