JP4941280B2 - Engine residual gas amount estimation device and residual gas amount estimation method - Google Patents

Engine residual gas amount estimation device and residual gas amount estimation method Download PDF

Info

Publication number
JP4941280B2
JP4941280B2 JP2007333907A JP2007333907A JP4941280B2 JP 4941280 B2 JP4941280 B2 JP 4941280B2 JP 2007333907 A JP2007333907 A JP 2007333907A JP 2007333907 A JP2007333907 A JP 2007333907A JP 4941280 B2 JP4941280 B2 JP 4941280B2
Authority
JP
Japan
Prior art keywords
exhaust
combustion chamber
exhaust valve
gas
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007333907A
Other languages
Japanese (ja)
Other versions
JP2009156121A (en
Inventor
祐治 佐々木
健太郎 山野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2007333907A priority Critical patent/JP4941280B2/en
Publication of JP2009156121A publication Critical patent/JP2009156121A/en
Application granted granted Critical
Publication of JP4941280B2 publication Critical patent/JP4941280B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Description

本発明は、エンジン(内燃機関)の残留ガス量推定装置及び残留ガス量推定方法に関する。   The present invention relates to a residual gas amount estimation device and a residual gas amount estimation method for an engine (internal combustion engine).

排気バルブ閉時期での燃焼室内温度を算出する手段と、排気バルブ閉時期での燃焼室内圧力を算出する手段と、燃焼空燃比に応じた排気組成のガス定数を算出する手段と、これら燃焼室内温度、燃焼室内圧力、ガス定数に基づいて排気バルブ閉時期での燃焼室内ガス量を算出する手段と、排気バルブ開期間と吸気バルブ開期間とのオーバーラップ中の吹き返しガス量を算出する手段と、前記燃焼室内ガス量とこのオーバーラップ中の吹き返しガス量とに基づいて燃焼室内残留ガス量を算出する手段とを備えるものがある(特許文献1参照)。
特開2004−108262号公報
Means for calculating the temperature in the combustion chamber when the exhaust valve is closed, means for calculating the pressure in the combustion chamber when the exhaust valve is closed, means for calculating the gas constant of the exhaust composition according to the combustion air-fuel ratio, and Means for calculating the amount of gas in the combustion chamber when the exhaust valve is closed based on the temperature, pressure in the combustion chamber, and gas constant; and means for calculating the amount of blowback gas during the overlap between the exhaust valve opening period and the intake valve opening period And a means for calculating an amount of residual gas in the combustion chamber based on the amount of gas in the combustion chamber and the amount of blown back gas during the overlap (see Patent Document 1).
JP 2004-108262 A

ところで、燃焼室内残留ガス量は点火時期や空燃比に影響を与えるため、燃焼室内残留ガス量を推定し、その推定した燃焼室内残留ガス量で点火時期や空燃比等を補正することが望ましい。   Incidentally, since the residual gas amount in the combustion chamber affects the ignition timing and the air-fuel ratio, it is desirable to estimate the residual gas amount in the combustion chamber and correct the ignition timing, the air-fuel ratio, and the like with the estimated residual gas amount in the combustion chamber.

その一方で、排気バルブ開閉時期を変化させ得る排気バルブ開閉時期可変機構や吸気バルブの開閉時期を変化させ得る吸気バルブ開閉時期可変機構を備えることへの要求が高まっている。例えば、排気バルブ開閉時期可変機構を作動させ、排気バルブ開時期を非作動状態時より早めてやると、排気温度が高くなり、排気通路に設けてある触媒の暖機を促進できる。また、排気バルブ開時期を非作動状態時より早めて吸気バルブの開期間と排気バルブの開期間のオーバーラップを増やしてやると、燃焼室内残留ガス量が増加し、ポンピングロスを低減できる。また、高回転速度時に非作動状態時より吸気バルブの開期間と排気バルブの開期間のオーバーラップを大きくしてやると吸気の慣性力を大きくできる。このような各種の目的のため排気バルブ開閉時期可変機構や吸気バルブ開閉時期可変機構を備えさせ、排気バルブ開閉時期可変機構や吸気バルブ開閉時期可変機構を非作動状態より作動状態に切換えた場合に、排気圧力、燃焼室内圧力が非作動状態時の値と相違することとなり、その影響を受けて排気バルブ開期間と吸気バルブ開期間のバルブオーバーラップ終了後の燃焼室内残留ガス量も非作動状態時の値から大きく変化してしまう。   On the other hand, there is an increasing demand to provide an exhaust valve opening / closing timing variable mechanism that can change the exhaust valve opening / closing timing and an intake valve opening / closing timing variable mechanism that can change the opening / closing timing of the intake valve. For example, if the exhaust valve opening / closing timing variable mechanism is operated and the exhaust valve opening timing is made earlier than in the non-operating state, the exhaust temperature becomes high, and warming up of the catalyst provided in the exhaust passage can be promoted. Further, if the overlap between the intake valve opening period and the exhaust valve opening period is increased by making the exhaust valve opening timing earlier than in the non-operating state, the amount of residual gas in the combustion chamber increases and the pumping loss can be reduced. Further, if the overlap between the opening period of the intake valve and the opening period of the exhaust valve is made larger than that in the non-operating state at a high rotational speed, the inertia force of the intake can be increased. For these various purposes, an exhaust valve opening / closing timing variable mechanism and an intake valve opening / closing timing variable mechanism are provided, and the exhaust valve opening / closing timing variable mechanism and the intake valve opening / closing timing variable mechanism are switched from a non-operating state to an operating state. As a result, the exhaust gas pressure and the combustion chamber pressure are different from the values in the non-operating state, and as a result, the residual gas amount in the combustion chamber after the valve overlap between the exhaust valve opening period and the intake valve opening period is also in the non-operating state. It will change greatly from the time value.

そこで、排気バルブ開閉時期可変機構や吸気バルブ開閉時期可変機構を非作動状態より作動状態に切換えた場合にも、排気バルブ開期間と吸気バルブ開期間のバルブオーバーラップ終了後の燃焼室内残留ガス量を精度良く算出させる方法を探るため、各種の実験やシミュレーションを行ってみたところ、排気バルブ開期間と吸気バルブ開期間のバルブオーバーラップ中の排気バルブ周りガス流量の波形に三種類の波形が有ることが新たに判明した。三種類の波形とは、排気ポートから燃焼室内へのガスの吹き返しと燃焼室内から排気ポートへのガスの吹き出しの両方が存在する場合の波形、排気ポートから燃焼室内へのガスの吹き返しのみしか存在しない場合の波形、燃焼室内から排気ポートへのガスの吹き出しのみしか存在しない場合の波形の3つである。   Therefore, even when the exhaust valve opening / closing timing variable mechanism and the intake valve opening / closing timing variable mechanism are switched from the non-operating state to the operating state, the residual gas amount in the combustion chamber after the valve overlap between the exhaust valve opening period and the intake valve opening period ends. In order to find a method for calculating the air flow accurately, various experiments and simulations were conducted. As a result, there were three types of waveforms in the gas flow around the exhaust valve during valve overlap during the exhaust valve open period and the intake valve open period. It was newly discovered. The three types of waveforms are waveforms when there is both gas blowback from the exhaust port into the combustion chamber and gas blowout from the combustion chamber into the exhaust port, and only gas blowback from the exhaust port into the combustion chamber exists. There are three waveforms: a waveform in the case where no gas is discharged, and a waveform in the case where only gas is blown out from the combustion chamber to the exhaust port.

このうち、燃焼室内から排気ポートへのガスの吹き出しのみしか存在しない場合の波形となるのは、燃焼室内圧力が排気行程で圧縮されているためであり、その原因は燃焼室から排気ポートに吹き出すガスの流れがチョーク状態になっていることにあることを見出した。   Among these, the waveform when there is only the gas blowout from the combustion chamber to the exhaust port is because the pressure in the combustion chamber is compressed in the exhaust stroke, and the cause is blown out from the combustion chamber to the exhaust port. It was found that the gas flow was in a choked state.

そこで本発明は、燃焼室5から排気ポート11に吹き出すガスの流れがチョーク状態になるときにも、排気バルブ開期間と吸気バルブ開期間のバルブオーバーラップ終了後の燃焼室内残留ガス量や排気バルブ開期間と吸気バルブ開期間のバルブオーバーラップがないときの燃焼室内残留ガス量を精度良く推定し得る残留ガス量推定装置及び残留ガス量推定方法を提供することを目的とする。   In view of this, the present invention provides the amount of residual gas in the combustion chamber and the exhaust valve after the valve overlap between the exhaust valve open period and the intake valve open period, even when the flow of gas blown from the combustion chamber 5 to the exhaust port 11 becomes choked. An object of the present invention is to provide a residual gas amount estimation device and a residual gas amount estimation method capable of accurately estimating the residual gas amount in the combustion chamber when there is no valve overlap between the open period and the intake valve open period.

本発明は、ピストンの動きに伴う燃焼室内容積変化量と、排気バルブ通過可能なガス量とに基づいて燃焼室内圧力が排気行程で圧縮される場合であるか否かを判定し、この判定結果により燃焼室内圧力が排気行程で圧縮される場合に、前記燃焼室内容積変化量が前記排気バルブ通過可能なガス量と等しくなるクランク角を、燃焼室内から排気ポートに吹き出すガスの流れがチョーク状態を開始するクランク角(CACOMP)として算出し、この算出したチョーク状態開始クランク角(CACOMP)に基づいて燃焼室から排気ポートに吹き出すガスの流れがチョーク状態になるときの吸気バルブ開時期での燃焼室内圧力(PIVO’)を算出し、この算出した燃焼室から排気ポートに吹き出すガスの流れがチョーク状態になるときの吸気バルブ開時期での燃焼室内圧力(PIVO’)に基づいて燃焼室内から排気ポートへの吹き出しガス量(M23)を算出し、吸気バルブ開時期での燃焼室内ガス量(MR1)とこの吹き出しガス量(M23)とから排気バルブ開期間と吸気バルブ開期間のオーバーラップ終了後の燃焼室内残留ガス量を推定するように構成する。   The present invention determines whether or not the pressure in the combustion chamber is compressed in the exhaust stroke based on the amount of change in the volume in the combustion chamber accompanying the movement of the piston and the amount of gas that can pass through the exhaust valve. When the pressure in the combustion chamber is compressed by the exhaust stroke, the flow of the gas blown out from the combustion chamber to the exhaust port is choked so that the change in volume in the combustion chamber is equal to the amount of gas that can pass through the exhaust valve. Calculated as the starting crank angle (CACOMP), and the combustion chamber at the intake valve opening timing when the flow of gas blown from the combustion chamber to the exhaust port is choked based on the calculated choke state starting crank angle (CACOMP) The pressure (PIVO ′) is calculated, and the intake air flow when the flow of gas blown out from the calculated combustion chamber to the exhaust port becomes choked. The amount of blown gas (M23) from the combustion chamber to the exhaust port is calculated on the basis of the pressure in the combustion chamber (PIVO ') at the opening time of the valve, and the amount of combustion chamber gas (MR1) at the intake valve opening timing and this amount of blown gas (M23) is configured to estimate the amount of residual gas in the combustion chamber after the overlap between the exhaust valve opening period and the intake valve opening period.

また、本発明は、ピストンの動きに伴う燃焼室内容積変化量と、排気バルブ通過可能なガス量とに基づいて燃焼室内圧力が排気行程で圧縮される場合であるか否かを判定し、この判定結果により燃焼室内圧力が排気行程で圧縮される場合に、前記燃焼室内容積変化量が前記排気バルブ通過可能なガス量と等しくなるクランク角を、燃焼室内から排気ポートに吹き出すガスの流れがチョーク状態を開始するクランク角(CACOMP)として算出し、この算出したチョーク状態開始クランク角(CACOMP)に基づいて排気バルブ閉時期での燃焼室内圧力(PEVC’)を算出し、この算出した排気バルブ閉時期での燃焼室内圧力(PEVC’)に基づいて燃焼室から排気ポートに吹き出すガスの流れがチョーク状態になるときの排気バルブ閉時期での燃焼室内ガス量(MR1’)を算出し、この排気バルブ閉時期での燃焼室内ガス量(MR1’)を排気バルブ開期間と吸気バルブ開期間のオーバーラップがないときの燃焼室内残留ガス量として推定するように構成する。   Further, the present invention determines whether or not the pressure in the combustion chamber is compressed in the exhaust stroke based on the volume change in the combustion chamber accompanying the movement of the piston and the amount of gas that can pass through the exhaust valve. When the pressure in the combustion chamber is compressed in the exhaust stroke based on the determination result, the flow of gas that blows out from the combustion chamber to the exhaust port at the crank angle at which the volume change in the combustion chamber is equal to the amount of gas that can pass through the exhaust valve is choked. Is calculated as a crank angle (CACOMP) for starting the state, and the pressure in the combustion chamber (PEVC ′) at the exhaust valve closing timing is calculated based on the calculated crank state starting crank angle (CACOMP). Exhaust valve when the flow of gas blown out from the combustion chamber to the exhaust port is choked based on the combustion chamber pressure (PEVC ') at the time The amount of gas in the combustion chamber (MR1 ′) at the time is calculated, and the amount of gas in the combustion chamber (MR1 ′) at the closing time of the exhaust valve is left in the combustion chamber when there is no overlap between the exhaust valve opening period and the intake valve opening period It is configured to estimate the amount of gas.

吸気バルブ開時期での燃焼室内圧力(PIVO)は吸気バルブ開時期(IVO)での排気バルブ開口面積による影響が大きい。吸気バルブ開時期(IVO)に排気バルブが十分に開いている状態では(つまり燃焼室から排気ポートに吹き出すガスの流れがチョーク状態にならないとき)、図25左に示したように燃焼室内圧力Pcylは排気圧力Pexと等しくなる。   The combustion chamber pressure (PIVO) at the intake valve opening timing is greatly influenced by the exhaust valve opening area at the intake valve opening timing (IVO). When the exhaust valve is sufficiently open at the intake valve opening timing (IVO) (that is, when the flow of gas blown from the combustion chamber to the exhaust port does not enter the choke state), the pressure Pcyl in the combustion chamber is shown in the left of FIG. Becomes equal to the exhaust pressure Pex.

一方、吸気バルブ開時期(IVO)に排気バルブがほとんど閉じている状態になると(つまり燃焼室から排気ポートに吹き出すガスの流れがチョーク状態になるとき)、図25中、図35に示したように燃焼室内容積の変化に合わせて燃焼室内圧力Pcylが変化し(排気圧力Pexから離れて上昇し)排気圧力Pexからの乖離が大きくなっている。このため、燃焼室から排気ポートに吹き出すガスの流れがチョーク状態になるときにも、吸気バルブ開時期での燃焼室内圧力(PIVO)が排気圧力に等しいと仮定して排気バルブ開期間と吸気バルブ開期間のオーバーラップ終了後の燃焼室内残留ガス量を推定したのでは、吸気バルブ開時期での燃焼室内圧力の、排気圧力Pexからの圧力差に相当する誤差が生じてしまう。   On the other hand, when the exhaust valve is almost closed at the intake valve opening timing (IVO) (that is, when the flow of gas blown from the combustion chamber to the exhaust port is choked), as shown in FIG. As the combustion chamber volume changes, the combustion chamber pressure Pcyl changes (increases away from the exhaust pressure Pex), and the deviation from the exhaust pressure Pex increases. For this reason, even when the flow of gas blown from the combustion chamber to the exhaust port becomes choked, it is assumed that the combustion chamber pressure (PIVO) at the intake valve opening timing is equal to the exhaust pressure, and the exhaust valve opening period and the intake valve If the residual gas amount in the combustion chamber after the overlap in the open period is estimated, an error corresponding to the pressure difference from the exhaust pressure Pex of the pressure in the combustion chamber at the intake valve opening timing occurs.

これに対して、本発明によれば、ピストンの動きに伴う燃焼室内容積変化量と、排気バルブ通過可能なガス量とに基づいて燃焼室内圧力が排気行程で圧縮される場合であるか否かを判定し、この判定結果により燃焼室内圧力が排気行程で圧縮される場合に、燃焼室内容積変化量が排気バルブ通過可能なガス量と等しくなるクランク角を、燃焼室内から排気ポートに吹き出すガスの流れがチョーク状態を開始するクランク角(CACOMP)として算出し、この算出したチョーク状態開始クランク角(CACOMP)に基づいて燃焼室から排気ポートに吹き出すガスの流れがチョーク状態になるときの吸気バルブ開時期での燃焼室内圧力(PIVO’)を算出し、この算出した燃焼室から排気ポートに吹き出すガスの流れがチョーク状態になるときの吸気バルブ開時期での燃焼室内圧力(PIVO’)に基づいて燃焼室内から排気ポートへの吹き出しガス量(M23)を算出し、吸気バルブ開時期での燃焼室内ガス量(MR1)とこの吹き出しガス量(M23)とから排気バルブ開期間と吸気バルブ開期間のオーバーラップ終了後の燃焼室内残留ガス量を推定するので、排気行程で燃焼室から排気ポートに吹き出すガスの流れがチョーク状態になるときにも排気バルブ開期間と吸気バルブ開期間のオーバーラップ終了後の燃焼室内残留ガス量を精度良く推定することができる。   In contrast, according to the present invention, whether or not the pressure in the combustion chamber is compressed in the exhaust stroke based on the volume change in the combustion chamber accompanying the movement of the piston and the amount of gas that can pass through the exhaust valve. When the pressure in the combustion chamber is compressed during the exhaust stroke according to the determination result, the crank angle at which the change in volume in the combustion chamber is equal to the amount of gas that can pass through the exhaust valve is equal to the amount of gas blown out from the combustion chamber to the exhaust port. The flow is calculated as a crank angle (CACOMP) for starting the choke state, and the intake valve opening when the flow of gas blown from the combustion chamber to the exhaust port based on the calculated choke state start crank angle (CACOMP) is in the choke state is calculated. The combustion chamber pressure (PIVO ') at the time is calculated, and the flow of the gas blown out from the calculated combustion chamber to the exhaust port is choked. Based on the combustion chamber pressure (PIVO ') when the intake valve is open, the amount of gas blown from the combustion chamber to the exhaust port (M23) is calculated, and the combustion chamber gas amount (MR1) when the intake valve is opened and this Since the amount of residual gas in the combustion chamber after the overlap between the exhaust valve opening period and the intake valve opening period is estimated from the amount of blown-out gas (M23), the flow of gas blown out from the combustion chamber to the exhaust port in the exhaust stroke becomes choked. In this case, the residual gas amount in the combustion chamber after the overlap between the exhaust valve opening period and the intake valve opening period can be accurately estimated.

次に、吸気バルブ開時期での燃焼室内圧力(PIVO)が排気圧力に等しいと仮定して吸気バルブ開時期での燃焼室内ガス量(MR1)を状態方程式((1)式参照)により算出し、吸気バルブ開期間と排気バルブ開期間のオーバーラップがないときにはこの吸気バルブ開時期での燃焼室内ガス量(MR1)をそのまま燃焼室内残留ガス量とすることが考えられる。   Next, assuming that the combustion chamber pressure (PIVO) at the intake valve opening timing is equal to the exhaust pressure, the combustion chamber gas amount (MR1) at the intake valve opening timing is calculated by a state equation (see equation (1)). When there is no overlap between the intake valve opening period and the exhaust valve opening period, it is conceivable that the combustion chamber gas amount (MR1) at the intake valve opening timing is directly used as the residual gas amount in the combustion chamber.

しかしながら、図42に示したように、吸気バルブ開期間と排気バルブ開期間のオーバーラップがないときにおいても、排気行程で燃焼室内から排気ポートに吹き出すガスの流れがチョーク状態になり、燃焼室内圧力Pcylが排気圧力Pexから離れて上昇することがあることを見出した。従ってこうした場合にも、吸気バルブ開時期での燃焼室内圧力(PIVO)が排気圧力に等しいと仮定して吸気バルブ開時期での燃焼室内ガス量(MR1)を算出したのでは、燃焼室内圧力Pcylの排気圧力Pexからの圧力差に相当する誤差が、吸気バルブ開期間と排気バルブ開期間のオーバーラップがないときの燃焼室内残留ガス量の推定に生じてしまう。   However, as shown in FIG. 42, even when there is no overlap between the intake valve open period and the exhaust valve open period, the flow of gas blown out from the combustion chamber to the exhaust port in the exhaust stroke becomes a choke state, and the pressure in the combustion chamber It has been found that Pcyl may rise away from the exhaust pressure Pex. Therefore, even in such a case, if the combustion chamber gas amount (MR1) at the intake valve opening timing is calculated on the assumption that the combustion chamber pressure (PIVO) at the intake valve opening timing is equal to the exhaust pressure, the combustion chamber pressure Pcyl is calculated. An error corresponding to the pressure difference from the exhaust pressure Pex occurs in the estimation of the residual gas amount in the combustion chamber when there is no overlap between the intake valve open period and the exhaust valve open period.

本発明によれば、ピストンの動きに伴う燃焼室内容積変化量と、排気バルブ通過可能なガス量とに基づいて燃焼室内圧力が排気行程で圧縮される場合であるか否かを判定し、燃焼室内圧力が排気行程で圧縮される場合に、燃焼室内容積変化量が排気バルブ通過可能なガス量と等しくなるクランク角を、燃焼室内から排気ポートに吹き出すガスの流れがチョーク状態を開始するクランク角(CACOMP)として算出し、この算出したチョーク状態開始クランク角(CACOMP)に基づいて燃焼室から排気ポートに吹き出すガスの流れがチョーク状態になるときの排気バルブ閉時期での燃焼室内圧力(PEVC’)を算出し、この算出した燃焼室から排気ポートに吹き出すガスの流れがチョーク状態になるときの排気バルブ閉時期での燃焼室内圧力(PEVC’)に基づいて排気バルブ閉時期での燃焼室内ガス量(MR1’)を算出し、この排気バルブ閉時期での燃焼室内ガス量(MR1’)を排気バルブ開期間と吸気バルブ開期間のオーバーラップがないときの燃焼室内残留ガス量として推定するので、吸気バルブ開期間と排気バルブ開期間のオーバーラップがない場合に排気行程で燃焼室内から排気ポートに吹き出すガスの流れがチョーク状態になるときにも、排気バルブ開期間と吸気バルブ開期間のオーバーラップがないときの燃焼室内残留ガス量を精度良く推定することができる。   According to the present invention, it is determined whether or not the pressure in the combustion chamber is compressed in the exhaust stroke based on the amount of change in the volume in the combustion chamber accompanying the movement of the piston and the amount of gas that can pass through the exhaust valve. When the chamber pressure is compressed in the exhaust stroke, the crank angle at which the amount of change in the combustion chamber volume is equal to the amount of gas that can pass through the exhaust valve (CACOMP), and based on the calculated choke state start crank angle (CACOMP), the pressure in the combustion chamber (PEVC ′) when the exhaust valve closes when the flow of gas blown from the combustion chamber to the exhaust port is in the choke state. ) And the combustion chamber when the exhaust valve closes when the flow of gas blown from the calculated combustion chamber to the exhaust port becomes choked The combustion chamber gas amount (MR1 ′) at the exhaust valve closing timing is calculated based on the pressure (PEVC ′), and the combustion chamber gas amount (MR1 ′) at the exhaust valve closing timing is calculated based on the exhaust valve opening period and the intake valve opening time. Since it is estimated as the amount of residual gas in the combustion chamber when there is no overlap in the period, the flow of gas blown from the combustion chamber to the exhaust port in the exhaust stroke when there is no overlap between the intake valve open period and the exhaust valve open period is choked Even in this case, it is possible to accurately estimate the residual gas amount in the combustion chamber when there is no overlap between the exhaust valve opening period and the intake valve opening period.

以下、図面に基づき本発明の実施形態について説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、エンジンの残留ガス量推定装置を有するエンジンの制御装置の概略構成を示している。   FIG. 1 shows a schematic configuration of an engine control device having an engine residual gas amount estimation device.

空気は吸気コレクタ2に蓄えられた後、吸気マニホールド4を介して各気筒の燃焼室5に導入される。燃料は各気筒の吸気ポート4に配置された燃料インジェクタ21より噴射供給される。空気中に噴射された燃料は気化しつつ空気と混合してガス(混合気)を作り、燃焼室5に流入する。この混合気は吸気バルブ15が閉じることで燃焼室5内に閉じこめられ、ピストン6の上昇によって圧縮される。   The air is stored in the intake collector 2 and then introduced into the combustion chamber 5 of each cylinder via the intake manifold 4. Fuel is injected and supplied from a fuel injector 21 disposed in the intake port 4 of each cylinder. The fuel injected into the air is vaporized and mixed with the air to form a gas (air mixture) and flows into the combustion chamber 5. This air-fuel mixture is confined in the combustion chamber 5 when the intake valve 15 is closed, and is compressed by the rise of the piston 6.

圧縮上死点より少し手前で点火プラグ14により火花が飛ばされ圧縮混合気に着火されると、火炎が広がりやがて爆発的に燃焼し、この燃焼によるガス圧がピストン6を押し下げる仕事を行う。この仕事はクランクシャフト7の回転力として取り出される。燃焼後のガス(排気)は排気バルブ16が開いたとき排気通路8へと排出される。   When a spark is blown by the spark plug 14 slightly before the compression top dead center and the compressed air-fuel mixture is ignited, the flame spreads and then explosively burns, and the gas pressure by this combustion works to push down the piston 6. This work is taken out as the rotational force of the crankshaft 7. The combusted gas (exhaust gas) is discharged into the exhaust passage 8 when the exhaust valve 16 is opened.

排気通路8には三元触媒9を備える。三元触媒9は排気の空燃比が理論空燃比を中心とした狭い範囲(ウインドウ)にあるとき、排気に含まれるHC、CO、NOxといった有害三成分を同時に効率よく除去できる。空燃比は吸入空気量と燃料量の比であるので、エンジンの1サイクル(4サイクルエンジンではクランク角で720deg区間)当たりに燃焼室5に導入される吸入空気量と、燃料インジェクタ21からの燃料噴射量との比が理論空燃比となるように、エンジンコントローラ31ではエアフローセンサ32からの吸入空気流量の信号とクランク角センサ(33、34)からの信号に基づいて燃料インジェクタ21からの燃料噴射量を定めると共に、三元触媒9の上流に設けたO2センサ35からの信号に基づいて空燃比をフィードバック制御している。 A three-way catalyst 9 is provided in the exhaust passage 8. When the air-fuel ratio of the exhaust gas is in a narrow range (window) centered on the stoichiometric air-fuel ratio, the three-way catalyst 9 can efficiently remove harmful three components such as HC, CO, and NOx contained in the exhaust gas simultaneously. Since the air-fuel ratio is the ratio between the intake air amount and the fuel amount, the intake air amount introduced into the combustion chamber 5 per one cycle of the engine (crank angle 720 deg section in a four-cycle engine) and the fuel from the fuel injector 21 The engine controller 31 injects fuel from the fuel injector 21 based on the intake air flow rate signal from the air flow sensor 32 and the signal from the crank angle sensors (33, 34) so that the ratio to the injection amount becomes the stoichiometric air-fuel ratio. The amount is determined and the air-fuel ratio is feedback controlled based on a signal from an O 2 sensor 35 provided upstream of the three-way catalyst 9.

吸気バルブ用カムシャフト25、排気バルブ用カムシャフト26及びクランクシャフト7の各前部にはそれぞれカムスプロケット、クランクスプロケットが取り付けられ、これらスプロケットにタイミングチェーン(図示しない)を掛け回すことで、カムシャフト25、26がエンジンのクランクシャフト7により駆動されるのであるが、このカムスプロケットと吸気バルブ用カムシャフト25との間に介在して、作動角一定のまま吸気バルブ用カムの位相を連続的に制御し得る可変吸気バルブタイミングコントロール機構(以下、「吸気バルブ用VTC機構」という。)27と、カムスプロケットと排気バルブ用カムシャフト26との間に介在して、作動角一定のまま排気バルブ用カムの位相を連続的に制御し得る可変排気バルブタイミングコントロール機構(以下、「排気バルブ用VTC機構」という。)28とを備える。吸気バルブ15の開閉時期や排気バルブ16の開閉時期を変えると燃焼室5に残留する不活性ガスの量(燃焼室内残留ガス量)が変化する。燃焼室内残留ガス量が増えるほどポンピングロスが減って燃費がよくなるので、運転条件によりどのくらいの燃焼室内残留ガス量があったらよいかを目標吸気バルブ閉時期や目標排気バルブ閉時期にして予め定めており、エンジンコントローラ31ではそのときの運転条件(エンジンの負荷と回転速度)より目標吸気バルブ閉時期と目標排気バルブ閉時期を定め、それら目標値が得られるように吸気バルブ用VTC機構27、排気バルブ用VTC機構28の各アクチュエータを介して吸気バルブ閉時期と排気バルブ閉時期を制御する。   A cam sprocket and a crank sprocket are respectively attached to the front portions of the intake valve camshaft 25, the exhaust valve camshaft 26, and the crankshaft 7, and a camshaft is provided by timing timing chains (not shown) around these sprockets. 25 and 26 are driven by the crankshaft 7 of the engine, and are interposed between the cam sprocket and the intake valve camshaft 25 to continuously adjust the phase of the intake valve cam with a constant operating angle. A variable intake valve timing control mechanism (hereinafter referred to as “VTC mechanism for intake valve”) 27 that can be controlled, and a cam sprocket and an exhaust valve camshaft 26 are interposed between the camshaft 26 and the exhaust valve camshaft 26 so that the operating angle remains constant. Variable exhaust valve timing capable of continuously controlling cam phase Control mechanism (hereinafter, referred to as. "VTC mechanism for exhaust valves") and a 28. When the opening / closing timing of the intake valve 15 and the opening / closing timing of the exhaust valve 16 are changed, the amount of inert gas remaining in the combustion chamber 5 (the amount of residual gas in the combustion chamber) changes. As the amount of residual gas in the combustion chamber increases, the pumping loss decreases and the fuel efficiency improves. The engine controller 31 determines the target intake valve closing timing and the target exhaust valve closing timing from the operating conditions (engine load and rotational speed) at that time, and the intake valve VTC mechanism 27, exhaust gas so as to obtain these target values. The intake valve closing timing and the exhaust valve closing timing are controlled via each actuator of the valve VTC mechanism 28.

大気圧力センサ36からの大気圧力の信号、吸気圧力センサ44からの吸気圧力の信号が入力されるエンジンコントローラ31では、これらの信号と吸気バルブ用VTC機構27、排気バルブ用VTC機構28に与える指令値とに基づいて燃焼室内残留ガス量を推定し、この推定した燃焼室内残留ガス量に基づいて目標吸気バルブ閉時期や目標排気バルブ閉時期をフィードバック制御する。   In the engine controller 31 to which the atmospheric pressure signal from the atmospheric pressure sensor 36 and the intake pressure signal from the intake pressure sensor 44 are input, these signals and commands given to the intake valve VTC mechanism 27 and the exhaust valve VTC mechanism 28 are given. The residual gas amount in the combustion chamber is estimated based on the value, and the target intake valve closing timing and the target exhaust valve closing timing are feedback controlled based on the estimated residual gas amount in the combustion chamber.

次に、排気バルブ開期間と吸気バルブ開期間のオーバーラップ終了後の燃焼室内残留ガス量の算出方法を説明する。   Next, a method for calculating the amount of residual gas in the combustion chamber after the overlap between the exhaust valve opening period and the intake valve opening period will be described.

ここで、本発明は、先願装置(特願2007−191243号参照)と密接に関連する発明であり、本発明の構成要素は先願装置の構成要素と一部重複している。そこで、以下では先願装置についてまず述べ、その後で本発明に言及するものとする。なお、先願装置では第1から第5までの5つの実施形態を記載しているため、本発明に関する実施形態は第6実施形態となる。   Here, the present invention is an invention closely related to the prior application device (see Japanese Patent Application No. 2007-191243), and the constituent elements of the present invention partially overlap the constituent elements of the prior application device. Therefore, in the following, the prior application apparatus will be described first, and then the present invention will be referred to. Since the prior application device has described the first to fifth embodiments, the embodiment related to the present invention is the sixth embodiment.

先願装置では特に排気バルブ用VTC機構を備える場合を対象としており、話を複雑化しないため以下では吸気バルブ用VTC機構27は非作動状態にあるものとして、つまり吸気バルブ開時期IVOは一定値であるとして説明する。なお、本発明は、吸気バルブ用VTC機構27を備えるものを除外するものではない。吸気バルブ用VTC機構27をも備える場合には、吸気バルブ開時期IVOを可変値で考えればよいだけである。また、本実施形態では排気バルブ用VTC機構を備える場合で説明するが、作動角を連続的に制御し得る可変排気バルブリフト量コントロール機構(排気バルブ用VEL機構)を備える場合や排気バルブ用VTC機構と排気バルブ用VEL機構の両方を備える場合にも本発明を適用することができる。   The prior application device is particularly intended for the case where an exhaust valve VTC mechanism is provided. In order not to complicate the story, the intake valve VTC mechanism 27 is assumed to be in an inoperative state below, that is, the intake valve opening timing IVO is a constant value. It explains as being. Note that the present invention does not exclude the one provided with the intake valve VTC mechanism 27. When the intake valve VTC mechanism 27 is also provided, the intake valve opening timing IVO need only be considered as a variable value. In this embodiment, the exhaust valve VTC mechanism is described. However, the variable exhaust valve lift amount control mechanism (exhaust valve VEL mechanism) capable of continuously controlling the operating angle is provided, or the exhaust valve VTC is provided. The present invention can also be applied to a case where both a mechanism and an exhaust valve VEL mechanism are provided.

図2に示したように、吸気バルブ開時期(図では「IVO時」)、吸気バルブ開期間と排気バルブ開期間のオーバーラップ中(図では「O/L中」)、排気バルブ閉時期(図では「EVC時」)、吸気行程の4段階に分けて燃焼室内残留ガス量を考える。   As shown in FIG. 2, the intake valve opening timing (“IVO” in the figure), the intake valve opening period and the exhaust valve opening period overlap (“O / L” in the figure), the exhaust valve closing timing ( In the figure, “during EVC”), the residual gas amount in the combustion chamber is considered in four stages of the intake stroke.

まず、吸気バルブ開時期IVOでの燃焼室内ガス量をMR1[kg]とする。吸気バルブの開期間と排気バルブの開期間のオーバーラップ中に、燃焼室5内から吸気ポート4に流出するガス量をM1[kg]、排気ポート11から燃焼室5内に流入するガス量をM2[kg]とすると、排気バルブ閉時期EVCでの燃焼室内ガス量はMR1−M1+M2となる。吸気行程では、吸気ポート4に流出していた既燃ガスM1[kg]が燃焼室5内に再流入してくるため、排気バルブ閉時期での最終的な燃焼室内残留ガス量、つまり吸気バルブ開期間と排気バルブ開期間のオーバーラップ終了後(正確にはオーバーラップ終了直後)の燃焼室内残留ガス量は、MR1+M2となる。よって、先願装置では、吸気バルブ開時期IVOでの燃焼室内ガス量MR1及び吸気バルブの開期間と排気バルブの開期間のオーバーラップ中の排気ポートからの吹き返しガス量M2を算出し、それらの和を吸気バルブ開期間と排気バルブ開期間のオーバーラップ終了後の燃焼室内残留ガス量として算出する。つまり、次式により吸気バルブ開期間と排気バルブ開期間のオーバーラップ終了後の燃焼室内残留ガス量を算出する。   First, the amount of gas in the combustion chamber at the intake valve opening timing IVO is MR1 [kg]. During the overlap of the intake valve open period and the exhaust valve open period, the amount of gas flowing out from the combustion chamber 5 to the intake port 4 is M1 [kg], and the amount of gas flowing from the exhaust port 11 into the combustion chamber 5 is If M2 [kg], the amount of gas in the combustion chamber at the exhaust valve closing timing EVC is MR1-M1 + M2. In the intake stroke, the burnt gas M1 [kg] flowing out to the intake port 4 flows into the combustion chamber 5 again, so that the final residual amount in the combustion chamber when the exhaust valve is closed, that is, the intake valve The residual gas amount in the combustion chamber after the overlap between the open period and the exhaust valve open period (exactly immediately after the overlap) is MR1 + M2. Therefore, the prior application apparatus calculates the combustion chamber gas amount MR1 at the intake valve opening timing IVO and the blowback gas amount M2 from the exhaust port during the overlap between the opening period of the intake valve and the opening period of the exhaust valve. The sum is calculated as the amount of residual gas in the combustion chamber after the overlap between the intake valve open period and the exhaust valve open period. That is, the residual gas amount in the combustion chamber after the overlap between the intake valve open period and the exhaust valve open period is calculated by the following equation.

燃焼室内残留ガス量=MR1+M2 …(補1)
以下では、(補1)式右辺第1項の吸気バルブ開時期IVOでの燃焼室内ガス量MR1の算出原理について先に説明し、その後に(補1)式右辺第2項の吸気バルブ開期間と排気バルブ開期間のオーバーラップ中の吹き返しガス量M2の算出原理について説明する。
1.吸気バルブ開時期での燃焼室内ガス量MR1の算出原理
吸気バルブ開時期での燃焼室内ガス量MR1は次の状態方程式に基づいて算出する。
Residual gas amount in combustion chamber = MR1 + M2 (Supplement 1)
In the following, the calculation principle of the combustion chamber gas amount MR1 at the intake valve opening timing IVO in the first term on the right side of the (Auxiliary 1) equation will be described first, and then the intake valve opening period in the second term on the right side of the (Auxiliary 1) equation. The calculation principle of the blowback gas amount M2 during the overlap of the exhaust valve opening period will be described.
1. Calculation Principle of Combustion Chamber Gas Amount MR1 at Intake Valve Open Timing The combustion chamber gas amount MR1 at the intake valve opening timing is calculated based on the following equation of state.

MR1=PIVO・VIVO/(REX・TIVO) …(1)
ただし、PIVO:吸気バルブ開時期IVOでの燃焼室内圧力[kPa]、
VIVO:吸気バルブ開時期IVOでの燃焼室内容積[m^3]、
TIVO:吸気バルブ開時期IVOでの燃焼室内温度[K]、
REX :排気のガス定数[kJ/kg/K]、
以下、(1)式の排気のガス定数REX、吸気バルブ開時期での燃焼室内容積VIVO、吸気バルブ開時期での燃焼室内圧力PIVO、吸気バルブ開時期での燃焼室内温度TIVOの各算出方法をこの順に説明する。
〈1〉排気ガス定数REXの算出方法
吸気バルブ開時期での燃焼室内ガスのモル数EGR molは、次式により与えられる。
MR1 = PIVO · VIVO / (REX · TIVO) (1)
However, PIVO: combustion chamber pressure [kPa] at intake valve opening timing IVO,
VIVO: combustion chamber volume at intake valve opening timing IVO [m ^ 3],
TIVO: Combustion chamber temperature [K] at intake valve opening timing IVO,
REX: exhaust gas constant [kJ / kg / K],
Hereinafter, the calculation methods of the exhaust gas constant REX, the combustion chamber volume VIVO at the intake valve opening timing, the combustion chamber pressure PIVO at the intake valve opening timing, and the combustion chamber temperature TIVO at the intake valve opening timing in the equation (1) will be described. This will be described in this order.
<1> Method for calculating the exhaust gas constant REX The number of moles of combustion chamber gas EGR when the intake valve opens mol is given by:

EGR mol=(吸気バルブ開時期での燃焼室内ガス質量)/(排気分子量)
={RESTR/(1−RESTR)}
×(空気燃料混合気質量)/(排気分子量)
={RESTR/(1−RESTR)}
×{(12×n+m)
+(n+m/4)/TFBYA×(32+0.79/0.21×28)}
/(44×A+18×B+28×C+32×D+28×E)×SUM
…(2)
ただし、RESTR:残ガス率、
TFBYA:目標当量比、
n :燃料中の炭素原子数、ガソリンの平均組成Cnm=C818
を用いる
m :燃料中の水素原子数、ガソリンの平均組成Cnm=C818
を用いる
A :CO2のモル数、
B :H2Oのモル数、
C :N2のモル数、
D :O2のモル数(ただし、φ>1の場合、D=0)、
E :COのモル数(ただし、φ≦1の場合、E=0)、
SUM :排気の総モル数、
44 :CO2の分子量[kg/kmol]、
18 :H2Oの分子量[kg/kmol]、
28 :N2の分子量[kg/kmol]、
32 :O2の分子量[kg/kmol]、
28 :COの分子量[kg/kmol]、
ここで、(2)式右辺のRESTR/(1−RESTR)は吸気バルブ開時期での燃焼室内ガス質量と空気燃料混合気質量との比で、この比を空気燃料混合気質量に乗算することで、吸気バルブ開時期での燃焼室内ガス質量を求めることができる。(2)式右辺の12×n+mは燃料(Cnm)の質量、(n+m/4)/TFBYA×(32+0.79/0.21×28)は空気の質量で、これらの合計が空気燃料混合気質量である。
EGR mol = (mass gas in combustion chamber when intake valve is open) / (exhaust molecular weight)
= {RESTR / (1-RESTR)}
× (mass of air fuel mixture) / (exhaust molecular weight)
= {RESTR / (1-RESTR)}
× {(12 × n + m)
+ (N + m / 4) / TFBYA × (32 + 0.79 / 0.21 × 28)}
/ (44 × A + 18 × B + 28 × C + 32 × D + 28 × E) × SUM
... (2)
Where RESTR: residual gas rate,
TFBYA: target equivalent ratio,
n: number of carbon atoms in the fuel, the average composition of the gasoline C n H m = C 8 H 18
Use
m: the number of hydrogen atoms in the fuel, the average composition of the gasoline C n H m = C 8 H 18
Use
A: Number of moles of CO 2
B: number of moles of H 2 O,
C: number of moles of N 2 ,
D: Number of moles of O 2 (provided that D = 0 when φ> 1),
E: Number of moles of CO (provided that E = 0 when φ ≦ 1),
SUM: Total number of moles of exhaust,
44: molecular weight of CO 2 [kg / kmol],
18: H 2 O molecular weight [kg / kmol],
28: N 2 molecular weight [kg / kmol],
32: Molecular weight of O 2 [kg / kmol],
28: Molecular weight of CO [kg / kmol],
Here, RESTR / (1-RESTR) on the right side of the equation (2) is a ratio of the mass of the combustion chamber gas to the mass of the air fuel mixture at the intake valve opening timing, and this ratio is multiplied by the mass of the air fuel mixture. Thus, the gas mass in the combustion chamber when the intake valve is opened can be obtained. (2) 12 × n + m on the right side of the equation is the mass of fuel (C n H m ), (n + m / 4) / TFBYA × (32 + 0.79 / 0.21 × 28) is the mass of air, and the sum of these is air The fuel mixture mass.

上記の残ガス率RESTRは次式により定義される値で、実際にはシミュレーションによる適合値を用いる。   The residual gas rate RESTR is a value defined by the following equation, and in practice, a suitable value by simulation is used.

RESTR=既燃ガス量/総ガス量
=(燃焼室内残留ガス量+外部EGR量)
/(吸入空気量+燃料量+燃焼室内残留ガス量)
…(補2)
(2)式右辺の目標当量比TFBYAは、図3のようにエンジンの負荷と回転速度Neによるマップ(適合値)とする。(2)式右辺のA〜Bのモル数を図4に示す。図4においてφは目標当量比のことである。
RESTR = burnt gas amount / total gas amount
= (Combustion chamber residual gas amount + external EGR amount)
/ (Intake air amount + fuel amount + combustion chamber residual gas amount)
... (Supplement 2)
The target equivalent ratio TFBYA on the right side of the equation (2) is a map (adapted value) based on the engine load and the rotational speed Ne as shown in FIG. The number of moles A to B on the right side of the formula (2) is shown in FIG. In FIG. 4, φ is the target equivalent ratio.

よって、化学反応式は次のようになる。   Therefore, the chemical reaction formula is as follows.

nm+(n+m/4)/TFBYA×(O2+0.79/0.21×N2
+RESTR/(1−RESTR)×{(12×n+m)+(n+m/4)
/TFBYA×(32+0.79/0.21×28)}
/(44×A+18×B+28×C+32×D+28×E)×SUM
×(A・CO2+B・H2O+C・N2+D・O2+E・CO)/SUM
→A・CO2+B・H2O+C・N2+D・O2+E・CO
…(3)
質量保存則より、
44×A+18×B+28×C+32×D+28×E
=1/(1−RESTR)×((12×n+m)+(n+m/4)/TFBYA
×(32+0.79/0.21×28) …(4)
となるので、(4)式を(3)式に代入することにより次式を得る。
C n H m + (n + m / 4) / TFBYA × (O 2 + 0.79 / 0.21 × N 2 )
+ RESTR / (1-RESTR) × {(12 × n + m) + (n + m / 4)
/TFBYA×(32+0.79/0.21×28)}
/ (44 × A + 18 × B + 28 × C + 32 × D + 28 × E) × SUM
× (A · CO 2 + B · H 2 O + C · N 2 + D · O 2 + E · CO) / SUM
→ A · CO 2 + B · H 2 O + C · N 2 + D · O 2 + E · CO
... (3)
From the law of conservation of mass
44 x A + 18 x B + 28 x C + 32 x D + 28 x E
= 1 / (1-RESTR) * ((12 * n + m) + (n + m / 4) / TFBYA
× (32 + 0.79 / 0.21 × 28) (4)
Therefore, the following equation is obtained by substituting equation (4) into equation (3).

nm+(n+m/4)/TFBYA×(02+0.79/0.21×N2
+RESTR×(A・CO2+B・H2O+C・N2+D・O2+E・CO)
→A・CO2+B・H2O+C・N2+D・O2+E・CO
…(5)
(5)式より、排気のガス定数REXは、
REX=R0/Mex …(6)
ただし、R0 :一般ガス定数(=8314.3J/kgK)、
Mex:排気分子量[kg/kmol]、
の式により求められる。(6)式右辺の排気分子量Mexは次式により算出する。
C n H m + (n + m / 4) / TFBYA × (0 2 + 0.79 / 0.21 × N 2 )
+ RESTR × (A · CO 2 + B · H 2 O + C · N 2 + D · O 2 + E · CO)
→ A · CO 2 + B · H 2 O + C · N 2 + D · O 2 + E · CO
... (5)
From equation (5), the exhaust gas constant REX is
REX = R0 / Mex (6)
However, R0: General gas constant (= 834.3J / kgK),
Mex: exhaust molecular weight [kg / kmol],
It is calculated by the following formula. The exhaust molecular weight Mex on the right side of the equation (6) is calculated by the following equation.

Mex=(44×A+18×B+28×C+32×D+28×E)×SUM
…(補3)
ただし、A〜B:各分子のモル数、(2)式参照。
Mex = (44 × A + 18 × B + 28 × C + 32 × D + 28 × E) × SUM
... (Supplement 3)
However, AB: the number of moles of each molecule, see formula (2).

SUM:排気総モル数、(2)式参照。
〈2〉吸気バルブ開時期での燃焼室内容積VIVOの算出方法
吸気バルブ開時期での燃焼室内容積VIVOは次式により算出する。
SUM: Total number of moles of exhaust, see equation (2).
<2> Method of calculating combustion chamber volume VIVO at intake valve opening timing The combustion chamber volume VIVO at the intake valve opening timing is calculated by the following equation.

VIVO=π×D^2×H/4+Vc …(7)
ただし、D :ボア径[m]、
H :TDCからの変位量[m]、
Vc:隙間容積[m^3]、
(7)式右辺のTDCからの変位量Hは次式により算出する。
VIVO = π × D ^ 2 × H / 4 + Vc (7)
Where D: bore diameter [m],
H: Displacement amount from TDC [m],
Vc: gap volume [m ^ 3],
The displacement amount H from the TDC on the right side of the equation (7) is calculated by the following equation.

H=((CND+ST/2)^2−(CR off−PIS off^2)^(1/2)
−(ST/2×cos(IVO+θoff)+(CND^2−X^2)^(1/2))
…(8)
ただし、CND :コンロッド長[m]、
CR off :クランクピンオフセット[m]、
PIN off:ピストンオフセット[m]、
ST :ストローク[m]、
IVO :排気バルブ閉時期[degATDC]
θoff :クランク垂直位置からTDCまでの角度[deg]、
X :コンロッド大端部からピストンピン中心までの距離[m]、
ここで、(8)式右辺の吸気バルブ開時期IVOは、吸気バルブVTC機構27に与える指令値により既知である。なお、吸気バルブ開時期IVOの単位としては、適当なクランク角位置(例えば圧縮上死点)を基準として遅角側に計測したクランク角とすればよい。
H = ((CND + ST / 2) ^ 2- (CR off-PIS off ^ 2) ^ (1/2)
− (ST / 2 × cos (IVO + θoff) + (CND ^ 2-X ^ 2) ^ (1/2))
(8)
Where CND: connecting rod length [m],
CR off: Crank pin offset [m],
PIN off: Piston offset [m],
ST: Stroke [m],
IVO: Exhaust valve closing timing [degATDC]
θoff: angle [deg] from crank vertical position to TDC,
X: distance [m] from the large end of the connecting rod to the center of the piston pin,
Here, the intake valve opening timing IVO on the right side of the equation (8) is known from the command value given to the intake valve VTC mechanism 27. The unit of the intake valve opening timing IVO may be a crank angle measured on the retard side with an appropriate crank angle position (for example, compression top dead center) as a reference.

(8)式右辺のX、θoff、(7)式右辺の隙間容積Vcは次式により算出する。   X and θoff on the right side of equation (8) and the gap volume Vc on the right side of equation (7) are calculated by the following equation.

X=ST/2×sin(EVC−θoff)−CR off+PIN off
…(9)
θoff=arcsin((CR evc−PIS off/CND+ST/2)
…(10)
Vc=(π/4)×D^2×ST/(ε−1) …(11)
ただし、ε:圧縮比、エンジン毎に決まる定数
〈3〉吸気バルブ開時期での燃焼室内圧力PIVOの算出方法
吸気バルブ開時期での燃焼室内圧力PIVO[kPa]は、排気バルブ開度が十分大きいため、排気圧力に等しいと仮定する。平均排気圧力PEX[kPa]を基準としたときの各クランク角での燃焼室内圧力と平均排気圧力との差分値(各クランク角での排気バルブ周りの圧力脈動分)をマップとして記憶しておき、この記憶させているマップを参照して吸気バルブ開時期での燃焼室内圧力と平均排気圧力との差分値PCTRM[kPa]を求め、この求めた吸気バルブ開時期での燃焼室内圧力と平均排気圧力との差分値PCTRMと平均排気圧力PEXとの和を吸気バルブ開時期での燃焼室内圧力PIVOとして、つまり次式により吸気バルブ開時期での燃焼室内圧力PIVOを算出する。
X = ST / 2 × sin (EVC−θoff) −CR off + PIN off
... (9)
θoff = arcsin ((CR evc-PIS off / CND + ST / 2)
(10)
Vc = (π / 4) × D ^ 2 × ST / (ε−1) (11)
However, ε: compression ratio, constant determined for each engine <3> Method of calculating combustion chamber pressure PIVO at intake valve opening timing Combustion chamber pressure PIVO [kPa] at intake valve opening timing has a sufficiently large exhaust valve opening Therefore, it is assumed that it is equal to the exhaust pressure. A difference value (pressure pulsation around the exhaust valve at each crank angle) between the combustion chamber pressure at each crank angle and the average exhaust pressure when the average exhaust pressure PEX [kPa] is used as a reference is stored as a map. Then, a difference value PCTRM [kPa] between the combustion chamber pressure and the average exhaust pressure at the intake valve opening timing is obtained with reference to the stored map, and the combustion chamber pressure and the average exhaust gas at the intake valve opening timing obtained are obtained. The sum of the difference value PCTRM and the average exhaust pressure PEX is used as the combustion chamber pressure PIVO at the intake valve opening timing, that is, the combustion chamber pressure PIVO at the intake valve opening timing is calculated by the following equation.

PIVO=PEX+PCTRM …(12)
ここで、(12)式のように吸気バルブ開時期での燃焼室内圧力と平均排気圧力との差分値PCTRMを導入した理由は次の通りである。すなわち、排気流量が分かればPV=nRTより平均排気圧力が分かる。しかしながら、実際の燃焼室内圧力や排気圧力は図14に示したように脈動の影響でクランク角に対して時々刻々に変化しているので、図15に示したように排気圧力の平均値をPEXとし、吸気バルブ開時期での燃焼室内圧力と平均排気圧力の差分値(つまり吸気バルブ開時期での排気バルブ周りの圧力脈動分)をPCTRMで表すこととしたものである。
PIVO = PEX + PCTRM (12)
Here, the reason why the difference value PCTRM between the pressure in the combustion chamber and the average exhaust pressure when the intake valve is opened as shown in the equation (12) is as follows. That is, if the exhaust flow rate is known, the average exhaust pressure can be found from PV = nRT. However, since the actual pressure in the combustion chamber and the exhaust pressure change every moment with respect to the crank angle due to the influence of pulsation as shown in FIG. 14, the average value of the exhaust pressure is changed to PEX as shown in FIG. And the difference between the pressure in the combustion chamber at the intake valve opening timing and the average exhaust pressure (that is, the pressure pulsation around the exhaust valve at the intake valve opening timing) is represented by PCTRM.

ただし、制御上は、吸気バルブ開時期での燃焼室内圧力と平均排気圧力との差分値を負の値で表したくないため、図15の右端に示したように、平均排気圧力PEXを差分値の下端までとし、差分値の下端をゼロとして吸気バルブ開時期での燃焼室内圧力と平均排気圧力との差分値PCTRMを表している。従って、以下では平均排気圧力PEX、吸気バルブ開時期での燃焼室内圧力と平均排気圧力との差分値PCTRM(各クランク角での燃焼室内圧力と平均排気圧力の差分値についても)は図15の右端に示した値である。   However, in terms of control, since it is not desired to represent the difference value between the combustion chamber pressure and the average exhaust pressure at the intake valve opening timing as a negative value, the average exhaust pressure PEX is set to the difference value as shown at the right end of FIG. The difference value PCTRM between the combustion chamber pressure and the average exhaust pressure at the intake valve opening timing is expressed with the lower end of the difference value being zero. Accordingly, in the following, the average exhaust pressure PEX, the difference value PCTRM between the combustion chamber pressure and the average exhaust pressure at the intake valve opening timing (and the difference value between the combustion chamber pressure and the average exhaust pressure at each crank angle) are shown in FIG. The value shown at the right end.

この吸気バルブ開時期での燃焼室内圧力と平均排気圧力との差分値PCTRMの算出方法を次に説明する。   Next, a method for calculating the difference value PCTRM between the pressure in the combustion chamber and the average exhaust pressure when the intake valve is opened will be described.

吸気バルブ開時期での燃焼室内圧力と平均排気圧力との差分値PCTRMは、図5より排気バルブ開時期EVOと回転速度Neが一定の場合、充填効率に比例するとみなせる。そこでクランク角に対して時々刻々の、充填効率最小時の各クランク角での燃焼室内圧力と平均排気圧力との差分値及び充填効率最大時の各クランク角での燃焼室内圧力と平均排気圧力との差分値を各マップに記憶させる。充填効率最小時の各クランク角での燃焼室内圧力と平均排気圧力との差分値または充填効率最大時の各クランク角での燃焼室内圧力と平均排気圧力との差分値のマップ内容を図6に示す。図6においては、横軸にクランク角を、縦軸に回転速度Neを採っており、格子で分割した25の各小区画に小、中、大の圧力値(いずれも正の値)を入れている。このため、5つに区分けした各回転速度域1〜5では、各クランク角での燃焼室内圧力と平均排気圧力との差分値の特性が右外に示したようになっており、回転域が定まれば、その回転域に対応する各クランク角での燃焼室内圧力と平均排気圧力との差分値が定まる。従って、エンジンの仕様により吸気バルブ開時期IVOがわかっているので、その吸気バルブ開時期IVOと一致するクランク角とそのときの回転速度Neから図6に示す各クランク角での燃焼室内圧力と平均排気圧力との差分値のマップを参照することにより、充填効率最小時の吸気バルブ開時期での燃焼室内圧力と平均排気圧力との差分値PCTRM(=後述するPmin)または充填効率最大時の吸気バルブ開時期での燃焼室内圧力と平均排気圧力との差分値PCTRM(=後述するPmax)を求めることができる。図6は一例であり、充填効率最小時と充填効率最大時とで各小区画に格納されている値は異なっている。充填効率最小時の各クランク角での燃焼室内圧力と平均排気圧力との差分値、充填効率最大時の各クランク角での燃焼室内圧力と平均排気圧力との差分値をそれぞれ適合して求めておき、2つの各クランク角での燃焼室内圧力と平均排気圧力との差分値のマップとして記憶させておく。   The difference value PCTRM between the pressure in the combustion chamber at the intake valve opening timing and the average exhaust pressure can be regarded as proportional to the charging efficiency when the exhaust valve opening timing EVO and the rotational speed Ne are constant from FIG. Therefore, the difference between the combustion chamber pressure and the average exhaust pressure at each crank angle when the charging efficiency is minimum, the combustion chamber pressure and the average exhaust pressure at each crank angle when the charging efficiency is maximum, Are stored in each map. FIG. 6 shows the map contents of the difference value between the combustion chamber pressure and the average exhaust pressure at each crank angle when the charging efficiency is minimum or the difference value between the combustion chamber pressure and the average exhaust pressure at each crank angle when the charging efficiency is maximum. Show. In FIG. 6, the abscissa represents the crank angle and the ordinate represents the rotational speed Ne, and small, medium and large pressure values (both positive values) are entered in each of the 25 small sections divided by the grid. ing. For this reason, in each of the rotation speed ranges 1 to 5 divided into five, the characteristic of the difference value between the combustion chamber pressure and the average exhaust pressure at each crank angle is shown on the right side, and the rotation range is Once determined, the difference value between the combustion chamber pressure and the average exhaust pressure at each crank angle corresponding to the rotation region is determined. Therefore, since the intake valve opening timing IVO is known from the engine specifications, the crank chamber angle corresponding to the intake valve opening timing IVO and the rotational speed Ne at that time are compared with the combustion chamber pressure and average at each crank angle shown in FIG. By referring to the map of the difference value with the exhaust pressure, the difference value PCTRM (= Pmin described later) between the pressure in the combustion chamber and the average exhaust pressure when the intake valve is open when the charging efficiency is minimum, or the intake air when the charging efficiency is maximum A difference value PCTRM (= Pmax described later) between the pressure in the combustion chamber and the average exhaust pressure at the valve opening timing can be obtained. FIG. 6 is an example, and the value stored in each small section is different between the minimum filling efficiency and the maximum filling efficiency. Find the difference value between the combustion chamber pressure and average exhaust pressure at each crank angle when the charging efficiency is minimum, and the difference value between the combustion chamber pressure and average exhaust pressure at each crank angle when the charging efficiency is maximum. Each of the two crank angles is stored as a map of the difference value between the combustion chamber pressure and the average exhaust pressure.

エンジン運転中の実際の充填効率は充填効率最小値と充填効率最大値の間にあるから、充填効率最小時の各クランク角での燃焼室内圧力と平均排気圧力との差分値のマップと、充填効率最大時の各クランク角での燃焼室内圧力と平均排気圧力との差分値のマップの2つの各クランク角での燃焼室内圧力と平均排気圧力との差分値のマップを用いて補間計算により求めればよい。すなわち、充填効率最小時の吸気バルブ開時期での燃焼室内圧力と平均排気圧力との差分値をPmin、同じく充填効率最大時の吸気バルブ開時期での燃焼室内圧力と平均排気圧力との差分値をPmax、充填効率最小値と実際の充填効率の差をa、充填効率最大値と実際の充填効率の差をbとすると、実際の充填効率のときの吸気バルブ開時期での燃焼室内圧力と平均排気圧力との差分値PCTRMを次の補間計算式により求めることができる。   Since the actual charging efficiency during engine operation is between the minimum charging efficiency value and the maximum charging efficiency value, the map of the difference value between the combustion chamber pressure and the average exhaust pressure at each crank angle when the charging efficiency is minimum, and the charging It is obtained by interpolation calculation using the map of the difference value between the combustion chamber pressure and the average exhaust pressure at each of the two crank angles in the map of the difference value between the combustion chamber pressure and the average exhaust pressure at each crank angle at the maximum efficiency. That's fine. That is, the difference value between the combustion chamber pressure and the average exhaust pressure at the intake valve opening timing when the charging efficiency is minimum is Pmin, and the difference value between the combustion chamber pressure and the average exhaust pressure at the intake valve opening timing when the charging efficiency is maximum. Pmax, where a is the difference between the minimum charging efficiency and the actual charging efficiency, and b is the difference between the maximum charging efficiency and the actual charging efficiency, the combustion chamber pressure at the opening timing of the intake valve at the actual charging efficiency A difference value PCTRM from the average exhaust pressure can be obtained by the following interpolation calculation formula.

PCTRM=Pmin+(Pmax−Pmin)×a/(a+b)
…(13)
a=ITAC−ITACMN …(補4)
b=ITACMX−ITAC …(補5)
ただし、Pmin :充填効率最大時の吸気バルブ開時期での燃焼室内圧力と 平均排気圧力との差分値[kPa]、
Pmax :充填効率最小時の吸気バルブ開時期での燃焼室内圧力と 平均排気圧力との差分値[kPa]、
ITAC :実際の充填効率[%]、後に算出方法を説明する
ITACMN:充填効率最小値[%]、
ITACMX:充填効率最大値[%]、
ここで、(補4)式右辺の充填効率最小値ITACMN、(補5)式右辺の充填効率最大値ITACMXはエンジンの負荷と回転速度Neをパラメータとして予め求めておく。
PCTRM = Pmin + (Pmax−Pmin) × a / (a + b)
... (13)
a = ITAC-ITACMN (Supplement 4)
b = ITACMX-ITAC (Supplement 5)
Where Pmin: difference value [kPa] between the pressure in the combustion chamber and the average exhaust pressure when the intake valve is opened when the charging efficiency is maximum,
Pmax: difference value [kPa] between the pressure in the combustion chamber and the average exhaust pressure when the intake valve is opened when the charging efficiency is minimum,
ITAC: Actual filling efficiency [%], the calculation method will be explained later
ITACMN: minimum filling efficiency [%]
ITACMX: Maximum filling efficiency [%]
Here, the filling efficiency minimum value ITACMN on the right side of (Supplement 4) and the charging efficiency maximum value ITACMX on the right side of (Supplement 5) are obtained in advance using the engine load and the rotational speed Ne as parameters.

さて、排気バルブ用VTC機構28が備えられる場合に、排気バルブ用VTC機構28を非作動状態から作動状態に切換えたとき、排気バルブ開時期EVO及び排気バルブ閉時期EVCが排気バルブ用VTC機構非作動状態での最遅角位置から進角側へと移動し、この排気バルブ開閉時期の移動により排気圧力の圧力脈動にずれが生じる。このため、排気バルブ用VTC機構28の非作動時(つまり排気バルブ用VTC機構を備えない場合)に図6に示す各クランク角での燃焼室内圧力と平均排気圧力との差分値のマップを適合している場合に、排気バルブ用VTC機構28の作動時にも、その排気バルブ用VTC機構非作動時に対して適合している図6に示す各クランク角での燃焼室内圧力と平均排気圧力との差分値のマップをそのまま用いて、吸気バルブ開時期での燃焼室内圧力と平均排気圧力との差分値PCTRMを求めたのでは、排気バルブ用VTC機構28の作動に伴う排気圧力の圧力脈動のずれ分だけ吸気バルブ開時期での燃焼室内圧力と平均排気圧力との差分値PCTRMの算出に誤差が生じ、吸気バルブ開時期での燃焼室内圧力PIVO(燃焼室内残留ガス量)の算出に誤差が生じる。従って、排気バルブ用VTC機構28の作動時には排気バルブ用VTC機構作動時の吸気バルブ開時期での燃焼室内圧力と平均排気圧力との差分値PCTRMを新たに算出する必要がある。   Now, when the exhaust valve VTC mechanism 28 is provided, when the exhaust valve VTC mechanism 28 is switched from the non-operating state to the operating state, the exhaust valve opening timing EVO and the exhaust valve closing timing EVC are not adjusted to the exhaust valve VTC mechanism 28. Moving from the most retarded position in the operating state to the advanced angle side, the displacement of the exhaust valve pressure pulsation is caused by the movement of the exhaust valve opening / closing timing. Therefore, when the exhaust valve VTC mechanism 28 is not operated (that is, when the exhaust valve VTC mechanism is not provided), the map of the difference value between the combustion chamber pressure and the average exhaust pressure at each crank angle shown in FIG. 6 is applied. When the exhaust valve VTC mechanism 28 is operating, the combustion chamber pressure and the average exhaust pressure at each crank angle shown in FIG. 6 are adapted to when the exhaust valve VTC mechanism is not operating. If the difference value PCTRM between the combustion chamber pressure and the average exhaust pressure at the intake valve opening timing is obtained using the difference value map as it is, the difference in exhaust gas pressure pulsation due to the operation of the exhaust valve VTC mechanism 28 is obtained. An error occurs in the calculation of the difference value PCTRM between the combustion chamber pressure and the average exhaust pressure when the intake valve is open, and the combustion chamber pressure PIVO (combustion chamber residual gas amount) when the intake valve is open Calculation error occurs. Accordingly, when the exhaust valve VTC mechanism 28 is operated, it is necessary to newly calculate a difference value PCTRM between the combustion chamber pressure and the average exhaust pressure at the intake valve opening timing when the exhaust valve VTC mechanism is operated.

そこで、これについて検討したところを次に述べると、まず、排気温度が基準排気温度にある条件において排気バルブ用VTC機構28が非作動状態にあるとき、つまり排気バルブ開時期EVOが初期位置の最遅角位置にあるときの燃焼室内圧力の圧力脈動波形(図では「EVO遅」で示す。)と、排気温度が基準排気温度にある条件において排気バルブ用VTC機構28の作動により排気バルブ開時期EVOが所定値ADVだけ進角しているときの燃焼室内圧力の圧力脈動波形(図では「EVO早」で示す。)とを重ねて示したのが図7である。図7によれば、排気バルブ開時期EVOが例えばクランク角で10度(クランク角の単位を以下[degCA]で表記する。)進角したとき、その同じ10degCAだけ基準の圧力脈動波形を左側(進角側)に平行移動すればぴったり重なる、つまり燃焼室内圧力の圧力脈動波形の波長は変化しないことを表している。ここで、基準の圧力脈動波形とは、基準排気温度の条件で排気バルブ用VTC機構28が非作動状態にあるときの燃焼室圧力の圧力脈動波形である。基準排気温度としては最も低い排気温度を設定しておく。   Therefore, the following is a discussion of this. First, when the exhaust valve VTC mechanism 28 is in an inoperative state under the condition that the exhaust temperature is at the reference exhaust temperature, that is, the exhaust valve opening timing EVO is at the maximum of the initial position. The pressure pulsation waveform of the pressure in the combustion chamber at the retarded position (indicated by “EVO delay” in the figure) and the operation of the exhaust valve VTC mechanism 28 under the condition that the exhaust temperature is at the reference exhaust temperature, FIG. 7 shows the pressure pulsation waveform (indicated by “EVO early” in the figure) of the pressure in the combustion chamber when EVO is advanced by a predetermined value ADV. According to FIG. 7, when the exhaust valve opening timing EVO is advanced by, for example, a crank angle of 10 degrees (the unit of the crank angle is expressed as [degCA] hereinafter), the reference pressure pulsation waveform is shifted to the left side by the same 10 degCA ( This means that if they move parallel to the advance angle side, they overlap exactly, that is, the wavelength of the pressure pulsation waveform of the pressure in the combustion chamber does not change. Here, the reference pressure pulsation waveform is a pressure pulsation waveform of the combustion chamber pressure when the exhaust valve VTC mechanism 28 is in an inoperative state under the condition of the reference exhaust temperature. The lowest exhaust temperature is set as the reference exhaust temperature.

従って、この場合には次のようにして排気バルブ用VTC機構作動時の吸気バルブ開時期での燃焼室内圧力と平均排気圧力との差分値PCTRMを算出することができる。すなわち、図16にモデル波形を示すと、図16は排気圧力の圧力脈動波形のうち脈動分だけを取り出して示している。排気バルブ用VTC機構28の非作動時に脈動分の波形が実線であるとして、排気バルブ用VTC機構28の作動により排気バルブ開時期EVOが所定値ADVだけ進角したときには脈動分の波形が実線より1点鎖線へと左側に平行移動することとなる。図示の位置に吸気バルブ開時期IVOがあるとすると、排気バルブ用VTC機構非作動時の吸気バルブ開時期での燃焼室内圧力と平均排気圧力との差分値PCTRMは●印位置の値であったのが、いま求めたい吸排気バルブ用VTC機構作動時の吸気バルブ開時期での燃焼室内圧力と平均排気圧力との差分値PCTRMは〇印位置の値へと移る。この○印位置の値は、同図より吸気バルブ開時期IVOから所定値ADVだけ遅らせたクランク角(IVO+ADV)での実線上の値、つまり△印位置の値と同じである。ということは、排気バルブ用VTC機構28の作動で排気バルブ開時期が所定値ADVだけ進角した場合に吸気バルブ開時期での燃焼室内圧力と平均排気圧力との差分値PCTRMを求めるには、吸気バルブ開時期IVOに代えて、吸気バルブ開時期IVOに所定値ADVを加算した値を用いて実線の特性、つまり排気バルブ用VTC機構非作動時に適合している図6に示す各クランク角での燃焼室内圧力と平均排気圧力との差分値のマップを参照すればよいことを意味する。言い換えると、排気バルブ用VTC機構28が非作動状態にあるときに基準排気温度において充填効率最小時の各クランク角での燃焼室内圧力と平均排気圧力との差分値のマップと、充填効率最大時の各クランク角での燃焼室内圧力と平均排気圧力との差分値のマップとの2つの差分値のマップを適合しておけば、排気バルブ用VTC機構28の作動により排気バルブ開時期EVOが所定値ADVだけ進角したとき、吸気バルブ開時期IVOに所定値ADVを加算したクランク角と、そのときの回転速度Neとからこれら2つの各クランク角での燃焼室内圧力と平均排気圧力との差分値のマップを参照して、充填効率最小時の吸気バルブ開時期での燃焼室内圧力と平均排気圧力との差分値と、充填効率最大時の吸気バルブ開時期での燃焼室内圧力と平均排気圧力との差分値とを求めることで、排気バルブ用VTC機構28の作動により排気バルブ開時期EVOが所定値ADVだけ進角しているときにおいても、充填効率最小時の吸気バルブ開時期での燃焼室内圧力と平均排気圧力との差分値PCTRM(Pmin)及び充填効率最大時の吸気バルブ開時期での燃焼室内圧力と平均排気圧力との差分値PCTRM(Pmax)を精度良く求めることができるのである。   Accordingly, in this case, the difference value PCTRM between the pressure in the combustion chamber and the average exhaust pressure when the exhaust valve VTC mechanism is operated when the exhaust valve VTC mechanism is operated can be calculated as follows. That is, when the model waveform is shown in FIG. 16, FIG. 16 shows only the pulsation component extracted from the pressure pulsation waveform of the exhaust pressure. Assuming that the waveform of the pulsation when the exhaust valve VTC mechanism 28 is not operated is a solid line, when the exhaust valve opening timing EVO is advanced by a predetermined value ADV due to the operation of the exhaust valve VTC mechanism 28, the waveform of the pulsation is from the solid line. It will translate to the left side of the dashed line. If there is an intake valve opening timing IVO at the illustrated position, the difference value PCTRM between the pressure in the combustion chamber and the average exhaust pressure at the intake valve opening timing when the exhaust valve VTC mechanism is not in operation is the value at the position marked with ●. However, the difference value PCTRM between the combustion chamber pressure and the average exhaust pressure when the intake valve opening timing when the intake / exhaust valve VTC mechanism is desired is shifted to the value indicated by the circle mark. The value at this circle mark position is the same as the value on the solid line at the crank angle (IVO + ADV) delayed from the intake valve opening timing IVO by a predetermined value ADV, that is, the value at the mark position Δ. That is, in order to obtain the difference value PCTRM between the combustion chamber pressure and the average exhaust pressure at the intake valve opening timing when the exhaust valve opening timing is advanced by the predetermined value ADV by the operation of the exhaust valve VTC mechanism 28, In place of the intake valve opening timing IVO, a value obtained by adding a predetermined value ADV to the intake valve opening timing IVO is used for the characteristics of the solid line, that is, at each crank angle shown in FIG. 6 that is adapted when the exhaust valve VTC mechanism is not operated. This means that a difference value map between the combustion chamber pressure and the average exhaust pressure may be referred to. In other words, when the exhaust valve VTC mechanism 28 is in a non-operating state, a map of the difference value between the combustion chamber pressure and the average exhaust pressure at each crank angle when the charging efficiency is minimum at the reference exhaust temperature, and when the charging efficiency is maximum. If the two difference value maps, the difference value map between the combustion chamber pressure and the average exhaust pressure at each crank angle, are adapted, the exhaust valve opening timing EVO is determined by the operation of the exhaust valve VTC mechanism 28. The difference between the combustion chamber pressure at each of these two crank angles and the average exhaust pressure from the crank angle obtained by adding the predetermined value ADV to the intake valve opening timing IVO and the rotational speed Ne at that time when the valve is advanced by the value ADV Referring to the map of values, the difference between the combustion chamber pressure at the intake valve opening timing when the charging efficiency is minimum and the average exhaust pressure, and the combustion chamber at the intake valve opening timing when the charging efficiency is maximum By obtaining the difference between the force and the average exhaust pressure, the intake valve at the time when the charging efficiency is minimum is obtained even when the exhaust valve opening timing EVO is advanced by the predetermined value ADV by the operation of the exhaust valve VTC mechanism 28. The difference value PCTRM (Pmin) between the combustion chamber pressure and the average exhaust pressure at the opening timing and the difference value PCTRM (Pmax) between the combustion chamber pressure and the average exhaust pressure at the intake valve opening timing at the maximum charging efficiency are accurately obtained. It can be done.

図7、図16は排気温度が基準排気温度にある場合、つまり排気バルブ用VTC機構28の非作動時と作動時とで排気温度が変わらない場合であったが、次には排気温度が基準排気温度より高温側に外れる場合を考える。すなわち、排気温度が基準排気温度にある条件において排気バルブ用VTC機構28が非作動状態にあるときの燃焼室内圧力の脈動波形(図では「IVO遅」で示す。)と、排気温度が基準排気温度よりも高温側の条件において排気バルブ用VTC機構28の作動により排気バルブ開時期EVOが所定値ADVだけ進角しているときの燃焼室内圧力の脈動波形(図では「IVO早」で示す。)とを重ねて示したのが図8である。図8によれば、排気バルブ開時期EVOが例えば10degCA進角したとき、その同じ10degCAだけ基準の圧力脈動波形が左側(進角側)に移動するほか、図7と相違して燃焼室内圧力の圧力脈動波形の波長が短くなっていることを表している。   FIGS. 7 and 16 show the case where the exhaust temperature is at the reference exhaust temperature, that is, the exhaust temperature does not change between when the exhaust valve VTC mechanism 28 is inactive and when it is in operation. Consider a case where the temperature is higher than the exhaust temperature. That is, the pulsation waveform of the pressure in the combustion chamber when the exhaust valve VTC mechanism 28 is in a non-operating state under the condition that the exhaust temperature is at the reference exhaust temperature (indicated by “IVO delay” in the figure), and the exhaust temperature is the reference exhaust. The pulsation waveform of the pressure in the combustion chamber when the exhaust valve opening timing EVO is advanced by a predetermined value ADV by the operation of the exhaust valve VTC mechanism 28 under a condition higher than the temperature (indicated by “IVO early” in the figure). 8 is shown in a superimposed manner in FIG. According to FIG. 8, when the exhaust valve opening timing EVO advances, for example, by 10 deg CA, the reference pressure pulsation waveform moves to the left (advance angle side) by the same 10 deg CA, and unlike in FIG. This shows that the wavelength of the pressure pulsation waveform is shortened.

従って、この場合には次のようにして排気バルブ用VTC機構作動時の吸気バルブ開時期での燃焼室内圧力と平均排気圧力との差分値PCTRMを算出することができる。すなわち、図17にモデル波形を示すと、図17も図16と同じに排気圧力の脈動波形のうち脈動分だけを取り出して示している。排気温度が基準排気温度にある条件において排気バルブ用VTC機構28の非作動時に脈動分の波形が実線であるとして、排気バルブ用VTC機構28の非作動時でも排気温度が基準排気温度よりも高温側の条件になると、脈動分波形の波長が短くなるため、脈動分の波形が実線より破線へと変化する。つまり、排気温度が基準排気温度よりも高温側の条件では脈動分の波長が短くなる分だけ脈動分波形が、排気バルブ開時期を基準として、排気温度が基準排気温度にある条件にあるときよりも左側に移動する。   Accordingly, in this case, the difference value PCTRM between the pressure in the combustion chamber and the average exhaust pressure when the exhaust valve VTC mechanism is operated when the exhaust valve VTC mechanism is operated can be calculated as follows. That is, when the model waveform is shown in FIG. 17, FIG. 17 also shows only the pulsation portion extracted from the pulsation waveform of the exhaust pressure as in FIG. Under the condition that the exhaust temperature is at the reference exhaust temperature, assuming that the waveform of the pulsation is a solid line when the exhaust valve VTC mechanism 28 is not operating, the exhaust temperature is higher than the reference exhaust temperature even when the exhaust valve VTC mechanism 28 is not operating. If the conditions on the side are satisfied, the wavelength of the pulsation component waveform becomes shorter, so the waveform of the pulsation component changes from a solid line to a broken line. In other words, when the exhaust gas temperature is higher than the reference exhaust gas temperature, the pulsation waveform is equivalent to the pulsation wavelength being shorter than when the exhaust gas temperature is at the reference exhaust gas temperature, based on the exhaust valve opening timing. Also move to the left.

このように、排気バルブ用VTC機構の非作動時でも排気温度が基準排気温度より高温側に外れることによって脈動分波形の波長が短くなる(排気温度が基準排気温度より低温側に外れるときには脈動分波形の波長が長くなる)ときには、基準の脈動分波形に対して排気の速度による補正を加えることで、排気温度が基準排気温度より高温側に外れた条件での排気バルブ用VTC機構非作動時の脈動分波形を新たに算出する。ここで、基準の脈動分波形とは、排気温度が基準排気温度にある条件での脈動分波形である。この基準の脈動分波形は、例えば、図6に合わせて5つの各回転域毎に、クランク角をパラメータとして記憶させておく。そして、その新たに算出した、図6に合わせた5つの各回転域毎の脈動分波形を参照して、排気温度が基準排気温度より高温側に外れた条件での排気バルブ用VTC機構非作動時の各クランク角での燃焼室内圧力と平均排気圧力との差分値のマップを作成する。つまり、図6は排気温度が基準排気温度にある条件での排気バルブ非作動時に適合させて予め作成している各クランク角での燃焼室内圧力と平均排気圧力との差分値のマップであるが、排気温度が基準排気温度より高温側に外れた条件になると、その都度、排気温度が基準排気温度より高温側に外れた条件での排気バルブ非作動時に適合する各クランク角での燃焼室内圧力と平均排気圧力との差分値のマップを新たに作成するのである。   Thus, even when the exhaust valve VTC mechanism is not in operation, the wavelength of the pulsation waveform is shortened by the exhaust temperature deviating from the reference exhaust temperature to a higher temperature side (when the exhaust temperature deviates from the reference exhaust temperature to the lower temperature side, the pulsation component When the waveform is longer), the exhaust valve VTC mechanism is inactive when the exhaust temperature deviates from the reference exhaust temperature by correcting the reference pulsation waveform based on the exhaust speed. A new pulsation waveform is calculated. Here, the reference pulsation waveform is a pulsation waveform under the condition that the exhaust temperature is at the reference exhaust temperature. For example, the reference pulsation component waveform is stored with the crank angle as a parameter for each of the five rotation regions in accordance with FIG. Then, with reference to the newly calculated pulsation waveform for each of the five rotation ranges in accordance with FIG. 6, the exhaust valve VTC mechanism is not operated under the condition that the exhaust temperature deviates from the reference exhaust temperature. A map of the difference value between the combustion chamber pressure and the average exhaust pressure at each crank angle at the time is created. That is, FIG. 6 is a map of the difference value between the pressure in the combustion chamber and the average exhaust pressure at each crank angle, which is prepared in advance by adapting when the exhaust valve is not operating under the condition where the exhaust temperature is at the reference exhaust temperature. Whenever the exhaust gas temperature deviates to a higher temperature than the reference exhaust gas temperature, the combustion chamber pressure at each crank angle that meets the exhaust valve non-operating condition with the exhaust gas temperature deviating from the reference exhaust gas temperature. And a new map of the difference value between the average exhaust pressure and the average exhaust pressure.

次に、排気温度が基準排気温度よりも高温側に外れた条件において排気バルブ用VTC機構28の作動により排気バルブ開時期EVOが所定値ADVだけ進角したときには脈動分波形が、図17に重ねて示したように破線より1点鎖線へとさらに左側に平行移動することとなる。   Next, when the exhaust valve opening timing EVO is advanced by a predetermined value ADV due to the operation of the exhaust valve VTC mechanism 28 under the condition where the exhaust temperature is higher than the reference exhaust temperature, the pulsation waveform is superimposed on FIG. As shown in the figure, the line moves further to the left from the broken line to the one-dot chain line.

さて、いま図示の位置に吸気バルブ開時期IVOがあるとすると、排気温度が基準排気温度よりも高温側に外れた条件において排気バルブ用VTC機構非作動時の吸気バルブ開時期での燃焼室内圧力と平均排気圧力との差分値PCTRMは◎印位置の値であったのが、排気温度が基準排気温度より高温側に外れた条件において排気バルブ用VTC機構作動時の、求めたい吸気バルブ開時期での燃焼室内圧力と平均排気圧力との差分値PCTRMは、〇印位置の値へと移る。この○印位置の値は、同図より吸気バルブ開時期IVOから所定値ADVだけ遅らせたクランク角(IVO+ADV)での破線上の値、つまり△印位置の値と同じである。ということは、排気温度が基準排気温度より高温側に外れた条件において排気バルブ用VTC機構28の作動で排気バルブ開時期が所定値ADVだけ進角した場合に吸気バルブ開時期での燃焼室内圧力と平均排気圧力との差分値PCTRMを求めるには、吸気バルブ開時期IVOに代えて、吸気バルブ開時期IVOに所定値ADVを加算した値を用いて破線の特性、つまり排気温度が基準排気温度より高温側に外れた条件での排気バルブ用VTC機構非作動時に適合するように新たに作成した上記の各クランク角での燃焼室内圧力と平均排気圧力との差分値のマップを参照すればよいことを意味する。言い換えると、充填効率最小時と充填効率最大時に排気温度が基準排気温度にある条件において排気バルブ用VTC機構非作動時の脈動分波形(つまり基準の脈動分波形)を、図6に示す5つの各回転域毎にクランク角をパラメータとしてそれぞれマップに記憶させておき、排気温度が基準排気温度よりも高温側に外れた条件になると、この基準の脈動分波形に対して排気の速度(排気圧力伝播速度)による補正を加えることで、排気温度が基準排気温度より高温側に外れた条件での排気バルブ用VTC機構非作動時の脈動分波形を算出し、その算出した図6に示す5つの各回転域毎の脈動分波形に基づいて、排気温度が基準排気温度より高温側に外れた条件での排気バルブ用VTC機構非作動時かつ充填効率最小時の各クランク角での燃焼室内圧力と平均排気圧力との差分値のマップと、同じく排気温度が基準排気温度より高温側に外れた条件での排気バルブ用VTC機構非作動時かつ充填効率最大時の各クランク角での燃焼室内圧力と平均排気圧力との差分値のマップとの2つの各クランク角での燃焼室内圧力と平均排気圧力との差分値のマップを、図6と同様にして新たに作成する。そして、排気温度が基準排気温度より高温側に外れた条件で排気バルブ用VTC機構28の作動により排気バルブ開時期EVOが所定値ADVだけ進角したとき、吸気バルブ開時期IVOに所定値ADVを加算したクランク角と、そのときの回転速度Neとから上記新たに作成した2つの各クランク角での燃焼室内圧力と平均排気圧力との差分値のマップを参照して、排気温度が基準排気温度より高温側に外れた条件での排気バルブ用VTC機構作動時かつ充填効率最小時の吸気バルブ開時期での燃焼室内圧力と平均排気圧力との差分値PCTRM(=Pmin)と、排気温度が基準排気温度より高温側に外れた条件での排気バルブ用VTC機構作動時かつ充填効率最大時の吸気バルブ開時期での燃焼室内圧力と平均排気圧力との差分値PCTRM(=Pmax)を求めることで、排気温度が基準排気温度より高温側に外れた条件で排気バルブ用VTC機構28の作動により排気バルブ開時期EVOを所定値ADVだけ進角しているときにおいても、充填効率最小時の吸気バルブ開時期での燃焼室内圧力と平均排気圧力との差分値PCTRM(=Pmin)及び充填効率最大時の吸気バルブ開時期での燃焼室内圧力と平均排気圧力との差分値PCTRM(=Pmax)を精度良く求めることができるのである。   Now, assuming that the intake valve opening timing IVO is at the position shown in the figure, the pressure in the combustion chamber at the intake valve opening timing when the exhaust valve VTC mechanism is not operated under the condition that the exhaust temperature deviates to a higher temperature side than the reference exhaust temperature. The difference value PCTRM between the average exhaust pressure and the average exhaust pressure is the value at the position marked with ◎, but the intake valve opening timing to be obtained when the exhaust valve VTC mechanism is operated under the condition that the exhaust temperature deviates from the reference exhaust temperature. The difference value PCTRM between the pressure in the combustion chamber and the average exhaust pressure at is shifted to the value at the position marked with a circle. The value at this circle mark position is the same as the value on the broken line at the crank angle (IVO + ADV) delayed by the predetermined value ADV from the intake valve opening timing IVO, that is, the value at the mark position Δ. This means that the pressure in the combustion chamber at the intake valve opening timing when the exhaust valve opening timing is advanced by a predetermined value ADV by the operation of the exhaust valve VTC mechanism 28 under the condition that the exhaust temperature deviates from the reference exhaust temperature. In order to obtain the difference value PCTRM between the intake valve opening timing IVO and the intake valve opening timing IVO, a value obtained by adding a predetermined value ADV is used instead of the intake valve opening timing IVO. It is only necessary to refer to the map of the difference value between the combustion chamber pressure and the average exhaust pressure at each crank angle newly created so as to be adapted when the exhaust valve VTC mechanism is not operated under a condition deviating to a higher temperature side. Means that. In other words, the pulsation waveform (that is, the reference pulsation waveform) when the exhaust valve VTC mechanism is not operated under the condition that the exhaust temperature is at the reference exhaust temperature when the charging efficiency is minimum and when the charging efficiency is maximum is shown in FIG. The crank angle is stored in the map as a parameter for each rotation range, and when the exhaust temperature deviates to a higher temperature side than the reference exhaust temperature, the exhaust speed (exhaust pressure) is compared with the reference pulsation waveform. 6 for the pulsation when the exhaust valve VTC mechanism is not operated under the condition that the exhaust temperature deviates from the reference exhaust temperature to the higher temperature side. Combustion at each crank angle when the exhaust valve VTC mechanism is not operating and when the charging efficiency is minimum, under the condition that the exhaust temperature deviates to a higher temperature than the reference exhaust temperature based on the pulsation waveform for each rotation range A map of the difference between the internal pressure and the average exhaust pressure, and combustion at each crank angle when the exhaust valve VTC mechanism is not operating and the charging efficiency is maximum under the condition that the exhaust temperature deviates from the reference exhaust temperature. A map of the difference value between the combustion chamber pressure and the average exhaust pressure at each of the two crank angles of the map of the difference value between the chamber pressure and the average exhaust pressure is newly created in the same manner as in FIG. When the exhaust valve opening timing EVO is advanced by a predetermined value ADV by the operation of the exhaust valve VTC mechanism 28 under the condition that the exhaust temperature deviates to a higher temperature side than the reference exhaust temperature, the predetermined value ADV is set to the intake valve opening timing IVO. Referring to the map of the difference value between the combustion chamber pressure and the average exhaust pressure at each of the two newly created crank angles from the added crank angle and the rotational speed Ne at that time, the exhaust temperature is the reference exhaust temperature. The difference value PCTRM (= Pmin) between the pressure in the combustion chamber and the average exhaust pressure when the exhaust valve VTC mechanism is operated and the charging efficiency is minimum when the exhaust temperature is higher and the exhaust temperature is the reference The difference value PC between the combustion chamber pressure and the average exhaust pressure when the exhaust valve VTC mechanism is operated under conditions deviating from the exhaust temperature and the intake valve is open when the charging efficiency is maximum By obtaining RM (= Pmax), the exhaust valve opening timing EVO is advanced by a predetermined value ADV by the operation of the exhaust valve VTC mechanism 28 under the condition that the exhaust temperature deviates from the reference exhaust temperature. The difference value PCTRM (= Pmin) between the combustion chamber pressure and the average exhaust pressure at the intake valve opening timing when the charging efficiency is minimum and the combustion chamber pressure and the average exhaust pressure at the intake valve opening timing when the charging efficiency is maximum The difference value PCTRM (= Pmax) can be obtained with high accuracy.

図8、図17では排気温度が基準排気温度より高温側に外れる場合で説明した。ここでは、基準排気温度として最低の排気温度を設定しているため、運転条件の相違で排気温度が基準排気温度より高温側に外れる場合を考えたが、後述するように基準排気温度として最高の排気温度を設定したときには、運転条件の相違で排気温度が基準排気温度より低温側に外れる場合を考えなければならない。この場合には、排気バルブ用VTC機構28の非作動時でも排気温度が基準排気温度より低温側の条件になると、脈動分波形の波長が長くなるため、その脈動分の波長が長くなる分だけ脈動分波形が、排気バルブ開時期を基準として、排気温度が基準排気温度にある条件にあるときよりも右側に移動することとなるので、後は、本実施形態と同様に考えればよい。   In FIGS. 8 and 17, the case where the exhaust temperature deviates from the reference exhaust temperature to the higher temperature side has been described. Here, since the lowest exhaust temperature is set as the reference exhaust temperature, the case where the exhaust temperature deviates from the reference exhaust temperature due to the difference in operating conditions was considered, but as described later, the highest reference exhaust temperature is assumed. When the exhaust temperature is set, it must be considered that the exhaust temperature deviates from the reference exhaust temperature due to the difference in operating conditions. In this case, even when the exhaust valve VTC mechanism 28 is not in operation, if the exhaust gas temperature is lower than the reference exhaust gas temperature, the wavelength of the pulsation waveform becomes longer. Since the pulsation component waveform moves to the right side with respect to the exhaust valve opening timing as compared with when the exhaust gas temperature is at the reference exhaust gas temperature, it can be considered in the same manner as in the present embodiment.

上記排気の速度c[m/s]は、次のように音速の式を用いて算出する。   The exhaust velocity c [m / s] is calculated using the sonic velocity formula as follows.

c=(κ×PIVO/ρ) …(14)
ただし、κ :排気の比熱比、後に算出法を説明する
PIVO:吸気バルブ開時期での燃焼室内圧力[kPa]、
ρ :排気の密度、
(14)式右辺の排気の密度ρの算出には次の式を用いる。
c = (κ × PIVO / ρ) (14)
Where κ is the specific heat ratio of the exhaust, and the calculation method will be explained later
PIVO: Combustion chamber pressure [kPa] at intake valve opening timing,
ρ: exhaust density,
The following equation is used to calculate the exhaust density ρ on the right side of equation (14).

ρ=REX×TEX/PIVO …(15)
ただし、REX :排気ガス定数[kJ/kg/K]、(6)式にて算出済
TEX :平均排気温度[K]、後に算出法を説明する
PIVO:吸気バルブ開時期での燃焼室内圧力[kPa]、
(14)、(15)式より、排気の速度cは排気の密度ρを消去した次式により算出することができる。
ρ = REX × TEX / PIVO (15)
However, REX: exhaust gas constant [kJ / kg / K], calculated with equation (6)
TEX: average exhaust temperature [K], the calculation method will be described later
PIVO: Combustion chamber pressure [kPa] at intake valve opening timing,
From the equations (14) and (15), the exhaust velocity c can be calculated by the following equation with the exhaust gas density ρ eliminated.

c=(κ×REX×TEX)^(1/2) …(16)
ただし、REX:排気ガス定数[kJ/kg/K]、(6)式にて算出済
TEX:平均排気温度[K]、後に算出法を説明する
燃焼室内から触媒9までの距離Lは既知であるので、次式により排気温度が基準排気温度より高温側に外れたときの脈動分波形の波長λ[m]を算出する。
c = (κ × REX × TEX) ^ (1/2) (16)
However, REX: exhaust gas constant [kJ / kg / K], calculated with equation (6)
TEX: Average exhaust gas temperature [K], the calculation method will be described later Since the distance L from the combustion chamber to the catalyst 9 is known, the pulsation waveform when the exhaust gas temperature is higher than the reference exhaust gas temperature by the following equation The wavelength λ [m] is calculated.

λ=L/c …(17)
ただし、L:燃焼室内から触媒9までの距離[m]
ここで、基準の脈動分波形の波長λ0は予め定まっているので、補正項はλ/λ0となる。従って、排気温度が基準排気温度より高温側に外れたときの脈動分波形は次のようにして求めることができる。
λ = L / c (17)
Where L: distance from combustion chamber to catalyst 9 [m]
Here, since the wavelength λ0 of the reference pulsation waveform is predetermined, the correction term is λ / λ0. Therefore, the pulsation waveform when the exhaust temperature deviates to a higher temperature than the reference exhaust temperature can be obtained as follows.

基準排気温度から高温側に外れたときの脈動分波形
=基準の脈動分波形×(λ/λ0) …(補6)
上記(16)式右辺の比熱比κの算出方法を示す。排気の定圧比熱Cpは、単純化した次の反応式で考える。
Pulsation waveform when deviating from reference exhaust temperature to high temperature side = Reference pulsation waveform x (λ / λ0) (Appendix 6)
The calculation method of the specific heat ratio κ on the right side of the above equation (16) will be described. The constant pressure specific heat Cp of the exhaust gas is considered by the following simplified reaction formula.

Cp=(Cp_CO2(TEX)×A+Cp_H2O(TEX)×B
+Cp_N2(TEX)×C+Cp_O2(TEX)×D
+Cp_CO(TEX)×E)
/(44×A+18×B+28×C+32×D+28×E)
…(18)
ただし、Cp_CO2(TEX):CO2の平均排気温度での定圧比熱
[J/kmolK]、
Cp_H2O(TEX):H2Oの平均排気温度での定圧比熱
[J/kmolK]、
Cp_N2(TEX):N2の平均排気温度での定圧比熱
[J/kmolK]、
Cp_O2(TEX):O2の平均排気温度での定圧比熱
[J/kmolK]、
Cp_CO(TEX):COの平均排気温度での定圧比熱
[J/kmolK]、
(18)式右辺の各定圧比熱は、それぞれ平均排気温度TEXの関数として次式により算出する。(補7−1)式〜(補7−5)においてTEX^4までは一般的に使われているが、先願装置ではTEX^5、TEX^6を追加している。
Cp = (Cp_CO 2 (TEX) × A + Cp_H 2 O (TEX) × B
+ Cp_N 2 (TEX) × C + Cp_O 2 (TEX) × D
+ Cp_CO (TEX) × E)
/ (44 × A + 18 × B + 28 × C + 32 × D + 28 × E)
... (18)
However, Cp_CO 2 (TEX): constant pressure specific heat at the average exhaust temperature of CO 2
[J / kmolK],
Cp_H 2 O (TEX): constant pressure specific heat at an average exhaust temperature of H 2 O
[J / kmolK],
Cp_N 2 (TEX): constant pressure specific heat at the average exhaust temperature of N 2
[J / kmolK],
Cp_O 2 (TEX): constant pressure specific heat at O 2 average exhaust temperature
[J / kmolK],
Cp_CO (TEX): constant pressure specific heat at the average exhaust temperature of CO
[J / kmolK],
Each constant pressure specific heat on the right side of the equation (18) is calculated by the following equation as a function of the average exhaust temperature TEX. In (Supplement 7-1) to (Supplement 7-5), TEX ^ 4 is generally used, but TEX ^ 5 and TEX ^ 6 are added in the prior application apparatus.

Cp_CO2(TEX)=5.0×10^(−20)×TEX^6
+1.0×10^(−16)×TEX^5
−5.0×10^(−12)×TEX^4
+2.0×10^(−08)×TEX^3
−6.0×10^(−05)×TEX^2
+0.0727×TEX+20.075
…(補7−1)
Cp_H2O(TEX)=7.0×10^(−21)×TEX^6
−4.0×10^(−16)×TEX^5
+4.0×10^(−12)×TEX^4
−2.0×10^(−08)×TEX^3
+3.0×10^(−05)×TEX^2
−0.0057×TEX+33.393
…(補7−2)
Cp_N2(TEX)=4.0×10^(−19)×TEX^6
−4.0×10^(−15)×TEX^5
+2.0×10^(−11)×TEX^4
−4.0×10^(−08)×TEX^3
+5.0×10^(−05)×TEX^2
−0.0207×TEX+31.894
…(補7−3)
Cp_O2(TEX)=5.0×10^(−19)×TEX^6
−5.0×10^(−15)×TEX^5
+2.0×10^(−11)×TEX^4
−4.0×10^(−08)×TEX^3
+3.0×10^(−05)×TEX^2
−0.0014×TEX+27.941
…(補7−4)
Cp_CO(TEX)=3.0×10^(−19)×TEX^6
−4.0×10^(−15)×TEX^5
+2.0×10^(−11)×TEX^4
−4.0×10^(−08)×TEX^3
+5.0×10^(−05)×TEX^2
−0.0173×TEX+31.175
…(補7−5)
(18)式により求めた排気の定圧比熱CPから排気の比熱比κを次式により算出する。
Cp_CO 2 (TEX) = 5.0 × 10 ^ (− 20) × TEX ^ 6
+ 1.0 × 10 ^ (− 16) × TEX ^ 5
−5.0 × 10 ^ (− 12) × TEX ^ 4
+ 2.0 × 10 ^ (− 08) × TEX ^ 3
−6.0 × 10 ^ (− 05) × TEX ^ 2
+ 0.0727 × TEX + 20.075
... (Supplement 7-1)
Cp_H 2 O (TEX) = 7.0 × 10 ^ (− 21) × TEX ^ 6
−4.0 × 10 ^ (− 16) × TEX ^ 5
+ 4.0 × 10 ^ (− 12) × TEX ^ 4
−2.0 × 10 ^ (− 08) × TEX ^ 3
+ 3.0 × 10 ^ (− 05) × TEX ^ 2
-0.0057 × TEX + 33.393
... (Supplement 7-2)
Cp_N 2 (TEX) = 4.0 × 10 ^ (− 19) × TEX ^ 6
−4.0 × 10 ^ (− 15) × TEX ^ 5
+ 2.0 × 10 ^ (− 11) × TEX ^ 4
−4.0 × 10 ^ (− 08) × TEX ^ 3
+ 5.0 × 10 ^ (− 05) × TEX ^ 2
-0.0207 × TEX + 31.894
... (Supplement 7-3)
Cp_O 2 (TEX) = 5.0 × 10 ^ (− 19) × TEX ^ 6
−5.0 × 10 ^ (− 15) × TEX ^ 5
+ 2.0 × 10 ^ (− 11) × TEX ^ 4
−4.0 × 10 ^ (− 08) × TEX ^ 3
+ 3.0 × 10 ^ (− 05) × TEX ^ 2
-0.0014 × TEX + 27.941
... (Supplement 7-4)
Cp_CO (TEX) = 3.0 × 10 ^ (− 19) × TEX ^ 6
−4.0 × 10 ^ (− 15) × TEX ^ 5
+ 2.0 × 10 ^ (− 11) × TEX ^ 4
−4.0 × 10 ^ (− 08) × TEX ^ 3
+ 5.0 × 10 ^ (− 05) × TEX ^ 2
−0.0173 × TEX + 31.175
... (Supplement 7-5)
The specific heat ratio κ of the exhaust gas is calculated by the following equation from the constant pressure specific heat CP of the exhaust gas determined by the equation (18).

κ=Cp/(Cp−REX) …(19)
上記(補4)式右辺、(補5)式右辺の充填効率ITACの算出方法を説明すると、この実際の充填効率ITACは次式により算出する。
κ = Cp / (Cp−REX) (19)
The method of calculating the filling efficiency ITAC on the right side of the above (complement 4) and the right side of the (complement 5) will be described. The actual filling efficiency ITAC is calculated by the following equation.

ITAC=MA/MAMX …(補8)
ただし、MA :吸入空気量[kg/s]
MAMX:充填効率最大時の吸入空気量[kg/s]、
ここで、吸入空気量MAはエアフローセンサ32により検出する。充填効率最大時の吸入空気量MAMXは実機による計測値とする。
ITAC = MA / MAMX (Supplement 8)
MA: Intake air amount [kg / s]
MAMX: intake air amount [kg / s] at maximum charging efficiency,
Here, the intake air amount MA is detected by the air flow sensor 32. The intake air amount MAMX at the maximum filling efficiency is a value measured by an actual machine.

次に、上記(12)式右辺第1項の平均排気圧力PEXの算出方法を説明する。   Next, a method for calculating the average exhaust pressure PEX in the first term on the right side of the equation (12) will be described.

平均排気圧力PEXは次式で算出する。   The average exhaust pressure PEX is calculated by the following equation.

PEX=((KTBF×MFEXG^2+KLMF×MFEXG)×REX
×TEX/1000000+PPAMB^2)^(1/2)
…(20)
ただし、MFEXG:排気流量[kg/s]、
PPAMB:大気圧力[kPa]、
KTBF :乱流係数、実験による適合値
KLMF :層流係数、実験による適合値
REX :排気ガス定数、(6)式にて算出済
TEX :平均排気温度、後に算出法を説明する
(20)式は、排気管内各部(触媒)の圧力損失及び大気圧PPAMBから平均排気圧力PEXを算出するものである。排気管内圧力損失は、触媒9入口(乱流)、触媒9(層流)にて生じるため、それぞれを分けて、つまり排気流量MFEXGと乱流係数KTBF及び層流係数KLMFから算出している。乱流係数、層流係数は、機種毎(排気マニホールド及び触媒システム)によって決まる適合項である。大気圧力PPAMBは大気圧力センサ36により検出する。1000000で除しているのは、ガス流量[kg/s]を圧力[kPa]へと換算するためである。
PEX = ((KTBF × MFEXG ^ 2 + KLMF × MFEXG) × REX
× TEX / 1000000 + PPAMB ^ 2) ^ (1/2)
... (20)
However, MFEXG: exhaust flow rate [kg / s],
PPAMB: atmospheric pressure [kPa],
KTBF: Turbulence coefficient, experimentally adapted value
KLMF: Laminar flow coefficient, experimentally adapted value
REX: Exhaust gas constant, calculated with equation (6)
TEX: Average exhaust temperature, and a calculation method will be described later. Equation (20) calculates the average exhaust pressure PEX from the pressure loss of each part (catalyst) in the exhaust pipe and the atmospheric pressure PPAMB. The exhaust pipe pressure loss occurs at the catalyst 9 inlet (turbulent flow) and the catalyst 9 (laminar flow). The turbulence coefficient and laminar flow coefficient are compatible terms determined by each model (exhaust manifold and catalyst system). The atmospheric pressure PPAMB is detected by the atmospheric pressure sensor 36. The reason for dividing by 1000000 is to convert the gas flow rate [kg / s] to the pressure [kPa].

(20)式右辺の排気流量MFEXGは次式により算出する。   The exhaust flow rate MFEXG on the right side of the equation (20) is calculated by the following equation.

MFEXG=MA×(1+TFBYA/14.7) …(21)
ただし、MA :吸入空気量[kg/s]、
TFBYA:目標当量比、
ここで、吸入空気量MAはエアフローセンサ32により検出する。目標当量比TFBYAはエンジンの負荷と回転速度をパラメータとするマップ(図3参照)を参照することにより求める。
〈4〉吸気バルブ開時期での燃焼室内温度TIVOの算出方法
吸気バルブ開時期での燃焼室内温度TIVOは、平均排気温度TEX、平均排気圧力PEXで代表される状態から吸気バルブ開時期IVOへの状態変化を断熱変化であると仮定して、次の式により算出する。
MFEXG = MA × (1 + TFBYA / 14.7) (21)
However, MA: intake air amount [kg / s],
TFBYA: target equivalent ratio,
Here, the intake air amount MA is detected by the air flow sensor 32. The target equivalent ratio TFBYA is obtained by referring to a map (see FIG. 3) using the engine load and the rotational speed as parameters.
<4> Method of calculating combustion chamber temperature TIVO at intake valve opening timing Combustion chamber temperature TIVO at intake valve opening timing is calculated from the state represented by average exhaust temperature TEX and average exhaust pressure PEX to intake valve opening timing IVO. Assuming that the state change is an adiabatic change, it is calculated by the following equation.

TIVO=TEX・(PIVO/PEX)^((κ−1)/κ)
…(22)
ただし、PIVO:吸気バルブ開時期での燃焼室内圧力[kPa]、(12)式に て算出済
PEX :平均排気圧力[kPa]、(20)式にて算出済
κ :排気の比熱比、(19)式により算出済
上記(20)式、(22)式右辺の平均排気温度TEXの算出方法を説明する。
TIVO = TEX. (PIVO / PEX) ^ ((κ-1) / κ)
... (22)
However, PIVO: Combustion chamber pressure [kPa] at intake valve opening timing, calculated by equation (12)
PEX: Average exhaust pressure [kPa], calculated with equation (20)
[kappa]: Specific heat ratio of exhaust, calculated by equation (19) A method for calculating the average exhaust temperature TEX on the right side of equations (20) and (22) will be described.

平均排気温度TEX[K]を、横軸に廃熱量比(そのときの廃熱量を最大廃熱量で除算した値)、縦軸に排気温度をとった図9の特性から得られる次の実験式から算出する。   The following empirical formula obtained from the characteristics of FIG. 9, where the average exhaust temperature TEX [K] is the waste heat ratio (the value obtained by dividing the waste heat at that time by the maximum waste heat) on the horizontal axis and the exhaust temperature on the vertical axis. Calculate from

TEX=TEXMX−(TEXMX−TEXMN)×exp(−KTEX×Q’)
…(23)
ただし、Q’ :廃熱量[kW]、
TEXMX:廃熱量最大時の排気平衡温度[K]、実験値
TEXMN:廃熱量ゼロ時の排気平衡温度[K]、実験値
KTEX :排気温度への廃熱量の感度(任意定数)、
(23)式右辺の廃熱量Q’は、供給熱量から軸仕事を引くことにより算出できると考え、次式により算出する。
TEX = TEXMX− (TEXMX−TEXMN) × exp (−KTEX × Q ′)
... (23)
However, Q ′: Waste heat quantity [kW],
TEXMX: Exhaust equilibrium temperature [K] when waste heat is maximum, experimental value
TEXMN: Equilibrium exhaust temperature [K] when waste heat is zero, experimental value
KTEX: Sensitivity of waste heat quantity to exhaust temperature (arbitrary constant),
The amount of waste heat Q ′ on the right side of the equation (23) is calculated by subtracting the shaft work from the supply heat amount, and is calculated by the following equation.

Q’=MA×TFBYA/14.7×(HL−HV)×NCYL/2
−2π×TENG×Ne/60 …(24)
ただし、MA :吸入空気量、式(21)参照
TFBYA:目標当量比、式(21)参照
HL :低発熱量[kw]、シミュレーションによる適合値
HV :気化潜熱[kw]、シミュレーションによる適合値
NCYL :総シリンダ数、
TENG :実トルク推定値[Nm]、
Ne :エンジン回転速度[rpm]、
(24)式においては、軸仕事は実トルク推定値TENGに2πをかけることでエンジン一回転当りの軸仕事として算出している。実トルク推定値TENGは充填効率ITACとエンジン回転速度Neとをパラメータとする図10に示すようなマップを参照することにより求める。エンジン回転速度Neはクランク角センサ(33、34)により検出する。
2.吹き返しガス量M2の算出方法
吸気バルブの開期間と排気バルブの開期間のオーバーラップには、図11のようにマイナスオーバーラップとプラスオーバーラップとがある。
〈1〉マイナスオーバーラップの場合
図11上段に示すマイナスオーバーラップでは、吸気バルブ開時期での燃焼室内残留ガス量は排気バルブ閉時期EVCでの燃焼室内残留ガス量に等しい。吸気バルブ開時期IVOに、燃焼室内ガスが吸気ポート側に吹き返すが、吸気行程で再流入されるため、最終的な燃焼室内残留ガス量は、吸気バルブ開時期での燃焼室内残留ガス量と等しくなる。つまり、マイナスオーバーラップの場合、吹き返しガス量M2=0である。
〈2〉プラスオーバーラップの場合
図11下段に示すプラスオーバーラップの場合には、先に説明したように、吸気バルブの開期間と排気バルブの開期間のオーバーラップ中の吹き返しガス量M2を考慮する必要がある。
Q ′ = MA × TFBYA / 14.7 × (HL−HV) × NCYL / 2
-2π × TENG × Ne / 60 (24)
However, MA: intake air amount, see formula (21)
TFBYA: target equivalent ratio, see formula (21)
HL: Low calorific value [kW], fit value by simulation
HV: latent heat of vaporization [kw], fit value by simulation
NCYL: Total number of cylinders,
TENG: Estimated actual torque value [Nm],
Ne: Engine rotation speed [rpm],
In the equation (24), the shaft work is calculated as the shaft work per engine revolution by multiplying the actual torque estimated value TENG by 2π. The actual torque estimated value TENG is obtained by referring to a map as shown in FIG. 10 using the charging efficiency ITAC and the engine speed Ne as parameters. The engine speed Ne is detected by a crank angle sensor (33, 34).
2. Calculation Method of Blowback Gas M2 The overlap between the intake valve open period and the exhaust valve open period includes a minus overlap and a plus overlap as shown in FIG.
<1> In the case of minus overlap In the minus overlap shown in the upper part of FIG. 11, the amount of residual gas in the combustion chamber at the intake valve opening timing is equal to the amount of residual gas in the combustion chamber at the exhaust valve closing timing EVC. Although the combustion chamber gas blows back to the intake port side at the intake valve opening timing IVO, it is re-inflowed in the intake stroke. Become. That is, in the case of minus overlap, the blown back gas amount M2 = 0.
<2> In the case of plus overlap In the case of plus overlap shown in the lower part of FIG. 11, as described above, the blowback gas amount M2 during the overlap of the intake valve open period and the exhaust valve open period is taken into consideration. There is a need to.

図12は、プラスオーバーラップの場合において、燃焼室内圧力(Pcyl)、排気圧力(Pex)、吸気圧力(Ain)、排気バルブ周りガス流量、吸気バルブ、排気バルブの各開口面積が、吸気バルブの開期間と排気バルブの開期間のオーバーラップ中に、つまり吸気バルブ開時期IVOから排気バルブ閉時期EVCまでのクランク角区間においてどのように変化するのかをモデルで表している。   FIG. 12 shows that in the case of plus overlap, the pressure in the combustion chamber (Pcyl), the exhaust pressure (Pex), the intake pressure (Ain), the gas flow around the exhaust valve, the intake valve, and the opening area of the exhaust valve The model shows how the valve changes during the overlap between the opening period and the opening period of the exhaust valve, that is, in the crank angle section from the intake valve opening timing IVO to the exhaust valve closing timing EVC.

オーバーラップ中に排気ポート11から燃焼室内へ吹き返される吹き返しガス量は、図12の排気バルブ周りガス流量をクランク角について吸気バルブ開時期IVOより排気バルブ閉時期EVCまでを積分する(あるいは時間で積分する)ことで算出できる。しかしながら、オンボードでの計算を考慮した場合、クランク角に対し時々刻々と変化する排気バルブ周りガス流量を算出するのは現実的でない。そのため図13のように排気バルブ周りガス流量の波形を右上がりの直線1(第1の直線)と右下がりの直線2(第2の直線)との2本の直線で近似し、その2本の直線と、吸気バルブ開時期IVOの直線(図13でIVOを通る垂直線)と、排気バルブ周りガス流量ゼロの水平線とで構成された2つの三角形の面積を求めることで、吸気バルブの開期間と排気バルブの開期間のオーバーラップ中の吹き返しガス量M2を推定する。すなわち、図13において点aから点bまでは排気バルブ周りガス流量が負、つまり排気ポート11からのガスが吸気ポート4に吹き返し、点b以降は排気バルブ周りガス流量が正、つまり吸気ポート4に吹き返したガスが燃焼室内に流入するため、吹き返しガス量M2[kg]を次式により算出する。   The amount of blowback gas blown back from the exhaust port 11 into the combustion chamber during the overlap is integrated from the intake valve opening timing IVO to the exhaust valve closing timing EVC with respect to the crank valve angle of the gas flow around the exhaust valve in FIG. To calculate). However, in consideration of on-board calculation, it is not practical to calculate the gas flow rate around the exhaust valve that changes every moment with respect to the crank angle. Therefore, as shown in FIG. 13, the waveform of the gas flow rate around the exhaust valve is approximated by two straight lines, a straight line 1 (first straight line) rising to the right and a straight line 2 (second straight line) falling to the right. The area of the two triangles composed of the straight line of the intake valve opening timing IVO (vertical line passing through IVO in FIG. 13) and the horizontal line of zero gas flow around the exhaust valve is obtained. The blowback gas amount M2 during the overlap between the period and the open period of the exhaust valve is estimated. That is, in FIG. 13, the gas flow around the exhaust valve is negative from point a to point b, that is, the gas from the exhaust port 11 blows back to the intake port 4, and the gas flow around the exhaust valve is positive after point b, that is, the intake port 4. Since the gas blown back into the combustion chamber flows into the combustion chamber, the blown back gas amount M2 [kg] is calculated by the following equation.

M2=|IVO−θ0|×(dm/dθ)ivo/2
+|EVC−θ0|×(dm/dθ)c/2 …(25)
ただし、IVO :吸気バルブ開時期[degCA]、
(dm/dθ)ivo:吸気バルブ開時期での排気バルブ周りガス流量
[kg/degCA]、
θ0 :排気バルブ周りガス流量がゼロとなる点bのクラン ク角[degCA]、
θ1 :直線1と直線2の交点cのクランク角
[degCA]、
(dm/dθ)c :交点cでの排気バルブ周りガス流量
[kg/degCA]、
排気バルブ周りガス流量は燃焼室内より排気ポート11に流れる向きを正に採っているので、(25)式右辺第1項は負の値、右辺第2項は正の値となり、(25)式右辺全体としては図13より判断して負の値となると思われるので、そのときには(25)式右辺の値を上記(補1)式に代入するときにM2の絶対値を採って加算する。(25)式のクランク角θは適当なクランク角位置(例えば圧縮上死点)を起点として遅角側に計測したクランク角を用いる。
M2 = | IVO−θ0 | × (dm / dθ) ivo / 2
+ | EVC-θ0 | × (dm / dθ) c / 2 (25)
However, IVO: intake valve opening timing [degCA],
(Dm / dθ) ivo: Gas flow around the exhaust valve when the intake valve opens
[Kg / degCA],
θ0: crank angle [degCA] at point b where the gas flow around the exhaust valve becomes zero,
θ1: crank angle at the intersection c of the straight line 1 and the straight line 2
[DegCA],
(Dm / dθ) c: Gas flow around the exhaust valve at the intersection c
[Kg / degCA],
Since the gas flow rate around the exhaust valve is positive in the direction flowing from the combustion chamber to the exhaust port 11, the first term on the right side of the equation (25) is a negative value, the second term on the right side is a positive value, and the equation (25) The entire right side is considered to be a negative value as judged from FIG. 13. At that time, when substituting the value of the right side of equation (25) into the above (complement 1), the absolute value of M2 is taken and added. As the crank angle θ in the equation (25), a crank angle measured on the retard side from an appropriate crank angle position (for example, compression top dead center) is used.

排気バルブ用VTC機構28を備えないエンジンでは、排気バルブ閉時期EVCは固定であるため(ここでは吸気バルブ開時期IVOも固定とする)、図13に示す2直線とも固定となり、従って、(25)式右辺の吸気バルブ開時期IVO、排気バルブ閉時期EVC、吸気バルブ開時期での排気バルブ周りガス流量(dm/dθ)ivo、排気バルブ周りガス流量がゼロとなる点bのクランク角θ0、交点cでの排気バルブ周りガス流量(dm/dθ)cを予め適合しておけば(25)式により吹き返しガス量M2を算出できる。   In an engine that does not include the exhaust valve VTC mechanism 28, the exhaust valve closing timing EVC is fixed (here, the intake valve opening timing IVO is also fixed), so both of the two straight lines shown in FIG. ) In the right side of the equation, the intake valve opening timing IVO, the exhaust valve closing timing EVC, the exhaust valve surrounding gas flow rate (dm / dθ) ivo at the intake valve opening timing, the crank angle θ0 at the point b at which the exhaust valve surrounding gas flow rate becomes zero, If the gas flow rate around the exhaust valve (dm / dθ) c at the intersection point c is adapted in advance, the blow back gas amount M2 can be calculated by the equation (25).

しかしながら、本実施形態のように排気バルブ用VTC機構28を備える場合に、排気バルブ用VTC機構28の非作動時に排気バルブ閉時期EVCが図13に示す図示の位置にあったとして、排気バルブ用VTC機構28の作動で排気バルブ閉時期EVCが、排気バルブ用VTC機構非作動時の初期位置である最遅角位置から進角すると、図13に示す直線2が左方に動くこととなり(直線1は変化しない)、直線1と直線2の交点cのクランク角θ1、従って交点cでの排気バルブ周りガス流量(dm/dθ)cが小さくなる、つまり吸気ポート4に吹き返したガスが燃焼室内に流入するガス量(図13右側の三角形の面積)が減る。ということは、排気バルブ用VTC機構28を備える場合に、排気バルブ用VTC機構28の作動で排気バルブ閉時期が、排気バルブ用VTC機構非作動時の初期位置から進角したときにも、排気バルブ用VTC機構非作動時に予め適合している値を用いて吹き返しガス量M2を算出したのでは、吹き返しガス量M2の算出に直線2が移動した分の誤差(つまり吸気ポート4に吹き返したガスが燃焼室内に流入するガス量が減った分の誤差)が生じることを意味する。従って、排気バルブ用VTC機構28を作動させるときには、排気バルブ用VTC機構作動時の排気バルブ閉時期EVCに合わせて、その都度、直線2を決定し、その決定した直線2に基づいて吹き返しガス量M2を算出する必要があるのである。   However, when the exhaust valve VTC mechanism 28 is provided as in the present embodiment, it is assumed that the exhaust valve closing timing EVC is at the position shown in FIG. 13 when the exhaust valve VTC mechanism 28 is not in operation. When the exhaust valve closing timing EVC is advanced from the most retarded position which is the initial position when the exhaust valve VTC mechanism is not operated by the operation of the VTC mechanism 28, the straight line 2 shown in FIG. 1 does not change), the crank angle θ1 of the intersection c of the straight line 1 and the straight line 2 and, therefore, the gas flow around the exhaust valve (dm / dθ) c at the intersection c becomes small. The amount of gas flowing into (the triangular area on the right side of FIG. 13) decreases. That is, when the exhaust valve VTC mechanism 28 is provided, the exhaust valve closing timing is advanced by the operation of the exhaust valve VTC mechanism 28 from the initial position when the exhaust valve VTC mechanism is not operated. If the blowback gas amount M2 is calculated using a value that is pre-adapted when the valve VTC mechanism is not operated, an error corresponding to the movement of the straight line 2 in the calculation of the blowback gas amount M2 (that is, the gas blown back to the intake port 4). This means that an error corresponding to a decrease in the amount of gas flowing into the combustion chamber occurs. Accordingly, when the exhaust valve VTC mechanism 28 is operated, the straight line 2 is determined each time in accordance with the exhaust valve closing timing EVC when the exhaust valve VTC mechanism is operated, and the amount of blown back gas is determined based on the determined straight line 2. It is necessary to calculate M2.

以下、直線1、直線2の算出方法を説明する。
〔1〕直線1の算出方法
(ア)吸気バルブ開時期での排気バルブ周りガス流量(dm/dθ)ivoの算出方法
吸気バルブ開時期IVOに吸気バルブ周りガス流量=0であるので、吸気バルブ開時期IVOに、
燃焼室内質量変化=排気バルブ周りガス流量 …(26)
であるとして算出する。状態方程式(M=P×V/R/T)の両辺を微分すると次式を得る。
Hereinafter, the calculation method of the straight line 1 and the straight line 2 will be described.
[1] Calculation method of straight line 1 (a) Calculation method of exhaust gas flow around exhaust valve (dm / dθ) ivo at intake valve opening timing Since intake valve opening gas flow rate is 0 at intake valve opening timing IVO, intake valve At the opening time IVO,
Mass change in combustion chamber = Gas flow around exhaust valve (26)
Calculate as. Differentiating both sides of the equation of state (M = P × V / R / T) yields:

dM/dt=d(P×V/R/T)/dt
=V/R/T×dP/dt十P/R/T×dV/dt
−V×P/T/R^2×dR/dt
−V×P/T^2/R×dT/dt
…(27)
ただし、M:燃焼室内ガス質量[kg]
P:燃焼室内圧力[kPa]、吸気バルブ開時期にはPIVOとする
V:燃焼室内容積[m^3]、吸気バルブ開時期にはVIVOとする
T:燃焼室内ガス温度[K]、吸気バルブ開時期にはTIVOとする
R:ガス定数[kg/mol・K]、吸気バルブ開時期にはREXとする
吸気バルブ開時期での燃焼室内ガス温度、ガス定数の各変化は微小なので、
dR/dt=0、dT/dt=0 …(補9)
であると仮定する。吸気バルブの開期間と排気バルブの開期間のオーバーラップ中の燃焼室内圧力変化率を一定とし、また排気バルブ閉時期に燃焼室内圧力が平均マニホールド圧力と等しくなるとすると、次式が成り立つ。
dM / dt = d (P × V / R / T) / dt
= V / R / T x dP / dt + 10 P / R / T x dV / dt
−V × P / T / R ^ 2 × dR / dt
−V × P / T ^ 2 / R × dT / dt
... (27)
M: Mass of gas in combustion chamber [kg]
P: combustion chamber pressure [kPa], PIVO when intake valve is open
V: combustion chamber volume [m ^ 3], set to VIVO when the intake valve opens
T: Combustion chamber gas temperature [K], TIVO at intake valve opening timing
R: Gas constant [kg / mol · K], REX at intake valve opening timing Each change in combustion chamber gas temperature and gas constant at intake valve opening timing is minute.
dR / dt = 0, dT / dt = 0 (Supplement 9)
Assume that Assuming that the rate of change in the pressure in the combustion chamber during the overlap between the opening period of the intake valve and the opening period of the exhaust valve is constant, and that the pressure in the combustion chamber becomes equal to the average manifold pressure when the exhaust valve is closed, the following equation holds.

dP/dt=Cpa …(28)
Cpa=(PEVC−PIVO)/((EVC−IVO)/360×Ne/60)
…(補10)
ただし、Cpa :燃焼室内圧力の時間微分値、
PIVO:吸気バルブ開時期での燃焼室内圧力[kPa]、上記〈3〉に て算出済
PEVC:排気バルブ閉時期での燃焼室内圧力[kPa]、平均吸気圧力 と等しいとする
Ne :エンジン回転速度[rpm]、
ここで、PEVC−PIVOを360×Ne/60で除算することにより、[/degCA]の単位を[/sec]の単位へと変換している。平均吸気圧力は吸気圧力センサ44により検出する。エンジン回転速度Neはクランク角センサ(33、34)により検出する。
dP / dt = Cpa (28)
Cpa = (PEVC-PIVO) / ((EVC-IVO) / 360 × Ne / 60)
... (Supplement 10)
Where Cpa: time derivative of combustion chamber pressure,
PIVO: Combustion chamber pressure [kPa] at intake valve opening timing, calculated by <3> above
PEVC: Combustion chamber pressure [kPa] at exhaust valve closing timing, equal to average intake pressure
Ne: Engine rotation speed [rpm],
Here, the unit of [/ degCA] is converted into the unit of [/ sec] by dividing PEVC-PIVO by 360 × Ne / 60. The average intake pressure is detected by the intake pressure sensor 44. The engine speed Ne is detected by a crank angle sensor (33, 34).

さらに、
dθ/dt=360×Ne/60=6×Ne …(29)
ただし、θ:クランク角度、クランク角センサ(33、34)にて検出
であるため、(29)式、(28)式を(26)式に代入すると、(26)式は次のようになる。
further,
dθ / dt = 360 × Ne / 60 = 6 × Ne (29)
However, since θ is detected by the crank angle and crank angle sensors (33, 34), when the equations (29) and (28) are substituted into the equation (26), the equation (26) becomes as follows. .

dM/dθ=V/R/T×Cpa/6/Ne+P/R/T×dV/dθ
…(30)
一方、吸気上死点付近では、燃焼室内容積の変化率は直線的に変化するので、次式で近似する。
dM / dθ = V / R / T × Cpa / 6 / Ne + P / R / T × dV / dθ
... (30)
On the other hand, since the rate of change of the combustion chamber volume changes linearly near the intake top dead center, it is approximated by the following equation.

dV/dθ=Cva・θ+Cvb …(31)
ただし、Cva:吸気上死点付近で横軸にクランク角、縦軸に燃焼室内容積変化率 を採ったときの直線の傾き[m^3/deg^2]
Cvb:吸気上死点付近で横軸にクランク角、縦軸に燃焼室内容積変化率 を採ったときの直線の切片[m^3]
(31)式を(30)式に代入すると、(30)式は次のようになる。
dV / dθ = Cva · θ + Cvb (31)
However, Cva: slope of the straight line when the horizontal axis represents the crank angle and the vertical axis represents the rate of change in the combustion chamber volume near the intake top dead center [m ^ 3 / deg ^ 2]
Cvb: intercept of the straight line when the crank angle is plotted on the horizontal axis and the volumetric change rate in the combustion chamber is plotted on the vertical axis near the intake top dead center [m ^ 3]
Substituting equation (31) into equation (30), equation (30) becomes as follows.

dM/dθ=V/6/Ne/R/T×Cpa+P/R/T×(Cva・θ+Cvb)
…(32)
ここで、(26)式、(32)式より、吸気バルブ開時期での排気バルブ周りガス流量(dm/dθ)ivo[kg/degCA]は次式で与えられることとなる。
dM / dθ = V / 6 / Ne / R / T × Cpa + P / R / T × (Cva · θ + Cvb)
... (32)
Here, from the equations (26) and (32), the gas flow around the exhaust valve (dm / dθ) ivo [kg / degCA] at the intake valve opening timing is given by the following equation.

(dm/dθ)ivo=VIVO×Cpa/6/Ne/REX/TIVO
+PIVO/REX/TIVO×(Cva×IVO+Cvb)
…(33)
ただし、VIVO:吸気バルブ開時期での燃焼室内容積[m^3]、算出済
TIVO:吸気バルブ開時期での燃焼室内温度[K]、算出済
PIVO:吸気バルブ開時期での燃焼室内圧力[kPa]、算出済
IVO :吸気バルブ開時期[degCA]、算出済
REX :排気ガス定数[kJ/mol/K]、算出済
Ne :エンジン回転速度[rpm]
(イ)点bのクランク角θ0の算出方法
点bでは排気バルブ周りガス流量=0より、(26)式と同様に
吸気バルブ周りガス流量=燃焼室内質量変化 …(34)
とする。状態方程式から燃焼室内質量変化は次式となる。
(Dm / dθ) ivo = VIVO × Cpa / 6 / Ne / REX / TIVO
+ PIVO / REX / TIVO × (Cva × IVO + Cvb)
... (33)
However, VIVO: combustion chamber volume at the time of intake valve opening [m ^ 3], calculated
TIVO: Combustion chamber temperature [K] at intake valve opening timing, calculated
PIVO: Combustion chamber pressure [kPa] at intake valve opening timing, calculated
IVO: intake valve opening timing [degCA], calculated
REX: exhaust gas constant [kJ / mol / K], calculated
Ne: Engine rotation speed [rpm]
(A) Method for calculating crank angle θ0 at point b Since the gas flow rate around the exhaust valve at point b is 0, the gas flow rate around the intake valve is equal to the change in mass in the combustion chamber, as in equation (26).
And From the equation of state, the mass change in the combustion chamber is

dM/dt=d(P×V/R/T)/dt
=V/R/T×dP/dt+P/R/T×dV/dt
−V×P/T/R^2×dR/dt
−V×P/T^2/R×dT/dt …(35)
ただし、M:燃焼室内ガス質量[kg]
P:燃焼室内圧力[kPa]、排気バルブ周りガス流量=0時は排気圧力 に等しく排気圧力=(PEX+PIVO)/2とする
V:燃焼室内容積[m^3]、排気バルブ周りガス流量=0時は吸気上死 点付近であり、かつ燃焼室内容積の変化量は微々たるものなので、吸 気上死点での燃焼室内容積=隙間容積Vc(算出済)を用いる
T:燃焼室内ガス温度[K]、排気バルブ周りガス流量=0時はTEXと する
R:ガス定数[kg/mol・K]、排気バルブ周りガス流量=0時はR EXとする
排気バルブ周りガス流量=0時は吸気上死点付近であり、この吸気上死点付近での燃焼室内ガス温度、ガス定数の変化は微小なので、
dR/dt=0、dT/dt=0 …(補11)
と仮定する。次に、吸気バルブ通過ガス量(dm/dt)inは次式で表せる。
dM / dt = d (P × V / R / T) / dt
= V / R / T * dP / dt + P / R / T * dV / dt
−V × P / T / R ^ 2 × dR / dt
-V * P / T ^ 2 / R * dT / dt (35)
M: Mass of gas in combustion chamber [kg]
P: Combustion chamber pressure [kPa], exhaust gas flow around exhaust valve = 0, equal to exhaust pressure, exhaust pressure = (PEX + PIVO) / 2
V: Combustion chamber volume [m ^ 3], gas flow around exhaust valve = 0 near intake top dead center, and change in combustion chamber volume is negligible, so combustion chamber at intake top dead center Use volume = gap volume Vc (calculated)
T: TEX when gas temperature in combustion chamber [K] and gas flow around exhaust valve = 0
R: Gas constant [kg / mol · K], R EX when the gas flow rate around the exhaust valve = 0 When the gas flow rate around the exhaust valve = 0, it is near the intake top dead center. Because changes in combustion chamber gas temperature and gas constant are minute,
dR / dt = 0, dT / dt = 0 (Supplement 11)
Assume that Next, the intake valve passage gas amount (dm / dt) in can be expressed by the following equation.

(dm/dt)in=Ain×Pex/(REX×TEX)×κ^(1/2)
×(2/(κ+1))^(κ+1)
/(2/(κ−1))×RMF1 …(36)
ただし、Ain :吸気バルブ開口面積、後に算出方法を説明する
TEX :平均排気温度、算出済
Pex :排気圧力、ここでは(PEX+PIVO)/2とする
REX :排気ガス定数、算出済
κ :排気の比熱比、算出済
RMF1:流量比、
(36)式右辺の流量比RMF1とは、音速時の吸気バルブ通過ガス流量と、通常時の吸気バルブ通過ガス流量の比(排気バルブ周りガス流量=0時のクランク角を算出するときに用いる流量比)であり、次式で表せる。
(Dm / dt) in = Ain × Pex / (REX × TEX) × κ ^ (1/2)
× (2 / (κ + 1)) ^ (κ + 1)
/ (2 / (κ-1)) × RMF1 (36)
However, Ain: intake valve opening area, a calculation method will be described later
TEX: Average exhaust temperature, calculated
Pex: Exhaust pressure, here (PEX + PIVO) / 2
REX: exhaust gas constant, calculated
κ: Specific heat ratio of exhaust, calculated
RMF1: flow rate ratio,
The flow rate ratio RMF1 on the right side of the equation (36) is used to calculate the ratio of the intake valve passage gas flow rate at the sonic speed and the normal intake valve passage gas flow rate (the crank angle when the exhaust valve surrounding gas flow rate = 0). Flow rate ratio) and can be expressed by the following equation.

RMF1=(Pin/Pex)^(1/κ)×(2×κ/(κ−1))
×(1−(Pin/Pex)^((κ−1)/κ))^(1/2)
/κ^(1/2)/(2/(κ+1))^((κ+1)/2/(κ−1))
…(37)
ただし、Pin:平均吸気圧力、実験による適合値とする
Pex:排気圧力、ここでは(PEX+PIVO)/2とする
ここで、(37)式において排気圧力Pexとして(PEX+PIVO)/2としているのは、排気バルブ周りガス流量=0時はオーバーラップ前半にあり燃焼室内での脈動が大きいためである。
RMF1 = (Pin / Pex) ^ (1 / κ) × (2 × κ / (κ−1))
× (1- (Pin / Pex) ^ ((κ-1) / κ)) ^ (1/2)
/ Κ ^ (1/2) / (2 / (κ + 1)) ^ ((κ + 1) / 2 / (κ-1))
... (37)
However, Pin: average intake pressure, adapted value by experiment
Pex: Exhaust pressure, here (PEX + PIVO) / 2 Here, the exhaust pressure Pex in equation (37) is (PEX + PIVO) / 2 because the gas flow around the exhaust valve is in the first half of the overlap This is because the pulsation in the combustion chamber is large.

また、
β=Pex/(REX×TEX)×κ^(1/2)
×(2/(κ+1))^(κ+1)/(2/(κ−1))×RMF1 …(38)
とすると、(36)式は次式となる。
Also,
β = Pex / (REX × TEX) × κ ^ (1/2)
× (2 / (κ + 1)) ^ (κ + 1) / (2 / (κ-1)) × RMF1 (38)
Then, the equation (36) becomes the following equation.

(dm/dt)in=Ain×β …(補12)
排気バルブ周りガス流量はゼロであるため、dM/dt=(dm/dt)inとなる。また、吸気バルブ開時期直後のバルブプロファイル(マップ値)を2次関数で近似すると、吸気バルブ開口面積Ain[m^2]は次式で表される。
(Dm / dt) in = Ain × β (Supplement 12)
Since the gas flow rate around the exhaust valve is zero, dM / dt = (dm / dt) in. Further, when the valve profile (map value) immediately after the intake valve opening timing is approximated by a quadratic function, the intake valve opening area Ain [m ^ 2] is expressed by the following equation.

Ain=Cai×(θ−IVO)^2 …(補13)
ただし、Cai:係数、
IVO:吸気バルブ開時期[degCA]、
よって、(35)式は次式となる。
Ain = Cai × (θ−IVO) ^ 2 (Supplement 13)
Where Cai: coefficient,
IVO: intake valve opening timing [degCA],
Therefore, equation (35) becomes the following equation.

V/R/T×dP/dt+P/R/T×dV/dt
=Cai×(θ−IVO)^2×β …(39)
点aで説明した上記(27)式、(28)式、(30)式を用いて、さらに
VTDC/REX/TEX×6×Ne=X …(補14)
PEX/REX/TEX×6×Ne=α …(補15)
ただし、VTDC:上死点での燃焼室内容積[m^3]、
とおくと、(39)式は次の式となる。
V / R / T × dP / dt + P / R / T × dV / dt
= Cai * ([theta] -IVO) ^ 2 * [beta] (39)
VTDC / REX / TEX × 6 × Ne = X (Supplement 14) by using the above equations (27), (28), and (30) described for point a.
PEX / REX / TEX × 6 × Ne = α (Supplement 15)
Where VTDC: combustion chamber volume at top dead center [m ^ 3],
Then, the equation (39) becomes the following equation.

βCaiθ^2−θ×(2×β×Cai×IVO+α×Cva)
−β×Cai×IVO^2−α×Cva−X×Cpa=0
…(補16)
(補16)式はクランク角θについての2次方程式であるので、クランク角θについて解くと、解は次式で得られる。
βCaiθ ^ 2-θ × (2 × β × Cai × IVO + α × Cva)
−β × Cai × IVO ^ 2-α × Cva-X × Cpa = 0
... (Supplement 16)
Since (Equation 16) is a quadratic equation for the crank angle θ, when the crank angle θ is solved, the solution is obtained by the following equation.

θ=2×β×Cai×IVO+α×Cva
±((2×β×Cai×IVO+α×Cva)^2−4×β×Cai
×(−β×Cai×IVO^2−α×Cva−X×Cpa))
^(1/2)/2/β/Cai …(補17)
この2つの解のうち正の値となるほうを排気バルブ周りガス流量がゼロとなるときのクランク角θ0とおけば、θ0は次式となる。
θ = 2 × β × Cai × IVO + α × Cva
± ((2 × β × Cai × IVO + α × Cva) ^ 2−4 × β × Cai
× (−β × Cai × IVO ^ 2-α × Cva-X × Cpa))
^ (1/2) / 2 / β / Cai (Supplement 17)
If the crank angle θ0 when the gas flow rate around the exhaust valve is zero is the positive value of the two solutions, θ0 is expressed by the following equation.

θ0=2×β×Cai×IVO+α×Cva
−((2×β×Cai×IVO+α×Cva)^2−4×β×Cai
×(−β×Cai×IVO^2−α×Cva−X×Cpa))
^(1/2)/2/β/Cai …(補18)
従って、点a、点bを通る直線1を関数y1とおくと、関数y1はこのようにして得られた排気バルブ周りガス流量がゼロとなるときのクランク角θ0、吸気バルブ開時期IVO、吸気バルブ開時期での排気バルブ周りガス流量(dm/dθ)ivoを用いて次式により与えられる。
θ0 = 2 × β × Cai × IVO + α × Cva
− ((2 × β × Cai × IVO + α × Cva) ^ 2−4 × β × Cai
× (−β × Cai × IVO ^ 2-α × Cva-X × Cpa))
^ (1/2) / 2 / β / Cai (Supplement 18)
Therefore, if the straight line 1 passing through the points a and b is set as a function y1, the function y1 is the crank angle θ0, the intake valve opening timing IVO, the intake air when the gas flow around the exhaust valve thus obtained becomes zero. Using the gas flow around the exhaust valve (dm / dθ) ivo at the valve opening timing, the following equation is given.

y1=−(dm/dθ)ivo/(θ0−IVO)×θ
+(dm/dθ)ivo/(θ0−IVO)×θ0
…(補19)
ただし、(dm/dθ)ivo:吸気バルブ開時期での排気バルブ周りガス流量
[kg/degCA]
θ0 :排気バルブ周りガス流量がゼロとなるときのクラン ク角[degCA°]
〔2〕直線2の算出方法
吸気バルブの開期間と排気バルブの開期間のオーバーラップ後半(交点cのクランク角θ1以降)の吹き返しガス量を点d、eを通る直線2で近似する。基本的に点dのクランク角θ2は交点cのクランク角θ1以降でかつ排気バブル閉時期EVCより手前であればどこでも良いが、ここではクランク角が吸気バルブの開期間と排気バルブの開期間のオーバーラップ期間のうち3/4を経過した点のクランク角位置(2本の直線が交わるときのクランク角位置より遅角側のクランク角位置)とする。すなわち、点dのクランク角θ2を次式により与える。
y1 = − (dm / dθ) ivo / (θ0−IVO) × θ
+ (Dm / dθ) ivo / (θ0−IVO) × θ0
... (Supplement 19)
However, (dm / dθ) ivo: Gas flow around the exhaust valve when the intake valve is open
[Kg / degCA]
θ0: Crank angle [degCA °] when the gas flow around the exhaust valve becomes zero
[2] Calculation Method for Line 2 The amount of blown back gas in the second half of the overlap between the opening period of the intake valve and the opening period of the exhaust valve (after the crank angle θ1 of the intersection c) is approximated by the line 2 passing through the points d and e. Basically, the crank angle θ2 at the point d may be anywhere after the crank angle θ1 at the intersection c and before the exhaust bubble closing timing EVC, but here the crank angle is between the intake valve opening period and the exhaust valve opening period. The crank angle position at the point where 3/4 of the overlap period has elapsed (the crank angle position on the retard side from the crank angle position when the two straight lines intersect). That is, the crank angle θ2 of the point d is given by the following equation.

θ2=EVC−(EVC−IVO)/4 …(補20)
ただし、EVC:排気バルブ閉時期[degCA]、
IVO:吸気バルブ開時期「degCA]、
ここで、吸気バルブ開時期IVOは固定で考えているので一定値である。また、排気バルブ閉時期EVCは、排気バルブ用VTC機構28に与える指令値より知り得る。
θ2 = EVC− (EVC−IVO) / 4 (Supplement 20)
However, EVC: exhaust valve closing timing [degCA],
IVO: intake valve opening timing “degCA”,
Here, since the intake valve opening timing IVO is considered to be fixed, it is a constant value. Further, the exhaust valve closing timing EVC can be known from a command value given to the exhaust valve VTC mechanism 28.

クランク角θ2では吸気バルブ16が十分に開いており、燃焼室内圧力が吸気圧力とほぼ等しいと仮定する。点dの排気バルブ周りガス流量(dm/dθ)d[kg/degCA]は次式で算出する。   It is assumed that the intake valve 16 is sufficiently open at the crank angle θ2 and the pressure in the combustion chamber is substantially equal to the intake pressure. The gas flow around the exhaust valve at point d (dm / dθ) d [kg / degCA] is calculated by the following equation.

(dm/dθ)d=Aex×PEX/(REX×TEX)^(1/2)
×κ^(1/2)×(2/(κ+1))^((κ+1)
/(2×(κ−1)))×RMF2/6/Ne
…(40)
ただし、Aex :θ2での排気バルブ開口面積、後に算出方法を説明する
PEX :平均排気圧力、算出済
REX :排気ガス定数、算出済
TEX :排気温度、算出済
κ :排気の比熱比、算出済
RMF2:流量比、
(40)式右辺の流量比RMF2は、オーバーラップ期間のうち3/4を経過した点のクランク角位置で排気バルブ周りガス流量を算出するときに用いる流量比であり、次式で表せる。
(Dm / dθ) d = Aex × PEX / (REX × TEX) ^ (1/2)
× κ ^ (1/2) × (2 / (κ + 1)) ^ ((κ + 1)
/ (2 × (κ−1))) × RMF2 / 6 / Ne
... (40)
However, the exhaust valve opening area at Aex: θ2, and a calculation method will be described later
PEX: Average exhaust pressure, calculated
REX: exhaust gas constant, calculated
TEX: exhaust temperature, calculated
κ: Specific heat ratio of exhaust, calculated
RMF2: flow ratio,
The flow rate ratio RMF2 on the right side of the equation (40) is a flow rate ratio used when calculating the gas flow rate around the exhaust valve at the crank angle position at which 3/4 of the overlap period has elapsed, and can be expressed by the following equation.

RMF2=(Pin/PEX)^(1/κ)×(2×κ/(κ−1))
×(1−(Pin/PEX)^((κ−1)/κ))^(1/2)
/κ^(1/2)/(2/(κ+1))^((κ+1)/2/(κ−1))
…(補21)
ただし、Pin:平均吸気圧力、実験による適合値とする
PEX:平気排気圧力、算出済
ここで、(補21)式において平均排気圧力PEXを用いているのは、オーバーラップ期間のうち3/4を経過した点はオーバーラップ後半にあり燃焼室内での脈動が小さくなるためである。
RMF2 = (Pin / PEX) ^ (1 / κ) × (2 × κ / (κ−1))
× (1- (Pin / PEX) ^ ((κ-1) / κ)) ^ (1/2)
/ Κ ^ (1/2) / (2 / (κ + 1)) ^ ((κ + 1) / 2 / (κ-1))
... (Supplement 21)
However, Pin: average intake pressure, adapted value by experiment
Here, the average exhaust pressure PEX is used in (Supplement 21) because the point where 3/4 of the overlap period has passed is in the latter half of the overlap. This is because pulsation is reduced.

(40)式右辺の点dでのクランク角θ2に対する排気バルブ開口面積Aexは次のようにして算出する。図18において排気バルブ用VTC機構非作動時の排気バルブ開口面積の波形が実線であるとして、排気バルブ用VTC機構28の作動により排気バルブ閉時期EVCが所定値ADVだけ進角したときには排気バルブ開口面積の波形が実線より1点鎖線へと左側に平行移動する。図示の位置に点dでのクランク角θ2があるとすると、点dでのクランク角θ2に対する排気バルブ開口面積Aexは排気バルブ用VTC機構非作動時に●印位置の値であったのが、いま求めたい吸排気バルブ用VTC機構作動時の排気バルブ開口面積Aexは〇印位置の値へと小さくなる側に移る。この小さくなった○印位置の値は、同図より点dでのクランク角θ2から所定値ADVだけ遅らせたクランク角(θ2+ADV)での実線上の値、つまり△印位置の値と同じである。ということは、排気バルブ用VTC機構28の作動で排気バルブ閉時期EVCが所定値ADVだけ進角した場合に点dでのクランク角θ2での排気バルブ開口面積Aexを求めるには、点dでのクランク角θ2に代えて、点dでのクランク角θ2に所定値ADVを加算した値を用いて実線の特性、つまり排気バルブ用VTC機構非作動時に適合している排気バルブ開口面積の特性を参照すればよいことを意味する。言い換えると、排気バルブ用VTC機構非作動時に適合している排気バルブ開口面積の特性(図18に示す実線の特性)をクランク角をパラメータとする排気バルブ面積のテーブルとして記憶させておき、排気バルブ用VTC機構28の作動により排気バルブ閉時期EVCが所定値ADVだけ進角したとき、点dでのクランク角θ2に所定値ADVを加算したクランク角からこの排気バルブ面積のテーブルを参照させることで、排気バルブ用VTC機構28の作動により排気バルブ閉時期EVCが所定値ADVだけ進角しているときにおいても、点dでのクランク角θ2に対する排気バルブ開口面積Aexを精度良く求めることができる。   The exhaust valve opening area Aex with respect to the crank angle θ2 at the point d on the right side of the equation (40) is calculated as follows. In FIG. 18, assuming that the waveform of the exhaust valve opening area when the exhaust valve VTC mechanism is not operating is a solid line, when the exhaust valve closing timing EVC is advanced by a predetermined value ADV by the operation of the exhaust valve VTC mechanism 28, the exhaust valve opening is The waveform of the area translates from the solid line to the one-dot chain line to the left. If the crank angle θ2 at the point d is at the position shown in the figure, the exhaust valve opening area Aex with respect to the crank angle θ2 at the point d is the value at the position marked with ● when the exhaust valve VTC mechanism is not operating. The exhaust valve opening area Aex when the VTC mechanism for the intake / exhaust valve to be calculated is moved to the side where it becomes smaller to the value of the mark O. The smaller value of the circle mark position is the same as the value on the solid line at the crank angle (θ2 + ADV) delayed by a predetermined value ADV from the crank angle θ2 at the point d, that is, the value of the mark Δ position. . That is, when the exhaust valve closing timing EVC is advanced by a predetermined value ADV by the operation of the exhaust valve VTC mechanism 28, the exhaust valve opening area Aex at the crank angle θ2 at the point d is obtained at the point d. Instead of the crank angle θ2, the value obtained by adding the predetermined value ADV to the crank angle θ2 at the point d is used to obtain the characteristic of the solid line, that is, the characteristic of the exhaust valve opening area that is suitable when the exhaust valve VTC mechanism is not operated. It means that it only has to be referred. In other words, the exhaust valve opening area characteristics (solid line characteristics shown in FIG. 18) that are suitable when the exhaust valve VTC mechanism is not in operation are stored as an exhaust valve area table with the crank angle as a parameter. When the exhaust valve closing timing EVC is advanced by a predetermined value ADV by the operation of the VTC mechanism 28, the exhaust valve area table is referred to from the crank angle obtained by adding the predetermined value ADV to the crank angle θ2 at the point d. Even when the exhaust valve closing timing EVC is advanced by the predetermined value ADV by the operation of the exhaust valve VTC mechanism 28, the exhaust valve opening area Aex with respect to the crank angle θ2 at the point d can be obtained with high accuracy.

点eでは排気バルブ16が閉じるため排気バルブ周りガス流量はゼロとなる。したがって、点d、点eを通る直線2を関数y2とおくと、関数y2は、このようにして求めた点dの排気バルブ周りガス流量(dm/dθ)dと、排気バルブ用VTC機構作動時の排気バルブ閉時期EVC(排気バルブ用VTC機構非作動時には排気バルブ用VTC機構非作動時の排気バルブ閉時期EVC)とを用いて次式により与えられる。   At point e, the exhaust valve 16 is closed, so the gas flow rate around the exhaust valve becomes zero. Therefore, if the straight line 2 passing through the points d and e is set as a function y2, the function y2 is calculated based on the exhaust gas flow rate around the exhaust valve (dm / dθ) d and the exhaust valve VTC mechanism operation. The exhaust valve closing timing EVC at the time (when the exhaust valve VTC mechanism is not operated, the exhaust valve closing timing EVC when the exhaust valve VTC mechanism is not operated) is given by the following equation.

y2=−4×(dm/dθ)d/(EVC−IVO)×(θ−EVC)
…(41)
この(41)式と上記の(補19)式とを連立させて解くと、その解であるクランク角θが点cのクランク角θ1として算出される。
y2 = -4 * (dm / d [theta]) d / (EVC-IVO) * ([theta] -EVC)
... (41)
When the equation (41) and the above (complement 19) are solved simultaneously, the crank angle θ as the solution is calculated as the crank angle θ1 of the point c.

また、点cの排気バルブ周りガス流量(dm/dθ)cは、(41)式のクランク角θに点cのクランク角θ1を代入することにより得られる。   Further, the gas flow around the exhaust valve (dm / dθ) c at the point c is obtained by substituting the crank angle θ1 at the point c into the crank angle θ in the equation (41).

このようにして求めた吸気バルブ開時期での排気バルブ周りガス流量(dm/dθ)ivo、点bのクランク角θ0、点cの排気バルブ周りガス流量(dm/dθ)cの3つの値を上記(25)式に代入して吸気バルブ開期間と排気バルブ開期間のオーバーラップ中の吹き返しガス量M2を算出する。   The three values of the gas flow around the exhaust valve (dm / dθ) ivo, the crank angle θ0 at the point b, and the gas flow around the exhaust valve (dm / dθ) c at the point c are calculated as described above. Substituting into the above equation (25), the blowback gas amount M2 during the overlap between the intake valve open period and the exhaust valve open period is calculated.

これで、排気バルブ用VTC機構28を備える場合に燃焼室内残留ガスを算出するについて検討したところの説明を終える。   This concludes the description of the calculation of the combustion chamber residual gas when the exhaust valve VTC mechanism 28 is provided.

次に、図19はエンジンコントローラ31内で行われる燃焼室内残留ガス量推定装置のブロック図で、当該装置は吸気バルブ開時期燃焼室内容積算出部51、排気ガス定数算出部52、平均排気温度算出部53、平均排気圧力算出部54、比熱比算出部55、充填効率算出部56、吸気バルブ開時期燃焼室内圧力算出部57、吸気バルブ開時期燃焼室内温度算出部58、吸気バルブ開時期燃焼室内ガス量算出部59、オーバーラップ中吹き返しガス量算出部60、残留ガス量算出部61からなる。   Next, FIG. 19 is a block diagram of a combustion chamber residual gas amount estimation device performed in the engine controller 31. The device is an intake valve opening timing combustion chamber volume calculation unit 51, an exhaust gas constant calculation unit 52, an average exhaust temperature calculation. 53, average exhaust pressure calculation unit 54, specific heat ratio calculation unit 55, charging efficiency calculation unit 56, intake valve opening timing combustion chamber pressure calculation unit 57, intake valve opening timing combustion chamber temperature calculation unit 58, intake valve opening timing combustion chamber A gas amount calculation unit 59, an overlapped blow-back gas amount calculation unit 60, and a residual gas amount calculation unit 61 are included.

まず、吸気バルブ開時期燃焼室内容積算出部51では、吸気バルブ開時期IVOと、上記(7)式〜(11)式を用いて吸気バルブ開時期での燃焼室内容積VIVOを算出する。ここで、排気バルブ閉時期EVCは排気バルブ用VTC機構28に与える指令値よりわかっている。   First, the intake valve opening timing combustion chamber volume calculation unit 51 calculates the combustion chamber volume VIVO at the intake valve opening timing using the intake valve opening timing IVO and the above equations (7) to (11). Here, the exhaust valve closing timing EVC is known from the command value given to the exhaust valve VTC mechanism 28.

排気ガス定数算出部52では、目標当量比TFBYAと、上記(6)式、(補3)式とを用いて排気ガス定数REXを算出する。目標当量比は、図3で示したように、エンジンの負荷と回転速度Neに応じた値である。   The exhaust gas constant calculation unit 52 calculates the exhaust gas constant REX using the target equivalent ratio TFBYA and the above-described equations (6) and (complement 3). The target equivalent ratio is a value corresponding to the engine load and the rotational speed Ne as shown in FIG.

平均排気温度算出部53では、実トルク推定値TENG、エアフローセンサ32により検出される吸入空気量MA、目標当量比TFBYA、エンジン回転速度Neから上記(23)式、(24)式を用いて平均排気温度TEXを算出する。   In the average exhaust temperature calculation unit 53, the average torque estimated value TENG, the intake air amount MA detected by the airflow sensor 32, the target equivalence ratio TFBYA, and the engine speed Ne are averaged using the above formulas (23) and (24). An exhaust temperature TEX is calculated.

平均排気圧力算出部54では、エアフローセンサ32により検出される吸入空気量MA、目標当量比TFBYA、エンジン回転速度Ne、排気ガス定数REX、大気圧力センサ36により検出される大気圧力PPAMBと、上記(20)式、(21)式とを用いて平均排気圧力PEXを算出する。   In the average exhaust pressure calculation unit 54, the intake air amount MA detected by the air flow sensor 32, the target equivalence ratio TFBYA, the engine speed Ne, the exhaust gas constant REX, the atmospheric pressure PPAMB detected by the atmospheric pressure sensor 36, and the above ( The average exhaust pressure PEX is calculated using the equations (20) and (21).

比熱比算出部55では、平均排気温度TEX、排気ガス定数REXと上記(18)式、(補7−1)式〜(補7−5)式、(19)式とを用いて排気の比熱比κを算出する。   The specific heat ratio calculation unit 55 uses the average exhaust temperature TEX, the exhaust gas constant REX, and the specific heat of the exhaust using the above equations (18), (Supplement 7-1) to (Supplement 7-5), and Equation (19). The ratio κ is calculated.

充填効率算出部56では、エアフローセンサ32により検出される吸入空気量MAと上記(補8)式とを用いて実際の充填効率ITACを算出する。   The charging efficiency calculation unit 56 calculates the actual charging efficiency ITAC using the intake air amount MA detected by the airflow sensor 32 and the above (Supplement 8) equation.

吸気バルブ開時期燃焼室内圧力算出部57では、平均排気温度TEX、エンジン回転速度Ne、吸気バルブ開時期IVO、排気バルブ閉時期EVC、平均排気圧力PEX、実際の充填効率ITAC、排気の比熱比κと、上記(12)式、(13)式、(16)式、(17)式、(補6)式とを用いて吸気バルブ開時期での燃焼室内圧力PIVOを算出する。   In the intake valve opening timing combustion chamber pressure calculating section 57, the average exhaust temperature TEX, the engine speed Ne, the intake valve opening timing IVO, the exhaust valve closing timing EVC, the average exhaust pressure PEX, the actual charging efficiency ITAC, and the specific heat ratio κ of the exhaust gas. Then, the combustion chamber pressure PIVO at the intake valve opening timing is calculated using the above equations (12), (13), (16), (17), and (Supplement 6).

吸気バルブ開時期燃焼室内温度算出部58では、吸気バルブ開時期での燃焼室内圧力PIVO、平均排気圧力PEX、平均排気温度TEXと、上記(22)式、(23)式、(24)式とを用いて吸気バルブ開時期での燃焼室内温度TIVOを算出する。   In the intake valve opening timing combustion chamber temperature calculation unit 58, the combustion chamber pressure PIVO, the average exhaust pressure PEX, the average exhaust temperature TEX at the intake valve opening timing, and the above formulas (22), (23), and (24) Is used to calculate the combustion chamber temperature TIVO at the intake valve opening timing.

吸気バルブ開時期燃焼室内ガス量算出部59では、吸気バルブ開時期での燃焼室内容積VIVO、排気ガス定数EX、吸気バルブ開時期での燃焼室内圧力PIVO、吸気バルブ開時期での燃焼室内温度TIVOと、上記(1)式とを用いて吸気バルブ開時期での燃焼室内ガス量MR1を算出する。   In the intake valve opening timing combustion chamber gas amount calculation unit 59, the combustion chamber volume VIVO at the intake valve opening timing, the exhaust gas constant EX, the combustion chamber pressure PIVO at the intake valve opening timing, and the combustion chamber temperature TIVO at the intake valve opening timing And the combustion chamber gas amount MR1 at the intake valve opening timing is calculated using the above equation (1).

オーバーラップ中吹き返しガス量算出部60では、吸気バルブ開時期での燃焼室内温度TIVO、吸気バルブ開時期での燃焼室内圧力PIVO、吸気バルブ開時期IVO、排気バルブ閉時期EVC、平均排気圧力PEX、排気の比熱比κ、エンジン回転速度Ne、吸気圧力センサ44により検出される吸気圧力、排気ガス定数REX、吸気バルブ開時期での燃焼室内容積VIVOと、上記(25)式、(33)式、(補18)式、(補19)式、(補20)式、(40)式、(41)式等とを用いて吸気バルブの開期間と排気バルブの開期間のオーバーラップ中の吹き返しガス量M2算出する。   In the overlapped blowback gas amount calculation unit 60, the combustion chamber temperature TIVO at the intake valve opening timing, the combustion chamber pressure PIVO at the intake valve opening timing, the intake valve opening timing IVO, the exhaust valve closing timing EVC, the average exhaust pressure PEX, The specific heat ratio κ of the exhaust gas, the engine rotational speed Ne, the intake pressure detected by the intake pressure sensor 44, the exhaust gas constant REX, the combustion chamber volume VIVO at the intake valve opening timing, the above formulas (25), (33), Blow-back gas during overlap of the open period of the intake valve and the open period of the exhaust valve using the formulas (A.18), (A.19), (A20), (40), (41), etc. The amount M2 is calculated.

燃焼室内残留ガス量算出部61ではこの吸気バルブ開期間と排気バルブ開期間のオーバーラップ中の吹き返しガス量M2と、吸気バルブ開時期での燃焼室内ガス量MR1を加算して、吸気バルブ開期間と排気バルブ開期間のオーバーラップ終了後の燃焼室内残留ガス量を算出する。   The combustion chamber residual gas amount calculation unit 61 adds the blow-back gas amount M2 during the overlap between the intake valve opening period and the exhaust valve opening period, and the combustion chamber gas amount MR1 at the intake valve opening timing, thereby adding the intake valve opening period. And the amount of residual gas in the combustion chamber after the overlap of the exhaust valve open period is calculated.

ここで、先願装置の第1実施形態の作用効果を説明する。   Here, the effect of 1st Embodiment of a prior application apparatus is demonstrated.

排気バルブ用VTC機構28が非作動時(第1の状態時)から作動時(第2の状態時)へと切換わった場合に、排気バルブ用VTC機構作動時の排気バルブ開時期での排気圧力、燃焼室内圧力が排気バルブ用VTC機構非作動時の排気バルブ開時期での排気圧力、燃焼室内圧力と相違することとなるため、その相違する圧力分だけ、吸気バルブ開期間と排気バルブ開期間のオーバーラップ終了後の燃焼室内残留ガス量も、排気バルブ用VTC機構非作動時の値から大きく変化してしまう。   When the exhaust valve VTC mechanism 28 is switched from a non-operating state (first state) to an operating state (second state), exhaust at the exhaust valve opening timing when the exhaust valve VTC mechanism is operated. Since the pressure and the pressure in the combustion chamber are different from the exhaust pressure and the pressure in the combustion chamber when the exhaust valve VTC mechanism is not operated, the intake valve open period and the exhaust valve The amount of residual gas in the combustion chamber after the overlap of the period is also greatly changed from the value when the exhaust valve VTC mechanism is not operated.

この場合に、先願装置の第1実施形態によれば、図19に示したように排気バルブ用VTC機構作動時の排気バルブ閉時期EVCに基づいて、吸気バルブ開時期燃焼室内圧力算出部57が排気バルブ用VTC機構作動時の吸気バルブ開時期での燃焼室内圧力PIVOを算出し、この吸気バルブ開時期での燃焼室内圧力PIVOに基づいて、吸気バルブ開時期燃焼室内温度算出部58が排気バルブ用VTC機構作動時の吸気バルブ開時期での燃焼室内温度TIVOを算出し、これら吸気バルブ開時期での燃焼室内圧力PIVO、吸気バルブ開時期での燃焼室内温度TIVOに基づいて、吸気バルブ開時期燃焼室内ガス量算出部59が排気バルブ用VTC機構作動時の吸気バルブ開時期での燃焼室内ガス量MR1を算出し、排気バルブ用VTC機構作動時の排気バルブ閉時期に基づいて、オーバーラップ中吹き返しガス量算出部60が排気バルブ用VTC機構作動時の吸気バルブ開期間と排気バルブ開期間のオーバラップ中の吹き返しガス量M2を算出し、排気バルブ用VTC機構作動時の吸気バルブ開時期での燃焼室内ガス量MR1と、このオーバラップ中の吹き返しガス量M2とに基づいて、燃焼室内残留ガス量算出部61が排気バルブ用VTC機構作動時の吸気バルブ開期間と排気バルブ開期間のオーバーラップ終了後の燃焼室内残留ガス量を算出している。すなわち、排気バルブ用VTC機構28が非作動時より作動時に切換わったときには、その排気バルブ用VTC機構作動時の吸気バルブ開時期での燃焼室内圧力PIVOと、排気バルブ用VTC機構作動時の吸気バルブ開時期での燃焼室内温度TIVOとを改めて算出し、その算出した値に基づいて排気バルブ用VTC機構作動時の吸気バルブ開時期での燃焼室内ガス量MR1を算出すると共に、排気バルブ用VTC機構作動時の吸気バルブ閉時期に基づいて、排気バルブ用VTC機構作動時のオーバーラップ中の吹き返しガス量M2を算出するので、排気バルブ用VTC機構28が非作動時より作動時に切換わったときにも、吸気バルブ開期間と排気バルブ開期間のオーバーラップ終了後の燃焼室内残留ガス量を精度良く推定することができる。   In this case, according to the first embodiment of the prior application apparatus, as shown in FIG. 19, the intake valve opening timing combustion chamber pressure calculating section 57 based on the exhaust valve closing timing EVC when the exhaust valve VTC mechanism is operated. Calculates the combustion chamber pressure PIVO at the intake valve opening timing when the exhaust valve VTC mechanism is operated, and the intake valve opening timing combustion chamber temperature calculation section 58 performs exhaust based on the combustion chamber pressure PIVO at the intake valve opening timing. The combustion chamber temperature TIVO at the intake valve opening timing when the valve VTC mechanism is operated is calculated, and the intake valve opening is calculated based on the combustion chamber pressure PIVO at the intake valve opening timing and the combustion chamber temperature TIVO at the intake valve opening timing. The timing combustion chamber gas amount calculation unit 59 calculates the combustion chamber gas amount MR1 when the exhaust valve VTC mechanism is activated, and the exhaust valve VTC machine. Based on the exhaust valve closing timing at the time of operation, the overlapped blowback gas amount calculation unit 60 calculates the amount of blowback gas M2 during the overlap between the intake valve open period and the exhaust valve open period when the exhaust valve VTC mechanism is operated. Based on the combustion chamber gas amount MR1 when the exhaust valve VTC mechanism is activated and the blowback gas amount M2 during the overlap, the combustion chamber residual gas amount calculation unit 61 determines the exhaust valve VTC mechanism. The residual gas amount in the combustion chamber after the overlap between the intake valve open period and the exhaust valve open period during operation is calculated. That is, when the exhaust valve VTC mechanism 28 is switched from the non-operating state to the operating state, the combustion chamber pressure PIVO at the intake valve opening timing when the exhaust valve VTC mechanism operates and the intake air when the exhaust valve VTC mechanism operates The combustion chamber temperature TIVO at the valve opening timing is calculated again, and the combustion chamber gas amount MR1 at the intake valve opening timing when the exhaust valve VTC mechanism is operated is calculated based on the calculated value, and the exhaust valve VTC is calculated. When the exhaust valve VTC mechanism 28 is switched from the non-operating state to the operating state because the blow-back gas amount M2 during overlap is calculated when the exhaust valve VTC mechanism is operating based on the intake valve closing timing when the mechanism is operating. In addition, the amount of residual gas in the combustion chamber after the overlap between the intake valve open period and the exhaust valve open period can be accurately estimated. That.

基準排気温度時に排気バルブ用VTC機構28が非作動時から作動時へと切換わった場合に、基準排気温度時かつ排気バルブ用VTC機構作動時の吸気バルブ開時期での燃焼室内圧力は、基準排気温度時かつ排気バルブ用VTC機構非作動時の吸気バルブ開時期での燃焼室内圧力と相違することとなる。   When the exhaust valve VTC mechanism 28 is switched from the non-operating state to the operating state at the reference exhaust temperature, the combustion chamber pressure at the reference exhaust temperature and the intake valve opening timing when the exhaust valve VTC mechanism is operated is This is different from the pressure in the combustion chamber at the intake valve opening timing at the exhaust temperature and when the exhaust valve VTC mechanism is not operated.

この場合に、先願装置の第1実施形態によれば、平均排気圧力PEXを算出し(上記の(20)式、(21)式を参照)、排気バルブ用VTC機構作動時の排気バルブ開時期と、基準排気温度時かつ排気バルブ用VTC機構非作動時の各クランク角での燃焼室内圧力と平均排気圧力との差分値(各クランク角での排気バルブ周りの圧力脈動分)とに基づいて、基準排気温度時かつ排気バルブ用VTC機構作動時の吸気バルブ開時期での燃焼室内圧力と平均排気圧力との差分値PCTRMを算出し(図16を用いて説明したところを参照)、この算出された基準排気温度時かつ排気バルブ用VTC機構作動時の吸気バルブ開時期での燃焼室内圧力と平均排気圧力との差分値PCTRMと平均排気圧力PEXとに基づいて、基準排気温度時かつ排気バルブ用VTC機構作動時の吸気バルブ開時期での燃焼室内圧力PIVOを算出する(上記の(12)式を参照)ので、基準排気温度時に排気バルブ用VTC機構28が非作動時から作動時に切換わったときにも、基準排気温度時かつ排気バルブ用VTC機構作動時の吸気バルブ開時期での燃焼室内圧力PIVOを精度良く推定することができる。   In this case, according to the first embodiment of the prior application device, the average exhaust pressure PEX is calculated (see the above formulas (20) and (21)), and the exhaust valve is opened when the exhaust valve VTC mechanism is operated. Based on the timing and the difference between the pressure in the combustion chamber at each crank angle and the average exhaust pressure at the reference exhaust temperature and when the exhaust valve VTC mechanism is not operating (pressure pulsation around the exhaust valve at each crank angle) Then, a difference value PCTRM between the combustion chamber pressure and the average exhaust pressure at the reference exhaust temperature and at the intake valve opening timing when the exhaust valve VTC mechanism is operated is calculated (see the description with reference to FIG. 16). Based on the difference value PCTRM and the average exhaust pressure PEX between the combustion chamber pressure and the average exhaust pressure at the calculated reference exhaust temperature and when the exhaust valve VTC mechanism is operated, the exhaust valve VTC mechanism is operated. The combustion chamber pressure PIVO at the intake valve opening timing when the valve VTC mechanism is operated is calculated (see the above equation (12)), so that the exhaust valve VTC mechanism 28 is switched from the non-operating state to the operating state at the reference exhaust temperature. Even in such a case, it is possible to accurately estimate the combustion chamber pressure PIVO at the reference exhaust temperature and the intake valve opening timing when the exhaust valve VTC mechanism is operated.

排気バルブ用VTC機構作動時の吸気バルブ開時期での燃焼室内圧力と平均排気圧力との差分値(吸気バルブ開時期での排気バルブ周りの圧力脈動分)を実現する方法として、排気バルブ用VTC機構作動時の、相違する排気バルブ開時期ごとに排気バルブ用VTC機構作動時の各クランク角での燃焼室内圧力と平均排気圧力との差分値のマップを作成して記憶させておくことが考えられるが、その手法では莫大な記憶容量が必要になってしまう。   As a method of realizing a differential value between the pressure in the combustion chamber at the intake valve opening timing and the average exhaust pressure when the exhaust valve VTC mechanism is operated (pressure pulsation around the exhaust valve at the intake valve opening timing), the exhaust valve VTC is used. It is considered that a map of the difference value between the combustion chamber pressure and the average exhaust pressure at each crank angle when the exhaust valve VTC mechanism is operated is created and stored for each different exhaust valve opening timing during the mechanism operation. However, this method requires enormous storage capacity.

これに対して、先願装置の第1実施形態によれば、記憶させる必要があるのは、図6に示したように、排気バルブ用VTC機構非作動時の各クランク角での燃焼室内圧力と平均排気圧力との差分値についてだけであるので、記憶容量の大幅な削減を行い得る。   On the other hand, according to the first embodiment of the prior application apparatus, it is necessary to memorize the pressure in the combustion chamber at each crank angle when the exhaust valve VTC mechanism is not operated, as shown in FIG. And only the difference between the average exhaust pressure and the storage capacity can be greatly reduced.

排気バルブ用VTC機構非作動時の運転状態の変化により基準排気温度時から基準排気温度より高温側の排気温度時に切換わった場合に、基準排気温度より高温側の排気温度時の排気の速度c(排気圧力伝播速度)が基準排気温度時よりも大きくなり、排気圧力脈動分の波長λが基準排気温度時の波長λ0よりも短くなる。そのため、基準排気温度より高温側の排気温度時かつ排気バルブ用VTC機構非作動時の吸気バルブ開時期での燃焼室内圧力が、基準排気温度時かつ排気バルブ用VTC機構非作動時の吸気バルブ開時期での燃焼室内圧力と相違することとなる。さらに、基準排気温度より高温側の排気温度時に排気バルブ用VTC機構28が非作動時から作動時へと切換わると、基準排気温度より高温側の排気温度時かつ排気バルブ用VTC機構作動時の吸気バルブ開時期での燃焼室内圧力は、基準排気温度より高温側の排気温度時かつ排気バルブ用VTC機構非作動時の吸気バルブ開時期での燃焼室内圧力と相違することとなる。   When switching from the reference exhaust temperature to the exhaust temperature higher than the reference exhaust temperature due to a change in the operating state when the exhaust valve VTC mechanism is not operated, the exhaust speed c at the exhaust temperature higher than the reference exhaust temperature c The (exhaust pressure propagation speed) becomes larger than that at the reference exhaust temperature, and the wavelength λ for the exhaust pressure pulsation becomes shorter than the wavelength λ0 at the reference exhaust temperature. Therefore, the pressure in the combustion chamber when the exhaust temperature is higher than the reference exhaust temperature and the intake valve opening timing when the exhaust valve VTC mechanism is not operating is the same as the intake valve opening when the exhaust valve VTC mechanism is not operating. It will be different from the pressure in the combustion chamber at the time. Further, when the exhaust valve VTC mechanism 28 is switched from the non-operating state to the operating state when the exhaust temperature is higher than the reference exhaust temperature, the exhaust valve VTC mechanism 28 is operated when the exhaust temperature is higher than the reference exhaust temperature and when the exhaust valve VTC mechanism is operated. The pressure in the combustion chamber when the intake valve is open is different from the pressure in the combustion chamber when the exhaust temperature is higher than the reference exhaust temperature and when the exhaust valve VTC mechanism is not operating.

この場合に、先願装置の第1実施形態によれば、平均排気圧力PEXを算出し(上記の(20)式、(21)式を参照)、基準排気温度より高温側に外れた排気温度時の排気の速度c(排気圧力伝播速度)を算出し(上記の(16)式を参照)、この算出された排気の速度cと、排気バルブ用VTC機構作動時の排気バルブ開時期と、基準排気温度時かつ排気バルブ用VTC機構非作動時の各クランク角での燃焼室内圧力と平均排気圧力との差分値(吸気バルブ開時期での排気バルブ周りの圧力脈動分)とに基づいて、基準排気温度より高温側に外れた排気温度時かつ排気バルブ用VTC機構作動時の吸気バルブ開時期での燃焼室内圧力と平均排気圧力との差分値PCTRM(吸気バルブ開時期での排気バルブ周りの圧力脈動分)を算出し(図17を用いて説明したところを参照)、この算出された基準排気温度より高温側に外れた排気温度時かつ排気バルブ用VTC機構作動時の吸気バルブ開時期での燃焼室内圧力と平均排気圧力との差分値PCTRMと平均排気圧力PEXとに基づいて、基準排気温度より高温側に外れた排気温度時かつ排気バルブ用VTC機構作動時の吸気バルブ開時期での燃焼室内圧力PIVOを算出する(上記の(12)式を参照)ので、基準排気温度時かつ排気バルブ用VTC機構非作動時から基準排気温度より高温側に外れた排気温度時かつ排気バルブ用VTC機構作動時に切換わったときにも、基準排気温度より高温側に外れた排気温度時かつ排気バルブ用VTC機構作動時の吸気バルブ開時期での燃焼室内圧力PIVOを精度良く推定することができる。   In this case, according to the first embodiment of the prior application apparatus, the average exhaust pressure PEX is calculated (see the above formulas (20) and (21)), and the exhaust temperature deviated to a higher temperature side than the reference exhaust temperature. Exhaust speed c (exhaust pressure propagation speed) is calculated (see the above equation (16)), the calculated exhaust speed c, and the exhaust valve opening timing when the exhaust valve VTC mechanism is operated, Based on the difference between the pressure in the combustion chamber at each crank angle and the average exhaust pressure at the reference exhaust temperature and when the exhaust valve VTC mechanism is not in operation (the pressure pulsation around the exhaust valve at the intake valve opening timing), The difference value PCTRM between the combustion chamber pressure and the average exhaust pressure at the intake valve opening timing when the exhaust temperature deviates from the reference exhaust temperature and when the exhaust valve VTC mechanism is operated. Pressure pulsation) ( 17), the combustion chamber pressure and the average exhaust pressure at the intake valve opening timing when the exhaust temperature deviates higher than the calculated reference exhaust temperature and when the exhaust valve VTC mechanism is operated. Is calculated based on the difference value PCTRM and the average exhaust pressure PEX, at the exhaust temperature deviating to a higher temperature than the reference exhaust temperature and at the intake valve opening timing when the exhaust valve VTC mechanism is operated (above) (Refer to equation (12)). It is possible to accurately estimate the pressure PIVO in the combustion chamber when the exhaust temperature deviates to a higher temperature than the reference exhaust temperature and when the intake valve is opened when the exhaust valve VTC mechanism is operated. Kill.

排気バルブ用VTC機構28が非作動時から作動時に切換わり、例えば、排気バルブ用VTC機構作動時の排気バルブ閉時期EVCが排気バルブ用VTC機構非作動時よりも所定値ADVだけ進角側に移ったとすれば、吸気ポート4に吹き返したガスが燃焼室内に流入するガス量が小さくなる分だけ、排気バルブ用VTC機構作動時の吸気バルブ開期間と排気バルブ開期間のオーバーラップ中の吹き返しガス量M2が、この排気バルブ閉時期の進角分に対応して排気バルブ用VTC機構非作動時より大きくなる。このため、排気バルブ用VTC機構作動時に排気バルブ閉時期が排気バルブ用VTC機構非作動時より所定値ADVだけ進角側に移ったときにも、排気バルブ用VTC機構非作動時のままの吹き返しガス量を算出したのでは、吹き返しガス量の算出に、排気バルブ閉時期の進角分に対応する誤差(つまり吸気ポート4に吹き返したガスが燃焼室内に流入するガス量が小さくなる分の誤差)が生じる。   For example, the exhaust valve closing timing EVC when the exhaust valve VTC mechanism is activated is advanced by a predetermined value ADV from the non-operating state of the exhaust valve VTC mechanism. If it moves, the blow-back gas in the overlap between the intake valve open period and the exhaust valve open period when the exhaust valve VTC mechanism is operated is reduced by the amount of the gas blown back to the intake port 4 flowing into the combustion chamber. The amount M2 becomes larger than that when the exhaust valve VTC mechanism is not operated, corresponding to the advance angle of the exhaust valve closing timing. For this reason, even when the exhaust valve closing timing is shifted to the advance side by a predetermined value ADV from the time when the exhaust valve VTC mechanism is not operated when the exhaust valve VTC mechanism is operated, the blow-back remains as it is when the exhaust valve VTC mechanism is not operated. When calculating the amount of gas, an error corresponding to the advance angle of the exhaust valve closing timing (that is, an error corresponding to a decrease in the amount of gas flowing back into the intake port 4 into the combustion chamber) ) Occurs.

これに対して、先願装置の第1実施形態によれば、吸気バルブ開時期から排気バルブ用VTC機構作動時の排気バルブ閉時期までの排気バルブ周りガス流量(dm/dθ)(各クランク角での排気バルブ周りガス流量)を算出し、この吸気バルブ開時期から排気バルブ用VTC機構作動時の排気バルブ閉時期までの排気バルブ周りガス流量(dm/dθ)に基づいて、排気バルブ用VTC機構作動時の吸気バルブ開期間と排気バルブ開期間のオーバーラップ中の吹き返しガス量M2を算出するので、排気バルブ用VTC機構28が非作動時から作動時に切換わったときにも、排気バルブ用VTC機構作動時の吸気バルブ開期間と排気バルブ開期間のオーバーラップ中の吹き返しガス量M2を精度良く推定することができる。   On the other hand, according to the first embodiment of the prior application apparatus, the gas flow rate around the exhaust valve (dm / dθ) from the intake valve opening timing to the exhaust valve closing timing when the exhaust valve VTC mechanism is operated (each crank angle). The exhaust valve VTC is calculated based on the exhaust valve surrounding gas flow (dm / dθ) from the intake valve opening timing to the exhaust valve closing timing when the exhaust valve VTC mechanism is operated. Since the blow-back gas amount M2 during the overlap between the intake valve opening period and the exhaust valve opening period when the mechanism is operating is calculated, the exhaust valve VTC mechanism 28 can be used even when the exhaust valve VTC mechanism 28 is switched from non-operating to operating. It is possible to accurately estimate the blown back gas amount M2 during the overlap between the intake valve opening period and the exhaust valve opening period when the VTC mechanism is operated.

先願装置の第1実施形態によれば、図13に示したように、吸気バルブ開時期IVOから排気バルブ用VTC機構作動時の排気バルブ閉時期EVCまでの排気バルブ周りガス流量((dm/dθ)各クランク角での排気バルブ周りガス流量)の波形を直線1(第1の直線)と直線2(第2の直線)との2本の直線で近似し、その2本の直線と、吸気バルブ開時期IVOの直線と、排気バルブ周りガス流量ゼロの水平線とで構成された2つの三角形の面積を求めることで(上記(25)式を参照)、排気バルブ用VTC機構作動時の吸気バルブ開期間と排気バルブ開期間のオーバーラップ中の吹き返しガス量M2を算出するので、排気バルブ用VTC機構作動時の吸気バルブ開期間と排気バルブ開期間のオーバーラップ中の吹き返しガス量M2の算出が容易となる。   According to the first embodiment of the prior application device, as shown in FIG. 13, the gas flow rate around the exhaust valve ((dm / m) from the intake valve opening timing IVO to the exhaust valve closing timing EVC when the exhaust valve VTC mechanism is operated. dθ) The waveform of the gas flow around the exhaust valve at each crank angle) is approximated by two straight lines, a straight line 1 (first straight line) and a straight line 2 (second straight line), and the two straight lines; By obtaining the area of two triangles composed of a straight line of the intake valve opening timing IVO and a horizontal line of zero gas flow around the exhaust valve (see the above equation (25)), intake air when the exhaust valve VTC mechanism is operated Since the blowback gas amount M2 during the overlap between the valve open period and the exhaust valve open period is calculated, the blowback gas amount M2 during the overlap between the intake valve open period and the exhaust valve open period when the exhaust valve VTC mechanism operates. Calculation becomes easy.

排気バルブ用VTC機構非作動時の各クランク角での排気バルブ開口面積と、排気バルブ用VTC機構作動時の各クランク角での排気バルブ開口面積とを別々にテーブル値として記憶させておき、排気バルブ用VTC機構非作動時の排気バルブ閉時期から一方のテーブルを参照して、排気バルブ用VTC機構非作動時の吸気バルブ開期間と排気バルブ開期間のオーバーラップ期間の3/4が経過した点d1(2本の直線が交わるときのクランク角位置より遅角側のクランク角位置)での排気バルブ開口面積を求め、その求めた排気バルブ開口面積に基づいて点d1での排気バルブ周りガス流量を算出し、また、排気バルブ用VTC機構作動時の排気バルブ閉時期から他方のテーブルを参照して、排気バルブ用VTC機構作動時の吸気バルブ開期間と排気バルブ開期間のオーバーラップ期間の3/4が経過した点d2(2本の直線が交わるときのクランク角位置より遅角側のクランク角位置)での排気バルブ開口面積を求め、その求めた排気バルブ開口面積に基づいて点d2での排気バルブ周りガス流量を算出するのでは、テーブルの記憶容量が倍必要になる。   The exhaust valve opening area at each crank angle when the exhaust valve VTC mechanism is not operated and the exhaust valve opening area at each crank angle when the exhaust valve VTC mechanism is operated are separately stored as table values. 3/4 of the overlap period of the intake valve opening period and the exhaust valve opening period when the exhaust valve VTC mechanism is not in operation has elapsed with reference to one table from the exhaust valve closing timing when the valve VTC mechanism is not operating The exhaust valve opening area at the point d1 (the crank angle position retarded from the crank angle position when the two straight lines intersect) is obtained, and the exhaust valve surrounding gas at the point d1 is obtained based on the obtained exhaust valve opening area. Calculate the flow rate and refer to the other table from the exhaust valve closing timing when the exhaust valve VTC mechanism is activated, and open the intake valve when the exhaust valve VTC mechanism is activated. And the exhaust valve opening area at a point d2 (a crank angle position that is retarded from the crank angle position when the two straight lines intersect) at which 3/4 of the overlap period of the exhaust valve opening period has elapsed, Calculation of the gas flow rate around the exhaust valve at the point d2 based on the obtained exhaust valve opening area requires twice the storage capacity of the table.

これに対して、先願装置の第1実施形態によれば、排気バルブ用VTC機構非作動時の各クランク角での排気バルブ開口面積をテーブル値として記憶しておき、排気バルブ用VTC機構作動時の排気バルブ閉時期とこのテーブル値とに基づいて、排気バルブ用VTC機構作動時の吸気バルブ開期間と排気バルブ開期間のオーバーラップ期間の3/4が経過した点d(2本の直線が交わるときのクランク角位置より遅角側のクランク角位置)での排気バルブ周りガス流量(dm/dθ)dを算出する。すなわち、先願装置の第1実施形態によれば、記憶させる必要があるのは、排気バルブ用VTC機構非作動時の各クランク角での排気バルブ開口面積についてだけであるので、記憶容量の削減を行い得る。   In contrast, according to the first embodiment of the prior application device, the exhaust valve opening area at each crank angle when the exhaust valve VTC mechanism is not operated is stored as a table value, and the exhaust valve VTC mechanism is operated. Based on the exhaust valve closing timing at this time and this table value, a point d (two straight lines) at which 3/4 of the overlap period of the intake valve open period and the exhaust valve open period when the exhaust valve VTC mechanism is operated has elapsed. A gas flow rate (dm / dθ) d around the exhaust valve at a crank angle position that is retarded from the crank angle position at the time of crossing is calculated. That is, according to the first embodiment of the prior application apparatus, it is only necessary to memorize the exhaust valve opening area at each crank angle when the exhaust valve VTC mechanism is not operated, so that the storage capacity is reduced. Can be done.

さて、排気バルブ用VTC機構作動時に(あるいは排気バルブ用VTC機構非作動時についても)吸気バルブ開期間と排気バルブ開期間のオーバーラップ期間(以下単に「オーバーラップ期間」という。)が短い場合には、点dでのクランク角θ2を一定値(オーバーラップ期間のうち3/4を経過した点のクランク角位置)で設定しても、排気バルブ用VTC機構作動時の吸気バルブ開期間と排気バルブ開期間のオーバーラップ中の吹き返しガス量M2を精度良く算出することができる。曲線で形成される、排気バルブ用VTC機構作動時の吸気バルブ開期間と排気バルブ開期間のオーバーラップ中の排気バルブ周りガス流量dm/dθの波形を2本の斜めの直線で近似するが、例えば図20(A)に示したように、オーバーラップ期間が所定値より短かければ、オーバーラップ中に排気バルブ周りガス流量dm/dθがゼロとなるときのクランク角θ0での排気バルブ周りガス流量の傾きは小さく、吸気バルブ開期間と排気バルブ開期間のオーバーラップ中の吹き返しガス量M2が少ないため、オーバーラップ期間により決まるクランク角位置である点dでのクランク角θ2が最適値ではなくても、吸気バルブ開期間と排気バルブ開期間のオーバーラップ中の吹き返しガス量M2の算出精度はそれほど悪化しない。   When the exhaust valve VTC mechanism is activated (or when the exhaust valve VTC mechanism is not activated), the overlap period of the intake valve open period and the exhaust valve open period (hereinafter simply referred to as “overlap period”) is short. Even if the crank angle θ2 at the point d is set to a constant value (crank angle position at which 3/4 of the overlap period has elapsed), the intake valve opening period and exhaust gas when the exhaust valve VTC mechanism is operated The blown back gas amount M2 during the overlap of the valve opening period can be calculated with high accuracy. The waveform of the gas flow rate dm / dθ around the exhaust valve during the overlap between the intake valve opening period and the exhaust valve opening period, which is formed by a curve, is approximated by two oblique straight lines. For example, as shown in FIG. 20A, if the overlap period is shorter than a predetermined value, the exhaust valve surrounding gas at the crank angle θ0 when the exhaust valve surrounding gas flow rate dm / dθ becomes zero during the overlap. Since the gradient of the flow rate is small and the amount of blown back gas M2 during the overlap between the intake valve open period and the exhaust valve open period is small, the crank angle θ2 at the point d, which is the crank angle position determined by the overlap period, is not the optimum value. However, the calculation accuracy of the blowback gas amount M2 during the overlap between the intake valve open period and the exhaust valve open period does not deteriorate so much.

しかしながら、エンジンや排気バルブ用VTC機構の仕様によっては、オーバーラップ期間が所定値より長い場合がある。このようなエンジンでは、排気バルブ用VTC機構作動時にオーバーラップ期間が所定値より小さい場合に、点dでのクランク角θ2を一定値で設定して、排気バルブ用VTC機構作動時のオーバーラップ期間中の吹き返しガス量M2を精度良く算出し得ていたとしても、排気バルブ用VTC機構作動時のオーバーラップ期間が所定値より長くなると、オーバーラップ中に排気バルブ周りガス流量dm/dθがゼロとなるときのクランク角θ0での排気バルブ周りガス流量の傾きが大きくなりかつ吸気バルブ開時期から排気バルブ用VTC機構作動時の排気バルブ閉時期までの各クランク角での排気バルブ周りガス流量dm/dθの波形は曲線で構成される部分が多くなるため、排気バルブ用VTC機構作動時のオーバーラップ期間が所定値より長くなった場合にも、排気バルブ用VTC機構作動時のオーバーラップ期間が所定値未満の場合に設定している、点dでのクランク角θ2をそのまま用いたのでは、排気バルブ用VTC機構作動時の吸気バルブ開期間と排気バルブ開期間のオーバーラップ中の吹き返しガス量M2の算出誤差が大きくなる。すなわち、排気バルブ用VTC機構作動時のオーバーラップ期間が長くなるにつれ、図20(B)に示したように排気バルブ周りガス流量がゼロとなるときのクランク角θ0での排気バルブ周りガス流量の傾きが大きくかつ曲線で構成される部分が多くなり2本の斜めの直線1,2と排気バルブ周りガス流量dm/dθの波形とのずれが大きくなるため、オーバーラップ期間により決まるクランク角位置である点dでのクランク角θ2を最適な位置に設定しない場合、2本の斜めの直線と、吸気バルブ開時期IVOの直線と、排気バルブ周りガス流量dm/dθがゼロの水平線とで構成された2つの三角形の面積として算出している、吸気バルブ開期間と排気バルブ開期間のオーバーラップ中の吹き返しガス量M2の推定精度が悪化してしまうのである。なお、図20(A)、図20(B)では吸気バルブ開時期IVOを一致させたタイミングで示しているが、必ずしも一致するものでない。オーバーラップ期間が長くなるにつれて吸気ポート圧と排気ポート圧の差圧が小さくなって吹き抜けるガス流速がそれ以上大きくならずに一定になるが、オーバーラップ期間が長い場合の後半区間で吸気ポート圧と排気ポート圧の差圧が小さくガス流速が一定となっている。   However, depending on the specifications of the engine and the exhaust valve VTC mechanism, the overlap period may be longer than a predetermined value. In such an engine, when the overlap period is smaller than a predetermined value when the exhaust valve VTC mechanism is operated, the crank angle θ2 at the point d is set to a constant value, and the overlap period when the exhaust valve VTC mechanism is operated. Even when the amount of blown back gas M2 can be calculated accurately, if the overlap period when the exhaust valve VTC mechanism is activated is longer than a predetermined value, the gas flow rate dm / dθ around the exhaust valve becomes zero during the overlap. The gradient of the gas flow rate around the exhaust valve at the crank angle θ0 at the time becomes larger, and the gas flow rate around the exhaust valve dm / at each crank angle from the intake valve opening timing to the exhaust valve closing timing when the exhaust valve VTC mechanism operates. Since the waveform of dθ has many parts composed of curves, the overlap period when the exhaust valve VTC mechanism is operated is a predetermined value. Even when the exhaust valve VTC mechanism is longer, if the overlap angle when the exhaust valve VTC mechanism is operated is less than a predetermined value, the crank angle θ2 at the point d is used as it is, the exhaust valve VTC mechanism operates. The calculation error of the blowback gas amount M2 during the overlap between the intake valve open period and the exhaust valve open period at that time becomes large. That is, as the overlap period during the operation of the exhaust valve VTC mechanism becomes longer, as shown in FIG. 20B, the exhaust valve surrounding gas flow rate at the crank angle θ0 when the exhaust valve surrounding gas flow rate becomes zero is shown. Since the slope is large and the number of curved parts increases and the deviation between the two slanted straight lines 1 and 2 and the waveform of the gas flow rate dm / dθ around the exhaust valve increases, the crank angle position determined by the overlap period If the crank angle θ2 at a certain point d is not set to an optimal position, it is composed of two diagonal straight lines, a straight line of the intake valve opening timing IVO, and a horizontal line where the gas flow rate dm / dθ around the exhaust valve is zero. The estimation accuracy of the blowback gas amount M2 during the overlap between the intake valve open period and the exhaust valve open period, which is calculated as the area of the two triangles, is deteriorated. It is. In FIGS. 20A and 20B, the intake valve opening timing IVO is shown to be coincident, but it is not necessarily coincident. As the overlap period becomes longer, the differential pressure between the intake port pressure and the exhaust port pressure becomes smaller and the flow velocity of the gas blown through becomes constant without increasing any more. The differential pressure of the exhaust port pressure is small and the gas flow rate is constant.

そこで、先願装置の第2実施形態は、排気バルブ用VTC機構28の作動で、排気バルブ閉時期EVCが排気バルブ用VTC機構非作動時の初期位置である最進角位置から遅角側に移動してバルブオーバーラップ期間が長くなる場合を扱う。すなわち、先願装置の第2実施形態では、排気バルブ用VTC機構作動時にオーバーラップ期間が所定値より長い場合に、点dでのクランク角θ2(第1の直線と第2の直線の2本の直線が交わるときのクランク角位置より遅角側のクランク角位置)を、排気バルブ用VTC機構作動時の吸気バルブ開期間と排気バルブ開期間のオーバラップ中の排気バルブ周りガス流量dm/dθがゼロとなるときのクランク角θ0での排気バルブ周りガス流量の傾きに基づいて算出する。   Therefore, in the second embodiment of the prior application device, the exhaust valve closing timing EVC is moved from the most advanced angle position, which is the initial position when the exhaust valve VTC mechanism is not operated, to the retard side by the operation of the exhaust valve VTC mechanism 28. Handle the case where the valve overlap period becomes longer due to movement. That is, in the second embodiment of the prior application device, when the overlap period is longer than a predetermined value when the exhaust valve VTC mechanism is operated, the crank angle θ2 at the point d (the first straight line and the second straight line) The crank angle position on the retarded side from the crank angle position when the straight line intersects with the exhaust valve VTC mechanism, and when the exhaust valve open period and the exhaust valve open period overlap, the gas flow around the exhaust valve dm / dθ Is calculated based on the gradient of the gas flow rate around the exhaust valve at the crank angle θ0 when becomes zero.

なお、先願装置の第2実施形態の対象は、吸気バルブ開時期IVOは一定のまま排気バルブ用VTC機構28の作動でバルブオーバーラップ期間が長くなる場合に限られるものでない。例えば、上記の先願装置の第1実施形態では、吸気バルブ用VTC機構27は非作動状態にあるものとして説明したが、吸気バルブ用VTC機構27を作動させると、排気バルブ閉時期EVCは変わらないのに吸気バルブ開時期IVOが進角側に移動してバルブオーバーラップ期間が長くなることがあり、この場合にも先願装置の第2実施形態を適用できる。また、吸気バルブ用VTC機構27と排気バルブ用VTC機構28とが共に作動して、バルブオーバーラップ期間が長くなる場合にも先願装置の第2実施形態を適用できる。要は、吸気バルブ用VTC機構27と排気バルブ用VTC機構28の作動、非作動の組合せによりバルブオーバーラップ期間が長くなる場合に先願装置の第2実施形態を適用できる。   The object of the second embodiment of the prior application device is not limited to the case where the valve overlap period becomes longer due to the operation of the exhaust valve VTC mechanism 28 while the intake valve opening timing IVO remains constant. For example, in the first embodiment of the above-mentioned prior application apparatus, the intake valve VTC mechanism 27 has been described as being in an inoperative state. However, when the intake valve VTC mechanism 27 is operated, the exhaust valve closing timing EVC changes. However, there is a case where the intake valve opening timing IVO moves to the advance side and the valve overlap period becomes longer. In this case as well, the second embodiment of the prior application device can be applied. The second embodiment of the prior application apparatus can also be applied when both the intake valve VTC mechanism 27 and the exhaust valve VTC mechanism 28 are operated to increase the valve overlap period. In short, the second embodiment of the prior application apparatus can be applied when the valve overlap period becomes longer due to the combination of operation and non-operation of the intake valve VTC mechanism 27 and the exhaust valve VTC mechanism 28.

次に、排気バルブ用VTC機構の作動でオーバーラップ期間が所定値より長くなった場合の点dでのクランク角θ2の設定方法を図21を参照して具体的に説明する。   Next, a method of setting the crank angle θ2 at the point d when the overlap period becomes longer than a predetermined value due to the operation of the exhaust valve VTC mechanism will be specifically described with reference to FIG.

図21に示したように、排気バルブ用VTC機構作動時にオーバーラップ期間が所定値より長い場合の排気バルブ周りガス流量の波形が、実測またはシミュレーションによって得られたとする。この場合に、点eより左側に向かって、一定のクランク角毎にθ21,θ22,…,θ2n-1,θ2n(nは正数)を取り、それら各クランク角のときの曲線上の点を順番にd1,d2,…,dn-1,dnとする。nの数を多くするほど吸気バルブ開期間と排気バルブ開期間のオーバーラップ中の吹き返しガス量M2の算出精度は向上するが、その反面で算出時間が増えるので、算出精度と算出時間のバランスを考えてnの数を決める。   As shown in FIG. 21, it is assumed that the waveform of the gas flow around the exhaust valve when the overlap period is longer than a predetermined value when the exhaust valve VTC mechanism is operated is obtained by actual measurement or simulation. In this case, θ21, θ22,..., Θ2n-1, θ2n (n is a positive number) are taken for each constant crank angle toward the left side from the point e, and the points on the curve at these crank angles are In this order, d1, d2,..., Dn-1, dn. As the number of n increases, the calculation accuracy of the blow-back gas amount M2 during the overlap between the intake valve opening period and the exhaust valve opening period improves, but on the other hand, the calculation time increases. Determine the number of n.

まず、e点と1番目のd1点を結んだ直線を仮の直線2(図21参照)としたときの吸気バルブ開期間と排気バルブ開期間のオーバーラップ中の吹き返しガス量を上記〔2〕で前述したところに従って計算する。すなわち、点d1でのクランク角θ21から上記(40)式を用いて点d1での排気バルブ周りガス流量(dm/dθ)d1を算出し、この点d1での排気バルブ周りガス流量(dm/dθ)d1を上記(41)式に代入して関数y2を決定し、この関数y2と上記の(補7)式とを連立させて、点cのクランク角θ1を算出する。また、点cの排気バルブ周りガス流量(dm/dθ)cを上記(41)式のクランク角θに点cのクランク角θ1を代入して得る。一方、図21より吸気バルブ開時期での排気バルブ周りガス流量(dm/dθ)ivo、点bのクランク角θ0を算出する。このようにして求めた吸気バルブ開時期での排気バルブ周りガス流量(dm/dθ)ivo、点bのクランク角θ0、点cの排気バルブ周りガス流量(dm/dθ)cの3つの値を上記(25)式に代入して、e点とd1点を結んだ直線を仮の直線2としたときの吸気バルブ開期間と排気バルブ開期間のオーバーラップ中の吹き返しガス量を計算し、その計算値をM2theo1とする。図21より当然のことながら、e点と1番目のd1点を結んだ直線を仮の直線2としたときの吸気バルブ開期間と排気バルブ開期間のオーバーラップ中の吹き返しガス量計算値M2theo1は、吸気バルブ開期間と排気バルブ開期間のオーバーラップ中の実際の吹き返しガス量より小さい。   First, the amount of blown back gas during the overlap of the intake valve open period and the exhaust valve open period when the straight line connecting the point e and the first d1 point is a temporary straight line 2 (see FIG. 21) is the above [2]. Calculate according to the above. That is, the gas flow around the exhaust valve (dm / dθ) d1 at the point d1 is calculated from the crank angle θ21 at the point d1 using the above equation (40), and the gas flow around the exhaust valve (dm / d) at this point d1. The function y2 is determined by substituting dθ) d1 into the equation (41), and the function y2 and the equation (complement 7) are combined to calculate the crank angle θ1 at the point c. Further, the gas flow around the exhaust valve (dm / dθ) c at the point c is obtained by substituting the crank angle θ1 at the point c into the crank angle θ in the equation (41). On the other hand, the gas flow around the exhaust valve (dm / dθ) ivo at the intake valve opening timing and the crank angle θ0 at point b are calculated from FIG. The three values of the gas flow around the exhaust valve (dm / dθ) ivo, the crank angle θ0 at the point b, and the gas flow around the exhaust valve (dm / dθ) c at the point c are calculated as described above. Substituting into the above equation (25), the amount of blow-back gas during the overlap between the intake valve opening period and the exhaust valve opening period when the straight line connecting the points e and d1 is defined as the temporary line 2 is calculated. The calculated value is M2theo1. Naturally from FIG. 21, when the straight line connecting the point e and the first d1 point is a temporary straight line 2, the blowback gas amount calculation value M2theo1 during the overlap of the intake valve open period and the exhaust valve open period is It is smaller than the actual amount of blown-back gas during the overlap between the intake valve open period and the exhaust valve open period.

次に、e点と2番目のd2点を結んだ直線を仮の直線2としたときの吸気バルブ開期間と排気バルブ開期間のオーバーラップ中の吹き返しガス量を上記〔2〕で前述したところに従って計算し、その計算値をM2theo2とする。図21よりe点と2番目のd2点を結んだ直線を仮の直線2としたときの吸気バルブ開期間と排気バルブ開期間のオーバーラップ中の吹き返しガス量計算値M2theo2も、吸気バルブ開期間と排気バルブ開期間のオーバーラップ中の実際の吹き返しガス量より小さい。   Next, when the straight line connecting the point e and the second point d2 is a temporary straight line 2, the amount of blown back gas during the overlap between the intake valve open period and the exhaust valve open period is described above in [2]. And the calculated value is M2theo2. As shown in FIG. 21, when the straight line connecting the point e and the second d2 point is defined as a temporary straight line 2, the blowback gas amount calculation value M2theo2 during the overlap of the intake valve open period and the exhaust valve open period is also the intake valve open period. And less than the actual amount of blown-back gas during the overlap of the exhaust valve opening period.

後は同様にして、e点とd3,…,dn点を結んだ直線をそれぞれ仮の直線2としたときの吸気バルブ開期間と排気バルブ開期間のオーバーラップ中の吹き返しガス量計算値M2theo3,…,dM2theonを上記〔2〕で前述したところに従って次々と求める。このようにして合計n個の吹き返しガス量計算値M2theo1,…,dM2theonを求めたとき、これらn個の計算値の中には、吸気バルブ開期間と排気バルブ開期間のオーバーラップ中の実際の吹き返しガス量に近い値が含まれていると考えられる。   In the same manner, the blowback gas amount calculation value M2theo3 during the overlap between the intake valve opening period and the exhaust valve opening period when the straight line connecting the point e and the points d3,. ..., dM2theon is obtained one after another according to the above-mentioned in [2]. In this way, when the total n blown back gas amount calculated values M2theo1,..., DM2theon are obtained, these n calculated values include actual values during the overlap of the intake valve open period and the exhaust valve open period. It is considered that a value close to the amount of blown-back gas is included.

一方、吸気バルブ開期間と排気バルブ開期間のオーバーラップ中の実際の吹き返しガス量M2realを、図21の波形図から図上計算で、あるいは実測やシミュレーションにより求める。   On the other hand, the actual blown-back gas amount M2real during the overlap between the intake valve opening period and the exhaust valve opening period is obtained from the waveform diagram of FIG. 21 by calculation on the diagram, or by actual measurement or simulation.

次に、この求めた実際の吹き返しガス量M2realと、n個の吹き返しガス量計算値M2theo1,…,M2theonとを比較し、実際の吹き返しガス量M2realに最も近い吹き返しガス量計算値を1つ選択する。例えば、吹き返しガス量計算値M2theo10が実際の吹き返しガス量M2realに最も近い値であったとすれば、図21の波形に対しては点eと10番目の点d10とを結んだ線(一点鎖線参照)を直線2としたとき、実際の吹き返しガス量M2realを最も良く近似する直線となるので、点d10でのクランク角θ210を点dでのクランク角θ2として決定する。   Next, the calculated actual blown gas amount M2real is compared with the n blown gas amount calculated values M2theo1,..., M2theon, and one calculated blown gas amount closest to the actual blown gas amount M2real is selected. To do. For example, if the blown-back gas amount calculation value M2theo10 is a value closest to the actual blown-back gas amount M2real, a line connecting the point e and the tenth point d10 with respect to the waveform of FIG. ) Is a straight line 2, it is a straight line that best approximates the actual blown-back gas amount M2real, so the crank angle θ 210 at the point d 10 is determined as the crank angle θ 2 at the point d.

次に、排気バルブ周りガス流量dm/dθがゼロとなるときのクランク角θ0での排気バルブ周りガス流量の傾き(dm2/d2θ)0を、図21の波形図から図上計算で、あるいは実測やシミュレーションにより求め、この排気バルブ周りガス流量がゼロとなるときのクランク角θ0での排気バルブ周りガス流量の傾き(dm2/d2θ)0と、実際の吹き返しガス量M2realとn個の吹き返しガス量計算値との比較により得ている点dでのクランク角θ2とをカップルとする1のデータ((dm2/d2θ)0,θ2)を得る。これで、図21の波形図に対して行うべき1のカップルデータの収集操作を終了する。   Next, the inclination (dm2 / d2θ) 0 of the exhaust gas flow around the exhaust valve at the crank angle θ0 when the exhaust gas flow around the exhaust valve dm / dθ becomes zero is calculated from the waveform diagram of FIG. And the gradient of the gas flow around the exhaust valve (dm2 / d2θ) 0 at the crank angle θ0 when the gas flow around the exhaust valve becomes zero, the actual blown gas amount M2real, and the n blown gas amounts One data ((dm 2 / d 2 θ) 0, θ 2) obtained by coupling the crank angle θ 2 at the point d obtained by comparison with the calculated value is obtained. This completes the operation of collecting one couple data to be performed on the waveform diagram of FIG.

オーバーラップ期間が図21と異なれば、吸気バルブ開期間と排気バルブ開期間のオーバーラップ中の排気バルブ周りガス流量の波形も図21の波形とは相違するものとなる。従って、オーバーラップ期間が長くなることによって吸気バルブ開期間と排気バルブ開期間のオーバーラップ中の吹き返しガス量M2の算出誤差が問題となり始めるときのオーバーラップ期間を所定値Aとし、最大のオーバーラップ期間を最大値Bとすれば、所定値Aと最大値Bを含めて所定値Aと最大値Bの間でオーバーラップ期間の異なるk(kは正数)個の排気バルブ周りガス流量の特性を、図21と同様にして、実測やシミュレーションにより求めることができる。kの数を多くするほど吸気バルブ開期間と排気バルブ開期間のオーバーラップ中の吹き返しガス量M2の算出精度は向上するが、その反面で実測やシミュレーションの工数が増えるため、算出精度と工数のバランスを考えてkの数を決める。kが例えば32であれば、そのうちの1つが図21であるので、オーバーラップ期間の異なる残り31の排気バルブ周りガス流量の各波形について、上記の操作を繰り返し、31の各波形に対して実際の吹き返しガス量M2realを最も良く近似する直線2を決定する。このようにして、オーバーラップ期間の異なる32の排気バルブ周りガス流量の各波形について、実際の吹き返しガス量M2realを最も良く近似する直線2、つまり当該直線2を決定する点dでのクランク角θ2がそれぞれ得られる。   If the overlap period is different from that in FIG. 21, the waveform of the gas flow around the exhaust valve during the overlap between the intake valve open period and the exhaust valve open period also differs from the waveform in FIG. Therefore, when the overlap period becomes longer, the overlap period when the calculation error of the blowback gas amount M2 during the overlap between the intake valve opening period and the exhaust valve opening period starts to become a problem is set to the predetermined value A, and the maximum overlap is achieved. Assuming that the period is the maximum value B, the characteristics of the gas flow rate around k exhaust valves (k is a positive number) with different overlap periods between the predetermined value A and the maximum value B including the predetermined value A and the maximum value B. Can be obtained by actual measurement or simulation in the same manner as in FIG. As the number of k increases, the calculation accuracy of the blow-back gas amount M2 during the overlap between the intake valve opening period and the exhaust valve opening period improves, but on the other hand, the actual measurement and simulation man-hours increase. Determine the number of k in consideration of balance. If k is 32, for example, one of them is shown in FIG. 21. Therefore, the above operation is repeated for each of the remaining 31 exhaust valve surrounding gas flow rates with different overlap periods. A straight line 2 that best approximates the blown back gas amount M2real is determined. In this way, for each waveform of the gas flow rate around 32 exhaust valves with different overlap periods, the straight line 2 that best approximates the actual blown gas amount M2real, that is, the crank angle θ2 at the point d that determines the straight line 2 is determined. Are obtained respectively.

一方、上記オーバーラップ期間の異なる32の排気バルブ周りガス流量の各波形から、排気バルブ周りガス流量がゼロとなるときのクランク角θ0での排気バルブ周りガス流量の傾き(dm2/d2θ)0を、波形図から図上計算で、あるいは実測やシミュレーションにより順次求めてゆくと、排気バルブ周りガス流量がゼロとなるときのクランク角θ0での排気バルブ周りガス流量の傾き(dm2/d2θ)0と、点dでのクランク角θ2とをカップルとする32のカップルデータが得られる。これで、カップルデータの収集を全て終了する。   On the other hand, from the respective waveforms of the 32 exhaust valve surrounding gas flows having different overlap periods, the gradient (dm2 / d2θ) 0 of the exhaust valve surrounding gas flow at the crank angle θ0 when the exhaust valve surrounding gas flow rate becomes zero is obtained. When calculating sequentially from the waveform diagram or by actual measurement or simulation, the slope of the gas flow around the exhaust valve (dm2 / d2θ) 0 at the crank angle θ0 when the gas flow around the exhaust valve becomes zero is , 32 couple data with the crank angle θ2 at the point d as a couple are obtained. This completes all the couple data collection.

次に、横軸を排気バルブ周りガス流量がゼロとなるときのクランク角θ0での排気バルブ周りガス流量の傾き(dm2/d2θ)0とし、縦軸を(EVC−θ2)/(EVC−IVO)とするグラフに上記収集した32のカップルデータをプロットすると、図22に示したように、排気バルブ周りガス流量がゼロとなるときのクランク角θ0での排気バルブ周りガス流量の傾き(dm2/d2θ)0と(EVC−θ2)/(EVC−IVO)との間に強い相関がある、つまり両者の間に比例関係(直線参照)があることを初めて見出した。ここで、図22縦軸の(EVC−θ2)/(EVC−IVO)の値は、オーバーラップ期間(EVC−IVO)に対するEVC−θ2の割合を表している。図22縦軸を点dでのクランク角θ2そのものでなく、(EVC−θ2)/(EVC−IVO)としたのは、オーバーラップ期間に対するEVC−θ2の割合とするほうが一般性をもつ、つまりエンジン排気量の相違や排気バルブ用VTC機構のサイズの相違等を排除できるためである。 Next, the horizontal axis is the slope (dm 2 / d 2 θ) 0 of the exhaust gas flow around the exhaust valve at the crank angle θ0 when the gas flow around the exhaust valve becomes zero, and the vertical axis is (EVC−θ2) / ( When the 32 collected data collected above are plotted on the graph EVC-IVO), as shown in FIG. 22, the inclination of the gas flow rate around the exhaust valve at the crank angle θ0 when the gas flow rate around the exhaust valve becomes zero, as shown in FIG. It has been found for the first time that there is a strong correlation between (dm 2 / d 2 θ) 0 and (EVC−θ2) / (EVC-IVO), that is, there is a proportional relationship (see straight line) between the two. Here, the value of (EVC-θ2) / (EVC-IVO) on the vertical axis in FIG. 22 represents the ratio of EVC-θ2 to the overlap period (EVC-IVO). The vertical axis in FIG. 22 is not the crank angle θ2 itself at the point d, but (EVC-θ2) / (EVC-IVO) is more general in terms of the ratio of EVC-θ2 to the overlap period. This is because differences in engine displacement and differences in the size of the exhaust valve VTC mechanism can be eliminated.

図22より、相関を示している直線の傾きとy切片とを適合値として求めることができるので(原点とy軸とをどの位置に置くかは適当に定める)、得られた直線の傾きを所定値ROLM1、得られたy切片を所定値ROLA1とおくと、次式が成立する。   As shown in FIG. 22, the slope of the straight line indicating the correlation and the y-intercept can be obtained as matching values (where the origin and the y-axis are placed is determined appropriately). When the predetermined value ROLM1 and the obtained y-intercept are set to the predetermined value ROLA1, the following equation is established.

(EVC−θ2)/(EVC−IVO)=ROLM1×(dm2/d2θ)0
+ROLA1
…(42)
この(42)式を点dでのクランク角θ2について整理すると次式が得られる。
(EVC-θ2) / (EVC-IVO) = ROLM1 × (dm 2 / d 2 θ) 0
+ ROLA1
... (42)
When this equation (42) is arranged with respect to the crank angle θ2 at the point d, the following equation is obtained.

θ2=EVC−(EVC−IVO)
×((dm2/d2θ)0×ROLM1+ROLA1)
…(43)
ただし、EVC :排気バルブ閉時期[degCA]、
IVO :吸気バルブ開時期[degCA]、
(dm2/d2m)0:排気バルブ周りガス流量がゼロとなるときの
排気バルブ周りガス流量の傾き、
ROLM1 :所定値(適合値)、
ROLA1 :所定値(適合値)、
この(43)式が、オーバーラップ期間が所定値より長い場合に、点dでのクランク角θ2を与える式である。ここで、(43)式右辺の、排気バルブ周りガス流量がゼロとなるときのクランク角θ0での排気バルブ周りガス流量の傾き(dm2/d2θ)0は、上記(補19)式をθについて微分してd(y1)/dθを求め、この関数に上記(補18)式により得られる、排気バルブ周りガス流量がゼロとなるときのクランク角θ0を代入することで求めることができる。
θ2 = EVC− (EVC−IVO)
× ((dm 2 / d 2 θ) 0 × ROLM1 + ROLA1)
... (43)
However, EVC: exhaust valve closing timing [degCA],
IVO: intake valve opening timing [degCA],
(Dm 2 / d 2 m) 0: When the gas flow around the exhaust valve is zero
Gradient of gas flow around the exhaust valve,
ROLM1: predetermined value (conforming value),
ROLA1: predetermined value (conforming value),
This equation (43) is an equation that gives the crank angle θ2 at the point d when the overlap period is longer than a predetermined value. Here, the slope (dm 2 / d 2 θ) 0 of the exhaust gas flow around the exhaust valve at the crank angle θ 0 when the gas flow around the exhaust valve becomes zero on the right side of the equation (43) is the above (complement 19) Is obtained by substituting the crank angle θ0 when the gas flow rate around the exhaust valve becomes zero, which is obtained by the above (Appendix 18) equation, into d (y1) / dθ. it can.

排気バルブ周りガス流量がゼロとなるときのクランク角θ0での排気バルブ周りガス流量の傾き(dm2/d2θ)0と直線1の傾きとはそれほど違わないので(図20(B)参照)、(43)式右辺の、排気バルブ周りガス流量がゼロとなるときのクランク角θ0での排気バルブ周りガス流量の傾き(dm2/d2θ)0として、直線1の傾きを用いる、つまり次式により点dでのクランク角θ2を算出することができる(先願装置の第3実施形態)。 The slope of the exhaust gas flow around the exhaust valve at the crank angle θ0 when the gas flow around the exhaust valve becomes zero (dm 2 / d 2 θ) 0 and the slope of the straight line 1 are not so different (see FIG. 20B). ), The slope of the straight line 1 is used as the slope (dm 2 / d 2 θ) 0 of the exhaust gas flow around the exhaust valve at the crank angle θ 0 when the gas flow around the exhaust valve becomes zero on the right side of the equation (43). That is, the crank angle θ2 at the point d can be calculated by the following equation (third embodiment of the prior application device).

θ2=EVC−(EVC−IVO)
×((dy1/dθ)×ROLM1+ROLA1)
…(44)
ただし、EVC :排気バルブ閉時期[degCA]、
IVO :吸気バルブ開時期[degCA]、
:直線1の傾き、
ROLM1 :所定値(適合値)、
ROLA1 :所定値(適合値)、
ここで、(44)式右辺の直線1の傾き(dy1/dθ)は、上記(補19)式より、次式で与えられる。
θ2 = EVC− (EVC−IVO)
× ((dy1 / dθ) × ROLM1 + ROLA1)
... (44)
However, EVC: exhaust valve closing timing [degCA],
IVO: intake valve opening timing [degCA],
: Slope of straight line 1,
ROLM1: predetermined value (conforming value),
ROLA1: predetermined value (conforming value),
Here, the slope (dy1 / dθ) of the straight line 1 on the right side of the equation (44) is given by the following equation from the above (complement 19).

dy1/dθ=−(dm/dθ))ivo/(θ0−IVO) …(45)
先願装置の第1実施形態で点dでのクランク角θ2を与える上記(補20)式と比較してみると、(43)式右辺の(dm2/d2θ)0×ROLM1+ROLA1の部分を定数である1/4と置いたのが先願装置の第1実施形態であることがわかる。これに対して、先願装置の第2、第3の実施形態は、先願装置の第1実施形態で定数と置いていたところを変数で与えるものとなる。言い替えると、先願装置の第1実施形態は点dでのクランク角θ2を定数で置いていたのに対して、先願装置の第2、第3の実施形態はオーバーラップ期間が所定値より長い場合に、定数に代えて点dでのクランク角θ2を、排気バルブ周りガス流量がゼロとなるときのクランク角θ0での排気バルブ周りガス流量の傾き(dm2/d2θ)0や直線1の傾き(dy1/dθ)の関数で与えるものである。
dy1 / dθ = − (dm / dθ)) ivo / (θ0−IVO) (45)
Compared with the above (complement 20) equation that gives the crank angle θ2 at the point d in the first embodiment of the prior application device, the portion of (dm 2 / d 2 θ) 0 × ROLM1 + ROLA1 on the right side of the equation (43) It can be seen that the first embodiment of the prior application apparatus is set to ¼ as a constant. On the other hand, in the second and third embodiments of the prior application apparatus, the constants in the first embodiment of the prior application apparatus are given as variables. In other words, in the first embodiment of the prior application device, the crank angle θ2 at the point d is set as a constant, whereas in the second and third embodiments of the prior application device, the overlap period is greater than a predetermined value. If it is long, the crank angle θ2 at the point d instead of the constant is set to the gradient (dm 2 / d 2 θ) 0 of the exhaust gas flow around the exhaust valve at the crank angle θ0 when the gas flow around the exhaust valve becomes zero. It is given as a function of the slope of the straight line 1 (dy1 / dθ).

このように、先願装置の第2、第3の実施形態はオーバーラップ期間が所定値より長い場合を主に扱うものであるが、同じ考え方をオーバーラップ期間が所定値未満の場合にまで拡張し、オーバーラップ期間が所定値未満の場合についても、点dでのクランク角θ2を、上記(43)式や上記(44)式、(45)式により算出する(つまり排気バルブ周りガス流量dm/dθがゼロとなるときのクランク角θ0での排気バルブ周りガス流量の傾き(dm2/d2θ)0の関数や直線1の傾き(dy1/dθ)の関数で与える)ようにする。 As described above, the second and third embodiments of the prior application apparatus mainly deal with the case where the overlap period is longer than the predetermined value, but the same idea is extended to the case where the overlap period is less than the predetermined value. Even when the overlap period is less than the predetermined value, the crank angle θ2 at the point d is calculated by the above equation (43), the above equations (44), and (45) (that is, the gas flow rate dm around the exhaust valve). The gradient of the gas flow around the exhaust valve at the crank angle θ0 when / dθ becomes zero (given as a function of the slope (dm 2 / d 2 θ) 0 or the slope of the straight line 1 (dy1 / dθ)).

ただし、先願装置の第2、第3の実施形態は、この場合に限定されるものでない。例えば、オーバーラップ期間が所定値未満の場合と、オーバーラップ期間が所定値より長い場合とで、点dでのクランク角θ2の設定方法を異ならせるようにしてもかまわない。この場合にはオーバーラップ期間が所定値より大きいか否かを判定する必要があるが、この所定値としては、上記の所定値Aを当てればよい。すなわち、エンジン仕様と排気バルブ用VTC機構の仕様とが定まれば、排気バルブ用VTC機構作動時のオーバーラップ期間がどの範囲に収まるかが定まるので、オーバーラップ期間が所定値より長いか否かを判定するための所定値を適合により定めることができる。   However, the second and third embodiments of the prior application device are not limited to this case. For example, the method of setting the crank angle θ2 at the point d may be different between the case where the overlap period is less than a predetermined value and the case where the overlap period is longer than the predetermined value. In this case, it is necessary to determine whether or not the overlap period is longer than a predetermined value. As the predetermined value, the predetermined value A may be applied. That is, if the engine specification and the specification of the exhaust valve VTC mechanism are determined, it is determined in which range the overlap period when the exhaust valve VTC mechanism is operated, so whether or not the overlap period is longer than a predetermined value. A predetermined value for determining can be determined by adaptation.

次に、吸気バルブ開期間と排気バルブ開期間のオーバーラップ中に排気バルブ周りガス流量がゼロとなるときのクランク角θ0での排気バルブ周りガス流量の傾き(dm2/d2θ)0として、先願装置の第3実施形態では直線1の傾き(dy1/dθ)で近似したことからわかるように、排気バルブ周りガス流量がゼロとなるときのクランク角θ0での排気バルブ周りガス流量の傾き(dm2/d2θ)0は、吸気バルブ開期間と排気バルブ開期間のオーバーラップ中の排気バルブ周りガス流量のうち前半部の値に関係する値である。そこで、排気バルブ周りガス流量がゼロとなるときのクランク角θ0での排気バルブ周りガス流量の傾き(dm2/d2θ)0の他にも代用し得る値がないかと検討してみたところ、吸気バルブ開時期IVOから排気バルブ周りガス流量がゼロとなるときのクランク角θ0までの間の任意のクランク角θでの排気バルブ周りガス流量(dm/dθ)randや吸気バルブ開時期での排気バルブ周りガス流量(dm/dθ)ivoでもよいことが判明した。つまり、図22の横軸に、吸気バルブ開時期IVOから排気バルブ周りガス流量がゼロとなるときのクランク角θ0までの間の任意のクランク角θでの排気バルブ周りガス流量(dm/dθ)randや吸気バルブ開時期での排気バルブ周りガス流量(dm/dθ)ivoを採用したときにも、横軸と縦軸の2つの値の間に強い相関がある、つまり両者の間に比例関係があることを見出した。先願装置の第2、第3の実施形態の場合も含めてまとめると、図22において横軸となり得る値は次の4つである。
《1》排気バルブ周りガス流量がゼロとなるときのクランク角θ0での排気バルブ周りガ ス流量の傾き(dm2/d2m)0
《2》直線1の傾き(dy1/dθ)
《3》吸気バルブ開時期IVOから排気バルブ周りガス流量がゼロとなるときのクランク 角θ0までの間の任意のクランク角での排気バルブ周りガス流量(dm/dθ)ra nd
《4》吸気バルブ開時期での排気バルブ周りガス流量(dm/dθ)ivo
上記《1》、《2》の場合の点dでのクランク角θ2の算出式は上記(43)式、(44)式に示したので、上記《3》の場合の点dでのクランク角θ2の算出式を次に示す(先願装置の第4実施形態)。
Next, as an inclination (dm 2 / d 2 θ) 0 of the exhaust gas flow around the exhaust valve at the crank angle θ 0 when the exhaust gas flow around the exhaust valve becomes zero during the overlap between the intake valve open period and the exhaust valve open period. As can be seen from the approximation of the slope (dy1 / dθ) of the straight line 1 in the third embodiment of the prior application device, the gas flow rate around the exhaust valve at the crank angle θ0 when the gas flow rate around the exhaust valve becomes zero is shown. The slope (dm 2 / d 2 θ) 0 is a value related to the value of the first half of the gas flow rate around the exhaust valve during the overlap between the intake valve open period and the exhaust valve open period. Therefore, when the exhaust gas flow rate around the exhaust valve becomes zero, it is examined whether there is a value that can be substituted in addition to the gradient (dm 2 / d 2 θ) 0 of the exhaust gas flow rate around the exhaust valve at the crank angle θ0. The gas flow around the exhaust valve (dm / dθ) rand at any crank angle θ between the intake valve opening timing IVO and the crank angle θ0 when the gas flow around the exhaust valve becomes zero. It has been found that the gas flow rate around the exhaust valve (dm / dθ) ivo may be sufficient. That is, on the horizontal axis of FIG. 22, the exhaust valve surrounding gas flow rate (dm / dθ) at an arbitrary crank angle θ between the intake valve opening timing IVO and the crank angle θ0 when the exhaust valve surrounding gas flow rate becomes zero. There is also a strong correlation between the two values on the horizontal axis and the vertical axis when rand and the exhaust gas flow around the exhaust valve (dm / dθ) ivo when the intake valve is open, that is, there is a proportional relationship between the two. Found that there is. In summary, including the cases of the second and third embodiments of the prior application device, the following four values can be the horizontal axis in FIG.
<< 1 >> Slope of the gas flow around the exhaust valve at the crank angle θ0 when the gas flow around the exhaust valve becomes zero (dm 2 / d 2 m) 0
<< 2 >> The slope of the straight line 1 (dy1 / dθ)
<< 3 >> Gas flow around the exhaust valve (dm / dθ) ra nd at any crank angle between the intake valve opening timing IVO and the crank angle θ0 when the gas flow around the exhaust valve becomes zero
<< 4 >> Gas flow around the exhaust valve (dm / dθ) ivo when the intake valve is open
Since the formula for calculating the crank angle θ2 at the point d in the case of << 1 >> and << 2 >> is shown in the above formulas (43) and (44), the crank angle at the point d in the case of << 3 >> above. A formula for calculating θ2 is shown below (fourth embodiment of the prior application device).

θ2=EVC−(EVC−IVO)
×((dm/dθ)rand×ROLM2+ROLA2)
…(46)
ただし、EVC :排気バルブ閉時期[degCA]、
IVO :吸気バルブ開時期[degCA]、
(dm/dθ)rand:吸気バルブ開時期IVOから排気バルブ周りガス流 量がゼロとなるクランク角θ0までの間の任意のク ランク角θでの排気バルブ周りガス流量
[kg/degCA]、
ROLM2 :所定値(適合値)、
ROLA2 :所定値(適合値)、
ここで、(46)式右辺の、吸気バルブ開時期IVOから排気バルブ周りガス流量がゼロとなるときのクランク角θ0までの間の任意のクランク角での排気バルブ周りガス流量(dm/dθ)randは、直線1から求める。つまり、吸気バルブ開時期IVOから排気バルブ周りガス流量がゼロとなるときのクランク角θ0までの間で予め定めているクランク角を上記(補19)式に代入して得られる関数y1の値を、吸気バルブ開時期IVOから排気バルブ周りガス流量がゼロとなるときのクランク角θ0までの間の任意のクランク角での排気バルブ周りガス流量(dm/dθ)randとすればよい。
θ2 = EVC− (EVC−IVO)
× ((dm / dθ) rand × ROLM2 + ROLA2)
... (46)
However, EVC: exhaust valve closing timing [degCA],
IVO: intake valve opening timing [degCA],
(Dm / dθ) rand: The gas flow rate around the exhaust valve at any crank angle θ between the intake valve opening timing IVO and the crank angle θ0 at which the gas flow rate around the exhaust valve becomes zero.
[Kg / degCA],
ROLM2: predetermined value (conforming value),
ROLA2: predetermined value (conforming value),
Here, the exhaust gas flow around the exhaust valve (dm / dθ) at an arbitrary crank angle between the intake valve opening timing IVO and the crank angle θ0 when the exhaust gas flow around the exhaust valve becomes zero on the right side of the equation (46). rand is obtained from line 1. In other words, the value of the function y1 obtained by substituting the predetermined crank angle into the above (Supplement 19) from the intake valve opening timing IVO to the crank angle θ0 when the gas flow around the exhaust valve becomes zero. The exhaust valve surrounding gas flow rate (dm / dθ) rand at any crank angle between the intake valve opening timing IVO and the crank angle θ0 when the exhaust valve surrounding gas flow rate becomes zero may be set.

同様にして、上記《4》の場合の点dでのクランク角θ2の算出式を次に示す(先願装置の第5実施形態)。   Similarly, the calculation formula of the crank angle θ2 at the point d in the case of << 4 >> is shown below (fifth embodiment of the prior application device).

θ2=EVC−(EVC−IVO)
×((dm/dθ)ivo×ROLM3+ROLA3)
…(47)
ただし、EVC :排気バルブ閉時期[degCA]、
IVO :吸気バルブ開時期[degCA]、
(dm/dθ)ivo:吸気バルブ開時期での排気バルブ周りガス流量
[kg/degCA]、
ROLM3 :所定値(適合値)、
ROLA3 :所定値(適合値)、
ここで、(47)式右辺の吸気バルブ開時期での排気バルブ周りガス流量(dm/dθ)ivoは上記(33)式により算出済みである。
θ2 = EVC− (EVC−IVO)
× ((dm / dθ) ivo × ROLM3 + ROLA3)
... (47)
However, EVC: exhaust valve closing timing [degCA],
IVO: intake valve opening timing [degCA],
(Dm / dθ) ivo: Gas flow around the exhaust valve when the intake valve opens
[Kg / degCA],
ROLM3: predetermined value (conforming value),
ROLA3: predetermined value (conforming value),
Here, the exhaust valve surrounding gas flow rate (dm / dθ) ivo at the intake valve opening timing on the right side of the equation (47) has been calculated by the equation (33).

次に、エンジンコントローラ31ではどのようにして点dでのクランク角θ2が算出され、その算出した点dでのクランク角θ2を用いどのようにして吹き返しガス量M2が求められるのかを説明する。ここでは、先願装置の第3実施形態の場合で代表させて述べると、図23は先願装置の第3実施形態のオーバーラップ中吹き返しガス量算出部60(図19参照)のブロック図である。   Next, how the engine controller 31 calculates the crank angle θ2 at the point d and how the blowback gas amount M2 is obtained using the calculated crank angle θ2 at the point d will be described. Here, to be described representatively in the case of the third embodiment of the prior application device, FIG. 23 is a block diagram of the overlapped blow-back gas amount calculation unit 60 (see FIG. 19) of the third embodiment of the prior application device. is there.

まず、吸気バルブ開時期ガス流量算出部71では、吸気バルブ開時期での燃焼室内温度TIVO、吸気バルブ開時期での燃焼室内圧力PIVO、吸気バルブ開時期での燃焼室内容積VIVO、吸気バルブ開時期IVO、排気ガス定数REX、エンジン回転速度Neから上記(33)式を用いて吸気バルブ開時期での排気バルブ周りガス流量(dm/dθ)ivoを算出する。   First, in the intake valve opening timing gas flow rate calculation unit 71, the combustion chamber temperature TIVO at the intake valve opening timing, the combustion chamber pressure PIVO at the intake valve opening timing, the combustion chamber volume VIVO at the intake valve opening timing, and the intake valve opening timing From the IVO, the exhaust gas constant REX, and the engine rotational speed Ne, the exhaust gas flow around the exhaust valve (dm / dθ) ivo at the intake valve opening timing is calculated using the above equation (33).

ガス流量ゼロ時クランク角算出部72では、排気圧力Pex(=(PEX+PIVO)/2)、排気ガス定数REX、平均排気温度TEX、排気の比熱比κ、流量比RMF1、吸気弁開時期IVOから上記(38)式、(補18)式を用いて排気バルブ周りガス流量がゼロとなるときのクランク角θ0を算出する。   In the crank angle calculation unit 72 when the gas flow rate is zero, the exhaust pressure Pex (= (PEX + PIVO) / 2), the exhaust gas constant REX, the average exhaust temperature TEX, the exhaust specific heat ratio κ, the flow rate ratio RMF1, and the intake valve opening timing IVO are described above. The crank angle θ0 when the gas flow rate around the exhaust valve becomes zero is calculated using Equations (38) and (Supplement 18).

直線1設定部73では、これら吸気バルブ開時期での排気バルブ周りガス流量(dm/dθ)ivo、排気バルブ周りガス流量がゼロとなるときのクランク角θ0、吸気バルブ開時期IVOから上記(補19)式を用いて関数y1を設定する。直線1の傾き算出部74では、吸気バルブ開時期ガス流量算出部71で算出している吸気バルブ開時期での排気バルブ周りガス流量(dm/dθ)ivo、同じくガス流量ゼロ時クランク角算出部72で算出している排気バルブ周りガス流量がゼロとなるときのクランク角θ0、吸気弁開時期IVOから上記(45)式を用いて直線1の傾き(dy1/dθ)を算出する。   In the straight line 1 setting unit 73, the above (complementary) is determined from the exhaust valve surrounding gas flow rate (dm / dθ) ivo at the intake valve opening timing, the crank angle θ0 when the exhaust valve surrounding gas flow rate becomes zero, and the intake valve opening timing IVO. 19) The function y1 is set using the equation. In the straight line 1 slope calculation unit 74, the exhaust valve surrounding gas flow rate (dm / dθ) ivo at the intake valve open timing calculated by the intake valve open timing gas flow rate calculation unit 71, similarly, the crank angle calculation unit at zero gas flow rate The slope (dy1 / dθ) of the straight line 1 is calculated from the crank angle θ0 and the intake valve opening timing IVO when the gas flow rate around the exhaust valve calculated in 72 is zero and the above equation (45).

点dのクランク角算出部75では、この直線1の傾き(dy1/dθ)、排気バルブ閉時期EVC、吸気バルブ開時期IVO、所定値ROLM1、ROLA1から上記(44)式を用いて点dでのクランク角θ2を算出する。このように、先願装置の第3実施形態では、点dでのクランク角θ2は、直線1の傾き(dy1/dθ)に基づいて算出されるものである。   In the crank angle calculation unit 75 at the point d, the slope of the straight line 1 (dy1 / dθ), the exhaust valve closing timing EVC, the intake valve opening timing IVO, and the predetermined values ROLM1 and ROLA1 are used at the point d using the above equation (44). The crank angle θ2 is calculated. Thus, in the third embodiment of the prior application device, the crank angle θ2 at the point d is calculated based on the slope of the straight line 1 (dy1 / dθ).

排気バルブ開口面積算出部76では、この点dでのクランク角θ2に対する排気バルブ開口面積Aexを、図18で前述したところに従って算出する。   The exhaust valve opening area calculation unit 76 calculates the exhaust valve opening area Aex with respect to the crank angle θ2 at this point d in accordance with the above-described case in FIG.

点dのガス流量算出部77では、この点dでのクランク角θ2に対する排気バルブ開口面積Aex、排気圧力Pex(=(PEX+PIVO)/2)、排気ガス定数REX、排気温度TEX、排気の比熱比κ、流量比RMF2から上記(40)式を用いて点dの排気バルブ周りガス流量(dm/dθ)dを算出する。   In the gas flow rate calculation unit 77 at the point d, the exhaust valve opening area Aex, the exhaust pressure Pex (= (PEX + PIVO) / 2), the exhaust gas constant REX, the exhaust temperature TEX, and the specific heat ratio of the exhaust with respect to the crank angle θ2 at the point d. The gas flow rate around the exhaust valve (dm / dθ) d at point d is calculated from κ and the flow rate ratio RMF2 using the above equation (40).

直線2設定部78では、この点dの排気バルブ周りガス流量(dm/dθ)d、排気バルブ閉時期EVC、吸気バルブ開時期IVOから上記(41)式を用いて関数y2を設定する。   In the straight line 2 setting unit 78, the function y2 is set using the above equation (41) from the gas flow around the exhaust valve (dm / dθ) d, the exhaust valve closing timing EVC, and the intake valve opening timing IVO at this point d.

点cのクランク角算出部79では、上記設定された2つの関数y1、y2を連立させて解くことにより、交点cのクランク角θ1を算出する。   The crank angle calculation unit 79 at the point c calculates the crank angle θ1 at the intersection c by simultaneously solving the two functions y1 and y2 set as described above.

点cのガス流量算出部80ではこの点cのクランク角θ1を上記の関数y1に代入することによって点cの排気バルブ周りガス流量(dm/dθ)cを算出する。   The gas flow rate calculation unit 80 at the point c calculates the gas flow rate around the exhaust valve (dm / dθ) c at the point c by substituting the crank angle θ1 at the point c into the function y1.

吹き返しガス量算出部81では、このようにして求めた吸気バルブ開時期での排気バルブ周りガス流量(dm/dθ)ivo、排気バルブ周りガス流量がゼロとなるときのクランク角θ0、点cのクランク角θ1、点cの排気バルブ周りガス流量(dm/dθ)c、吸気バルブ開時期IVOから上記(25)式を用いて吹き返しガス量M2を算出する。   In the blowback gas amount calculation unit 81, the exhaust valve surrounding gas flow rate (dm / dθ) ivo at the intake valve opening timing obtained in this way, the crank angle θ0 when the exhaust valve surrounding gas flow rate becomes zero, and the point c The blowback gas amount M2 is calculated from the crank angle θ1, the gas flow around the exhaust valve at the point c (dm / dθ) c, and the intake valve opening timing IVO using the above equation (25).

ここで、先願装置の第2、第3、第4、第5の実施形態の作用効果を説明する。   Here, the effects of the second, third, fourth, and fifth embodiments of the prior application device will be described.

排気バルブ用VTC機構作動時のオーバーラップ期間が所定値未満の場合に、直線1と直線2の2本の直線が交わるときのクランク角位置(θ1)より遅角側のクランク角位置(θ2)を一定値(オーバーラップ期間のうち3/4を経過した点のクランク角位置)で設定して、排気バルブ用VTC機構作動時の吸気バルブ開期間と排気バルブ開期間のオーバーラップ中の吹き返しガス量M2を精度良く算出していたとしても、排気バルブ用VTC機構作動時のオーバーラップ期間が所定値より長くなると、吸気バルブ開時期IVOから排気バルブ用VTC機構作動時の排気バルブ閉時期EVCまでの各クランク角での排気バルブ周りガス流量の波形は曲線で構成される部分が多くなるため、排気バルブ用VTC機構作動時のオーバーラップ期間が所定値より長くなった場合にも、排気バルブ用VTC機構作動時のオーバーラップ期間が所定値未満の場合に設定している、点dでのクランク角位置θ2をそのまま用いたのでは、排気バルブ用VTC機構作動時の吸気バルブ開期間と排気バルブ開期間のオーバーラップ中の吹き返しガス量M2の算出誤差が大きくなってしまうのであるが、排気バルブ用VTC機構作動時(第2の状態時)にオーバーラップ期間が所定値より長い場合に、点dでのクランク角θ2(第1の直線と第2の直線の2本の直線が交わるときのクランク角位置より遅角側のクランク角位置)を、先願装置の第2実施形態によれば排気バルブ用VTC機構作動時の吸気バルブ開期間と排気バルブ開期間のオーバラップ中の排気バルブ周りガス流量がゼロとなるときのクランク角θ0での排気バルブ周りガス流量の傾き(dm2/d2θ)0に基づいて(上記(43)式参照)、先願装置の第3実施形態によれば直線1(第1の直線)の傾き(dy1/dθ)に基づいて(上記(45)式、(44)式参照)、先願装置の第4実施形態によれば吸気バルブ開時期IVOでのクランク角から排気バルブ用VTC機構作動時の吸気バルブ開期間と排気バルブ開期間のオーバーラップ中の排気バルブ周りガス流量がゼロとなるときのクランク角θ0までの間の任意のクランク角での排気バルブ周りガス流量(dm/dθ)randに基づいて(上記(46)式参照)、先願装置の第5実施形態によれば吸気バルブ開時期IVOでの排気バルブ周りガス流量(dm/dθ)ivoに基づいて(上記(47)式参照)それぞれ算出するので、オーバーラップ期間が所定値より長くなった場合にも、その長くなった、吸気バルブ開期間と排気バルブ開期間のオーバラップ中の吹き返しガス量M2を精度良く算出できる。 When the overlap period during operation of the exhaust valve VTC mechanism is less than a predetermined value, the crank angle position (θ2) on the retard side from the crank angle position (θ1) when the two straight lines 1 and 2 intersect Is set to a constant value (crank angle position at which 3/4 of the overlap period has elapsed), and the blow-back gas during the overlap of the intake valve open period and the exhaust valve open period when the exhaust valve VTC mechanism is operated Even if the amount M2 is calculated with high accuracy, if the overlap period when the exhaust valve VTC mechanism is activated is longer than a predetermined value, the intake valve opening timing IVO to the exhaust valve closing timing EVC when the exhaust valve VTC mechanism is activated Since the waveform of the gas flow rate around the exhaust valve at each crank angle of the crankshaft is composed of a curved portion, the overlap period when the exhaust valve VTC mechanism is operated If the crank angle position θ2 at the point d, which is set when the overlap period when the exhaust valve VTC mechanism is operated, is less than the predetermined value, is used as it is, The calculation error of the blow-back gas amount M2 during the overlap between the intake valve opening period and the exhaust valve opening period when the valve VTC mechanism is operating becomes large. However, when the exhaust valve VTC mechanism is operating (during the second state) ) In the case where the overlap period is longer than a predetermined value, the crank angle θ2 at the point d (the crank angle position on the retard side from the crank angle position when the two straight lines of the first straight line and the second straight line intersect) ) According to the second embodiment of the prior application device, when the exhaust valve VTC mechanism is in operation and the exhaust valve open period and the exhaust valve open period overlap the gas flow around the exhaust valve becomes zero. Based on the gradient (dm 2 / d 2 θ) 0 of the gas flow around the exhaust valve at the rank angle θ0 (see the above equation (43)), according to the third embodiment of the prior application apparatus, the straight line 1 (first On the basis of the slope (dy1 / dθ) of the straight line (see the above formulas (45) and (44)), according to the fourth embodiment of the prior application device, the exhaust valve is determined from the crank angle at the intake valve opening timing IVO. The gas flow rate around the exhaust valve (dm) at any crank angle up to the crank angle θ0 when the gas flow rate around the exhaust valve during the overlap between the intake valve open period and the exhaust valve open period when the VTC mechanism is operating becomes zero. / Dθ) based on rand (see equation (46) above), according to the fifth embodiment of the prior application device, based on the exhaust valve surrounding gas flow rate (dm / dθ) ivo at the intake valve opening timing IVO (above (See equation (47)) , Overlap period even if is longer than a predetermined value, thereof longer, the gas amount M2 blowback in the overlap of the exhaust valve opening period and the intake valve open period can be accurately calculated.

これで先願装置の説明を終える。   This completes the description of the prior application device.

さて、その後の実験やシミュレーションにより、吸気バルブ開期間と排気バルブ開期間のオーバーラップ中の排気バルブ周りガス流量の波形には、運転条件の相違、特に排気バルブ開閉時期の相違により、図24において左、中、右に分けて示したように三通りの波形が存在することが判明している。それぞれの波形を説明すると、次の三つである。
(い)燃焼室内から排気ポートへのガスの吹き出しと排気ポートから燃焼室内へのガスの 吹き返しの両方が存在する場合(図24左の場合)の波形
(ろ)燃焼室内から排気ポートへのガスの吹き出しのみの場合(図24中の場合)の波形
(は)排気ポートから燃焼室内へのガスの吹き返しのみの場合(図24右の場合)の波形
ここで、ガス流れの方向については、排気ポート11から燃焼室5内へと流れる方向を正、燃焼室5内から排気ポート11へと流れる方向を負としている。これは便宜的なものであるので、排気ポート11から燃焼室5内へと流れる方向を負、燃焼室5内から排気ポート11へと流れる方向を正としてもかまわない。
According to subsequent experiments and simulations, the waveform of the gas flow rate around the exhaust valve during the overlap of the intake valve open period and the exhaust valve open period is different in operating conditions, particularly the exhaust valve opening / closing timing, as shown in FIG. As shown in the left, middle, and right, it has been found that there are three types of waveforms. Each waveform is explained as follows.
(Ii) Waveforms when both gas blowout from the combustion chamber to the exhaust port and gas blowback from the exhaust port to the combustion chamber exist (in the case of the left in FIG. 24) (b) Gas from the combustion chamber to the exhaust port Waveform when only gas is blown out (in the case of FIG. 24) (ha) Waveform when only gas is blown back from the exhaust port into the combustion chamber (in the case of the right side of FIG. 24) The direction flowing from the port 11 into the combustion chamber 5 is positive, and the direction flowing from the combustion chamber 5 to the exhaust port 11 is negative. Since this is convenient, the flow direction from the exhaust port 11 into the combustion chamber 5 may be negative, and the flow direction from the combustion chamber 5 to the exhaust port 11 may be positive.

このように、運転条件の相違により排気バルブ開閉時期が相違して吸気バルブ開期間と排気バルブ開期間のオーバーラップ中の排気バルブ周りガス流量に3つの異なる波形が出現するとなると、現在の運転条件で吸気バルブ開期間と排気バルブ開期間のオーバーラップ中の排気バルブ周りガス流量の波形が図24の左、中、右のどの波形に属するのかを判定(推定)する必要がある。   In this way, when the exhaust valve opening / closing timing differs due to the difference in operating conditions and three different waveforms appear in the gas flow rate around the exhaust valve during the overlap between the intake valve open period and the exhaust valve open period, Therefore, it is necessary to determine (estimate) whether the waveform of the gas flow rate around the exhaust valve during the overlap between the intake valve open period and the exhaust valve open period belongs to the left, middle, or right waveform in FIG.

この3つの異なる波形のいずれに属するのかを判定する方法を本発明の第6実施形態として次に説明する。なお、先願装置では第5実施形態までを記載しているため、第6実施形態は本発明の第1実施形態となるが、本発明の第1実施形態として説明したのでは第1実施形態が2つ出てきて紛らわしくなるので、本発明の第6実施形態として説明する。   A method for determining which of the three different waveforms belongs to will be described below as a sixth embodiment of the present invention. Since the prior application apparatus describes up to the fifth embodiment, the sixth embodiment is the first embodiment of the present invention. However, the first embodiment has been described as the first embodiment of the present invention. Will be confused and will be described as a sixth embodiment of the present invention.

本発明の第6実施形態では、次の2つの操作a、bにより吸気バルブ開期間と排気バルブ開期間のオーバーラップ中の排気バルブ周りガス流量の波形が図24の左、中、右のいずれの場合の波形であるのかを判定する。   In the sixth embodiment of the present invention, the waveform of the gas flow rate around the exhaust valve during the overlap of the intake valve open period and the exhaust valve open period by any of the following two operations a and b is left, middle or right in FIG. It is determined whether the waveform is in the case of.

操作a:排気バルブ周りガス流量がゼロとなるときのクランク角θ0を先願装置と同じに、次の式により算出する。   Operation a: The crank angle θ0 when the gas flow rate around the exhaust valve becomes zero is calculated by the following equation in the same manner as in the prior application device.

θ0=2×β×Cai×IVO+α×Cva
−((2×β×Cai×IVO+α×Cva)^2−4×β×Cai
×(−β×Cai×IVO^2−α×Cva−X×Cpa))
^(1/2)/2/β/Cai …(50)
ただし、IVO:吸気バルブ開時期[degCA]
Cpa:燃焼室内圧力の時間微分値、(補10)式により算出
Cai:係数
Cva:吸気上死点付近で横軸にクランク角、縦軸に燃焼室内容積変化率 を採ったときの直線の傾き[m^3/deg^2]
α :=PEX/REX/TEX×6×Ne
X :=VTDC/REX/TEX×6×Ne
(50)式右辺のβは次の式により算出する。
θ0 = 2 × β × Cai × IVO + α × Cva
− ((2 × β × Cai × IVO + α × Cva) ^ 2−4 × β × Cai
× (−β × Cai × IVO ^ 2-α × Cva-X × Cpa))
^ (1/2) / 2 / β / Cai (50)
However, IVO: intake valve opening timing [degCA]
Cpa: Time differential value of the pressure in the combustion chamber, calculated by (complement 10)
Cai: coefficient
Cva: slope of a straight line when the horizontal axis represents the crank angle and the vertical axis represents the rate of change in the combustion chamber volume near the intake top dead center [m ^ 3 / deg ^ 2]
α: = PEX / REX / TEX × 6 × Ne
X: = VTDC / REX / TEX × 6 × Ne
Β on the right side of equation (50) is calculated by the following equation.

β=Pex/(REX×TEX)×κ^(1/2)
×(2/(κ+1))^(κ+1)/(2/(κ−1))×RMF1 …(51)
ただし、Pex:排気圧力、ここでは(PEX+PIVO)/2とする
REX:排気ガス定数、上記(20)式により算出
TEX:平均排気温度、上記(23)式により算出
κ:排気の比熱比、上記(19)式により算出
RMF1:流量比、上記(37)式により算出
これらの(50)式、(51)式は先願装置の第1実施形態で記載している(補18)式、(38)式と同じ式である。
β = Pex / (REX × TEX) × κ ^ (1/2)
× (2 / (κ + 1)) ^ (κ + 1) / (2 / (κ-1)) × RMF1 (51)
Where Pex: exhaust pressure, here (PEX + PIVO) / 2
REX: exhaust gas constant, calculated by equation (20) above
TEX: Average exhaust temperature, calculated by the above equation (23)
κ: Specific heat ratio of exhaust, calculated by equation (19) above
RMF1: Flow rate ratio, calculated from the above equation (37) These equations (50) and (51) are the same as the equations (complement 18) and (38) described in the first embodiment of the prior application device. It is.

このようにして算出される、排気バルブ周りガス流量がゼロとなるときのクランク角θ0が吸気バルブ開期間と排気バルブ開期間のオーバーラップ中にあれば、図24左の場合の波形であると、これに対して排気バルブ周りガス流量がゼロとなるときのクランク角θ0が吸気バルブ開期間と排気バルブ開期間のオーバーラップ中になければ図24中、右の場合の波形のいずれかであると判定する。これで図24左の場合の波形であることは判定できるので、次には、図24中、右の場合の波形のいずれかであるかを次の操作bによって判定することである。   If the crank angle θ0 when the gas flow rate around the exhaust valve is zero calculated during the overlap between the intake valve open period and the exhaust valve open period is the waveform in the case of the left in FIG. On the other hand, if the crank angle θ0 when the gas flow around the exhaust valve becomes zero is not during the overlap of the intake valve open period and the exhaust valve open period, it is one of the waveforms in the right case in FIG. Is determined. Since it can be determined that the waveform is in the case of the left side of FIG. 24, the next operation b is to determine whether the waveform is in the case of the right side in FIG.

操作b:図24中、図24右の場合の波形の違いは、吸気バルブ開時期IVOでのガス流れの向きにあり、燃焼室5内から排気ポート11へとガスが吹き出しているのか、それとも排気ポート11から燃焼室5内へとガスが吹き返しているのかに基づけばよい。圧力の関係で考えると、燃焼室5内から排気ポート11へとガスが吹き出しているとき燃焼室内圧力が排気圧力より高くなり、この逆に排気ポート11から燃焼室5内へとガスが吹き返しているとき燃焼室内圧力が排気圧力より低くなるので、燃焼室内圧力>排気圧力であれば図24中の場合であると、これに対して燃焼室内圧力<排気圧力であれば図24右の場合であると判定できる。   Operation b: In FIG. 24, the difference in the waveform on the right side of FIG. 24 is in the direction of gas flow at the intake valve opening timing IVO, whether gas is blown out from the combustion chamber 5 to the exhaust port 11, or It may be based on whether the gas is blowing back from the exhaust port 11 into the combustion chamber 5. In consideration of the pressure, when the gas is blown out from the combustion chamber 5 to the exhaust port 11, the pressure in the combustion chamber becomes higher than the exhaust pressure, and conversely, the gas blows back from the exhaust port 11 into the combustion chamber 5. When the combustion chamber pressure is lower than the exhaust pressure, the combustion chamber pressure is higher than the exhaust pressure. In this case, the case in FIG. It can be determined that there is.

そこで、吸気バルブ開期間と排気バルブ開期間のオーバーラップ中の燃焼室内圧力と排気圧力とを測定してみたところ、図25に示したように意外な結果が得られた。すなわち、図25は、図24左、中、右の状態での排気バルブ周りガス流量波形に、さらに吸気圧力Pint、排気圧力Pex、燃焼室内圧力Pcylの圧力履歴及び吸排気バルブの各開口面積(吸気バルブ開口面積Ain、排気バルブ開口面積Aex)を加えたものを示しているが、図25において特異であるのは図25中の場合、つまり吸気バルブ開時期IVO付近で燃焼室内圧力Pcylが排気圧力Pexよりも上昇している点である。この点を解析したところ、燃焼室内圧力Pcylが図25中のように排気圧力Pexを超えて盛り上がる理由は、吸気バルブ開時期IVO付近で燃焼室5内と排気ポート11との間のガス流れがチョーク状態になるためであることが分かった。言い替えると、燃焼室5内から排気ポート11へのガス流れがチョーク状態になる理由は、吸気バルブ開時期IVO付近での排気バルブ開口面積が非常に小さいため、ピストン6の動きに伴う燃焼室内容積変化量より排気バルブ通過可能なガス量が小さくなると、排気バルブ16を通過できなかった燃焼室5内ガスが、ピストン6が上昇する排気行程で圧縮されることとなり、これによって燃焼室内圧力が排気圧力よりも上昇するためである。   Therefore, when the pressure in the combustion chamber and the exhaust pressure during the overlap between the intake valve open period and the exhaust valve open period were measured, an unexpected result was obtained as shown in FIG. That is, FIG. 25 shows the gas flow waveform around the exhaust valve in the left, middle, and right states of FIG. 24, the intake pressure Pint, the exhaust pressure Pex, the pressure history of the combustion chamber pressure Pcyl, The intake valve opening area Ain and the exhaust valve opening area Aex) are shown, but what is unique in FIG. 25 is that in FIG. 25, that is, the combustion chamber pressure Pcyl is exhausted in the vicinity of the intake valve opening timing IVO. The point is that the pressure Pex is increased. When this point is analyzed, the reason why the pressure Pcyl in the combustion chamber rises beyond the exhaust pressure Pex as shown in FIG. 25 is that the gas flow between the combustion chamber 5 and the exhaust port 11 near the intake valve opening timing IVO. It turned out to be in a choke state. In other words, the reason why the gas flow from the combustion chamber 5 to the exhaust port 11 is choked is that the exhaust valve opening area in the vicinity of the intake valve opening timing IVO is very small. When the amount of gas that can pass through the exhaust valve becomes smaller than the amount of change, the gas in the combustion chamber 5 that could not pass through the exhaust valve 16 is compressed in the exhaust stroke in which the piston 6 rises. This is because it rises higher than the pressure.

これについてさらに図26を参照して説明すると、図26右側に拡大して示してあるように、ピストン6の動きに伴う燃焼室内容積変化量(図では「筒内容積変化量」で示す。)は排気上死点(TDC)付近で単純な右上がりの直線となる(近似)のに対して、排気バルブ通過可能なガス量は急激に小さくなってゼロに収束する曲線となる。このため、曲線が直線を超える領域(ハッチングで示す)ではガスが燃焼室5内から排気ポート11へと出ることができず(つまりチョーク状態となり)、排気行程で上昇するピストン6により燃焼室5内で圧縮されることになるのである。曲線は直線と2点で交わるが、曲線が時間的に早く直線と交わるときのクランク角が、チョーク状態開始クランク角(燃焼室5内から排気ポート11に吹き出すガスの流れがチョーク状態を開始するクランク角)CACOMPで、チョーク状態が終了するタイミングは二次曲線が時間的に遅く直線と交わるときのクランク角(簡単には吸気バルブ開時期IVO)である。   This will be further described with reference to FIG. 26. As shown in the enlarged view on the right side of FIG. 26, the amount of change in the combustion chamber volume accompanying the movement of the piston 6 (shown as “in-cylinder volume change amount” in the figure). Is a simple straight line going up to the right near the exhaust top dead center (TDC) (approximate), whereas the amount of gas that can pass through the exhaust valve decreases rapidly and converges to zero. For this reason, in a region where the curve exceeds a straight line (indicated by hatching), gas cannot be discharged from the combustion chamber 5 to the exhaust port 11 (that is, in a choked state), and the piston 6 rising in the exhaust stroke causes the combustion chamber 5 to rise. It will be compressed inside. The curve intersects the straight line at two points, but the crank angle when the curve intersects the straight line earlier in time is the choke state start crank angle (the flow of gas blown out from the combustion chamber 5 to the exhaust port 11 starts the choke state). Crank angle) The timing at which the choke state is finished at CACOMP is the crank angle when the quadratic curve is late in time and intersects the straight line (simply, the intake valve opening timing IVO).

従って、本発明の第6実施形態では、チョーク状態開始クランク角CACOMPに基づいて燃焼室5内から排気ポート11に吹き出すガスの流れがチョーク状態になるか否かを判定する。実際にはチョーク状態開始クランク角CACOMPと吸気バルブ開時期IVOとを比較し、チョーク状態開始クランク角CACOMPが吸気バルブ開時期IVOと一致するかまたは吸気バルブ開時期IVOよりも進角側にあるとき、燃焼室5内から排気ポート11に吹き出すガスの流れがチョーク状態になる(図24中に示す排気バルブ周りガス流量の波形となる)と、またチョーク状態開始クランク角CACOMPが吸気バルブ開時期IVOより遅角側にあるとき燃焼室5内から排気ポート11に吹き出すガスの流れがチョーク状態にない(図24右に示す排気バルブ周りガス流量の波形となる)と判定する。ここで、チョーク状態開始クランク角CACOMPと比較する相手を吸気バルブ開時期IVOとしたのは、チョーク状態が生じるときには、吸気バルブ開時期IVOがチョーク状態開始クランク角CACOMPより確実に遅角側にくると考えられるためである。   Therefore, in the sixth embodiment of the present invention, it is determined whether or not the flow of the gas blown out from the combustion chamber 5 to the exhaust port 11 enters the choke state based on the choke state start crank angle CACOMP. Actually, the choke state start crank angle CACOMP is compared with the intake valve opening timing IVO, and the choke state start crank angle CACOMP is coincident with the intake valve opening timing IVO or when it is more advanced than the intake valve opening timing IVO. When the flow of the gas blown out from the combustion chamber 5 to the exhaust port 11 becomes a choke state (the waveform of the gas flow around the exhaust valve shown in FIG. 24), the choke state start crank angle CACOMP becomes the intake valve opening timing IVO. When it is on the more retarded side, it is determined that the flow of gas blown out from the combustion chamber 5 to the exhaust port 11 is not in a choked state (the waveform of the gas flow around the exhaust valve shown on the right in FIG. 24). Here, the counterpart to be compared with the choke state start crank angle CACOMP is the intake valve open timing IVO. When the choke state occurs, the intake valve open timing IVO is surely on the retard side with respect to the choke state start crank angle CACOMP. It is because it is considered.

次には上記のチョーク状態開始クランク角CACOMPを算出することを考える。   Next, calculation of the choke state start crank angle CACOMP will be considered.

理想気体の状態方程式より時間微分は、
dm/dt=(P/RT)・dV/dt …(52)
である。ただし、圧力P、排気のガス定数R、温度Tの変化は小さいとしてそれらの時間微分を無視している。
From the equation of state of the ideal gas, the time derivative is
dm / dt = (P / RT) · dV / dt (52)
It is. However, since the changes in the pressure P, the gas constant R of the exhaust gas, and the temperature T are small, their time derivatives are ignored.

ここで、時間tでの微分からクランク角θでの微分への変更を行う。dm/dθ・dθ/dt=(P/RT)・dV/dθ・dθ/dtであるから(52)式よりクランク角θでの微分式として次式が得られる。   Here, the derivative at time t is changed to the derivative at crank angle θ. Since dm / dθ · dθ / dt = (P / RT) · dV / dθ · dθ / dt, the following equation is obtained as a differential equation at the crank angle θ from the equation (52).

dm/dθ=(P/RT)・dV/dθ …(53)
チョーク状態でのオリフィス流量式は次のように時間微分の式で与えられている。
dm / dθ = (P / RT) · dV / dθ (53)
The orifice flow rate equation in the choke state is given by the equation of time differentiation as follows.

dm/dt=〔CD・Aex2・PEX/{(REX・TEX)^(1/2)}〕
・{κ^(1/2)}
・〔(2/(κ+1))^{(κ+1)/2(κ−1)}〕
…(54A)
そこで、(54A)式もクランク角θでの微分式へと変形する。すなわち、
dm/dt=(dm/dθ)・dθ/dt
=(dm/dθ)・6Ne
であるから、この式を用いてチョーク状態でのオリフィス流量式((54A)式)をクランク角θでの微分式で表した式は次のようになる。
dm / dt = [C D · Aex2 · PEX / { (REX · TEX) ^ (1/2)} ]
・ {Κ ^ (1/2)}
・ [(2 / (κ + 1)) ^ {(κ + 1) / 2 (κ-1)}]
... (54A)
Therefore, the equation (54A) is also transformed into a differential equation at the crank angle θ. That is,
dm / dt = (dm / dθ) · dθ / dt
= (Dm / dθ) · 6Ne
Therefore, using this equation, the equation representing the orifice flow rate equation (the equation (54A)) in the choke state as a differential equation with respect to the crank angle θ is as follows.

dm/dθ=〔CD・Aex2・PEX
/{6Ne(REX・TEX)^(1/2)}〕
・{κ^(1/2)}
・〔(2/(κ+1))^{(κ+1)/2(κ−1)}〕
…(54B)
ここで、(53)式は図26右側に示した直線を、(54B)式は図26右側に示した曲線を表している。従って、ピストン6の動きに伴う排気上死点付近での燃焼室内容積変化量と排気バルブ通過可能なガス量とが一致するときのクランク角であるチョーク状態開始クランク角CACOMPは(53)式、(54B)式を連立させて解けばその解がチョーク状態開始クランク角CACOMPとして得られることとなる。すなわち、(53)式、(54B)式を連立させて解くと、次の方程式が得られる。
dm / dθ = [C D · Aex2 · PEX
/ {6Ne (REX · TEX) ^ (1/2)}]
・ {Κ ^ (1/2)}
・ [(2 / (κ + 1)) ^ {(κ + 1) / 2 (κ-1)}]
... (54B)
Here, equation (53) represents the straight line shown on the right side of FIG. 26, and equation (54B) represents the curve shown on the right side of FIG. Therefore, the choke state start crank angle CACOMP, which is the crank angle when the amount of change in the combustion chamber volume near the exhaust top dead center due to the movement of the piston 6 and the amount of gas that can pass through the exhaust valve, coincides with the equation (53): If the equations (54B) are solved simultaneously, the solution is obtained as the choke state start crank angle CACOMP. That is, the following equation is obtained by solving the equations (53) and (54B) simultaneously.

〔6Ne/{(REX・TEX)^(1/2)}〕(dV/dθ)
−CD・Aex2・{κ^(1/2)}
・〔{(2/(κ+1)}^(κ+1)/{2(κ−1)}〕=0
…(55)
ただし、dV/dθ:ピストン6の動きに伴う排気上死点付近での燃焼室内容積変 化量
Ne :エンジン回転速度[rpm]
Aex2 :排気バルブ開口面積[m^2]
REX :排気のガス定数[kJ/mol/K]
TEX :平均排気温度[K]
κ :比熱比[−]
D :空気抵抗係数[−]
(55)式において、ピストン6の動きに伴う排気上死点付近での燃焼室内容積変化量dV/dθは、図26の右側に示したように、排気上死点(TDC)の近傍では右肩上がりの直線で近似できる。つまり、燃焼室内容積変化量dV/dθはクランク角θの一次関数で表すことができる。この場合、直線の傾きはエンジン仕様とエンジン回転速度Neに依存して定まる。
[6Ne / {(REX · TEX) ^ (1/2)}] (dV / dθ)
-C D · Aex 2 · {κ ^ (1/2)}
[{(2 / (κ + 1)} ^ (κ + 1) / {2 (κ-1)}] = 0
... (55)
However, dV / dθ: the amount of change in the combustion chamber volume near the exhaust top dead center due to the movement of the piston 6
Ne: Engine rotation speed [rpm]
Aex2: Exhaust valve opening area [m ^ 2]
REX: exhaust gas constant [kJ / mol / K]
TEX: Average exhaust temperature [K]
κ: Specific heat ratio [−]
C D : Air resistance coefficient [−]
In equation (55), the combustion chamber volume change dV / dθ in the vicinity of the exhaust top dead center due to the movement of the piston 6 is right in the vicinity of the exhaust top dead center (TDC), as shown on the right side of FIG. It can be approximated by a straight line that rises. That is, the combustion chamber volume change dV / dθ can be expressed by a linear function of the crank angle θ. In this case, the inclination of the straight line is determined depending on the engine specifications and the engine speed Ne.

次に、(55)式の排気バルブ開口面積Aex2は、排気バルブ用VTC機構28を備え、排気バルブ16の開閉時期が変化する場合には、排気バルブ用VTC機構28に与える指令値に依存して定まる。例えば、図27においてA1を、排気バルブ用VTC機構28が非作動状態(最進角位置)にあるときの排気バルブ開口面積Aex2の特性であるとして(このときの排気バルブ閉時期を初期位置EVC0とする。)、排気バルブ用VTC機構28を作動させるため、排気バルブ用VTC機構28に所定の指令値を与えたとする。この指令値を「排気VTC変換角」というものとすると、排気VTC変換角は、排気バルブ閉時期EVCを初期位置EVC0から遅角させる量を表す。排気VTC変換角として例えば5degCA(クランク角で5度のこと)を与えたとき、排気バルブ開口面積Aex2の特性がA1から右方向(遅角側)へ5degCA平行移動してA2へと移り、排気弁閉時期EVCはEVC1(=EVC0+5)となる。排気VTC変換角が例えば10degCAとさらに大きいと、排気バルブ開口面積Aex2の特性はA1からさらに右方向へ10degCA平行移動してA3へと移り、排気弁閉時期EVCはEVC2(=EVC0+10)となる。このように、排気バルブ用VTC機構28の作動状態では排気バルブ用VTC機構非作動状態での排気バルブ開口面積Aex2の特性を排気VTC変換角の分だけ平行移動させた特性となる。つまり、排気バルブ開口面積Aex2は排気VTC変換角に依存して定まる。なお、Aexの後に「2」を付しているのは、先願装置の上記(40)式に出てくる「クランク角θ2での排気バルブ開口面積Aex」と区別するためである。   Next, the exhaust valve opening area Aex2 of the expression (55) depends on the command value given to the exhaust valve VTC mechanism 28 when the exhaust valve VTC mechanism 28 is provided and the opening / closing timing of the exhaust valve 16 changes. Determined. For example, it is assumed that A1 in FIG. 27 is a characteristic of the exhaust valve opening area Aex2 when the exhaust valve VTC mechanism 28 is in the non-operating state (the most advanced angle position) (the exhaust valve closing timing at this time is the initial position EVC0). It is assumed that a predetermined command value is given to the exhaust valve VTC mechanism 28 in order to operate the exhaust valve VTC mechanism 28. If this command value is referred to as “exhaust VTC conversion angle”, the exhaust VTC conversion angle represents an amount by which the exhaust valve closing timing EVC is retarded from the initial position EVC0. For example, when 5 deg CA (crank angle is 5 degrees) is given as the exhaust VTC conversion angle, the characteristics of the exhaust valve opening area Aex2 shift from A1 to the right (retard side) by 5 deg CA and shift to A2, and the exhaust The valve closing timing EVC is EVC1 (= EVC0 + 5). If the exhaust VTC conversion angle is even larger, for example, 10 deg CA, the characteristic of the exhaust valve opening area Aex2 is further translated from A1 by 10 deg CA in the right direction and then shifted to A3, and the exhaust valve closing timing EVC becomes EVC2 (= EVC0 + 10). As described above, when the exhaust valve VTC mechanism 28 is in the operating state, the exhaust valve opening area Aex2 in the exhaust valve VTC mechanism inactive is translated by the exhaust VTC conversion angle. That is, the exhaust valve opening area Aex2 is determined depending on the exhaust VTC conversion angle. The reason why “2” is added after Aex is to distinguish it from “exhaust valve opening area Aex at crank angle θ2” appearing in the above-mentioned equation (40) of the prior application device.

次に、(55)式の比熱比κは、例えば目標当量比と平均排気温度TEXから図28のマップを参照することにより求めることができる。空気抵抗係数CDは適合値として予め与えておく。エンジン回転速度Neは運転条件により定まる。排気のガス定数REXと平均排気温度TEXは上記(6)式、(23)式により求まる。 Next, the specific heat ratio κ of the equation (55) can be obtained by referring to the map of FIG. 28 from the target equivalent ratio and the average exhaust temperature TEX, for example. The air resistance coefficient CD is given in advance as a conforming value. The engine speed Ne is determined by operating conditions. The exhaust gas constant REX and the average exhaust temperature TEX are obtained by the above equations (6) and (23).

以上をまとめると、排気バルブ用VTC機構28を備えない場合には(55)式左辺はクランク角θとエンジン回転速度Neの関数であるため、エンジン回転速度Neが決まれば(55)式の方程式をクランク角θについて解くことで、その解をチョーク状態開始クランク角CACOMPとして求めることができる。また、排気バルブVTC機構28を備える場合には、排気VTC変換角に応じて(55)式中のCD・Aex2が変化するため排気VTC変換角ごとに(55)式の方程式をクランク角θについて解くことでチョーク状態開始クランク角CACOMPを算出する必要がある。この場合、(55)式の方程式は二次方程式のような簡単な方程式ではないので、エンジンコントローラ31においてリアルタイムで解かせるには演算負荷が大きくなる。従って、本発明の第6実施形態では、エンジン回転速度Neと排気VTC変換角とを相違させて(55)式の方程式を解いて得られるチョーク状態開始クランク角CACOMPのデータを、エンジン回転速度Neと排気VTC変換角とをパラメータとする、図34に示されるようなマップにして予めROMに記憶しておき、現在のエンジン回転速度Neと排気VTC変換角とからそのマップを参照することにより、チョーク状態開始クランク角CACOMPを算出するものとする。 In summary, when the exhaust valve VTC mechanism 28 is not provided, the left side of the equation (55) is a function of the crank angle θ and the engine rotation speed Ne, and therefore the equation of the equation (55) is determined if the engine rotation speed Ne is determined. Can be obtained as a choke state start crank angle CACOMP. Further, when the exhaust valve VTC mechanism 28 is provided, C D · Aex2 in the equation (55) changes according to the exhaust VTC conversion angle, so that the equation of the equation (55) is changed to the crank angle θ for each exhaust VTC conversion angle. It is necessary to calculate the choke state start crank angle CACOMP by solving for. In this case, since the equation (55) is not a simple equation such as a quadratic equation, the calculation load increases in order for the engine controller 31 to solve the equation in real time. Therefore, in the sixth embodiment of the present invention, the choke state start crank angle CACOMP data obtained by solving the equation (55) by making the engine speed Ne and the exhaust VTC conversion angle different from each other is used as the engine speed Ne. 34, and a map as shown in FIG. 34 is stored in advance in the ROM, and the map is referred to from the current engine speed Ne and the exhaust VTC conversion angle. The choke state start crank angle CACOMP is calculated.

図34に示したように、チョーク状態開始クランク角CACOMPは、エンジン回転速度Neが一定の条件で排気VTC変換角が大きくなるほど遅角側の値となり、また排気VTC変換角が一定の条件でエンジン回転速度Neが大きくなるほど遅角側の値となる。   As shown in FIG. 34, the choke state start crank angle CACOMP becomes a retarded value as the exhaust VTC conversion angle increases under the condition where the engine rotational speed Ne is constant, and the engine under the condition where the exhaust VTC conversion angle is constant. The greater the rotational speed Ne, the slower the value.

なお、チョーク状態開始クランク角CACOMPの算出方法はこれに限られるものでなく、基本的には排気バルブ開口面積Aex2(上位概念は「排気バルブ開閉時期」)と、エンジンの運転状態(ピストン6の動きに伴う排気上死点付近での燃焼室内容積変化量dV/dθ、エンジン回転速度Ne、排気のガス定数REX、平均排気温度TEX、比熱比κ、空気抵抗係数CD)とに基づいて算出することができるものである。 The calculation method of the choke state start crank angle CACOMP is not limited to this. Basically, the exhaust valve opening area Aex2 (the upper concept is “exhaust valve opening / closing timing”) and the engine operating state (the piston 6 Calculated based on the change in combustion chamber volume dV / dθ in the vicinity of exhaust top dead center due to movement, engine rotational speed Ne, exhaust gas constant REX, average exhaust temperature TEX, specific heat ratio κ, and air resistance coefficient C D ) Is something that can be done.

このようにして算出したチョーク状態開始クランク角CACOMPと吸気バルブ開時期IVOと前述したようにを比較することで、燃焼室5内から排気ポート11に吹き出すガスの流れがチョーク状態になるか否かを判定することができる。この場合、チョーク状態開始クランク角CACOMP、吸気バルブ開時期IVOとも、その単位は圧縮上死点を起点として遅角側に計測した値[degCA]である。   By comparing the choke state start crank angle CACOMP calculated in this way with the intake valve opening timing IVO as described above, whether or not the flow of the gas blown out from the combustion chamber 5 to the exhaust port 11 enters the choke state. Can be determined. In this case, both the choke state start crank angle CACOMP and the intake valve opening timing IVO are values [degCA] measured on the retard side from the compression top dead center.

これで上記操作bの説明を終える。   This completes the description of the operation b.

エンジンコントローラ31で行われるこの制御を図29のフローチャートに従って説明する。   This control performed by the engine controller 31 will be described with reference to the flowchart of FIG.

図29は本発明の第6実施形態の波形判定フラグを設定するためのもので、一定時間毎(例えば10ms毎)に演算する。   FIG. 29 is for setting the waveform determination flag according to the sixth embodiment of the present invention, and performs calculation every certain time (for example, every 10 ms).

ステップ101では吸気バルブ開期間と排気バルブ開期間のオーバーラップがあるか否かをみる。これは、吸気バルブ用VTC機構27、排気バルブ用VTC機構28に与えている指令値からわかる。吸気バルブ開期間と排気バルブ開期間のオーバーラップがないときにはそのまま今回の処理を終了する。   In step 101, it is determined whether or not there is an overlap between the intake valve open period and the exhaust valve open period. This can be understood from command values given to the intake valve VTC mechanism 27 and the exhaust valve VTC mechanism 28. If there is no overlap between the intake valve open period and the exhaust valve open period, the current process is terminated.

吸気バルブ開期間と排気バルブ開期間のオーバーラップがあるときにはステップ102に進み、排気圧力Pex[kPa](=(PEX+PIVO)/2)、平均排気圧力PEX[kPa](上記(20)式により算出済み)、上死点での燃焼室内容積VTDC[m^3](定数)、排気ガス定数REX[kJ/mol/K](上記(6)式により算出済み)、平均排気温度TEX[K](上記(23)式により算出済み)、排気の比熱比κ[−](上記(19)式によりまたは図28より算出済み)、流量比RMF1[−](上記(37)式により算出済み)、エンジン回転速度Ne[rpm]、排気VTC変換角[degCA]、吸気バルブ開時期IVO[degCA]、排気バルブ閉時期EVC[degCA]を読み込む。排気VTC変換角、吸気バルブ開時期IVO、排気バルブ閉時期EVCの値は、吸気バルブ用VTC機構27、排気バルブ用VTC機構28に与えている指令値からわかる。   When there is an overlap between the intake valve open period and the exhaust valve open period, the routine proceeds to step 102 where the exhaust pressure Pex [kPa] (= (PEX + PIVO) / 2) and the average exhaust pressure PEX [kPa] (calculated by the above equation (20)). Completed), combustion chamber volume VTDC [m ^ 3] (constant) at top dead center, exhaust gas constant REX [kJ / mol / K] (calculated by the above equation (6)), average exhaust temperature TEX [K] (Calculated with the above equation (23)), exhaust specific heat ratio κ [−] (calculated with the above equation (19) or from FIG. 28), flow rate ratio RMF1 [−] (calculated with the above equation (37)) The engine rotation speed Ne [rpm], the exhaust VTC conversion angle [degCA], the intake valve opening timing IVO [degCA], and the exhaust valve closing timing EVC [degCA] are read. The values of the exhaust VTC conversion angle, the intake valve opening timing IVO, and the exhaust valve closing timing EVC are known from command values given to the intake valve VTC mechanism 27 and the exhaust valve VTC mechanism 28.

ステップ103、104では、先願装置の第3実施形態の図23のガス流量ゼロ時クランク角算出部72で説明したところと同様にして、排気バルブ16が閉じる前に排気バルブ周りガス流量がゼロとなるときのクランク角θ0を算出する。すなわち、まずステップ103で排気圧力Pex、排気ガス定数REX、平均排気温度TEX、排気の比熱比κ、流量比RMF1を用いて上記(51)式によりβを、また排気ガス定数REX、平均排気温度TEX、エンジン回転速度Neを用いてαとXを、
α=PEX/REX/TEX×6×Ne
X=VTDC/REX/TEX×6×Ne
の式によりそれぞれ算出し、ステップ104でこれらβ、α、X、吸気バルブ開時期IVOを用いて、上記(50)式により、排気バルブ16が閉じる前に排気バルブ周りガス流量がゼロとなるときのクランク角θ0[degCA]を算出する。
In steps 103 and 104, the gas flow rate around the exhaust valve is zero before the exhaust valve 16 is closed in the same manner as described in the crank angle calculation unit 72 at zero gas flow rate in FIG. 23 of the third embodiment of the prior application device. Is calculated. That is, first in step 103, the exhaust pressure Pex, the exhaust gas constant REX, the average exhaust temperature TEX, the exhaust specific heat ratio κ, and the flow rate ratio RMF1 are used to calculate β according to the above equation (51), and the exhaust gas constant REX, the average exhaust temperature. Using TEX and engine speed Ne, α and X
α = PEX / REX / TEX × 6 × Ne
X = VTDC / REX / TEX × 6 × Ne
When the β, α, X and intake valve opening timing IVO are used in step 104, and the gas flow rate around the exhaust valve becomes zero before the exhaust valve 16 is closed according to the above equation (50). The crank angle θ0 [degCA] is calculated.

ステップ105ではこのようにして算出した、排気バルブ16が閉じる前に排気バルブ周りガス流量がゼロとなるクランク角θ0が吸気バルブ開期間と排気バルブ開期間のオーバーラップ中にあるか否か、つまり排気バルブ周りガス流量がゼロとなるときのクランク角θ0が吸気バルブ開時期IVO[degCA]よりも遅角側にありかつ排気バルブ閉時期EVC[degCA]よりも進角側にある(IVO<θ0<EVC)か否かをみる。IVO<θ0<EVCであれば、排気バルブ16が閉じる前に排気バルブ周りガス流量がゼロとなるときのクランク角θ0が吸気バルブ開期間と排気バルブ開期間のオーバーラップ中にあると判断してステップ106に進み、波形判定フラグ(エンジンの始動時にゼロに初期設定)=1とする。   In step 105, whether or not the crank angle θ0 calculated in this way so that the gas flow rate around the exhaust valve becomes zero before the exhaust valve 16 is closed is in the overlap between the intake valve open period and the exhaust valve open period, that is, The crank angle θ0 when the gas flow rate around the exhaust valve becomes zero is on the more retarded side than the intake valve opening timing IVO [degCA] and on the more advanced side than the exhaust valve closing timing EVC [degCA] (IVO <θ0). <EVC) is checked. If IVO <θ0 <EVC, it is determined that the crank angle θ0 when the gas flow around the exhaust valve becomes zero before the exhaust valve 16 is closed is in the overlap between the intake valve open period and the exhaust valve open period. Proceeding to step 106, the waveform determination flag (initially set to zero when the engine is started) = 1.

ステップ105でIVO<θ0<EVCでない、つまり排気バルブ16が閉じる前に排気バルブ周りガス流量がゼロとなるときのクランク角θ0が、吸気バルブ開時期IVOと等しいかまたは吸気バルブ開時期IVOよりも進角側にあるときや、排気バルブ16が閉じる前に排気バルブ周りガス流量がゼロとなるときのクランク角θ0が、排気バルブ閉時期EVCと等しいか排気バルブ閉時期EVCより遅角側にあるときにはステップ107に進み、エンジン回転速度Neと排気VTC変換角とから図34を内容とするマップを参照することにより、チョーク状態開始クランク角CACOMP[degCA]を算出する。   In step 105, IVO <θ0 <EVC, that is, the crank angle θ0 when the gas flow rate around the exhaust valve becomes zero before the exhaust valve 16 is closed is equal to the intake valve opening timing IVO or more than the intake valve opening timing IVO. The crank angle θ0 when the gas flow rate around the exhaust valve becomes zero before the exhaust valve 16 is closed is equal to the exhaust valve closing timing EVC or on the retard side from the exhaust valve closing timing EVC when it is on the advance side. Sometimes, the routine proceeds to step 107, and the choke state start crank angle CACOMP [degCA] is calculated by referring to the map having the contents shown in FIG. 34 from the engine speed Ne and the exhaust VTC conversion angle.

ステップ108では、このようにして求めたチョーク状態開始クランク角CACOMPと吸気バルブ開時期IVO[degCA]とを比較する。チョーク状態開始クランク角CACOMPが吸気バルブ開時期IVOと一致するかまたは吸気バルブ開時期IVOよりも進角側にあれば、吸気バルブ開期間と排気バルブ開期間のオーバーラップ中の排気バルブ周りガス流量の波形は燃焼室5内から排気ポート11に吹き出すガスの流れがチョーク状態になる場合の波形であると判断して、ステップ109に進み波形判定フラグ=2とする。これに対してチョーク状態開始クランク角CACOMPが吸気バルブ開時期IVOよりも遅角側にあれば、吸気バルブ開期間と排気バルブ開期間のオーバーラップ中の排気バルブ周りガス流量の波形は燃焼室5内から排気ポート11に吹き出すガスの流れがチョーク状態になっていない場合の波形であると判断して、ステップ108よりステップ110に進み波形判定フラグ=3とする。   In step 108, the choke state start crank angle CACOMP thus obtained is compared with the intake valve opening timing IVO [degCA]. If the starting crank angle CACOMP of the choke state coincides with the intake valve opening timing IVO or is on the more advanced side than the intake valve opening timing IVO, the gas flow around the exhaust valve during the overlap between the intake valve opening period and the exhaust valve opening period Is determined to be a waveform when the flow of gas blown out from the combustion chamber 5 to the exhaust port 11 is in a choke state, and the routine proceeds to step 109 where the waveform determination flag = 2. On the other hand, if the choke state start crank angle CACOMP is on the retard side of the intake valve opening timing IVO, the waveform of the gas flow around the exhaust valve during the overlap between the intake valve open period and the exhaust valve open period is the combustion chamber 5. It is determined that the waveform of the gas blown from the inside to the exhaust port 11 is a waveform when the choke state is not established, and the process proceeds from step 108 to step 110 to set the waveform determination flag = 3.

この結果、波形判定フラグ=1は吸気バルブ開期間と排気バルブ開期間のオーバーラップ中の排気バルブ周りガス流量の波形が図24左のようになることを、波形判定フラグ=2は吸気バルブ開期間と排気バルブ開期間のオーバーラップ中の排気バルブ周りガス流量の波形が図24中のようになることを、波形判定フラグ=3は吸気バルブ開期間と排気バルブ開期間のオーバーラップ中の排気バルブ周りガス流量の波形が図24右のようになることを表す。   As a result, the waveform determination flag = 1 indicates that the waveform of the gas flow rate around the exhaust valve during the overlap between the intake valve open period and the exhaust valve open period is as shown in the left of FIG. FIG. 24 shows that the waveform of the gas flow rate around the exhaust valve during the overlap between the period and the exhaust valve open period is as shown in FIG. 24. The waveform determination flag = 3 is the exhaust during the overlap between the intake valve open period and the exhaust valve open period. This represents that the waveform of the gas flow around the valve is as shown on the right side of FIG.

このようにして、吸気バルブ開期間と排気バルブ開期間のオーバーラップ中の排気バルブ周りガス流量の波形が図24左、中、右のいずれの波形であるのかを判定した後には、判定した各波形毎に、吸気バルブ開期間と排気バルブ開期間のオーバーラップ中の排気バルブ周りガス流量の波形を直線で近似して面積を算出する。   Thus, after determining whether the waveform of the gas flow rate around the exhaust valve during the overlap between the intake valve open period and the exhaust valve open period is the waveform of the left, middle, or right in FIG. For each waveform, the area is calculated by approximating the waveform of the gas flow rate around the exhaust valve during the overlap of the intake valve open period and the exhaust valve open period with a straight line.

これを図30を用いて説明すると、図30は、上記(い)〜(は)の各波形を直線近似する方法と、算出する面積とをまとめて示している。上記(い)の波形となるときには図30左の下段に示したように、左側の三角形の面積を吸気バルブ開期間と排気バルブ開期間のオーバーラップ中の吹き出しガス量M21として、また右側の三角形の面積を吸気バルブ開期間と排気バルブ開期間のオーバーラップ中の吹き返しガス量M22として、上記(ろ)の波形となるときには図30中の下段に示したように、1つの三角形の面積を吸気バルブ開期間と排気バルブ開期間のオーバーラップ中の吹き出しガス量M23として、上記(は)の波形となるときには図30右の下段に示したように、台形の面積と三角形の面積を合計したものを吸気バルブ開期間と排気バルブ開期間のオーバーラップ中の吹き返しガス量M24としてそれぞれ算出する。   This will be described with reference to FIG. 30. FIG. 30 collectively shows a method of linearly approximating each of the waveforms (i) to (ha) and the area to be calculated. When the above waveform (i) is obtained, as shown in the lower left part of FIG. 30, the area of the left triangle is used as the amount of blown gas M21 during the overlap between the intake valve open period and the exhaust valve open period, and the right triangle. Is the blow-back gas amount M22 during the overlap between the intake valve open period and the exhaust valve open period, and when the above waveform (b) is obtained, as shown in the lower part of FIG. As the blowout gas amount M23 during the overlap between the valve open period and the exhaust valve open period, when the above waveform is (), the sum of the trapezoidal area and the triangular area as shown in the lower part of FIG. Are calculated as the blowback gas amount M24 during the overlap between the intake valve open period and the exhaust valve open period.

以下、上記(い)〜(は)の各波形毎に面積の算出方法を説明する。   Hereinafter, an area calculation method for each of the waveforms (ii) to (ha) will be described.

〈1〉上記(い)の波形となるときの面積の算出方法
図30左に示したように排気バルブ周りガス流量ゼロの水平線、吸気バルブ開時期IVOの直線(図30中でIVOを通る垂直線)及び直線1で囲まれる三角形の面積を吸気バルブ開期間と排気バルブ開期間のオーバーラップ中の吹き出しガス量M21として、また排気バルブ周りガス流量ゼロの水平線、直線1及び直線2で囲まれる三角形の面積を吸気バルブ開期間と排気バルブ開期間のオーバーラップ中の吹き返しガス量M22として、つまり吸気バルブ開期間と排気バルブ開期間のオーバーラップ中の吹き出しガス量M21と吸気バルブ開期間と排気バルブ開期間のオーバーラップ中の吹き返しガス量M22とを次式により算出する。
<1> Method for Calculating the Area when the Waveform (i) is Above As shown on the left side of FIG. 30, a horizontal line with zero gas flow around the exhaust valve and a straight line of the intake valve opening timing IVO (vertical passing through IVO in FIG. 30) The area of the triangle surrounded by the straight line 1 and the straight line 1 is surrounded by the horizontal line, the straight line 1 and the straight line 2 with the gas flow around the exhaust valve being zero, as the blowout gas amount M21 during the overlap between the intake valve open period and the exhaust valve open period. The area of the triangle is defined as the blown back gas amount M22 during the overlap between the intake valve open period and the exhaust valve open period, that is, the blowout gas amount M21 during the overlap between the intake valve open period and the exhaust valve open period, the intake valve open period, and the exhaust. The blow-back gas amount M22 during the overlap of the valve opening period is calculated by the following equation.

M21=|(dm/dθ)ivo|×(θ0−IVO)/2 …(56)
M22=(dm/dθ)c×(EVC−θ0)/2 …(57)
ただし、(dm/dθ)ivo:吸気バルブ開時期での排気バルブ周りガス流量
[kg/degCA]
(dm/dθ)c :点cの排気バルブ周りガス流量
[kg/degCA]
θ0 :排気バルブが閉じる前に排気バルブ周りガス流量が ゼロとなるときのクランク角[degCA]
IVO :吸気バルブ開時期[degCA]
EVC :排気バルブ閉時期[degCA]
先願装置の第1実施形態では、上記(25)に示すように、燃焼室5内から排気ポート11への吹き出しガス量も排気ポート11から燃焼室5内への吹き返しガス量に含めて扱っていたのであるが、本発明の第6実施形態では、燃焼室5内から排気ポート11への吹き出しガス量(M21)と排気ポート11から燃焼室5内への吹き返しガス量(M22)とを分けて扱うものである。
M21 = | (dm / dθ) ivo | × (θ0−IVO) / 2 (56)
M22 = (dm / dθ) c × (EVC−θ0) / 2 (57)
However, (dm / dθ) ivo: Gas flow around the exhaust valve when the intake valve is open
[Kg / degCA]
(Dm / dθ) c: Gas flow around the exhaust valve at point c
[Kg / degCA]
θ0: Crank angle when the gas flow around the exhaust valve becomes zero before the exhaust valve is closed [degCA]
IVO: intake valve opening timing [degCA]
EVC: Exhaust valve closing timing [degCA]
In the first embodiment of the prior application apparatus, as shown in (25) above, the amount of gas blown from the combustion chamber 5 to the exhaust port 11 is also included in the amount of blown back gas from the exhaust port 11 to the combustion chamber 5. However, in the sixth embodiment of the present invention, the amount of gas blown out from the combustion chamber 5 to the exhaust port 11 (M21) and the amount of blowback gas from the exhaust port 11 into the combustion chamber 5 (M22) are calculated. They are handled separately.

〈2〉上記(ろ)の波形となるときの面積の算出方法
図30中に示したように、排気バルブ周りガス流量ゼロの水平線、吸気バルブ開時期IVOの直線(図30中でIVOを通る垂直線)及び直線1で囲まれる三角形の面積を、吸気バルブ開期間と排気バルブ開期間のオーバーラップ中の吹き出しガス量M23として算出する。ただし、ここでは直線1を実際に算出する必要はない。すなわち、図30中において点aの座標は(IVO,(dm/dθ)ivo)、点eの座標は(EVC,0)であるので、吸気バルブ開期間と排気バルブ開期間のオーバーラップ中の吹き出しガス量M23[kg]は、
M23=|(dm/dθ)ivo|×(EVC−IVO)/2 …(58)
ただし、(dm/dθ)ivo:吸気バルブ開時期での排気バルブ周りガス流量
[kg/degCA]
EVC :排気バルブ閉時期[degCA]
IVO :吸気バルブ開時期[degCA]
の式より算出することができる。
<2> Method for calculating the area when the above waveform (b) is obtained As shown in FIG. 30, a horizontal line with zero gas flow around the exhaust valve and a straight line of the intake valve opening timing IVO (passes IVO in FIG. 30) The area of the triangle surrounded by the vertical line) and the straight line 1 is calculated as the amount of blown gas M23 during the overlap between the intake valve open period and the exhaust valve open period. However, it is not necessary to actually calculate the straight line 1 here. That is, in FIG. 30, the coordinates of the point a are (IVO, (dm / dθ) ivo) and the coordinates of the point e are (EVC, 0), so that the intake valve opening period and the exhaust valve opening period are overlapping. The amount of gas blown out M23 [kg]
M23 = | (dm / dθ) ivo | × (EVC-IVO) / 2 (58)
However, (dm / dθ) ivo: Gas flow around the exhaust valve when the intake valve is open
[Kg / degCA]
EVC: Exhaust valve closing timing [degCA]
IVO: intake valve opening timing [degCA]
It can be calculated from the following formula.

〈3〉上記(は)の波形となるときの面積の算出方法
図30右に示したように、排気バルブ周りガス流量ゼロの水平線、吸気バルブ開時期IVOの直線(図30右でIVOを通る垂直線)、直線1及び直線2で囲まれる面積(台形の面積及び三角形の面積の合計の面積)を吸気バルブ開期間と排気バルブ開期間のオーバーラップ中の吹き返しガス量M24として算出する。以下、直線1の算出方法、直線2の算出方法、吹き返しガス量M24の算出方法の順に説明する。
〔1〕直線1の算出方法
先願装置の第1実施形態と同様である。すなわち、直線1は点aと点fとを結ぶ直線として算出する。ここで、点fは排気バルブ16が閉じる前に排気バルブ周りガス流量がゼロとなる点である。チョーク状態とならない場合に、排気バルブ16が閉じる前に排気バルブ周りガス流量がゼロとなるクランク角、つまり点fのクランク角は、排気上死点(TDC)付近に存在するため、ここでは点fのクランク角は排気上死点θTDCにあると近似する。このとき、点aの座標は(IVO,(dm/dθ)ivo)、点fの座標は(θTDC,0)であるので、直線1を与える関数y1を、
y1=(dm/dθ)ivo/(IVO−θTDC)×θ
−(dm/dθ)ivo×θTDC/(IVO−θTDC)
…(59)
ただし、(dm/dθ)ivo:吸気バルブ開時期での排気バルブ周りガス流量
[kg/degCA]
IVO :吸気バルブ開時期[degCA]
θTDC :排気上死点[degCA]
の式より求めることができる。
<3> Method for calculating area when waveform of (ha) above As shown in the right of FIG. 30, a horizontal line of zero exhaust gas flow around the exhaust valve and a straight line of the intake valve opening timing IVO (IVO passes on the right in FIG. 30) The area surrounded by the vertical line), the straight line 1 and the straight line 2 (the total area of the trapezoidal area and the triangular area) is calculated as the blow-back gas amount M24 during the overlap between the intake valve open period and the exhaust valve open period. Hereinafter, the calculation method of the straight line 1, the calculation method of the straight line 2, and the calculation method of the blown-back gas amount M24 will be described in this order.
[1] Calculation Method of Line 1 The same as the first embodiment of the prior application device. That is, the straight line 1 is calculated as a straight line connecting the point a and the point f. Here, the point f is a point where the gas flow rate around the exhaust valve becomes zero before the exhaust valve 16 is closed. The crank angle at which the gas flow around the exhaust valve becomes zero before the exhaust valve 16 is closed when the choke state does not occur, that is, the crank angle at the point f exists near the exhaust top dead center (TDC). It is approximated that the crank angle of f is at the exhaust top dead center θTDC. At this time, since the coordinates of the point a are (IVO, (dm / dθ) ivo) and the coordinates of the point f are (θTDC, 0), the function y1 that gives the straight line 1 is
y1 = (dm / dθ) ivo / (IVO−θTDC) × θ
− (Dm / dθ) ivo × θTDC / (IVO−θTDC)
... (59)
However, (dm / dθ) ivo: Gas flow around the exhaust valve when the intake valve is open
[Kg / degCA]
IVO: intake valve opening timing [degCA]
θTDC: Exhaust top dead center [degCA]
It can be obtained from the following formula.

ここでは点fは排気上死点θTDCにあると近似したが、実際には排気上死点θTDCより微妙にずれる(微妙に動く)ので、点fの排気上死点からの微妙なずれまで考慮するときには、エンジン回転速度Neとエンジン負荷とをパラメータとして、排気バルブ16が閉じる前に排気バルブ周りガス流量がゼロとなるクランク角(点fのクランク角)を予め求めてマップにして与えておけばよい。
〔2〕直線2の算出方法
先願装置の第1実施形態と同じである。すなわち、上記(41)式をそのまま用いて、つまり直線2を与える関数y2を、
y2=−4×(dm/dθ)d/(EVC−IVO)×(θ−EVC)
…(60)
ただし、(dm/dθ)d:点dの排気バルブ周りガス流量
[kg/degCA]
IVO :吸気バルブ開時期[degCA]
EVC :排気バルブ閉時期[degCA]
の式により求める。
Here, it is approximated that the point f is at the exhaust top dead center θTDC. However, since the point f actually deviates slightly (moves slightly) from the exhaust top dead center θTDC, a slight deviation from the exhaust top dead center is considered. When the engine speed Ne and the engine load are used as parameters, the crank angle (crank angle at the point f) at which the gas flow around the exhaust valve becomes zero before the exhaust valve 16 is closed can be obtained and given as a map. That's fine.
[2] Calculation Method of Line 2 The same as the first embodiment of the prior application device. That is, using the above equation (41) as it is, that is, the function y2 that gives the straight line 2 is
y2 = -4 * (dm / d [theta]) d / (EVC-IVO) * ([theta] -EVC)
... (60)
Where (dm / dθ) d: gas flow around the exhaust valve at point d
[Kg / degCA]
IVO: intake valve opening timing [degCA]
EVC: Exhaust valve closing timing [degCA]
It is calculated by the following formula.

ここで、(60)式の点dの排気バルブ周りガス流量(dm/dθ)dの算出には上記(40)式を用いればよい。   Here, the above equation (40) may be used to calculate the gas flow around the exhaust valve (dm / dθ) d at point d in equation (60).

上記(59)式、(60)式を連立方程式として解くことで、図30右において点cのクランク角θ1が求まり、点cのクランク角θ1での排気バルブ周りガス流量(dm/dθ)cは、点cのクランク角θ1を直線1((59)式)もしくは直線2((60)式)に代入することで求まる。
〔3〕吹き返しガス量M24の算出方法
このようにして点a、点c、点dの各座標が求まると、図30右において台形の面積に相当する吸気バルブ開期間と排気バルブ開期間のオーバーラップ中の吹き返しガス量M25[kg]を、
M25={(dm/dθ)c +(dm/dθ)ivo)}×(θ1−IVO)/2
…(61)
の式により、同じく図30右において三角形の面積に相当する吸気バルブ開期間と排気バルブ開期間のオーバーラップ中の吹き返しガス量M26[kg]を、
M26=(dm/dθ)c×(EVC−θ1)/2 …(62)
の式により算出し、これら2つの吹き返しガス量M25、M26の和を吸気バルブ開期間と排気バルブ開期間のオーバーラップ中の吹き返しガス量M24として、つまり次式により吸気バルブ開期間と排気バルブ開期間のオーバーラップ中の吹き返しガス量M24[kg]を算出する
M24=M25+M26 …(63)
これで、上記(い)〜(は)の各波形毎の面積の算出方法の説明を終える。
By solving the equations (59) and (60) as simultaneous equations, the crank angle θ1 at the point c is obtained on the right side of FIG. 30, and the gas flow around the exhaust valve (dm / dθ) c at the crank angle θ1 at the point c is obtained. Is obtained by substituting the crank angle θ1 of the point c into the straight line 1 (formula (59)) or the straight line 2 (formula (60)).
[3] Calculation Method of Blowing Gas M24 When the coordinates of point a, point c, and point d are obtained in this way, the intake valve open period and exhaust valve open period corresponding to the trapezoidal area on the right side of FIG. Blowing gas amount M25 [kg] in the lap
M25 = {(dm / dθ) c + (dm / dθ) ivo)} × (θ1-IVO) / 2
... (61)
In the right side of FIG. 30, the blowback gas amount M26 [kg] during the overlap between the intake valve opening period and the exhaust valve opening period corresponding to the area of the triangle is
M26 = (dm / dθ) c × (EVC−θ1) / 2 (62)
The sum of these two blowback gas amounts M25 and M26 is used as the blowback gas amount M24 during the overlap between the intake valve open period and the exhaust valve open period, that is, the intake valve open period and the exhaust valve open according to the following formula: Calculate the blown back gas amount M24 [kg] during the overlap of the period M24 = M25 + M26 (63)
This concludes the description of the method of calculating the area for each waveform of (i) to (ha).

エンジンコントローラ31で行われるこの制御を図31、図32、図33のフローチャートに従って説明する。   This control performed by the engine controller 31 will be described with reference to the flowcharts of FIGS. 31, 32, and 33.

図31、図32、図33は本発明の第6実施形態の排気バルブ開期間と吸気バルブ開期間のオーバーラップ終了後(正確にはオーバーラップ終了直後)の燃焼室内残留ガス量を算出するためのもので、図29に続けて一定時間毎(たとえば10ms毎)に実行する。   31, FIG. 32, and FIG. 33 are for calculating the residual gas amount in the combustion chamber after the overlap between the exhaust valve opening period and the intake valve opening period of the sixth embodiment of the present invention (more precisely, immediately after the overlap ends). This is executed at regular intervals (for example, every 10 ms) following FIG.

ステップ111では波形判定フラグ(図29により設定済み)をみる。波形判定フラグ=1であるときにはステップ112以降に進んで上記(い)の波形となるときの、排気バルブ開期間と吸気バルブ開期間のオーバーラップ終了後の燃焼室内残留ガス量を算出する。この場合の燃焼室内残留ガス量の算出方法は先願装置と同じである。すなわち、先願装置は(い)の波形となるときだけを考慮していたものであった。繰り返しになるが、説明すると次のようになる。   In step 111, the waveform determination flag (set according to FIG. 29) is observed. When the waveform determination flag = 1, the routine proceeds to step 112 and thereafter, and the amount of residual gas in the combustion chamber after the end of the overlap between the exhaust valve open period and the intake valve open period when the above waveform (i) is obtained is calculated. In this case, the method for calculating the amount of residual gas in the combustion chamber is the same as that of the prior application device. That is, the prior application device only considered when the waveform of (i) was obtained. Again, the explanation is as follows.

ステップ112では、吸気バルブ開時期での燃焼室内温度TIVO[K](上記(22)式により算出済み)、吸気バルブ開時期での燃焼室内圧力PIVO[kPa](上記(12)式により算出済み)、吸気バルブ開時期での燃焼室内容積VIVO[m^3](上記(7)式により算出済み)、排気ガス定数REX[kJ/mol/K](上記(6)式により算出済み)、エンジン回転速度Ne[rpm]、クランク角θ2での排気バルブ開口面積Aex[m^2](図18で説明したところに従って算出済)、平均排気圧力PEX[kPa](上記(20)式により算出済)、排気温度TEX[K](上記(23)式により算出済)、流量比RMF2[−](上記(補21)式により算出済)、比熱比κ[−](上記(19)式によりまたは図28より算出済)、吸気バルブ開時期IVO[degCA]、排気バルブ閉時期EVC[degCA]、排気バルブ周りガス流量がゼロとなるときのクランク角θ0[degCA](図29により算出済み)、吸気バルブ開時期IVOでの燃焼室内ガス量MR1[kg](上記(1)式により算出済み)を読み込む。   In step 112, the combustion chamber temperature TIVO [K] at the intake valve opening timing (calculated by the above equation (22)), the combustion chamber pressure PIVO [kPa] at the intake valve opening timing (calculated by the above equation (12)). ), Combustion chamber volume VIVO [m ^ 3] at the intake valve opening timing (calculated from the above equation (7)), exhaust gas constant REX [kJ / mol / K] (calculated from the above equation (6)), Exhaust valve opening area Aex [m ^ 2] (calculated in accordance with the explanation in FIG. 18) at the engine rotation speed Ne [rpm] and crank angle θ2, and average exhaust pressure PEX [kPa] (calculated by the above equation (20)) Exhaust) temperature TEX [K] (calculated by the above equation (23)), flow rate ratio RMF2 [−] (calculated by the above (complement 21) equation), specific heat ratio κ [−] (the above equation (19) Also by Is calculated from FIG. 28), intake valve opening timing IVO [degCA], exhaust valve closing timing EVC [degCA], crank angle θ0 [degCA] when the gas flow around the exhaust valve becomes zero (calculated from FIG. 29) Then, the combustion chamber gas amount MR1 [kg] (calculated by the above formula (1)) at the intake valve opening timing IVO is read.

ステップ113では、吸気バルブ開時期での燃焼室内温度TIVO、吸気バルブ開時期での燃焼室内圧力PIVO、吸気バルブ開時期での燃焼室内容積VIVO、排気ガス定数REX、エンジン回転速度Neを用いて吸気バルブ開時期での排気バルブ周りガス流量(dm/dθ)ivo[kg/degCA]を、
(dm/dθ)ivo=VIVO×Cpa/6/Ne/REX/TIVO
+PIVO/REX/TIVO×(Cva×IVO+Cvb)
…(64)
ただし、Cpa:燃焼室内圧力の時間微分値、(補10)式により算出済
Cva:吸気上死点付近で横軸にクランク角、縦軸に燃焼室内容積変化率 を採ったときの直線の傾き[m^3/deg^2]
Cvb:吸気上死点付近で横軸にクランク角、縦軸に燃焼室内容積変化率 を採ったときの直線の切片[m^3]
の式により算出し、ステップ114でこの吸気バルブ開時期での排気バルブ周りガス流量(dm/dθ)ivo、排気バルブが閉じる前に排気バルブ周りガス流量がゼロとなるときのクランク角θ0、吸気バルブ開時期IVOを用いて、直線1を与える関数y1を、
y1=−(dm/dθ)ivo/(θ0−IVO)×θ
+(dm/dθ)ivo/(θ0−IVO)×θ0
…(65)
の式により算出する。
In step 113, the intake air is taken in using the combustion chamber temperature TIVO at the intake valve opening timing, the combustion chamber pressure PIVO at the intake valve opening timing, the combustion chamber volume VIVO at the intake valve opening timing, the exhaust gas constant REX, and the engine speed Ne. The gas flow rate (dm / dθ) ivo [kg / degCA] around the exhaust valve at the valve opening timing,
(Dm / dθ) ivo = VIVO × Cpa / 6 / Ne / REX / TIVO
+ PIVO / REX / TIVO × (Cva × IVO + Cvb)
... (64)
However, Cpa: time differential value of the pressure in the combustion chamber, already calculated by (complement 10)
Cva: slope of a straight line when the horizontal axis represents the crank angle and the vertical axis represents the rate of change in the combustion chamber volume near the intake top dead center [m ^ 3 / deg ^ 2]
Cvb: intercept of the straight line when the crank angle is plotted on the horizontal axis and the volumetric change rate in the combustion chamber is plotted on the vertical axis near the intake top dead center [m ^ 3]
In step 114, the exhaust gas flow around the exhaust valve (dm / dθ) ivo at the opening timing of the intake valve ivo, the crank angle θ0 when the exhaust gas flow around the exhaust valve becomes zero before the exhaust valve is closed, the intake air Using the valve opening timing IVO, a function y1 that gives a straight line 1 is
y1 = − (dm / dθ) ivo / (θ0−IVO) × θ
+ (Dm / dθ) ivo / (θ0−IVO) × θ0
... (65)
It is calculated by the following formula.

ステップ115では、クランク角θ2での排気バルブ開口面積Aex、平均排気圧力PEX、排気ガス定数REX、排気温度TEX、流量比RMF2、比熱比κ、エンジン回転速度Neを用いて、点dの排気バルブ周りガス流量(dm/dθ)d[kg/degCA]を、
(dm/dθ)d=Aex×PEX/(REX×TEX)^(1/2)
×κ^(1/2)×(2/(κ+1))^((κ+1)
/(2×(κ−1)))×RMF2/6/Ne
…(66)
の式により算出し、ステップ116でこの点dの排気バルブ周りガス流量(dm/dθ)d、排気バルブ閉時期EVC、吸気バルブ開時期IVOを用いて、直線2を与える関数y2を、
y2=−4×(dm/dθ)d/(EVC−IVO)×(θ−EVC)
…(67)
の式により算出する。
In step 115, the exhaust valve opening area Aex at the crank angle θ 2, the average exhaust pressure PEX, the exhaust gas constant REX, the exhaust temperature TEX, the flow rate ratio RMF 2, the specific heat ratio κ, and the engine rotational speed Ne are used to set the exhaust valve at point d. Ambient gas flow rate (dm / dθ) d [kg / degCA]
(Dm / dθ) d = Aex × PEX / (REX × TEX) ^ (1/2)
× κ ^ (1/2) × (2 / (κ + 1)) ^ ((κ + 1)
/ (2 × (κ−1))) × RMF2 / 6 / Ne
... (66)
In step 116, a function y2 that gives a straight line 2 using the exhaust gas flow around the exhaust valve (dm / dθ) d at this point d, the exhaust valve closing timing EVC, and the intake valve opening timing IVO is calculated as follows:
y2 = -4 * (dm / d [theta]) d / (EVC-IVO) * ([theta] -EVC)
... (67)
It is calculated by the following formula.

ステップ117ではこの(67)式と上記の(66)式とを連立させて解き、その解であるクランク角θを点cのクランク角θ1[degCA]として算出する。   In step 117, the equation (67) and the above equation (66) are solved simultaneously, and the crank angle θ which is the solution is calculated as the crank angle θ1 [degCA] at the point c.

ステップ118では、点cのクランク角θ1を(67)式または(66)式のクランク角θに代入することにより、点cの排気バルブ周りガス流量(dm/dθ)c[kg/degCA]を算出する。   In step 118, by substituting the crank angle θ1 at the point c into the crank angle θ in the equation (67) or (66), the gas flow rate around the exhaust valve (dm / dθ) c [kg / degCA] at the point c is obtained. calculate.

ステップ119、120では、このようにして求めた吸気バルブ開時期での排気バルブ周りガス流量(dm/dθ)ivo、点bのクランク角θ0、点cの排気バルブ周りガス流量(dm/dθ)c、吸気バルブ開時期IVO、排気バルブ閉時期EVCを用いて上記(56)式、(57)式により、吸気バルブ開期間と排気バルブ開期間のオーバーラップ中の燃焼室5内から排気ポート11への吹き出しガス量M21[kg]及び吸気バルブ開期間と排気バルブ開期間のオーバーラップ中の排気ポート11から燃焼室5内への吹き返しガス量M22[kg]を算出する。   In steps 119 and 120, the exhaust gas flow rate around the exhaust valve (dm / dθ) ivo at the intake valve opening timing thus obtained, the crank angle θ0 at point b, and the exhaust gas flow rate around the exhaust valve at point c (dm / dθ). c, using the intake valve opening timing IVO and the exhaust valve closing timing EVC, the exhaust port 11 from the combustion chamber 5 during the overlap of the intake valve open period and the exhaust valve open period by the above formulas (56) and (57) The amount of gas blown into the combustion chamber 5 and the amount of blown back gas M22 [kg] from the exhaust port 11 during the overlap between the intake valve open period and the exhaust valve open period are calculated.

ステップ121では、この吸気バルブ開期間と排気バルブ開期間のオーバーラップ中の燃焼室5内から排気ポート11への吹き出しガス量M21及び吸気バルブ開期間と排気バルブ開期間のオーバーラップ中の排気ポート11から燃焼室5内への吹き返しガス量M22を吸気バルブ開時期IVOでの燃焼室内ガス量MR1に加算した値を、上記(い)の波形となるときの、排気バルブ開期間と吸気バルブ開期間のオーバーラップ終了後の燃焼室内残留ガス量として、つまり次式により上記(い)の波形となるときの、排気バルブ開期間と吸気バルブ開期間のオーバーラップ終了後の燃焼室内残留ガス量[kg]を算出する。   In step 121, the amount of gas M21 blown from the combustion chamber 5 during the overlap between the intake valve open period and the exhaust valve open period to the exhaust port 11 and the exhaust port during the overlap between the intake valve open period and the exhaust valve open period. The exhaust valve opening period and the intake valve opening when the value obtained by adding the blowback gas amount M22 from 11 to the combustion chamber 5 to the combustion chamber gas amount MR1 at the intake valve opening timing IVO has the waveform (ii) above. The amount of residual gas in the combustion chamber after the overlap between the exhaust valve opening period and the intake valve opening period when the waveform in (i) above is obtained as kg].

燃焼室内残留ガス量=MR1+M21+M22 …(68)
ここで、上記(56)式、(57)式、(68)式は先願装置で与えている(25)式、(補1)式と実質的に同じ式である。また、上記(64)、(65)、(66)、(67)の各式は、先願装置で与えている(33)式、(補19)式、(40)式、(41)式と同じ式である。
Residual gas amount in combustion chamber = MR1 + M21 + M22 (68)
Here, the above equations (56), (57), and (68) are substantially the same as the equations (25) and (complement 1) given by the prior application device. Further, the above equations (64), (65), (66), and (67) are the equations (33), (complement 19), (40), and (41) given by the prior application device. Is the same formula.

一方、図31においてステップ111で波形判定フラグ=1でないときには図32のステップ123に進み、波形判定フラグ=2であるか否かをみる。波形判定フラグ=2であるときにはステップ124以降に進んで上記(ろ)の波形となるときの、排気バルブ開期間と吸気バルブ開期間のオーバーラップ終了後の燃焼室内残留ガス量を算出する。   On the other hand, when the waveform determination flag is not 1 in step 111 in FIG. 31, the process proceeds to step 123 in FIG. 32 to check whether or not the waveform determination flag = 2. When the waveform determination flag = 2, the routine proceeds to step 124 and subsequent steps, and the amount of residual gas in the combustion chamber after the overlap of the exhaust valve open period and the intake valve open period when the above waveform is obtained is calculated.

まず、ステップ124では図31のステップ112、113と同様にして、吸気バルブ開時期での燃焼室内温度TIVO[K](上記(22)式により算出済み)、吸気バルブ開時期での燃焼室内圧力PIVO[kPa](上記(12)式により算出済み)、吸気バルブ開時期での燃焼室内容積VIVO[m^3](上記(7)式により算出済み)、排気ガス定数REX[kJ/mol/K](上記(6)式により算出済み)、エンジン回転速度Ne[rpm]、吸気バルブ開時期IVO[degCA]、排気バルブ閉時期EVC[degCA]、吸気バルブ開時期IVOでの燃焼室内ガス量MR1[kg](上記(1)式により算出済み)を読み込み、ステップ125で図31のステップ113と同様にして、吸気バルブ開時期での燃焼室内温度TIVO、吸気バルブ開時期での燃焼室内圧力PIVO、吸気バルブ開時期での燃焼室内容積VIVO、排気ガス定数REX、エンジン回転速度Neを用い吸気バルブ開時期での排気バルブ周りガス流量(dm/dθ)ivo[kg/degCA]を上記(64)式により算出する。   First, in step 124, as in steps 112 and 113 in FIG. 31, the combustion chamber temperature TIVO [K] at the intake valve opening timing (calculated by the above equation (22)), the combustion chamber pressure at the intake valve opening timing. PIVO [kPa] (calculated by the above equation (12)), combustion chamber volume VIVO [m ^ 3] at the intake valve opening timing (calculated by the above equation (7)), exhaust gas constant REX [kJ / mol / K] (calculated by the above equation (6)), engine rotational speed Ne [rpm], intake valve opening timing IVO [degCA], exhaust valve closing timing EVC [degCA], and intake valve opening timing IVO MR1 [kg] (calculated by the above equation (1)) is read, and in step 125, the combustion chamber at the intake valve opening timing is the same as in step 113 of FIG. The exhaust gas flow around the exhaust valve at the intake valve opening timing (dm /) using the temperature TIVO, the combustion chamber pressure PIVO at the intake valve opening timing, the combustion chamber volume VIVO at the intake valve opening timing, the exhaust gas constant REX, and the engine speed Ne. dθ) ivo [kg / degCA] is calculated by the above equation (64).

ステップ126では、この吸気バルブ開時期での排気バルブ周りガス流量(dm/dθ)ivo、排気バルブ閉時期EVC、吸気バルブ開時期IVOを用いて上記の(58)式により吸気バルブ開期間と排気バルブ開期間のオーバーラップ中の吹き出しガス量M23[kg]を算出し、ステップ127でこの吸気バルブ開期間と排気バルブ開期間のオーバーラップ中の吹き出しガス量M23を吸気バルブ開時期IVOでの燃焼室内ガス量MR1に加算した値を、上記(ろ)の波形となるときの、排気バルブ開期間と吸気バルブ開期間のオーバーラップ終了後の燃焼室内残留ガス量として、つまり次式により上記(ろ)の波形となるときの、排気バルブ開期間と吸気バルブ開期間のオーバーラップ終了後の燃焼室内残留ガス量[kg]を算出する。   In step 126, the intake valve opening period and the exhaust gas according to the above equation (58) using the exhaust gas flow around the exhaust valve (dm / dθ) ivo, the exhaust valve closing timing EVC, and the intake valve opening timing IVO at the intake valve opening timing. The amount of blown gas M23 [kg] during the overlap of the valve opening period is calculated, and in step 127, the amount of blown gas M23 during the overlap of the intake valve opening period and the exhaust valve opening period is burned at the intake valve opening timing IVO. The value added to the indoor gas amount MR1 is the residual gas amount in the combustion chamber after the overlap between the exhaust valve open period and the intake valve open period when the waveform of the above (B) is obtained. The residual gas amount [kg] in the combustion chamber after the overlap between the exhaust valve opening period and the intake valve opening period is calculated.

燃焼室内残留ガス量=MR1+M23 …(69)
一方、図32のステップ123で波形判定フラグ=2でないときには図33のステップ128に進み、波形判定フラグ=3であるか否かをみる。波形判定フラグ=3であるときにはステップ129以降に進んで上記(は)の波形となるときの、排気バルブ開期間と吸気バルブ開期間のオーバーラップ終了後の燃焼室内残留ガス量を算出する。
Residual gas amount in combustion chamber = MR1 + M23 (69)
On the other hand, when the waveform determination flag is not 2 in step 123 of FIG. 32, the process proceeds to step 128 of FIG. 33 to check whether or not the waveform determination flag is 3. When the waveform determination flag = 3, the routine proceeds to step 129 and subsequent steps, and the amount of residual gas in the combustion chamber after the end of the overlap between the exhaust valve open period and the intake valve open period is calculated.

まず、ステップ129、130では図31のステップ112、113と同様にして、吸気バルブ開時期での燃焼室内温度TIVO[K](上記(22)式により算出済み)、吸気バルブ開時期での燃焼室内圧力PIVO[kPa](上記(12)式により算出済み)、吸気バルブ開時期での燃焼室内容積VIVO[m^3](上記(7)式により算出済み)、排気ガス定数REX[kJ/mol/K](上記(6)式により算出済み)、エンジン回転速度Ne[rpm]、クランク角θ2での排気バルブ開口面積Aex[m^2](図18で説明したところに従って算出済)、平均排気圧力PEX[kPa](上記(20)式により算出済)、排気温度TEX[K](上記(23)式により算出済)、流量比RMF2[−](上記(補21)式により算出済)、比熱比κ[−](上記(19)式によりまたは図28より算出済)、吸気バルブ開時期IVO[degCA]、排気バルブ閉時期EVC[degCA]、吸気バルブ開時期IVOでの燃焼室内ガス量MR1[kg]を読み込み、吸気バルブ開時期での燃焼室内温度TIVO、吸気バルブ開時期での燃焼室内圧力PIVO、吸気バルブ開時期での燃焼室内容積VIVO、排気ガス定数REX、エンジン回転速度Neを用いて吸気バルブ開時期での排気バルブ周りガス流量(dm/dθ)ivo[kg/degCA]を上記(64)式により算出する。   First, in steps 129 and 130, similarly to steps 112 and 113 in FIG. 31, the combustion chamber temperature TIVO [K] at the intake valve opening timing (calculated by the above equation (22)), the combustion at the intake valve opening timing. Indoor pressure PIVO [kPa] (calculated by the above equation (12)), combustion chamber volume VIVO [m ^ 3] at the intake valve opening timing (calculated by the above equation (7)), exhaust gas constant REX [kJ / mol / K] (calculated according to the above equation (6)), engine rotational speed Ne [rpm], exhaust valve opening area Aex [m ^ 2] at the crank angle θ2 (calculated according to the description in FIG. 18), Average exhaust pressure PEX [kPa] (calculated by the above equation (20)), exhaust temperature TEX [K] (calculated by the above equation (23)), flow rate ratio RMF2 [−] (above (supplement 21)) ), The specific heat ratio κ [−] (calculated from the above equation (19) or from FIG. 28), the intake valve opening timing IVO [degCA], the exhaust valve closing timing EVC [degCA], and the intake valve opening timing IVO. Of combustion chamber gas amount MR1 [kg], combustion chamber temperature TIVO at intake valve opening timing, combustion chamber pressure PIVO at intake valve opening timing, combustion chamber volume VIVO at intake valve opening timing, exhaust gas constant REX, Using the engine speed Ne, the exhaust gas flow around the exhaust valve (dm / dθ) ivo [kg / degCA] at the intake valve opening timing is calculated by the above equation (64).

ステップ131では、この吸気バルブ開時期での排気バルブ周りガス流量(dm/dθ)ivo、吸気バルブ開時期IVO、排気上死点θTDCを用いて直線1を与える関数y1を上記(59)式により算出する。   In step 131, a function y1 that gives a straight line 1 using the gas flow around the exhaust valve (dm / dθ) ivo at the intake valve opening timing, the intake valve opening timing IVO, and the exhaust top dead center θTDC is expressed by the above equation (59). calculate.

ステップ132では、クランク角θ2での排気バルブ開口面積Aex、平均排気圧力PEX、排気ガス定数REX、排気温度TEX、流量比RMF2、比熱比κ、エンジン回転速度Neを用いて、点dの排気バルブ周りガス流量(dm/dθ)d[kg/degCA]を上記(66)式により算出し、ステップ133でこの点dの排気バルブ周りガス流量(dm/dθ)d、排気バルブ閉時期EVC、吸気バルブ開時期IVOを用いて、直線2を与える関数y2を上記(67)式により算出する。   In step 132, the exhaust valve opening point Aex at the crank angle θ2, the average exhaust pressure PEX, the exhaust gas constant REX, the exhaust temperature TEX, the flow rate ratio RMF2, the specific heat ratio κ, and the engine rotational speed Ne are used to set the exhaust valve at the point d. The surrounding gas flow rate (dm / dθ) d [kg / degCA] is calculated by the above equation (66), and in step 133, the exhaust valve surrounding gas flow rate (dm / dθ) d at this point d, the exhaust valve closing timing EVC, the intake air Using the valve opening timing IVO, a function y2 that gives a straight line 2 is calculated by the above equation (67).

ステップ134ではこの(67)式と上記の(66)式とを連立させて解き、その解であるクランク角θを点cのクランク角θ1[degCA]として算出する。   In step 134, the equation (67) and the above equation (66) are solved simultaneously, and the crank angle θ as the solution is calculated as the crank angle θ1 [degCA] at the point c.

ステップ135では、点cのクランク角θ1を上記(67)式または上記(65)式のクランク角θに代入することにより、点cの排気バルブ周りガス流量(dm/dθ)c[kg/degCA]を算出する。   In step 135, by substituting the crank angle θ1 at the point c into the crank angle θ in the above equation (67) or (65), the gas flow around the exhaust valve at the point c (dm / dθ) c [kg / degCA]. ] Is calculated.

ステップ136、137では、このようにして求めた吸気バルブ開時期での排気バルブ周りガス流量(dm/dθ)ivo、点cの排気バルブ周りガス流量(dm/dθ)c、点cのクランク角θ1、吸気バルブ開時期IVO、排気バルブ閉時期EVCを用いて、上記(61)、(62)式により、吸気バルブ開期間と排気バルブ開期間のオーバーラップ中の排気ポート11から燃焼室5内への吹き返しガス量M25[kg]、M26[kg]を算出し、ステップ138でこれら2つのオーバーラップ中の吹き返しガス量M25、M26を吸気バルブ開時期IVOでの燃焼室内ガス量MR1に加算した値を上記(は)の波形となるときの、排気バルブ開期間と吸気バルブ開期間のオーバーラップ終了後の燃焼室内残留ガス量として、つまり次式により上記(は)の波形となるときの、排気バルブ開期間と吸気バルブ開期間のオーバーラップ終了後の燃焼室内残留ガス量[kg]を算出する。   In steps 136 and 137, the exhaust valve surrounding gas flow rate (dm / dθ) ivo at the intake valve opening timing determined in this way, the exhaust valve surrounding gas flow rate (dm / dθ) c at point c, and the crank angle at point c Using θ1, the intake valve opening timing IVO, and the exhaust valve closing timing EVC, from the exhaust port 11 during the overlap between the intake valve opening period and the exhaust valve opening period, the above equation (61) and (62) The blowback gas amounts M25 [kg] and M26 [kg] are calculated, and in step 138, the blowback gas amounts M25 and M26 in the two overlaps are added to the combustion chamber gas amount MR1 at the intake valve opening timing IVO. As the amount of residual gas in the combustion chamber after the overlap between the exhaust valve opening period and the intake valve opening period when the value becomes the waveform of the above (ha), that is, by the following equation The amount of residual gas [kg] in the combustion chamber after the end of the overlap between the exhaust valve opening period and the intake valve opening period when the above waveform (ha) is obtained is calculated.

燃焼室内残留ガス量=MR1+M25+M26 …(70)
ここで、本発明の第6実施形態の作用効果を説明する。
Residual gas amount in combustion chamber = MR1 + M25 + M26 (70)
Here, the function and effect of the sixth embodiment of the present invention will be described.

排気バルブ開期間と吸気バルブ開期間のオーバーラップ中の排気バルブ周りガス流量の波形には、排気ポート11から燃焼室5内へのガスの吹き返しと燃焼室5内から排気ポート11へのガスの吹き出しの両方が存在する場合の波形の外に、排気ポート11から燃焼室5内へのガスの吹き返しのみしか存在しない場合の波形と、燃焼室5内から排気ポート11へのガスの吹き出しのみしか存在しない場合の波形とがあることを新たに発見した。この新たに発見した現象を解析してみたところ、燃焼室5内から排気ポート11へのガスの吹き出しのみしか存在しない場合の波形となるのは燃焼室内圧力が排気行程で圧縮されているためであることを、また排気ポート11から燃焼室5内へのガスの吹き返しのみしか存在しない場合の波形となるのは燃焼室内圧力が排気行程で圧縮されていないためであることを見出した。   The waveform of the gas flow around the exhaust valve during the overlap between the exhaust valve opening period and the intake valve opening period includes the return of gas from the exhaust port 11 into the combustion chamber 5 and the gas flow from the combustion chamber 5 to the exhaust port 11. In addition to the waveform when both of the blowouts exist, only the waveform when there is only gas blowback from the exhaust port 11 into the combustion chamber 5 and only the gas blowout from the combustion chamber 5 to the exhaust port 11 are provided. We have newly discovered that there is a waveform when it does not exist. When this newly discovered phenomenon is analyzed, the waveform when only the gas blowout from the combustion chamber 5 to the exhaust port 11 is present is because the pressure in the combustion chamber is compressed in the exhaust stroke. It has been found that the fact that there is only a waveform when there is only gas blowback from the exhaust port 11 into the combustion chamber 5 is because the pressure in the combustion chamber is not compressed in the exhaust stroke.

本発明の第6実施形態はこうした新たに見出した事項に基づいてなされたもので、本発明の第6実施形態によれば、ピストン6の動きに伴う燃焼室内容積変化量と、排気バルブ通過可能なガス量とに基づいて燃焼室内圧力が排気行程で圧縮される場合であるのか圧縮されない場合であるのかを判定し(図29のステップ108〜110参照)、この判定結果により燃焼室内圧力が排気行程で圧縮される場合に、燃焼室5内から排気ポート11への吹き出しガス量M23を算出し(図32のステップ123、126参照)、吸気バルブ開時期IVOでの燃焼室内ガス量MR1とこの吹き出しガス量M23とから排気バルブ開期間と吸気バルブ開期間のオーバーラップ終了後の燃焼室内残留ガス量を推定し(図32のステップ127参照)、前記判定結果により燃焼室内圧力が排気行程で圧縮されない場合に、排気ポート11から燃焼室5内への吹き返しガス量(M25、M26)を算出し(図33のステップ128、136、137参照)、吸気バルブ開時期IVOでの燃焼室内ガス量MR1とこの吹き返しガス量(M25、M26)とから排気バルブ開期間と吸気バルブ開期間のオーバーラップ終了後の燃焼室内残留ガス量を推定する(図33のステップ138参照)ので、燃焼室5内から排気ポート11へのガスの吹き出しのみしか存在しない場合(燃焼室内圧力が排気行程で圧縮されている場合)の波形となるときや、排気ポート11から燃焼室5内へのガスの吹き返しのみしか存在しない場合(燃焼室内圧力が排気行程で圧縮されていない場合)の波形となるときにも排気バルブ開期間と吸気バルブ開期間のオーバーラップ終了後の燃焼室内残留ガス量を精度良く推定することができる。   The sixth embodiment of the present invention has been made based on these newly found matters. According to the sixth embodiment of the present invention, the amount of change in the combustion chamber volume associated with the movement of the piston 6 and the exhaust valve can be passed. On the basis of the amount of gas, it is determined whether the pressure in the combustion chamber is compressed in the exhaust stroke or not (see Steps 108 to 110 in FIG. 29). When compressed in the stroke, the amount M23 of gas blown out from the combustion chamber 5 to the exhaust port 11 is calculated (see steps 123 and 126 in FIG. 32), and the combustion chamber gas amount MR1 at the intake valve opening timing IVO and this The amount of residual gas in the combustion chamber after the overlap between the exhaust valve open period and the intake valve open period is estimated from the blown-out gas amount M23 (see step 127 in FIG. 32). When the pressure in the combustion chamber is not compressed in the exhaust stroke according to the fixed result, the amount of blown back gas (M25, M26) from the exhaust port 11 into the combustion chamber 5 is calculated (see steps 128, 136, and 137 in FIG. 33), and the intake air From the combustion chamber gas amount MR1 at the valve opening timing IVO and the blowback gas amounts (M25, M26), the residual gas amount in the combustion chamber after the overlap between the exhaust valve opening period and the intake valve opening period is estimated (FIG. 33). (See step 138). Therefore, when only a gas blowout from the combustion chamber 5 to the exhaust port 11 is present (when the pressure in the combustion chamber is compressed in the exhaust stroke), or when combustion occurs from the exhaust port 11 Even when only the gas is blown back into the chamber 5 (when the pressure in the combustion chamber is not compressed in the exhaust stroke), the exhaust The combustion chamber residual gas amount of overlap after the end of the probe opening period and an intake valve open period can be accurately estimated.

本発明の第6実施形態によれば、吸気バルブ用VTC機構27(吸気バルブの開閉時期を変化させ得る吸気バルブ開閉時期可変機構)と、排気バルブ用VTC機構28(排気バルブの開閉時期を変化させ得る排気バルブ開閉時期可変機構)とを備え、燃焼室内圧力が排気行程で圧縮される場合であるのか圧縮されない場合であるのかを判定する判定手段は、排気上死点を含む所定クランク角範囲の排気バルブ開口面積Aex2(排気バルブ開閉時期)と、エンジンの運転状態(ピストン6の動きに伴う排気上死点付近での燃焼室内容積変化量dV/dθ、エンジン回転速度Ne、排気のガス定数REX、平均排気温度TEX、比熱比κ、空気抵抗係数CD)とに基づいて燃焼室5内から排気ポート11に吹き出すガスの流れがチョーク状態になるか否かを判定する判定手段(図29のステップ107、108、図34参照)であり、燃焼室5内から排気ポート11に吹き出すガスの流れがチョーク状態になる場合に燃焼室内圧力が排気行程で圧縮される場合であると(図29のステップ108、109参照)、燃焼室5内から排気ポート11に吹き出すガスの流れがチョーク状態になっていない場合に燃焼室内圧力が排気行程で圧縮されない場合であると(図29のステップ108、110参照)判定するので、燃焼室内圧力が排気行程で圧縮される場合であるのか圧縮されない場合であるのかを精度良く判定することができる。 According to the sixth embodiment of the present invention, the intake valve VTC mechanism 27 (intake valve opening / closing timing variable mechanism that can change the opening / closing timing of the intake valve) and the exhaust valve VTC mechanism 28 (changes the opening / closing timing of the exhaust valve). And a determination means for determining whether the pressure in the combustion chamber is compressed in the exhaust stroke or not compressed is a predetermined crank angle range including an exhaust top dead center. Exhaust valve opening area Aex2 (exhaust valve opening / closing timing) and engine operating state (amount of change in combustion chamber volume dV / dθ near exhaust top dead center due to movement of piston 6, engine rotational speed Ne, exhaust gas constant) On the basis of REX, average exhaust temperature TEX, specific heat ratio κ, air resistance coefficient C D ), the flow of gas blown out from the combustion chamber 5 to the exhaust port 11 becomes choked. Determination means (see Steps 107, 108 and FIG. 34 in FIG. 29), and when the flow of gas blown from the combustion chamber 5 to the exhaust port 11 is in a choke state, the pressure in the combustion chamber is exhausted. In the case of compression in the stroke (see steps 108 and 109 in FIG. 29), the pressure in the combustion chamber is compressed in the exhaust stroke when the flow of gas blown out from the combustion chamber 5 to the exhaust port 11 is not choked. Since it is determined that this is not the case (see steps 108 and 110 in FIG. 29), it is possible to accurately determine whether the pressure in the combustion chamber is compressed in the exhaust stroke or not.

本発明の第6実施形態によれば、排気バルブ開閉時期可変機構28を備え、燃焼室内圧力が排気行程で圧縮される場合であるのか圧縮されない場合であるのかを判定する判定手段は、この排気バルブ開閉時期可変機構に与える指令値である排気VTC変換角と、エンジン回転速度Neとに基づいて燃焼室5内から排気ポート11に吹き出すガスの流れがチョーク状態になるか否かを判定する判定手段(図29のステップ107、108、図34参照)であり、燃焼室内から排気ポートに吹き出すガスの流れがチョーク状態になる場合に前記燃焼室内圧力が排気行程で圧縮される場合であると(図29のステップ108、109参照)、燃焼室内から排気ポートに吹き出すガスの流れがチョーク状態になっていない場合に前記燃焼室内圧力が排気行程で圧縮されない場合であると(図29のステップ108、110参照)判定するので、エンジンコントローラ31への演算負荷を大きくすることなく燃焼室内圧力が排気行程で圧縮される場合であるのか圧縮されない場合であるのかを簡易に判定することができる。   According to the sixth embodiment of the present invention, the exhaust valve opening / closing timing variable mechanism 28 is provided, and the determination means for determining whether the pressure in the combustion chamber is compressed or not in the exhaust stroke is the exhaust gas. Determination for determining whether or not the flow of gas blown from the combustion chamber 5 to the exhaust port 11 is in a choked state based on the exhaust VTC conversion angle that is a command value given to the valve opening / closing timing variable mechanism and the engine speed Ne. Means (see steps 107 and 108 in FIG. 29, FIG. 34), and the pressure in the combustion chamber is compressed in the exhaust stroke when the flow of gas blown out from the combustion chamber to the exhaust port becomes choked ( 29 (see steps 108 and 109 in FIG. 29), the pressure in the combustion chamber is discharged when the flow of gas blown from the combustion chamber to the exhaust port is not choked. Since it is determined that the compression is not performed in the stroke (see steps 108 and 110 in FIG. 29), it is determined whether the pressure in the combustion chamber is compressed in the exhaust stroke without increasing the calculation load on the engine controller 31. It is possible to easily determine whether this is the case.

本発明の第6実施形態によれば、燃焼室5内から排気ポート11に吹き出すガスの流れがチョーク状態になるか否かを判定する判定手段が、燃焼室内容積変化量が排気バルブ通過可能なガス量と等しくなるクランク角を、燃焼室5内から排気ポート11に吹き出すガスの流れがチョーク状態を開始するクランク角CACOMPとして算出し(図29のステップ107参照)、この算出したチョーク状態開始クランク角CACOMPに基づいて燃焼室5内から排気ポート11に吹き出すガスの流れがチョーク状態になるか否かを判定する手段(図29のステップ108参照)であるので、燃焼室5内の実際のガス状態に応じて燃焼室内圧力が排気行程で圧縮される場合であるか否かの判定を行うことができる。   According to the sixth embodiment of the present invention, the determination means for determining whether or not the flow of gas blown out from the combustion chamber 5 to the exhaust port 11 is in a choke state allows the volume change in the combustion chamber to pass through the exhaust valve. A crank angle equal to the amount of gas is calculated as a crank angle CACOMP at which the gas flow blown from the combustion chamber 5 to the exhaust port 11 starts a choke state (see step 107 in FIG. 29), and the calculated choke state start crank is calculated. This is means for determining whether or not the flow of gas blown from the combustion chamber 5 to the exhaust port 11 is choked based on the angle CACOMP (see step 108 in FIG. 29), so that the actual gas in the combustion chamber 5 It can be determined whether or not the pressure in the combustion chamber is compressed in the exhaust stroke according to the state.

本発明の第6実施形態によれば、チョーク状態開始クランク角CACOMPが吸気バルブ開時期IVOと等しいか吸気バルブ開時期IVOより進角側にあるとき燃焼室5内から排気ポート11に吹き出すガスの流れがチョーク状態になると、またチョーク状態開始クランク角CACOMPが吸気バルブ開時期IVOより遅角側にあるとき燃焼室5内から排気ポート11に吹き出すガスの流れがチョーク状態にないと判定するので(図29のステップ108〜110参照)、チョーク状態になるか否かを正確に判定できる。   According to the sixth embodiment of the present invention, when the choke state start crank angle CACOMP is equal to the intake valve opening timing IVO or on the advance side of the intake valve opening timing IVO, the gas blown out from the combustion chamber 5 to the exhaust port 11 is discharged. When the flow becomes choked, and when the choke state start crank angle CACOMP is on the retard side from the intake valve opening timing IVO, it is determined that the flow of gas blown out from the combustion chamber 5 to the exhaust port 11 is not in the choke state ( 29 (see steps 108 to 110 in FIG. 29), it can be accurately determined whether or not the choke state is reached.

本発明の第6実施形態によれば、燃焼室内圧力が排気行程で圧縮されない場合に、排気バルブ16が閉じる前に排気バルブ周りガス流量がゼロとなるときのクランク角(例えば排気上死点)と吸気バルブ開時期IVOでの排気バルブ周りガス流量((dm/dθ)ivo)とによって設定される直線1(図33のステップ131のy1参照)と、排気バルブ閉時期EVCと所定クランク角θ2における排気バルブ周りガス流量((dm/dθ)d)とによって設定される直線2(図33のステップ133のy2参照)とを算出し、排気ポート11から燃焼室5内への吹き返しガス量(M25、M26)を、少なくとも前記直線1と直線2とを用いて算出するので(図33のステップ134〜137参照)、排気ポート11から燃焼室5内への吹き返しのみしか存在しない場合の波形となるときに、排気ポート11から燃焼室5内への吹き返しガス量(M25、M26)を精度良く算出できる。   According to the sixth embodiment of the present invention, when the pressure in the combustion chamber is not compressed in the exhaust stroke, the crank angle (for example, exhaust top dead center) when the gas flow around the exhaust valve becomes zero before the exhaust valve 16 is closed. And a straight line 1 (see y1 of step 131 in FIG. 33), an exhaust valve closing timing EVC and a predetermined crank angle θ2 set by the exhaust valve surrounding gas flow rate ((dm / dθ) ivo) at the intake valve opening timing IVO. A straight line 2 (see y2 of step 133 in FIG. 33) set by the gas flow around the exhaust valve ((dm / dθ) d) in FIG. 33 is calculated, and the amount of blowback gas from the exhaust port 11 into the combustion chamber 5 ( M25 and M26) are calculated using at least the straight line 1 and the straight line 2 (see steps 134 to 137 in FIG. 33), so that the blowback from the exhaust port 11 into the combustion chamber 5 is performed. When only a waveform is present, the amount of blown back gas (M25, M26) from the exhaust port 11 into the combustion chamber 5 can be accurately calculated.

燃焼室内圧力が排気行程で圧縮されない場合に、排気バルブ16が閉じる前に排気バルブ周りガス流量がゼロとなるときのクランク角θ0は、運転条件の相違で排気上死点より微妙にずれる(微妙に動く)のであるが、本発明の第6実施形態によれば、排気バルブ16が閉じる前に排気バルブ周りガス流量がゼロとなるときのクランク角θ0を、エンジンの負荷と回転速度に応じて設定するので、排気バルブ16が閉じる前に排気バルブ周りガス流量がゼロとなるときのクランク角θ0が運転条件の相違で排気上死点より微妙にずれる(微妙に動く)ことがあっても、燃焼室内圧力が排気行程で圧縮されない場合における、排気バルブ周りガス流量の波形を精度良く近似することができる。   When the pressure in the combustion chamber is not compressed in the exhaust stroke, the crank angle θ0 when the gas flow rate around the exhaust valve becomes zero before the exhaust valve 16 is closed slightly deviates from the exhaust top dead center due to the difference in operating conditions (subtle However, according to the sixth embodiment of the present invention, the crank angle θ0 when the gas flow rate around the exhaust valve becomes zero before the exhaust valve 16 is closed depends on the engine load and the rotational speed. Therefore, even if the crank angle θ0 when the gas flow around the exhaust valve becomes zero before the exhaust valve 16 is closed may slightly deviate (move slightly) from the exhaust top dead center due to the difference in operating conditions, When the pressure in the combustion chamber is not compressed in the exhaust stroke, the waveform of the gas flow around the exhaust valve can be accurately approximated.

燃焼室内圧力が排気行程で圧縮されない場合に、排気バルブ16が閉じる前に排気バルブ周りガス流量がゼロとなるときのクランク角θ0は全運転領域的に排気上死点付近に存在する。本発明の第6実施形態によれば、排気バルブ16が閉じる前に排気バルブ周りガス流量がゼロとなるときのクランク角θ0を排気上死点に設定するので、排気バルブが閉じる前に排気バルブ周りガス流量がゼロとなるときのクランク角θ0を、エンジンの負荷と回転速度に応じて設定する場合よりもメモリ容量を削減できる。   When the pressure in the combustion chamber is not compressed in the exhaust stroke, the crank angle θ0 when the gas flow rate around the exhaust valve becomes zero before the exhaust valve 16 is closed exists near the exhaust top dead center in the entire operation region. According to the sixth embodiment of the present invention, the crank angle θ0 when the gas flow rate around the exhaust valve becomes zero before the exhaust valve 16 is closed is set to the exhaust top dead center, so the exhaust valve is closed before the exhaust valve is closed. The memory capacity can be reduced as compared with the case where the crank angle θ0 when the surrounding gas flow rate becomes zero is set according to the engine load and the rotational speed.

本発明の第6実施形態によれば、燃焼室内圧力が排気行程で圧縮される場合に、吸気バルブ開時期での排気バルブ周りガス流量((dm/dθ)ivo)と排気バルブ閉時期EVCと吸気バルブ閉時期IVOとを用いて燃焼室5内から排気ポート11への吹き出しガス量M23を算出するので(図32のステップ125、126参照)、燃焼室5内から排気ポート11への吹き出しガス量M23を精度良く算出できる。   According to the sixth embodiment of the present invention, when the pressure in the combustion chamber is compressed in the exhaust stroke, the gas flow around the exhaust valve ((dm / dθ) ivo) at the intake valve opening timing and the exhaust valve closing timing EVC Since the amount M23 of gas blown from the combustion chamber 5 to the exhaust port 11 is calculated using the intake valve closing timing IVO (see steps 125 and 126 in FIG. 32), the gas blown from the combustion chamber 5 to the exhaust port 11 is calculated. The amount M23 can be calculated with high accuracy.

さて、吸気バルブ開時期での燃焼室内圧力PIVOは吸気バルブ開時期IVOでの排気バルブ開口面積による影響が大きい。吸気バルブ開時期IVOに排気バルブ16が十分に開いている状態では(つまり燃焼室5から排気ポート11に吹き出すガスの流れがチョーク状態にならないとき)、図25左に示したように燃焼室内圧力Pcylは排気圧力Pexと等しくなる。従って、先願装置では吸気バルブ開時期での燃焼室内圧力PIVOは、排気バルブ開度が十分大きいため排気圧力に等しいと仮定している。   The combustion chamber pressure PIVO at the intake valve opening timing is greatly influenced by the exhaust valve opening area at the intake valve opening timing IVO. When the exhaust valve 16 is sufficiently open at the intake valve opening timing IVO (that is, when the flow of gas blown from the combustion chamber 5 to the exhaust port 11 is not choked), the pressure in the combustion chamber is as shown on the left in FIG. Pcyl becomes equal to the exhaust pressure Pex. Therefore, in the prior application apparatus, it is assumed that the combustion chamber pressure PIVO at the intake valve opening timing is equal to the exhaust pressure because the exhaust valve opening is sufficiently large.

一方、吸気バルブ開時期IVOに排気バルブ16がほとんど閉じている状態になると(つまり燃焼室5から排気ポート11に吹き出すガスの流れがチョーク状態になるとき)、図25中に示したように燃焼室内容積の変化に合わせて燃焼室内圧力Pcylが変化し排気圧力Pexからの乖離が大きくなっている。このため、燃焼室5から排気ポート11に吹き出すガスの流れがチョーク状態になるときにも、吸気バルブ開時期での燃焼室内圧力PIVOが排気圧力に等しいと仮定して燃焼室内残留ガス量を推定したのでは、吸気バルブ開時期IVOでの燃焼室内圧力の排気圧力Pexからの圧力差に相当する誤差が生じてしまう。   On the other hand, when the exhaust valve 16 is almost closed at the intake valve opening timing IVO (that is, when the flow of gas blown from the combustion chamber 5 to the exhaust port 11 is choked), combustion occurs as shown in FIG. The combustion chamber pressure Pcyl changes in accordance with the change in the indoor volume, and the deviation from the exhaust pressure Pex increases. Therefore, even when the flow of gas blown from the combustion chamber 5 to the exhaust port 11 is in a choke state, the residual gas amount in the combustion chamber is estimated on the assumption that the combustion chamber pressure PIVO at the intake valve opening timing is equal to the exhaust pressure. Therefore, an error corresponding to the pressure difference from the exhaust pressure Pex of the pressure in the combustion chamber at the intake valve opening timing IVO occurs.

そこで本発明の第7実施形態では、燃焼室5から排気ポート11に吹き出すガスの流れがチョーク状態になるときの吸気バルブ開時期での燃焼室内圧力の算出方法を、燃焼室5から排気ポート11に吹き出すガスの流れがチョーク状態にならないときの吸気バルブ開時期IVOでの燃焼室内圧力の算出方法と相違させる。   Therefore, in the seventh embodiment of the present invention, a method for calculating the pressure in the combustion chamber at the intake valve opening timing when the flow of gas blown from the combustion chamber 5 to the exhaust port 11 is in the choke state is used. This is different from the calculation method of the pressure in the combustion chamber at the intake valve opening timing IVO when the flow of the gas blown into the cylinder does not enter the choke state.

次に、燃焼室5から排気ポート11に吹き出すガスの流れがチョーク状態になるときの吸気バルブ開時期での燃焼室内圧力の算出方法を説明する。   Next, a method for calculating the pressure in the combustion chamber at the intake valve opening timing when the flow of gas blown from the combustion chamber 5 to the exhaust port 11 is in the choke state will be described.

以下では、先願装置で算出している吸気バルブ開時期IVOでの燃焼室内圧力PIVOを、燃焼室5から排気ポート11に吹き出すガスの流れがチョーク状態にならないときの吸気バルブ開時期IVOでの燃焼室内圧力として扱い、また、先願装置のPIVOと区別するため、燃焼室5から排気ポート11に吹き出すガスの流れがチョーク状態になるときの吸気バルブ開時期での燃焼室内圧力を「PIVO’」で表記する。   Below, the pressure in the combustion chamber PIVO at the intake valve opening timing IVO calculated by the prior application device is the same as that at the intake valve opening timing IVO when the flow of gas blown from the combustion chamber 5 to the exhaust port 11 does not enter the choke state. In order to treat it as the pressure in the combustion chamber and to distinguish it from PIVO of the prior application device, the pressure in the combustion chamber at the opening timing of the intake valve when the flow of gas blown from the combustion chamber 5 to the exhaust port 11 is in the choked state ".

気体の状態方程式をクランク角で微分すると次の式が得られる。   When the gas equation of state is differentiated by the crank angle, the following equation is obtained.

dm/dθ=(∂m/∂P)・dP/dθ+(∂m/∂V)・dV/dθ
+(∂m/∂T)・dT/dθ+(∂m/∂R)・dR/dθ
…(71)
ただし、m:筒内ガス量[kg]
P:燃焼室内圧力[kPa]
V:燃焼室内容積[m^3]
T:燃焼室内温度[K]
R:排気ガス定数[kJ/kg/K]
θ:クランク角[degCA]
また、排気バルブ16でチョークされたときの排気バルブ周りガス流量はオリフィス流量式より次の式で表される。
dm / dθ = (∂m / ∂P) · dP / dθ + (∂m / ∂V) · dV / dθ
+ (∂m / ∂T) · dT / dθ + (∂m / ∂R) · dR / dθ
... (71)
Where m: In-cylinder gas amount [kg]
P: Combustion chamber pressure [kPa]
V: combustion chamber volume [m ^ 3]
T: Combustion chamber temperature [K]
R: exhaust gas constant [kJ / kg / K]
θ: Crank angle [degCA]
Further, the gas flow rate around the exhaust valve when choked by the exhaust valve 16 is expressed by the following equation from the orifice flow rate equation.

dm/dθ=〔CDTP/{6Ne(RT)^(1/2)}〕・{κ^(1/2)}
・〔(2/(κ+1))^{(κ+1)/2(κ−1)}〕
…(72)
ただし、CD :空気抵抗係数[−]
T :排気バルブ周り開口面積[m^2]
Ne:エンジン回転速度[rpm]
κ :比熱比[−]
(72)式は本発明の第6実施形態で前述した上記(54B)式と基本的に同じ式である。チョーク状態となり排気行程で圧縮が開始するのは(71)の排気バルブ周りガス流量が(72)式の排気バルブ周りガス流量を上回るクランク角以降であるため、(71)式と(72)式とが等しいと置いた次の式をクランク角θについて解くことでチョーク状態開始クランク角CACOMPを算出できることとなる。
dm / d [theta] = [C D A T P / {6Ne (RT) ^ (1/2)} ] · {κ ^ (1/2)}
・ [(2 / (κ + 1)) ^ {(κ + 1) / 2 (κ-1)}]
... (72)
Where C D : Air resistance coefficient [−]
A T : Opening area around the exhaust valve [m ^ 2]
Ne: Engine rotation speed [rpm]
κ: Specific heat ratio [−]
Equation (72) is basically the same as the equation (54B) described above in the sixth embodiment of the present invention. Since the gas flow rate around the exhaust valve in (71) exceeds the exhaust gas flow rate around the exhaust valve of (72), the choke state is started and the compression starts in the exhaust stroke. Therefore, the equations (71) and (72) The choke state start crank angle CACOMP can be calculated by solving the following equation with the crank angle θ equal to:

(∂m/∂P)・dP/dθ+(∂m/∂V)・dV/dθ
+(∂m/∂T)・dT/dθ+(∂m/∂R)・dR/dθ
=〔CDTP/{6Ne(RT)^(1/2)}〕・{κ^(1/2)}
・〔(2/(κ+1))^{(κ+1)/2(κ−1)}〕
…(73)
さらに考える。チョーク状態が始まるクランク角付近では温度、ガス定数の変化が少ないと仮定すると、(71)式右辺は(∂m/∂P)・dP/dθと(∂m/∂V)・dV/dθが残るため、(73)式は次のように書き換えられる。
(∂m / ∂P) · dP / dθ + (∂m / ∂V) · dV / dθ
+ (∂m / ∂T) · dT / dθ + (∂m / ∂R) · dR / dθ
= [C D A T P / {6Ne (RT) ^ (1/2)} ] · {κ ^ (1/2)}
・ [(2 / (κ + 1)) ^ {(κ + 1) / 2 (κ-1)}]
... (73)
Think further. Assuming that the change in temperature and gas constant is small near the crank angle where the choke starts, the right side of equation (71) is (∂m / ∂P) · dP / dθ and (∂m / ∂V) · dV / dθ. Therefore, equation (73) is rewritten as follows.

(∂m/∂P)・dP/dθ+(∂m/∂V)・dV/dθ
=〔CDTP/{6Ne(RT)^(1/2)}〕・{κ^(1/2)}
・〔(2/(κ+1))^{(κ+1)/2(κ−1)}〕
…(74)
ここで、気体の状態方程式であるm=PV/RTより∂m/∂P=V/RT、∂m/∂V=P/RTであるから、これらを(74)式左辺に代入すると、次式が得られる。
(∂m / ∂P) · dP / dθ + (∂m / ∂V) · dV / dθ
= [C D A T P / {6Ne (RT) ^ (1/2)} ] · {κ ^ (1/2)}
・ [(2 / (κ + 1)) ^ {(κ + 1) / 2 (κ-1)}]
... (74)
Here, since m = PVP = V / RT and ∂m / ∂V = P / RT from m = PV / RT which is the state equation of gas, substituting these into the left side of equation (74), The formula is obtained.

(V/RT)・dP/dθ+(P/RT)・dV/dθ
=〔CDTP/{6Ne(RT)^(1/2)}〕・{κ^(1/2)}
・〔(2/(κ+1))^{(κ+1)/2(κ−1)}〕
…(75)
(75)式の両辺にRTdθを乗算すると共に両辺をPVで除算すると次式が得られる。
(V / RT) · dP / dθ + (P / RT) · dV / dθ
= [C D A T P / {6Ne (RT) ^ (1/2)} ] · {κ ^ (1/2)}
・ [(2 / (κ + 1)) ^ {(κ + 1) / 2 (κ-1)}]
... (75)
When both sides of equation (75) are multiplied by RTdθ and both sides are divided by PV, the following equation is obtained.

dP/P=−dV/V
+〔{CDT(RT)^(1/2)}/(6NeV)〕・{κ^(1/2)}
・〔(2/(κ+1))^{(κ+1)/2(κ−1)}〕・dθ
…(76)
(76)式を積分すると、次式が得られる。
dP / P = -dV / V
+ [{C D A T (RT) ^ (1/2)} / (6 NeV)] · {κ ^ (1/2)}
· [(2 / (κ + 1)) ^ {(κ + 1) / 2 (κ-1)}] · dθ
... (76)
When the equation (76) is integrated, the following equation is obtained.

lnP=lnP0+lnV0−lnV
+〔{(RT)^(1/2)}/(6Ne)〕・{κ^(1/2)}
・〔(2/(κ+1))^{(κ+1)/2(κ−1)}〕
・∫(CDT/V)dθ
…(77)
ただし、P0:チョーク状態開始クランク角CACOMPでの燃焼室内圧力
[kPa]
V0:チョーク状態開始クランク角CACOMPでの燃焼室内圧力
[m^3]
上記(77)式の指数を採ると、(77)式左辺はexp(lnP)=Pとなるので、次式が得られる。
lnP = lnP0 + lnV0−lnV
+ [{(RT) ^ (1/2)} / (6Ne)] · {κ ^ (1/2)}
・ [(2 / (κ + 1)) ^ {(κ + 1) / 2 (κ-1)}]
・ ∫ (C D A T / V) dθ
... (77)
However, P0: combustion chamber pressure at choke state start crank angle CACOMP
[KPa]
V0: Combustion chamber pressure at choke state start crank angle CACOMP
[M ^ 3]
Taking the index of the formula (77), the left side of the formula (77) becomes exp (lnP) = P, so the following formula is obtained.

P=exp(lnP0+lnV0−lnV
+〔{(RT)^(1/2)}/(6Ne)〕・{κ^(1/2)}
・〔(2/(κ+1))^{(κ+1)/2(κ−1)}〕
・∫(CDT/V)dθ)
…(78)
ここで、改めて、先願装置、本発明の第6実施形態で用いられている記号と一致させるため、(78)式においてP→PIVO、V→VIVO、R→REX、T→TEX、A→Aex2の置き換えを行うことで、上記(ろ)の波形となるときの吸気バルブ開時期での燃焼室内圧力、つまり燃焼室5から排気ポート11に吹き出すガスの流れがチョーク状態になるときの吸気バルブ開時期での燃焼室内圧力PIVO’を次の式により求めることができることになった。
P = exp (lnP0 + lnV0−lnV
+ [{(RT) ^ (1/2)} / (6Ne)] · {κ ^ (1/2)}
・ [(2 / (κ + 1)) ^ {(κ + 1) / 2 (κ-1)}]
・ ∫ (C D A T / V) dθ)
... (78)
Here, in order to coincide with the symbols used in the prior application device and the sixth embodiment of the present invention, P → PIVO, V → VIVO, R → REX, T → TEX, A → By replacing Aex2, the intake valve when the pressure in the combustion chamber at the opening timing of the intake valve when the waveform of the above (b) is reached, that is, the flow of gas blown from the combustion chamber 5 to the exhaust port 11 is in a choke state. The combustion chamber pressure PIVO ′ at the opening timing can be obtained by the following equation.

PIVO’=exp(lnP0+lnV0−lnVIVO
+〔{(REX・TEX)^(1/2)}/(6Ne)〕・{κ^(1/2)}
・〔(2/(κ+1))^{(κ+1)/2(κ−1)}〕
・∫(CDAex2/V)dθ)
…(79)
ただし、P0:チョーク状態開始クランク角CACOMPでの燃焼室内圧力
[kPa]
V0:チョーク状態開始クランク角CACOMPでの燃焼室内圧力
[m^3]
VIVO:吸気バルブ開時期での燃焼室内容積[m^3]
REX :排気のガス定数[kJ/kg/K]
TEX :平均排気温度[K]
κ :比熱比[−]
Ne :エンジン回転速度[rpm]
D :空気抵抗係数[−]
Aex2:排気バルブ開口面積[m^2]
V :燃焼室内容積[m^3]
この(79)式の値と燃焼室内圧力の波形とを対応づけると、図35に示すようになる。すなわち、図35は、吸気圧力Pint、排気圧力Pex、燃焼室内圧力Pcylの圧力履歴及び吸排気バルブの各開口面積の変化を改めて示したもので、図25中に対応する。図35に示したように、チョーク状態開始クランク角CACOMPで燃焼室内圧力Pcylが排気圧力Pexから離れて上昇し、その後の吸気バルブ開時期IVOで吸気バルブ15が開かれると、そのタイミングより燃焼室内圧力Pcylは吸気圧力Pintに向けて減少している。そして、チョーク状態開始クランク角CACOMPでの燃焼室内圧力がP0、吸気バルブ開時期IVOでの燃焼室内圧力がPIVO’である。
PIVO '= exp (lnP0 + lnV0-lnVIVO
+ [{(REX · TEX) ^ (1/2)} / (6Ne)] · {κ ^ (1/2)}
・ [(2 / (κ + 1)) ^ {(κ + 1) / 2 (κ-1)}]
・ ∫ (C D Aex2 / V) dθ)
... (79)
However, P0: combustion chamber pressure at choke state start crank angle CACOMP
[KPa]
V0: Combustion chamber pressure at choke state start crank angle CACOMP
[M ^ 3]
VIVO: combustion chamber volume at opening timing of intake valve [m ^ 3]
REX: exhaust gas constant [kJ / kg / K]
TEX: Average exhaust temperature [K]
κ: Specific heat ratio [−]
Ne: Engine rotation speed [rpm]
C D : Air resistance coefficient [−]
Aex2: Exhaust valve opening area [m ^ 2]
V: combustion chamber volume [m ^ 3]
FIG. 35 shows the correspondence between the value of equation (79) and the waveform of the pressure in the combustion chamber. That is, FIG. 35 shows the changes in the pressure history of the intake pressure Pint, the exhaust pressure Pex, the pressure in the combustion chamber Pcyl, and the opening areas of the intake and exhaust valves, and corresponds to FIG. As shown in FIG. 35, when the combustion chamber pressure Pcyl rises away from the exhaust pressure Pex at the choke state start crank angle CACOMP, and the intake valve 15 is opened at the subsequent intake valve opening timing IVO, the combustion chamber starts from that timing. The pressure Pcyl decreases toward the intake pressure Pint. The pressure in the combustion chamber at the choke state start crank angle CACOMP is P0, and the pressure in the combustion chamber at the intake valve opening timing IVO is PIVO ′.

上記(79)式は、右辺のチョーク状態開始クランク角での燃焼室内圧力P0、チョーク状態開始クランク角での燃焼室内容積V0、吸気バルブ開時期での燃焼室内容積VIVO、排気のガス定数REX、平均排気温度TEX、比熱比κ、積分値∫(CDAex2/V)dθが分かれば、燃焼室5から排気ポート11に吹き出すガスの流れがチョーク状態になるときの吸気バルブ開時期での燃焼室内圧力PIVO’を求めることができることを表している。ここで、吸気バルブ開時期での燃焼室内容積VIVO、排気のガス定数REX、平均排気温度TEX、比熱比κは先願装置により既に求めている。従って、未知数として残るのは、チョーク状態開始クランク角での燃焼室内圧力P0、チョーク状態開始クランク角での燃焼室内容積V0、積分値∫(CDAex2/V)dθの3つだけである。従って、以下この3つの各未知数を検討する。 The above equation (79) is expressed by the combustion chamber pressure P0 at the choke state start crank angle on the right side, the combustion chamber volume V0 at the choke state start crank angle, the combustion chamber volume VIVO at the intake valve opening timing, the exhaust gas constant REX, If the average exhaust temperature TEX, the specific heat ratio κ, and the integral value ∫ (C D Aex2 / V) dθ are known, combustion at the intake valve opening timing when the flow of gas blown from the combustion chamber 5 to the exhaust port 11 becomes choked. This indicates that the indoor pressure PIVO ′ can be obtained. Here, the combustion chamber volume VIVO, the exhaust gas constant REX, the average exhaust gas temperature TEX, and the specific heat ratio κ at the intake valve opening timing have already been obtained by the prior application device. Therefore, there are only three remaining unknowns: the combustion chamber pressure P0 at the choke state start crank angle, the combustion chamber volume V0 at the choke state start crank angle, and the integral value ∫ (C D Aex2 / V) dθ. Therefore, each of these three unknowns will be considered below.

まず、チョーク状態開始クランク角での燃焼室内圧力P0は、図35に示したように、燃焼室内圧力Pcylが排気圧力Pexを離れるときの値であるので、先願装置における吸気バルブ開時期での燃焼室内圧力PIVOの算出方法を流用することにより、チョーク状態開始クランク角での燃焼室内圧力P0を求めることができる。すなわち、先願装置では、排気バルブ用VTC機構28を備えない場合に、吸気バルブ開時期IVOとエンジン回転速度Neから実際の充填効率のときの吸気バルブ開時期での燃焼室内圧力と平均排気圧力との差分値PCTRMを算出し、これに平均排気圧力PEXを加算して吸気バルブ開時期での燃焼室内圧力PIVOを算出し、また排気バルブ用VTC機構28を備える場合に排気温度が基準排気温度にある条件においては、吸気バルブ開時期IVOに代えて、このIVOを、排気バルブ用VTC機構28の作動によって排気バルブ開時期、排気バルブ閉時期が進角側にずれた分だけシフトした値を用いることで実際の充填効率のときの吸気バルブ開時期での燃焼室内圧力と平均排気圧力との差分値PCTRMを算出し、これに平均排気圧力PEXを加算して吸気バルブ開時期での燃焼室内圧力PIVOを算出している。そこで、先願装置の吸気バルブ開時期IVOに代えて、チョーク状態開始クランク角CACOMPを用いることで、排気バルブ用VTC機構28を備えない場合、排気バルブ用VTC機構28を備える場合のいずれの場合にもチョーク状態開始クランク角CACOMPでの燃焼室内圧力P0を算出することができる。   First, as shown in FIG. 35, the combustion chamber pressure P0 at the choke state start crank angle is a value when the combustion chamber pressure Pcyl leaves the exhaust pressure Pex. By using the calculation method of the combustion chamber pressure PIVO, the combustion chamber pressure P0 at the choke state start crank angle can be obtained. That is, in the prior application device, when the exhaust valve VTC mechanism 28 is not provided, the pressure in the combustion chamber and the average exhaust pressure at the intake valve opening timing at the actual charging efficiency from the intake valve opening timing IVO and the engine rotational speed Ne. Is calculated by adding the average exhaust pressure PEX to the combustion chamber pressure PIVO at the intake valve opening timing, and when the exhaust valve VTC mechanism 28 is provided, the exhaust temperature is the reference exhaust temperature. In this condition, instead of the intake valve opening timing IVO, a value obtained by shifting the IVO by the amount by which the exhaust valve opening timing and the exhaust valve closing timing are shifted to the advance side by the operation of the exhaust valve VTC mechanism 28 is obtained. By using this, the difference value PCTRM between the combustion chamber pressure at the intake valve opening timing and the average exhaust pressure at the actual charging efficiency is calculated, and the average exhaust By adding the force PEX calculates the combustion chamber pressure PIVO of the intake valve opening timing. Therefore, by using the choke state start crank angle CACOMP instead of the intake valve opening timing IVO of the prior application device, either the case where the exhaust valve VTC mechanism 28 is not provided or the case where the exhaust valve VTC mechanism 28 is provided is used. In addition, the combustion chamber pressure P0 at the choke state start crank angle CACOMP can be calculated.

なお、先願装置では、排気バルブ用VTC機構28を備える場合に排気温度が基準排気温度より高温側に外れる条件においても、差分値PCTRMを算出する方法を記載しているが、この場合を除外する趣旨ではない。この場合も記載すると複雑になるため省略して記載していないだけである。   The prior application device describes a method of calculating the difference value PCTRM even when the exhaust valve VTC mechanism 28 is provided and the exhaust temperature is deviated to a higher temperature than the reference exhaust temperature. However, this case is excluded. It is not the purpose. In this case as well, it will be complicated to describe, so it is simply omitted.

次に、チョーク状態開始クランク角での燃焼室容積V0は、吸気バルブ開時期での燃焼室内容積VIVOの算出方法において吸気バルブ開時期IVOに代えてチョーク状態開始クランク角CACOMPを用いることで求めることができる。すなわち、先願装置では、吸気バルブ開時期IVOから上記(7)式〜(11)式を用いて吸気バルブ開時期での燃焼室内容積VIVOを求めているので、吸気バルブ開時期IVOに代わる、チョーク状態開始クランク角CACOMPからチョーク状態開始クランク角での燃焼室容積V0を同様にして求めることができる。すなわち、チョーク状態開始クランク角CAcomp[degATDC]から、TDCからの変位量H’[m]を、
H’=((CND+ST/2)^2−(CR off−PIS off^2)^(1/2)
−(ST/2×cos(CACOMP+θoff)+(CND^2−X^2)
^(1/2))
…(補22)
ただし、CND :コンロッド長[m]、
CR off :クランクピンオフセット[m]、
PIN off:ピストンオフセット[m]、
ST :ストローク[m]、
θoff :クランク垂直位置からTDCまでの角度[deg]、
X :コンロッド大端部からピストンピン中心までの距離[m]、
の式により算出し、この算出したTDCからの変位量H’を用いて、
V0=π×D^2×H’/4+Vc …(補23)
ただし、D :ボア径[m]、
Vc:隙間容積[m^3]、
の式によりチョーク状態開始クランク角での燃焼室内容積V0[m^3]を算出する。ここで、(補22)式右辺の距離X、角度θoff、(補23)式の隙間面積Vcは、上記(9)式〜(11)式により算出する。
Next, the combustion chamber volume V0 at the choke state starting crank angle is obtained by using the choke state starting crank angle CACOMP instead of the intake valve opening timing IVO in the method of calculating the combustion chamber volume VIVO at the intake valve opening timing. Can do. That is, in the prior application device, the combustion chamber volume VIVO at the intake valve opening timing is obtained from the intake valve opening timing IVO using the above equations (7) to (11), so that the intake valve opening timing IVO is substituted. The combustion chamber volume V0 at the choke state start crank angle can be similarly determined from the choke state start crank angle CACOMP. That is, from the choke state start crank angle CAcomp [degATDC], the displacement amount H ′ [m] from the TDC is
H '= ((CND + ST / 2) ^ 2- (CR off-PIS off ^ 2) ^ (1/2)
− (ST / 2 × cos (CACOMP + θoff) + (CND ^ 2-X ^ 2)
^ (1/2))
... (Supplement 22)
Where CND: connecting rod length [m],
CR off: Crank pin offset [m],
PIN off: Piston offset [m],
ST: Stroke [m],
θoff: angle [deg] from crank vertical position to TDC,
X: distance [m] from the large end of the connecting rod to the center of the piston pin,
Using the calculated displacement amount H ′ from the TDC,
V0 = π × D ^ 2 × H ′ / 4 + Vc (Supplement 23)
Where D: bore diameter [m],
Vc: gap volume [m ^ 3],
The combustion chamber volume V0 [m ^ 3] at the choke state start crank angle is calculated by the following equation. Here, the distance X of the right side of the (complement 22) equation, the angle θoff, and the gap area Vc of the (complement 23) equation are calculated by the above equations (9) to (11).

次に、積分値∫(CDAex2/V)dθについては、空気抵抗係数CD、排気バルブ開口面積Aex2、燃焼室内容積Vがいずれもクランク角θの関数であり、チョーク状態開始クランク角CACOMPから吸気バルブ開時期IVOまでを積分範囲とする積分値であるため、チョーク状態開始クランク角CACOMPと吸気バルブ開時期IVOに依存することが分かっている。従って、まず排気バルブ用VTC機構28を備えない場合には積分値∫(CDAex2/V)dθの値は予め机上で計算しておき、チョーク状態開始クランク角CACOMPと吸気バルブ開時期IVOとをパラメータとするマップとして記憶しておく。 Next, for the integral value ∫ (C D Aex2 / V) dθ, the air resistance coefficient C D , the exhaust valve opening area Aex2, and the combustion chamber volume V are all functions of the crank angle θ, and the choke state start crank angle CACOMP It is known that it depends on the choke state start crank angle CACOMP and the intake valve opening timing IVO, since it is an integral value in the integration range from to the intake valve opening timing IVO. Accordingly, when the exhaust valve VTC mechanism 28 is not provided, the integral value ∫ (C D Aex2 / V) dθ is calculated in advance on the desk in advance, and the choke state start crank angle CACOMP and the intake valve opening timing IVO Is stored as a parameter.

また、排気バルブ用VTC機構28を備える場合には、ある一定間隔の排気VTC変換角を基準排気VTC変換角として定め、この定めた各基準排気VTC変換角ごとに積分値∫(CDAex2/V)dθの値を計算してマップを作成しておく。例えば、最小値(0degCA)、中間値(例えば15degCA)、最大値(例えば30degCA)を基準排気VTC変換角としたときの各マップの内容を図36に示す。そして、現在の排気VTC変換角が基準排気VTC変換角と一致していれば、その一致した基準排気VTC変換角でのマップを、そのときのチョーク状態開始クランク角CACOMPと吸気バルブ開時期IVOとから参照することにより、積分値∫(CDAex2/V)dθの値を算出する。現在の排気VTC変換角が基準排気VTC変換角に一致しないときには、その現在の排気VTC変換角に最も近い2つの基準排気VTC変換角を選択し、その選択した基準排気VTC変換角でのマップを参照することにより、積分値∫(CDAex2/V)dθの値をそれぞれ算出し、その2つの積分値を補間計算して、現在の排気VTC変換角に対する積分値∫(CDAex2/V)dθの値を算出する。この場合の補間計算方法は周知であるのでその説明は省略する。 When the exhaust valve VTC mechanism 28 is provided, an exhaust VTC conversion angle at a certain interval is determined as a reference exhaust VTC conversion angle, and an integral value ∫ (C D Aex2 //) is determined for each determined reference exhaust VTC conversion angle. V) A map is created by calculating the value of dθ. For example, FIG. 36 shows the contents of each map when the minimum value (0 deg CA), intermediate value (for example, 15 deg CA), and maximum value (for example, 30 deg CA) are used as the reference exhaust VTC conversion angle. If the current exhaust VTC conversion angle coincides with the reference exhaust VTC conversion angle, a map at the coincident reference exhaust VTC conversion angle is obtained by comparing the choke state start crank angle CACOMP and intake valve opening timing IVO at that time. , The value of the integral value ∫ (C D Aex2 / V) dθ is calculated. When the current exhaust VTC conversion angle does not coincide with the reference exhaust VTC conversion angle, two reference exhaust VTC conversion angles closest to the current exhaust VTC conversion angle are selected, and a map with the selected reference exhaust VTC conversion angle is displayed. by reference, the integral value ∫ (C D Aex2 / V) the values of dθ is calculated respectively, and the two integration values by interpolation calculation, the integral value for the current of the exhaust VTC conversion angle ∫ (C D Aex2 / V ) Calculate the value of dθ. Since the interpolation calculation method in this case is well known, its description is omitted.

エンジンコントローラ31で行われるこの制御を図37、図38のフローチャートに従って説明する。   This control performed by the engine controller 31 will be described with reference to the flowcharts of FIGS.

図37、図38は本発明の第7実施形態の吸気バルブ開時期での燃焼室内圧力PIVO’を算出するためのもので、本発明の第6実施形態の図29に続けて一定時間毎(例えば10ms毎)に演算する。つまり、図29は本発明の第7実施形態でもある。   37 and 38 are for calculating the combustion chamber pressure PIVO ′ at the intake valve opening timing according to the seventh embodiment of the present invention. For example, every 10 ms). That is, FIG. 29 is also a seventh embodiment of the present invention.

なお、本発明の第7実施形態では、簡単のため排気温度が基準排気温度にある場合で述べる。ただし、排気温度が基準排気温度よりも高温側に外れる場合を除外する趣旨でなく、排気温度が基準排気温度よりも高温側に外れる場合にも適用できる。   In the seventh embodiment of the present invention, the case where the exhaust temperature is at the reference exhaust temperature will be described for simplicity. However, it is not intended to exclude the case where the exhaust temperature deviates to a higher temperature side than the reference exhaust temperature, but can be applied to the case where the exhaust temperature deviates to a higher temperature side than the reference exhaust temperature.

また、先願装置では、排気バルブ用VTC機構28の非作動状態で排気バルブ開時期EVO及び排気バルブ閉時期EVCが最遅角位置にあり、排気バルブ用VTC機構28の作動時になると排気バルブ開時期EVO及び排気バルブ閉時期EVCが進角側に移動する場合で説明したが、本発明の第7実施形態では、本発明の第6実施形態と同じに、排気バルブ用VTC機構28の非作動状態で排気バルブ開時期EVO及び排気バルブ閉時期EVCが最進角位置にあり、排気バルブ用VTC機構28の作動時になると排気バルブ開時期EVO及び排気バルブ閉時期EVCが排気VTC変換角だけ遅角側に移動する場合で説明する。   In the prior application, the exhaust valve opening timing EVO and the exhaust valve closing timing EVC are in the most retarded position when the exhaust valve VTC mechanism 28 is not in operation, and when the exhaust valve VTC mechanism 28 is in operation, the exhaust valve opening timing EVO is open. Although the case where the timing EVO and the exhaust valve closing timing EVC move to the advance side has been described, in the seventh embodiment of the present invention, as in the sixth embodiment of the present invention, the exhaust valve VTC mechanism 28 is not operated. In this state, the exhaust valve opening timing EVO and the exhaust valve closing timing EVC are at the most advanced angle position, and when the exhaust valve VTC mechanism 28 is activated, the exhaust valve opening timing EVO and the exhaust valve closing timing EVC are retarded by the exhaust VTC conversion angle. The case of moving to the side will be described.

ステップ141では、平均排気圧力PEX[kPa](上記(20)式により算出済み)、排気ガス定数REX[kJ/mol/K](上記(6)式により算出済み)、平均排気温度TEX[K](上記(23)式により算出済み)、排気の比熱比κ[−](上記(19)式によりまたは図28より算出済み)、実際の充填効率ITAC[%](上記(補8)式により算出済み)、吸気バルブ開時期IVO[degCA]、吸気バルブ開時期での燃焼室内容積VIVO[m^3]、エンジン回転速度Ne[rpm]、排気VTC変換角[degCA]を読み込む。排気VTC変換角、吸気バルブ開時期IVO、吸気バルブ開時期での燃焼室内容積VIVOの値は、吸気バルブ用VTC機構27、排気バルブ用VTC機構28に与えている指令値からわかる。   In step 141, the average exhaust pressure PEX [kPa] (calculated from the above equation (20)), the exhaust gas constant REX [kJ / mol / K] (calculated from the above equation (6)), the average exhaust temperature TEX [K ] (Calculated from the above equation (23)), exhaust specific heat ratio κ [−] (calculated from the above equation (19) or from FIG. 28), actual charging efficiency ITAC [%] (above (complement 8) equation) ), The intake valve opening timing IVO [degCA], the combustion chamber volume VIVO [m ^ 3] at the intake valve opening timing, the engine rotational speed Ne [rpm], and the exhaust VTC conversion angle [degCA] are read. The values of the exhaust VTC conversion angle, the intake valve opening timing IVO, and the combustion chamber volume VIVO at the intake valve opening timing are known from the command values given to the intake valve VTC mechanism 27 and the exhaust valve VTC mechanism 28.

ステップ142では、波形判定フラグ(図29により設定済み)=0であるか否かをみる。波形判定フラグ=0であるときにはまだ波形判定がなされていないので、今回の処理をそのまま終了する。   In step 142, it is checked whether or not the waveform determination flag (set according to FIG. 29) = 0. When the waveform determination flag = 0, since the waveform determination has not been made yet, the current process is terminated as it is.

波形判定フラグ=0でないときにはステップ143に進み波形判定フラグが1、2、3のいずれであるかをみる。波形判定フラグが1または3であれば上記(い)の波形となるときまたは上記(は)の波形となるとき、つまり燃焼室5から排気ポート11に吹き出すガスの流れがチョーク状態にならないときであると判断しステップ144〜149に進み、これに対して波形判定フラグ=2であるときには上記(ろ)の波形となるとき、つまり燃焼室5から排気ポート11に吹き出すガスの流れがチョーク状態になるときであると判断し図38のステップ150以降に進む。   When the waveform determination flag is not 0, the process proceeds to step 143 to check whether the waveform determination flag is 1, 2, or 3. When the waveform determination flag is 1 or 3, when the waveform (ii) is obtained or when the waveform (ha) is obtained, that is, when the flow of gas blown from the combustion chamber 5 to the exhaust port 11 is not choked. When it is determined that there is a waveform, the process proceeds to steps 144 to 149. On the other hand, when the waveform determination flag = 2, the waveform of (b) is obtained, that is, the flow of gas blown from the combustion chamber 5 to the exhaust port 11 is choked. It is determined that it is time to proceed to step 150 and after in FIG.

ステップ141〜149は、燃焼室5から排気ポート11に吹き出すガスの流れがチョーク状態にならないときの吸気バルブ開時期での燃焼室内圧力を算出する部分で、燃焼室5から排気ポート11に吹き出すガスの流れがチョーク状態にならないときの吸気バルブ開時期での燃焼室内圧力の算出方法は先願装置と同じである。   Steps 141 to 149 are portions for calculating the pressure in the combustion chamber at the intake valve opening timing when the flow of the gas blown from the combustion chamber 5 to the exhaust port 11 does not enter the choke state, and the gas blown from the combustion chamber 5 to the exhaust port 11 The calculation method of the pressure in the combustion chamber at the intake valve opening timing when the flow of the engine does not enter the choke state is the same as that of the prior application device.

まず、ステップ144で、吸気バルブ開時期IVOから排気VTC変換角を差し引いたクランク角とエンジン回転速度Neから、充填効率最小時の各クランク角での燃焼室内圧力と平均排気圧力との差分値のマップ(図6参照)を参照することにより、充填効率最小時の吸気バルブ開時期での燃焼室内圧力と平均排気圧力との差分値Pminを求める。ステップ145では、同じく吸気バルブ開時期IVOから排気VTC変換角を差し引いたクランク角とエンジン回転速度Neから、充填効率最大時の各クランク角での燃焼室内圧力と平均排気圧力との差分値のマップ(図6参照)を参照することにより、充填効率最大時の吸気バルブ開時期での燃焼室内圧力と平均排気圧力との差分値Pmaxを求める。   First, in step 144, the difference value between the combustion chamber pressure and the average exhaust pressure at each crank angle when the charging efficiency is minimum is calculated from the crank angle obtained by subtracting the exhaust VTC conversion angle from the intake valve opening timing IVO and the engine rotational speed Ne. By referring to the map (see FIG. 6), a difference value Pmin between the pressure in the combustion chamber and the average exhaust pressure at the intake valve opening timing when the charging efficiency is minimum is obtained. In step 145, the map of the difference value between the combustion chamber pressure and the average exhaust pressure at each crank angle when the charging efficiency is maximum, from the crank angle obtained by subtracting the exhaust VTC conversion angle from the intake valve opening timing IVO and the engine rotational speed Ne. By referring to (see FIG. 6), a difference value Pmax between the pressure in the combustion chamber and the average exhaust pressure at the intake valve opening timing when the charging efficiency is maximum is obtained.

ここで、吸気バルブ開時期IVOから排気VTC変換角を差し引いたクランク角を用いているのは、次の理由からである。すなわち、先願装置では、排気バルブ用VTC機構28の非作動状態で排気バルブ開時期EVO及び排気バルブ閉時期EVCが最遅角位置にあり、排気バルブ用VTC機構28の作動時になると排気バルブ開時期EVO及び排気バルブ閉時期EVCが進角側に移動する場合を対象としていたので、排気バルブ用VTC機構28の作動時には吸気バルブ開時期IVOに代えて、IVOに進角側への移動量を加算した値を用いている(図16参照)。ところが、本発明の第7実施形態では、排気バルブ用VTC機構28の非作動状態で排気バルブ開時期EVO及び排気バルブ閉時期EVCが最進角位置にあり、排気バルブ用VTC機構28の作動状態になると排気バルブ開時期EVO及び排気バルブ閉時期EVCが排気VTC変換角だけ遅角側に移動する場合を対象としているので、排気バルブ用VTC機構28の作動時には吸気バルブ開時期IVOに代えて、IVOから排気VTC変換角を減算した値を用いる必要があるためである。   Here, the crank angle obtained by subtracting the exhaust VTC conversion angle from the intake valve opening timing IVO is used for the following reason. That is, in the prior application device, the exhaust valve opening timing EVO and the exhaust valve closing timing EVC are at the most retarded position when the exhaust valve VTC mechanism 28 is not in operation, and when the exhaust valve VTC mechanism 28 is in operation, the exhaust valve opening timing EVO Since the timing EVO and the exhaust valve closing timing EVC are moved to the advance side, when the exhaust valve VTC mechanism 28 is operated, instead of the intake valve opening timing IVO, the amount of movement to the advance side is set to IVO. The added value is used (see FIG. 16). However, in the seventh embodiment of the present invention, the exhaust valve opening timing EVO and the exhaust valve closing timing EVC are at the most advanced position when the exhaust valve VTC mechanism 28 is in an inoperative state, and the exhaust valve VTC mechanism 28 is in an operating state. Then, since the exhaust valve opening timing EVO and the exhaust valve closing timing EVC are moved to the retard side by the exhaust VTC conversion angle, when the exhaust valve VTC mechanism 28 is operated, instead of the intake valve opening timing IVO, This is because it is necessary to use a value obtained by subtracting the exhaust VTC conversion angle from IVO.

ステップ146、147では実際の充填効率ITAC[%]、充填効率最小値ITACMN[%]、充填効率最大値ITACMX[%]から、
a=ITAC−ITACMN …(80)
b=ITACMX−ITAC …(81)
の式によりa、b[%]を計算し、これらa、bと上記の差分値Pmax、Pminを用いステップ148で実際の充填効率のときの吸気バルブ開時期での燃焼室内圧力と平均排気圧力との差分値PCTRM[kPa]を、
PCTRM=Pmin+(Pmax−Pmin)×a/(a+b)
…(82)
の式により算出し、この差分値PCTRMと平均排気圧力PEXとを用いステップ149で、
PIVO=PEX+PCTRM …(83)
の式により、燃焼室5から排気ポート11に吹き出すガスの流れがチョーク状態にならないときの吸気バルブ開時期での燃焼室内圧力PIVO[kPa]を算出する。
In steps 146 and 147, from the actual filling efficiency ITAC [%], the filling efficiency minimum value ITACMN [%], and the filling efficiency maximum value ITACMX [%],
a = ITAC-ITACMN (80)
b = ITACMX-ITAC (81)
The a and b [%] are calculated by the following equation, and the pressure in the combustion chamber and the average exhaust pressure at the intake valve opening timing when the actual charging efficiency is obtained in step 148 using these a and b and the above-described difference values Pmax and Pmin. The difference value PCTRM [kPa] from
PCTRM = Pmin + (Pmax−Pmin) × a / (a + b)
... (82)
In step 149 using the difference value PCTRM and the average exhaust pressure PEX,
PIVO = PEX + PCTRM (83)
The combustion chamber pressure PIVO [kPa] at the intake valve opening timing when the flow of gas blown from the combustion chamber 5 to the exhaust port 11 does not enter the choke state is calculated by the following equation.

ここで、上記(80)式、(81)式、(82)式、(83)式は、それぞれ先願装置の上記(補4)式、(補5)式、(13)式、(12)式と同じ式である。   Here, the above formulas (80), (81), (82), and (83) are the above (complement 4), (complement 5), (13), and (12) of the prior application device, respectively. ) Is the same formula.

次に、ステップ150以降について説明する。ステップ150ではチョーク状態開始クランク角CACOMP[degCA](図29により算出済み)を読み込む。図29のステップ107と同じに、エンジン回転速度と排気VTC変換角とから図34を内容とするマップを参照することによりチョーク状態開始クランク角CACOMPを算出させてもかまわない。   Next, step 150 and subsequent steps will be described. In step 150, the choke state start crank angle CACOMP [degCA] (calculated from FIG. 29) is read. As in step 107 of FIG. 29, the choke state start crank angle CACOMP may be calculated by referring to a map having the contents shown in FIG. 34 from the engine speed and the exhaust VTC conversion angle.

ステップ151〜159は燃焼室5から排気ポート11に吹き出すガスの流れがチョーク状態になるときの吸気バルブ開時期での燃焼室内圧力PIVO’を算出する部分である。このうち、ステップ151〜156での操作そのものは図37のステップ144〜149での操作と同じである。すなわち、図37のステップ144〜149では、吸気バルブ開時期IVOでの差分値PCTRMを求め、この差分値PCTRMと平均排気圧力PEXとを加算した値を吸気バルブ開時期での燃焼室内圧力PIVOとして求めたが、図38のステップ151〜156ではチョーク状態開始クランク角CACOMPでの差分値PCTRM’を求め、この差分値PCTRM’と平均排気圧力PEXとを加算した値をチョーク状態開始クランク角での燃焼室内圧力P0として求める。なお、燃焼室5から排気ポート11に吹き出すガスの流れがチョーク状態にならない場合と区別するため、差分値Pmin、Pmax、PCTRMに「’」を付ける。   Steps 151 to 159 are parts for calculating the combustion chamber pressure PIVO 'at the intake valve opening timing when the flow of gas blown from the combustion chamber 5 to the exhaust port 11 is in the choke state. Among these, the operation itself in steps 151-156 is the same as the operation in steps 144-149 of FIG. That is, in steps 144 to 149 in FIG. 37, a difference value PCTRM at the intake valve opening timing IVO is obtained, and a value obtained by adding the difference value PCTRM and the average exhaust pressure PEX is used as the combustion chamber pressure PIVO at the intake valve opening timing. In Steps 151 to 156 of FIG. 38, a difference value PCTRM ′ at the choke state start crank angle CACOMP is obtained, and a value obtained by adding the difference value PCTRM ′ and the average exhaust pressure PEX is obtained at the choke state start crank angle. Calculated as the combustion chamber pressure P0. Note that “′” is added to the difference values Pmin, Pmax, and PCTRM in order to distinguish from the case where the flow of gas blown from the combustion chamber 5 to the exhaust port 11 does not enter the choke state.

詳述すると、ステップ151で、チョーク状態開始クランク角CACOMPから排気VTC変換角を差し引いたクランク角とエンジン回転速度Neから、充填効率最小時の各クランク角での燃焼室内圧力と平均排気圧力との差分値のマップ(図6参照)を参照することにより、充填効率最小時の吸気バルブ開時期での燃焼室内圧力と平均排気圧力との差分値Pmin’を求める。ステップ152では、同じくチョーク状態開始クランク角CACOMPから排気VTC変換角を差し引いたクランク角とエンジン回転速度Neから、充填効率最大時の各クランク角での燃焼室内圧力と平均排気圧力との差分値のマップ(図6参照)を参照することにより、充填効率最大時の吸気バルブ開時期での燃焼室内圧力と平均排気圧力との差分値Pmax’を求める。   More specifically, in step 151, the combustion chamber pressure and the average exhaust pressure at each crank angle at the minimum charging efficiency are calculated from the crank angle obtained by subtracting the exhaust VTC conversion angle from the choke state start crank angle CACOMP and the engine rotational speed Ne. By referring to the difference value map (see FIG. 6), the difference value Pmin ′ between the combustion chamber pressure and the average exhaust pressure at the intake valve opening timing when the charging efficiency is minimum is obtained. In step 152, the difference value between the combustion chamber pressure and the average exhaust pressure at each crank angle at the maximum charging efficiency is calculated from the crank angle obtained by subtracting the exhaust VTC conversion angle from the choke state start crank angle CACOMP and the engine speed Ne. By referring to the map (see FIG. 6), a difference value Pmax ′ between the pressure in the combustion chamber and the average exhaust pressure at the intake valve opening timing when the charging efficiency is maximum is obtained.

ステップ153、154では実際の充填効率ITAC[%]、充填効率最小値ITACMN[%]、充填効率最大値ITACMX[%]から、
a=ITAC−ITACMN …(84)
b=ITACMX−ITAC …(85)
の式によりa、b[%]を計算し、これらa、bと上記の差分値Pmax’、Pmin’を用いステップ155で実際の充填効率のときのチョーク状態開始クランク角での燃焼室内圧力と平均排気圧力との差分値PCTRM’[kPa]を、
PCTRM’=Pmin’+(Pmax’−Pmin’)×a/(a+b)
…(86)
の式により算出し、この差分値PCTRM’と平均排気圧力PEXとを用いステップ156で、
P0=PEX+PCTRM’ …(87)
の式によりチョーク状態開始クランク角での燃焼室内圧力P0[kPa]を算出する。
In steps 153 and 154, from the actual filling efficiency ITAC [%], the filling efficiency minimum value ITACMN [%], and the filling efficiency maximum value ITACMX [%],
a = ITAC-ITACMN (84)
b = ITACMX-ITAC (85)
The a and b [%] are calculated by the following equation, and the pressure in the combustion chamber at the choke state start crank angle at the actual charging efficiency is determined in step 155 using the difference values Pmax ′ and Pmin ′. The difference value PCTRM ′ [kPa] from the average exhaust pressure is
PCTRM ′ = Pmin ′ + (Pmax′−Pmin ′) × a / (a + b)
... (86)
In step 156, using this difference value PCTRM 'and the average exhaust pressure PEX,
P0 = PEX + PCTRM '(87)
The combustion chamber pressure P0 [kPa] at the choke state start crank angle is calculated by the following equation.

ステップ157ではチョーク状態開始クランク角CACOMPから上記(補22)式、(補23)式を用いてチョーク状態開始クランク角での燃焼室内容積V0[m^3]を算出する。   In step 157, the combustion chamber volume V0 [m ^ 3] at the choke state start crank angle is calculated from the choke state start crank angle CACOMP using the above (complement 22) and (complement 23) equations.

ステップ158では吸気バルブ開時期IVOと排気VTC変換角とから図36を内容とするマップを参照(補間計算付き)することにより、積分値∫(CDAex2/V)dθの値を算出する。 In step 158, the value of the integral value D (C D Aex2 / V) dθ is calculated by referring to a map having the contents shown in FIG. 36 from the intake valve opening timing IVO and the exhaust VTC conversion angle (with interpolation calculation).

ステップ159ではこのようにして求めたチョーク状態開始クランク角での燃焼室内圧力P0、チョーク状態開始クランク角での燃焼室内容積V0、積分値∫(CDAex2/V)dθの値を用いて上記(79)式により、燃焼室5から排気ポート11に吹き出すガスの流れがチョーク状態になるときの吸気バルブ開時期での燃焼室内圧力PIVO’を算出する。 In step 159, the combustion chamber pressure P0 at the choke state start crank angle, the combustion chamber volume V0 at the choke state start crank angle, and the integral value ∫ (C D Aex2 / V) dθ described above are used. The combustion chamber pressure PIVO ′ at the opening timing of the intake valve when the flow of the gas blown from the combustion chamber 5 to the exhaust port 11 is in the choked state is calculated by the equation (79).

図39〜図41は本発明の第7実施形態の排気バルブ開期間と吸気バルブ開期間のオーバーラップ終了後(正確にはオーバーラップ終了直後)の燃焼室内残留ガス量を算出するためのもので、図37、図38に続けて一定時間毎(たとえば10ms毎)に実行する。本発明の第6実施形態の図31〜図33と同一部分には同一のステップ番号を付けている。   39 to 41 are for calculating the residual gas amount in the combustion chamber after the end of the overlap between the exhaust valve opening period and the intake valve opening period of the seventh embodiment of the present invention (more precisely, immediately after the end of the overlap). 37 and 38 are executed at regular time intervals (for example, every 10 ms). The same step numbers are assigned to the same parts as those in FIGS. 31 to 33 of the sixth embodiment of the present invention.

図39〜図41において本発明の第6実施形態と相違するのは、本発明の第6実施形態の図32のステップ124、125にPIVOとあるところを、本発明の第7実施形態の図40のステップ161、162ではPIVO’に置き換えている点だけである。すなわち、本発明の第7実施形態では、図40において波形判定フラグ=2であるとき、ステップ161に進み、燃焼室5から排気ポート11に吹き出すガスの流れがチョーク状態になるときの吸気バルブ開時期での燃焼室内圧力PIVO’を読み込み、この燃焼室5から排気ポート11に吹き出すガスの流れがチョーク状態になるときの吸気バルブ開時期での燃焼室内圧力PIVO’を用いステップ162で吸気バルブ開時期での排気バルブ周りガス流量(dm/dθ)ivo[kg/degCA]を、
(dm/dθ)ivo=VIVO×Cpa/6/Ne/REX/TIVO
+PIVO’/REX/TIVO×(Cva×IVO+Cvb)
…(88)
ただし、Cpa:燃焼室内圧力の時間微分値、(補10)式により算出済
Cva:吸気上死点付近で横軸にクランク角、縦軸に燃焼室内容積変化率 を採ったときの直線の傾き[m^3/deg^2]
Cvb:吸気上死点付近で横軸にクランク角、縦軸に燃焼室内容積変化率 を採ったときの直線の切片[m^3]
の式により算出する。
39 to 41, the sixth embodiment of the present invention is different from the sixth embodiment of the present invention in that PIVO is present in steps 124 and 125 of FIG. 32 in the sixth embodiment of the present invention. Forty steps 161 and 162 are replaced with PIVO '. That is, in the seventh embodiment of the present invention, when the waveform determination flag = 2 in FIG. 40, the routine proceeds to step 161 where the intake valve is opened when the flow of gas blown from the combustion chamber 5 to the exhaust port 11 becomes choked. The combustion chamber pressure PIVO ′ at the time is read, and the intake valve is opened at step 162 using the combustion chamber pressure PIVO ′ at the opening timing of the intake valve when the flow of gas blown from the combustion chamber 5 to the exhaust port 11 becomes choked. The gas flow around the exhaust valve at the time (dm / dθ) ivo [kg / degCA],
(Dm / dθ) ivo = VIVO × Cpa / 6 / Ne / REX / TIVO
+ PIVO '/ REX / TIVO × (Cva × IVO + Cvb)
... (88)
However, Cpa: time differential value of the pressure in the combustion chamber, already calculated by (complement 10)
Cva: slope of a straight line when the horizontal axis represents the crank angle and the vertical axis represents the rate of change in the combustion chamber volume near the intake top dead center [m ^ 3 / deg ^ 2]
Cvb: intercept of the straight line when the crank angle is plotted on the horizontal axis and the volumetric change rate in the combustion chamber is plotted on the vertical axis near the intake top dead center [m ^ 3]
It is calculated by the following formula.

ステップ126では、燃焼室5から排気ポート11に吹き出すガスの流れがチョーク状態になるときの吸気バルブ開時期での燃焼室内圧力PIVO’を用いて算出した吸気バルブ開時期での排気バルブ周りガス流量(dm/dθ)ivoを用いて、
M23=|(dm/dθ)ivo|×(EVC−IVO)/2 …(89)
ただし、(dm/dθ)ivo:吸気バルブ開時期での排気バルブ周りガス流量
[kg/degCA]
EVC :排気バルブ閉時期[degCA]
IVO :吸気バルブ開時期[degCA]
の式により吸気バルブ開期間と排気バルブ開期間のオーバーラップ中の吹き出しガス量M23[kg]を算出し、ステップ127でこの吸気バルブ開期間と排気バルブ開期間のオーバーラップ中の吹き出しガス量M23を吸気バルブ開時期IVOでの燃焼室内ガス量MR1に加算した値を、燃焼室5から排気ポート11に吹き出すガスの流れがチョーク状態になるときの排気バルブ開期間と吸気バルブ開期間のオーバーラップ終了後の燃焼室内残留ガス量として、つまり次式により燃焼室5から排気ポート11に吹き出すガスの流れがチョーク状態になるときの排気バルブ開期間と吸気バルブ開期間のオーバーラップ終了後の燃焼室内残留ガス量[kg]を算出する。
In step 126, the gas flow rate around the exhaust valve at the intake valve opening timing calculated using the combustion chamber pressure PIVO 'at the intake valve opening timing when the flow of the gas blown from the combustion chamber 5 to the exhaust port 11 becomes choked. Using (dm / dθ) ivo,
M23 = | (dm / dθ) ivo | × (EVC-IVO) / 2 (89)
However, (dm / dθ) ivo: Gas flow around the exhaust valve when the intake valve is open
[Kg / degCA]
EVC: Exhaust valve closing timing [degCA]
IVO: intake valve opening timing [degCA]
The amount of blown-out gas M23 [kg] during the overlap between the intake valve open period and the exhaust valve open period is calculated by the following equation. In step 127, the amount of blown-out gas M23 during overlap between the intake valve open period and the exhaust valve open period is calculated. Is an overlap between the exhaust valve opening period and the intake valve opening period when the flow of gas blown from the combustion chamber 5 to the exhaust port 11 is choked. The amount of residual gas in the combustion chamber after the completion, that is, the combustion chamber after the overlap between the exhaust valve opening period and the intake valve opening period when the flow of gas blown from the combustion chamber 5 to the exhaust port 11 is choked by the following equation Residual gas amount [kg] is calculated.

燃焼室内残留ガス量=MR1+M23 …(90)
ここで、本発明の第7実施形態の作用効果を説明する。
Residual gas amount in combustion chamber = MR1 + M23 (90)
Here, the function and effect of the seventh embodiment of the present invention will be described.

吸気バルブ開時期での燃焼室内圧力PIVOは吸気バルブ開時期IVOでの排気バルブ開口面積による影響が大きい。吸気バルブ開時期IVOに排気バルブ16が十分に開いている状態では(つまり燃焼室5から排気ポート11に吹き出すガスの流れがチョーク状態にならないとき)、図25左に示したように燃焼室内圧力Pcylは排気圧力Pexと等しくなる。従って、先願装置では吸気バルブ開時期での燃焼室内圧力PIVOは、排気バルブ開度が十分大きいため排気圧力に等しいと仮定していた。   The combustion chamber pressure PIVO at the intake valve opening timing is greatly influenced by the exhaust valve opening area at the intake valve opening timing IVO. When the exhaust valve 16 is sufficiently open at the intake valve opening timing IVO (that is, when the flow of gas blown from the combustion chamber 5 to the exhaust port 11 is not choked), the pressure in the combustion chamber is as shown on the left in FIG. Pcyl becomes equal to the exhaust pressure Pex. Therefore, in the prior application device, it was assumed that the pressure in the combustion chamber PIVO when the intake valve was opened was equal to the exhaust pressure because the exhaust valve opening was sufficiently large.

一方、吸気バルブ開時期IVOに排気バルブ16がほとんど閉じている状態になると(つまり燃焼室5から排気ポート11に吹き出すガスの流れがチョーク状態になるとき)、図25中、図35に示したように燃焼室内容積の変化に合わせて燃焼室内圧力Pcylが変化し(排気圧力Pexから離れて上昇し)排気圧力Pexからの乖離が大きくなっている。このため、燃焼室5から排気ポート11に吹き出すガスの流れがチョーク状態になるときにも、吸気バルブ開時期での燃焼室内圧力PIVOが排気圧力に等しいと仮定して排気バルブ開期間と吸気バルブ開期間のオーバーラップ終了後の燃焼室内残留ガス量を推定したのでは、吸気バルブ開時期IVOでの燃焼室内圧力の排気圧力Pexからの圧力差に相当する誤差が生じてしまう。   On the other hand, when the exhaust valve 16 is almost closed at the intake valve opening timing IVO (that is, when the flow of gas blown from the combustion chamber 5 to the exhaust port 11 is choked), it is shown in FIG. Thus, the combustion chamber pressure Pcyl changes with the change in the combustion chamber volume (increases away from the exhaust pressure Pex), and the deviation from the exhaust pressure Pex increases. Therefore, even when the flow of gas blown from the combustion chamber 5 to the exhaust port 11 is in a choke state, it is assumed that the combustion chamber pressure PIVO at the intake valve opening timing is equal to the exhaust pressure, and the exhaust valve opening period and the intake valve If the residual gas amount in the combustion chamber after the overlap in the open period is estimated, an error corresponding to the pressure difference from the exhaust pressure Pex of the combustion chamber pressure at the intake valve opening timing IVO occurs.

これに対して、本発明の第7実施形態(請求項1、9に記載の発明)によれば、ピストンの動きに伴う燃焼室内容積変化量と、排気バルブ通過可能なガス量とに基づいて燃焼室内圧力が排気行程で圧縮される場合であるか否かを判定し(図29のステップ108〜110参照)、この判定結果により燃焼室内圧力が排気行程で圧縮される場合に、燃焼室内容積変化量が排気バルブ通過可能なガス量と等しくなるクランク角を、燃焼室5内から排気ポート11に吹き出すガスの流れがチョーク状態を開始するクランク角CACOMPとして算出し(図37のステップ143、図38のステップ150参照)、この算出したチョーク状態開始クランク角CACOMPに基づいて燃焼室5から排気ポート11に吹き出すガスの流れがチョーク状態になるときの吸気バルブ開時期での燃焼室内圧力PIVO’を算出し(図38のステップ159参照)、この算出した燃焼室5から排気ポート11に吹き出すガスの流れがチョーク状態になるときの吸気バルブ開時期での燃焼室内圧力PIVO’に基づいて燃焼室5内から排気ポート11への吹き出しガス量M23を算出し(図39のステップ111、図40のステップ123、126参照)、吸気バルブ開時期での燃焼室内ガス量MR1とこの吹き出しガス量M23とから排気バルブ開期間と吸気バルブ開期間のオーバーラップ終了後の燃焼室内残留ガス量を推定する(図40のステップ127参照)ので、排気行程で燃焼室5から排気ポート11に吹き出すガスの流れがチョーク状態になるときにも排気バルブ開期間と吸気バルブ開期間のオーバーラップ終了後の燃焼室内残留ガス量を精度良く推定することができる。   On the other hand, according to the seventh embodiment of the present invention (the invention described in claims 1 and 9), based on the amount of change in the combustion chamber volume accompanying the movement of the piston and the amount of gas that can pass through the exhaust valve. It is determined whether or not the pressure in the combustion chamber is compressed in the exhaust stroke (see steps 108 to 110 in FIG. 29), and when the pressure in the combustion chamber is compressed in the exhaust stroke based on this determination result, the volume in the combustion chamber is determined. The crank angle at which the amount of change is equal to the amount of gas that can pass through the exhaust valve is calculated as the crank angle CACOMP at which the gas flow blown from the combustion chamber 5 to the exhaust port 11 starts the choke state (step 143 in FIG. 37, FIG. 38), the flow of the gas blown out from the combustion chamber 5 to the exhaust port 11 is changed to the choke state based on the calculated choke state start crank angle CACOMP. The combustion chamber pressure PIVO ′ at the opening timing of the intake valve is calculated (see step 159 in FIG. 38), and the intake valve when the flow of gas blown from the calculated combustion chamber 5 to the exhaust port 11 is in the choke state is calculated. Based on the combustion chamber pressure PIVO ′ at the opening timing, the amount M23 of blown gas from the combustion chamber 5 to the exhaust port 11 is calculated (see step 111 in FIG. 39 and steps 123 and 126 in FIG. 40), and the intake valve opening timing is calculated. The amount of residual gas in the combustion chamber after the overlap between the exhaust valve opening period and the intake valve opening period is estimated from the combustion chamber gas amount MR1 and the blowout gas amount M23 (see step 127 in FIG. 40). The exhaust valve open period and the intake valve open period also when the flow of gas blown from the combustion chamber 5 to the exhaust port 11 becomes choked. The combustion chamber residual gas amount after Barappu completion can be accurately estimated.

排気バルブ用VTC機構28に与える排気VTC変換角(排気バルブ開閉時期可変機構に与える指令値)が変化すると、例えば排気バルブ用VTC機構28が非作動状態から作動状態に切換えられ、排気バルブ閉時期EVCが遅角側に変化したとすると、吸気バルブ開時期IVOでの排気バルブ開口面積が変化し、チョーク状態開始クランク角CACOMPが遅角側に変化するのであるが(図34参照)、本発明の第7実施形態(請求項2に記載の発明)によれば、チョーク状態開始クランク角CACOMPをエンジン回転速度Neおよび排気VTC変換角に基づいて算出するので(図37のステップ143、図38のステップ150参照)、排気VTC変換角が変化しても、チョーク状態開始クランク角CACOMPを精度良く算出できる。   When the exhaust VTC conversion angle (command value given to the exhaust valve opening / closing timing variable mechanism) given to the exhaust valve VTC mechanism 28 changes, for example, the exhaust valve VTC mechanism 28 is switched from the non-operating state to the operating state, and the exhaust valve closing timing is changed. If the EVC changes to the retard side, the exhaust valve opening area at the intake valve opening timing IVO changes and the choke state start crank angle CACOMP changes to the retard side (see FIG. 34). According to the seventh embodiment (the invention described in claim 2), the choke state start crank angle CACOMP is calculated based on the engine rotational speed Ne and the exhaust VTC conversion angle (step 143 in FIG. 37, step 38 in FIG. 38). Even if the exhaust VTC conversion angle changes, the choke state start crank angle CACOMP can be calculated accurately.

なお、チョーク状態開始クランク角CACOMPの算出を理論的に行おうとすると、上記(73)式を扱うことになり複雑な演算を要することになってしまう。本発明の第7の実施形態(請求項2に記載の発明)では、チョーク状態開始クランク角CACOMPの値自体はエンジン回転速度Neと排気バルブ開口面積とでほぼ決まると近似し、エンジン回転速度Neと排気バルブ開口面積を知りうる排気VTC変換角とをパラメータとしてチョーク状態開始クランク角CACOMPを算出することとしているので(図34参照)、上記(73)式を扱うような複雑な演算を回避できている。   If the calculation of the choke state start crank angle CACOMP is theoretically performed, the above equation (73) is handled and a complicated calculation is required. In the seventh embodiment of the present invention (the invention according to claim 2), the value of the choke state start crank angle CACOMP itself is approximated to be substantially determined by the engine speed Ne and the exhaust valve opening area, and the engine speed Ne. Since the choke state start crank angle CACOMP is calculated using the exhaust VTC conversion angle that can know the exhaust valve opening area as a parameter (see FIG. 34), it is possible to avoid a complicated calculation that handles the above equation (73). ing.

燃焼室5から排気ポート11に吹き出すガスの流れがチョーク状態になるときの吸気バルブ開時期での燃焼室内圧力PIVO’は排気バルブ開口面積の影響を受ける。例えば、排気バルブ用VTC機構28の作動時になると、排気VTC変換角に応じて排気バルブ閉時期EVCが変化し、燃焼室5から排気ポート11に吹き出すガスの流れがチョーク状態になるときの吸気バルブ開時期での燃焼室内圧力PIVO’が排気バルブ用VTC機構28の非作動状態での値から変化する。従って、排気バルブ用VTC機構28の非作動状態で燃焼室5から排気ポート11に吹き出すガスの流れがチョーク状態になるときの吸気バルブ開時期での燃焼室内圧力PIVO’が精度良く算出されるように充填効率最小時の各クランク角での燃焼室内圧力と平均排気圧力との差分値のマップ(図6参照)及び充填効率最大時の各クランク角での燃焼室内圧力と平均排気圧力との差分値のマップ(図6参照)をマッチングしている場合において排気バルブ用VTC機構28の作動時に、排気VTC変換角を考慮することなく同じマップを用いるだけだと、排気バルブ用VTC機構28の作動時に、排気VTC変換角に応じた誤差が、燃焼室5から排気ポート11に吹き出すガスの流れがチョーク状態になるときの吸気バルブ開時期での燃焼室内圧力PIVO’の算出に生ずるのであるが、本発明の第7実施形態(請求項3に記載の発明)によれば、燃焼室5から排気ポート11に吹き出すガスの流れがチョーク状態になるときの吸気バルブ開時期での燃焼室内圧力PIVO’を、排気VTC変換角に基づいても算出するので(図38のステップ151〜156、159参照)、排気バルブ用VTC機構28の作動時にも、燃焼室5から排気ポート11に吹き出すガスの流れがチョーク状態になるときの吸気バルブ開時期での燃焼室内圧力PIVO’を精度良く算出できる。   The pressure in the combustion chamber PIVO 'at the opening timing of the intake valve when the flow of gas blown from the combustion chamber 5 to the exhaust port 11 is in the choked state is affected by the exhaust valve opening area. For example, when the exhaust valve VTC mechanism 28 is activated, the exhaust valve closing timing EVC changes in accordance with the exhaust VTC conversion angle, and the intake valve when the flow of gas blown from the combustion chamber 5 to the exhaust port 11 becomes choked. The combustion chamber pressure PIVO ′ at the opening timing changes from the value when the exhaust valve VTC mechanism 28 is in an inoperative state. Accordingly, the combustion chamber pressure PIVO ′ at the opening timing of the intake valve when the flow of gas blown from the combustion chamber 5 to the exhaust port 11 is in a choked state when the exhaust valve VTC mechanism 28 is in an inoperative state can be accurately calculated. In addition, a map (see FIG. 6) of a difference value between the combustion chamber pressure and the average exhaust pressure at each crank angle when the charging efficiency is minimum, and a difference between the combustion chamber pressure and the average exhaust pressure at each crank angle when the charging efficiency is maximum. When matching the value map (see FIG. 6), when the exhaust valve VTC mechanism 28 is operated, if the same map is used without considering the exhaust VTC conversion angle, the operation of the exhaust valve VTC mechanism 28 is performed. Sometimes, an error corresponding to the exhaust VTC conversion angle causes combustion at the intake valve opening timing when the flow of gas blown from the combustion chamber 5 to the exhaust port 11 becomes choked. This occurs in the calculation of the internal pressure PIVO '. According to the seventh embodiment of the present invention (the invention described in claim 3), when the flow of gas blown from the combustion chamber 5 to the exhaust port 11 is in a choked state. Since the combustion chamber pressure PIVO ′ at the intake valve opening timing is also calculated based on the exhaust VTC conversion angle (see steps 151 to 156 and 159 in FIG. 38), the combustion is performed even when the exhaust valve VTC mechanism 28 is operated. The combustion chamber pressure PIVO ′ at the opening timing of the intake valve when the flow of gas blown out from the chamber 5 to the exhaust port 11 becomes choked can be calculated with high accuracy.

本発明の第7実施形態(請求項4に記載の発明)によれば、ピストン6の動きに伴う燃焼室内容積変化量と、排気バルブ通過可能なガス量とに基づいて燃焼室内圧力が排気行程で圧縮される場合であるか否かを判定する判定手段は、排気上死点を含む所定クランク角範囲の排気バルブ開口面積Aex2(排気バルブ開閉時期)とエンジンの運転状態(ピストン6の動きに伴う排気上死点付近での燃焼室内容積変化量dV/dθ、エンジン回転速度Ne、排気のガス定数REX、平均排気温度TEX、比熱比κ、空気抵抗係数CD)とに基づいて燃焼室5内から排気ポート11に吹き出すガスの流れがチョーク状態になるか否かを判定する判定手段(図29のステップ107、108、図34参照)であり、燃焼室5内から排気ポート11に吹き出すガスの流れがチョーク状態になる場合に燃焼室内圧力が排気行程で圧縮される場合であると判定するので(図29のステップ108、109参照)、燃焼室内圧力が排気行程で圧縮される場合であるか否かを精度良く判定できる。 According to the seventh embodiment of the present invention (the invention described in claim 4), the pressure in the combustion chamber is set to the exhaust stroke based on the change in the volume of the combustion chamber accompanying the movement of the piston 6 and the amount of gas that can pass through the exhaust valve. The determination means for determining whether or not the engine is compressed at the exhaust valve opening area Aex2 (exhaust valve opening / closing timing) in a predetermined crank angle range including the exhaust top dead center and the operating state of the engine (movement of the piston 6). Combustion chamber 5 based on the volume change dV / dθ of the combustion chamber near the exhaust top dead center, the engine speed Ne, the exhaust gas constant REX, the average exhaust temperature TEX, the specific heat ratio κ, and the air resistance coefficient C D ). It is a judging means (see Steps 107, 108 and FIG. 34 in FIG. 29) for judging whether or not the flow of gas blown out from the inside to the exhaust port 11 is in a choke state. When it is determined that the pressure in the combustion chamber is compressed in the exhaust stroke when the flow of gas to be discharged is in the choke state (see steps 108 and 109 in FIG. 29), the pressure in the combustion chamber is compressed in the exhaust stroke. It is possible to accurately determine whether or not.

さて、本発明の第6、第7の実施形態では、吸気バルブ開期間と排気バルブ開期間のオーバーラップがあることを前提に、ピストン6が上昇する排気行程で燃焼室5内から排気ポート11に吹き出すガスの流れがチョーク状態になり、燃焼室内圧力Pcylが排気圧力Pexから離れて上昇する現象があることを説明したが、図42に示すように、吸気バルブ開期間と排気バルブ開期間のオーバーラップがないときにも、排気行程で燃焼室5内から排気ポート11に吹き出すガスの流れがチョーク状態になり、燃焼室内圧力Pcylが排気圧力Pexから離れて上昇する現象があることも見出している。   In the sixth and seventh embodiments of the present invention, on the premise that there is an overlap between the intake valve open period and the exhaust valve open period, the exhaust port 11 from the combustion chamber 5 in the exhaust stroke in which the piston 6 ascends. As described above, there is a phenomenon in which the flow of the gas blown out into the choke state and the combustion chamber pressure Pcyl increases away from the exhaust pressure Pex, but as shown in FIG. 42, the intake valve open period and the exhaust valve open period Even when there is no overlap, it has also been found that there is a phenomenon in which the flow of gas blown out from the combustion chamber 5 to the exhaust port 11 in the exhaust stroke becomes choked and the pressure Pcyl in the combustion chamber rises away from the exhaust pressure Pex. Yes.

なお、上記図35ではチョーク状態開始クランク角CACOMPより燃焼室内圧力Pcylが排気圧力Pexから離れて上昇し、その上昇途中の吸気バルブ開時期IVOで吸気バルブ15が開くためにこのIVOのタイミングより燃焼室内圧力Pcylが吸気圧力Pintに向かって急激に小さくなっていくのに対して、図42では吸気バルブ開時期IVOが排気バルブ閉時期EVCより遅れたクランク角位置にくるため、燃焼室内圧力Pcylはピークを迎えたあと吸気圧力Pintに向けてゆっくりと低下するという違いがある。   In FIG. 35, the combustion chamber pressure Pcyl rises away from the exhaust pressure Pex from the choke state start crank angle CACOMP, and the intake valve 15 is opened at the intake valve opening timing IVO in the middle of the increase. While the indoor pressure Pcyl suddenly decreases toward the intake pressure Pint, in FIG. 42, the intake valve opening timing IVO comes to a crank angle position delayed from the exhaust valve closing timing EVC, so the combustion chamber pressure Pcyl is There is a difference that after reaching the peak, it slowly decreases toward the intake pressure Pint.

ここで、先願装置では、吸気バルブ開時期での燃焼室内圧力PIVOが排気圧力に等しいと仮定して吸気バルブ開時期での燃焼室内ガス量MR1を、状態状態方程式である上記(1)式により算出し、吸気バルブ開期間と排気バルブ開期間のオーバーラップがないときにはこの吸気バルブ開時期での燃焼室内ガス量MR1をそのまま燃焼室内残留ガス量としている。すなわち、図19において吸気バルブ開期間と排気バルブ開期間のオーバーラップがないときにはM2=0となり、MR1がそのまま吸気バルブ開期間と排気バルブ開期間のオーバーラップがないときの燃焼室内残留ガス量となる。   Here, in the prior application device, assuming that the combustion chamber pressure PIVO at the intake valve opening timing is equal to the exhaust pressure, the combustion chamber gas amount MR1 at the intake valve opening timing is expressed by the above equation (1), which is a state state equation. When there is no overlap between the intake valve opening period and the exhaust valve opening period, the combustion chamber gas amount MR1 at the intake valve opening timing is directly used as the combustion chamber residual gas amount. That is, in FIG. 19, when there is no overlap between the intake valve open period and the exhaust valve open period, M2 = 0, and MR1 is the amount of residual gas in the combustion chamber when there is no overlap between the intake valve open period and the exhaust valve open period. Become.

しかしながら、上記図42のように吸気バルブ開期間と排気バルブ開期間のオーバーラップがなくても、排気行程で燃焼室5内から排気ポート11に吹き出すガスの流れがチョーク状態になり、燃焼室内圧力Pcylが排気圧力Pexから離れて上昇する現象が生じる場合にも、吸気バルブ開時期での燃焼室内圧力PIVOが排気圧力に等しいと仮定して吸気バルブ開時期での燃焼室内ガス量MR1を算出した(燃焼室内残留ガス量を推定)のでは、燃焼室内圧力Pcylの排気圧力Pexからの圧力差に相当する誤差が生じてしまう。   However, even if there is no overlap between the intake valve open period and the exhaust valve open period as shown in FIG. 42, the flow of gas blown out from the combustion chamber 5 to the exhaust port 11 in the exhaust stroke becomes a choke state, and the pressure in the combustion chamber Even when a phenomenon in which Pcyl increases away from the exhaust pressure Pex occurs, the combustion chamber gas amount MR1 at the intake valve opening timing is calculated on the assumption that the combustion chamber pressure PIVO at the intake valve opening timing is equal to the exhaust pressure. In (estimating the residual gas amount in the combustion chamber), an error corresponding to the pressure difference from the exhaust pressure Pex of the combustion chamber pressure Pcyl occurs.

そこで本発明の第8実施形態では、燃焼室5から排気ポート11に吹き出すガスの流れがチョーク状態になるときの排気バルブ閉時期での燃焼室圧力を算出し、この燃焼室5から排気ポート11に吹き出すガスの流れがチョーク状態になるときの排気バルブ閉時期での燃焼室圧力に基づいて排気バルブ閉時期での燃焼室内ガス量を算出し、この排気バルブ閉時期での燃焼室内ガス量をそのまま吸気バルブ開期間と排気バルブ開期間のオーバーラップがないときの燃焼室内残留ガス量とする。   Therefore, in the eighth embodiment of the present invention, the combustion chamber pressure at the exhaust valve closing timing when the flow of gas blown from the combustion chamber 5 to the exhaust port 11 is choked is calculated. The amount of gas in the combustion chamber at the closing timing of the exhaust valve is calculated based on the pressure of the combustion chamber at the closing timing of the exhaust valve when the flow of gas blown into the choke state, and the amount of gas in the combustion chamber at the closing timing of the exhaust valve is calculated. The residual gas amount in the combustion chamber when there is no overlap between the intake valve open period and the exhaust valve open period is used as it is.

以下では、燃焼室5から排気ポート11に吹き出すガスの流れがチョーク状態にならないときの排気バルブ閉時期での燃焼室内圧力PEVC(上記(補10)式参照)と区別するため、燃焼室5から排気ポート11に吹き出すガスの流れがチョーク状態になるときの排気バルブ閉時期での燃焼室内圧力を「PEVC’」で表記する。また、排気バルブ閉時期での燃焼室内ガス量を「MR1’」で表記する。   In the following, in order to distinguish from the combustion chamber pressure PEVC at the exhaust valve closing timing when the flow of gas blown from the combustion chamber 5 to the exhaust port 11 does not become choked (see the above (Supplement 10) formula), The pressure in the combustion chamber at the closing timing of the exhaust valve when the flow of the gas blown out to the exhaust port 11 is in the choke state is expressed as “PEVC ′”. Further, the amount of gas in the combustion chamber when the exhaust valve is closed is denoted by “MR1 ′”.

まず、燃焼室5から排気ポート11に吹き出すガスの流れがチョーク状態になるときの排気バルブ閉時期での燃焼室圧力PEVC’は、燃焼室5から排気ポート11に吹き出すガスの流れがチョーク状態になるときの排気バルブ閉時期での燃焼室圧力PIVO’の算出式である上記(79)式を流用した次の式により算出する。   First, the combustion chamber pressure PEVC ′ at the exhaust valve closing timing when the flow of gas blown from the combustion chamber 5 to the exhaust port 11 is in the choked state is the same as that of the gas blown from the combustion chamber 5 to the exhaust port 11. It is calculated by the following equation using the above equation (79), which is a calculation equation of the combustion chamber pressure PIVO ′ at the exhaust valve closing timing.

PEVC’=exp(lnP0+lnV0−lnVEVC
+〔{(REX・TEX)^(1/2)}/(6Ne)〕・{κ^(1/2)}
・〔(2/(κ+1))^{(κ+1)/2(κ−1)}〕
・∫(CDAex2/V)dθ)
…(91)
ただし、P0:チョーク状態開始クランク角CACOMPでの燃焼室内圧力
[kPa]
V0:チョーク状態開始クランク角CACOMPでの燃焼室内圧力
[m^3]
VEVC:排気バルブ閉時期での燃焼室内容積[m^3]
REX :排気のガス定数[kJ/kg/K]
TEX :平均排気温度[K]
κ :比熱比[−]
Ne :エンジン回転速度[rpm]
D :空気抵抗係数[−]
Aex2:排気バルブ開口面積[m^2]
V :燃焼室内容積[m^3]
(91)式において上記(79)式と違っているのは、吸気バルブ開時期での燃焼室容積VIVOに代えて排気バルブ閉時期での燃焼室内容積VEVCが用いられている点と、積分値∫(CDAex2/V)dθが(79)式ではチョーク状態開始クランク角CACOMPから吸気バルブ開時期IVOまでを積分範囲とする積分値であるのに対して(91)式の∫(CDAex2/V)dθはチョーク状態開始クランク角CACOMPから排気バルブ閉時期EVCまでを積分範囲とする積分値となる点だけである。ただし、(91)式における排気バルブ閉時期での燃焼室内容積VEVC、積分値∫(CDAex2/V)dθの算出方法そのものは、上記(79)式における吸気バルブ開時期での燃焼室容積VIVO、積分値∫(CDAex2/V)dθの算出方法と変わりない。
PEVC ′ = exp (lnP0 + lnV0−lnVEVC
+ [{(REX · TEX) ^ (1/2)} / (6Ne)] · {κ ^ (1/2)}
・ [(2 / (κ + 1)) ^ {(κ + 1) / 2 (κ-1)}]
・ ∫ (C D Aex2 / V) dθ)
... (91)
However, P0: combustion chamber pressure at choke state start crank angle CACOMP
[KPa]
V0: Combustion chamber pressure at choke state start crank angle CACOMP
[M ^ 3]
VEVC: combustion chamber volume at exhaust valve closing timing [m ^ 3]
REX: exhaust gas constant [kJ / kg / K]
TEX: Average exhaust temperature [K]
κ: Specific heat ratio [−]
Ne: Engine rotation speed [rpm]
C D : Air resistance coefficient [−]
Aex2: Exhaust valve opening area [m ^ 2]
V: combustion chamber volume [m ^ 3]
The difference between the equation (91) and the equation (79) is that the combustion chamber volume VEVC at the exhaust valve closing timing is used instead of the combustion chamber volume VIVO at the intake valve opening timing, and the integral value. ∫ (C D Aex2 / V) dθ is an integral value in the range from the choke state start crank angle CACOMP to the intake valve opening timing IVO in the equation (79), whereas ∫ (C D in the equation (91) Aex2 / V) dθ is only an integral value having an integration range from the choke state start crank angle CACOMP to the exhaust valve closing timing EVC. However, the calculation method of the combustion chamber volume VEVC and the integral value ∫ (C D Aex2 / V) dθ at the exhaust valve closing timing in the equation (91) is the same as the combustion chamber volume at the intake valve opening timing in the above equation (79). This is the same as the method of calculating VIVO and integral value ∫ (C D Aex2 / V) dθ.

そして、先願装置における吸気バルブ開時期での燃焼室内ガス量MR1に代えて、排気バルブ閉時期での燃焼室内ガス量MR1’を、上記(1)式を流用した次の状態方程式により算出し、この排気バルブ閉時期での燃焼室内ガス量MR1’をそのまま吸気バルブ開期間と排気バルブ開期間のオーバーラップがないときの燃焼室内残留ガス量とする。   Then, instead of the combustion chamber gas amount MR1 at the intake valve opening timing in the prior application device, the combustion chamber gas amount MR1 ′ at the exhaust valve closing timing is calculated by the following state equation using the above equation (1). The combustion chamber gas amount MR1 ′ at the exhaust valve closing timing is used as the residual gas amount in the combustion chamber when there is no overlap between the intake valve open period and the exhaust valve open period.

MR1’=PEVC’・VEVC/(REX・TEVC) …(92)
ただし、PEVC’:燃焼室から排気ポートに吹き出すガスの流れがチョーク状 態になるときの排気バルブ閉時期EVCでの燃焼室内圧力
[kPa]、
VEVC :燃焼室から排気ポートに吹き出すガスの流れがチョーク状 態になるときの排気バルブ閉時期EVCでの燃焼室内容積 [m^3]、
TEVC :燃焼室から排気ポートに吹き出すガスの流れがチョーク状 態になるときの排気バルブ閉時期EVCでの燃焼室内温度 [K]、
REX :排気のガス定数[kJ/kg/K]、
(92)式右辺の燃焼室5から排気ポート11に吹き出すガスの流れがチョーク状態になるときの排気バルブ閉時期での燃焼室内温度TEVCは、上記(22)式を流用した次の式により算出すればよい。
MR1 ′ = PEVC ′ · VEVC / (REX · TEVC) (92)
However, PEVC ': pressure in the combustion chamber at the exhaust valve closing timing EVC when the flow of gas blown from the combustion chamber to the exhaust port becomes choked
[KPa],
VEVC: combustion chamber volume at exhaust valve closing timing EVC when the flow of gas blown from the combustion chamber to the exhaust port becomes choked [m ^ 3],
TEVC: Combustion chamber temperature [K] at the exhaust valve closing timing EVC when the flow of gas blown out from the combustion chamber to the exhaust port becomes choked.
REX: exhaust gas constant [kJ / kg / K],
The combustion chamber temperature TEVC at the exhaust valve closing timing when the flow of gas blown from the combustion chamber 5 on the right side of the equation (92) into the exhaust port 11 is choked is calculated by the following equation using the above equation (22). do it.

TEVC=TEX・(PEVC’/PEX)^((κ−1)/κ)
…(93)
ただし、PEVC’:燃焼室から排気ポートに吹き出すガスの流れがチョーク状 態になるときの排気バルブ閉時期での燃焼室内圧力
[kPa]、
PEX :平均排気圧力[kPa]、(20)式にて算出済
κ :排気の比熱比、(19)式により算出済
エンジンコントローラ31で行われるこの制御を図43、図44のフローチャートに従って説明する。
TEVC = TEX · (PEVC ′ / PEX) ^ ((κ−1) / κ)
... (93)
PEVC ': Combustion chamber pressure when the exhaust valve closes when the gas flow from the combustion chamber to the exhaust port becomes choked
[KPa],
PEX: Average exhaust pressure [kPa], calculated with equation (20)
κ: specific heat ratio of exhaust gas, calculated by equation (19) This control performed by the engine controller 31 will be described with reference to the flowcharts of FIGS.

図43は本発明の第8実施形態の燃焼室5から排気ポート11に吹き出すガスの流れがチョーク状態になるときの排気バルブ閉時期での燃焼室内圧力PEVC’を算出するためのもので、一定時間毎(例えば10ms毎)に演算する。   FIG. 43 is for calculating the pressure in the combustion chamber PEVC ′ at the exhaust valve closing timing when the flow of gas blown from the combustion chamber 5 to the exhaust port 11 in the eighth embodiment of the present invention becomes choked. Calculation is performed every time (for example, every 10 ms).

ただし、本発明の第8実施形態では簡単のため、吸気バルブ開期間と排気バルブ開期間のオーバーラップがない場合において燃焼室5から排気ポート11に吹き出すガスの流れがチョーク状態になることを前提とする。なお、吸気バルブ用VTC機構27と排気バルブ用VTC機構28に与える指令値から吸気バルブ開期間と排気バルブ開期間のオーバーラップがない場合であるのか否かを判定し、吸気バルブ開期間と排気バルブ開期間のオーバーラップがない場合に、燃焼室5から排気ポート11に吹き出すガスの流れがチョーク状態になるか否かを判定し、燃焼室5から排気ポート11に吹き出すガスの流れがチョーク状態になると判定した場合にだけ、燃焼室5から排気ポート11に吹き出すガスの流れがチョーク状態になるときの排気バルブ閉時期での燃焼室内圧力PEVC’を算出する構成としてもかまわない。ここで、燃焼室5から排気ポート11に吹き出すガスの流れがチョーク状態になるか否かの判定は、次のようにすればよい。すなわち、図42のように排気バルブ閉時期EVCとなる前にチョーク状態になるので、チョーク状態開始クランク角CACOMPと排気バルブ閉時期EVCとを比較し、チョーク状態開始クランク角CACOMPが排気バルブ閉時期EVCと同じかまたは排気バルブ閉時期EVCよりも進角側にある場合に排気ポート11に吹き出すガスの流れがチョーク状態になると、またチョーク状態開始クランク角CACOMPが排気バルブ閉時期EVCより遅角側にある場合に排気ポート11に吹き出すガスの流れがチョーク状態にないとそれぞれ判定すればよい。   However, for the sake of simplicity in the eighth embodiment of the present invention, it is assumed that the flow of gas blown out from the combustion chamber 5 to the exhaust port 11 is choked when there is no overlap between the intake valve open period and the exhaust valve open period. And It is determined whether or not there is no overlap between the intake valve open period and the exhaust valve open period from the command values given to the intake valve VTC mechanism 27 and the exhaust valve VTC mechanism 28, and the intake valve open period and the exhaust valve When there is no overlap in the valve opening period, it is determined whether or not the flow of gas blown from the combustion chamber 5 to the exhaust port 11 is choked, and the flow of gas blown from the combustion chamber 5 to the exhaust port 11 is choked. The combustion chamber pressure PEVC ′ at the closing timing of the exhaust valve when the flow of gas blown from the combustion chamber 5 to the exhaust port 11 is in the choked state may be calculated only when it is determined that Here, the determination as to whether or not the flow of gas blown from the combustion chamber 5 to the exhaust port 11 is in a choked state may be as follows. That is, as shown in FIG. 42, since the choke state is reached before the exhaust valve closing timing EVC, the choke state start crank angle CACOMP is compared with the exhaust valve closing timing EVC, and the choke state start crank angle CACOMP is determined as the exhaust valve closing timing EVC. When the flow of the gas blown out to the exhaust port 11 becomes the choke state when it is the same as the EVC or at the advance side of the exhaust valve closing timing EVC, the choke state start crank angle CACOMP is retarded from the exhaust valve closing timing EVC In this case, it may be determined that the flow of the gas blown out to the exhaust port 11 is not in the choked state.

また、排気温度と排気バルブ用VTC機構28の構成とは本発明の第7実施形態と同じとする。すなわち、排気温度は基準排気温度にあるものとする。また、排気バルブ用VTC機構28の非作動状態で排気バルブ開時期EVO及び排気バルブ閉時期EVCが最進角位置にあり、排気バルブ用VTC機構28の作動時になると排気バルブ開時期EVO及び排気バルブ閉時期EVCが排気VTC変換角だけ遅角側に移動するものとする。   The exhaust temperature and the configuration of the exhaust valve VTC mechanism 28 are the same as those of the seventh embodiment of the present invention. That is, it is assumed that the exhaust temperature is at the reference exhaust temperature. The exhaust valve opening timing EVO and the exhaust valve closing timing EVC are at the most advanced position when the exhaust valve VTC mechanism 28 is not in operation, and when the exhaust valve VTC mechanism 28 is in operation, the exhaust valve opening timing EVO and the exhaust valve It is assumed that the closing timing EVC moves to the retard side by the exhaust VTC conversion angle.

ステップ171では、平均排気圧力PEX[kPa](上記(20)式により算出済み)、排気ガス定数REX[kJ/mol/K](上記(6)式により算出済み)、平均排気温度TEX[K](上記(23)式により算出済み)、排気の比熱比κ[−](上記(19)式によりまたは図28より算出済み)、実際の充填効率ITAC[%](上記(補8)式により算出済み)、排気バルブ閉時期EVC[degCA]、排気バルブ閉時期での燃焼室内容積VEVC[m^3]、エンジン回転速度Ne[rpm]、排気VTC変換角[degCA]を読み込む。排気VTC変換角、排気バルブ閉時期EVC、排気バルブ閉時期での燃焼室内容積VEVCの値は、吸気バルブ用VTC機構27、排気バルブ用VTC機構28に与えている指令値からわかる。   In step 171, the average exhaust pressure PEX [kPa] (calculated from the above equation (20)), the exhaust gas constant REX [kJ / mol / K] (calculated from the above equation (6)), the average exhaust temperature TEX [K ] (Calculated from the above equation (23)), exhaust specific heat ratio κ [−] (calculated from the above equation (19) or from FIG. 28), actual charging efficiency ITAC [%] (above (complement 8) equation) The exhaust valve closing timing EVC [degCA], the combustion chamber volume VEVC [m ^ 3], the engine rotational speed Ne [rpm], and the exhaust VTC conversion angle [degCA] at the exhaust valve closing timing are read. The values of the exhaust VTC conversion angle, the exhaust valve closing timing EVC, and the combustion chamber volume VEVC at the exhaust valve closing timing are known from the command values given to the intake valve VTC mechanism 27 and the exhaust valve VTC mechanism 28.

ステップ172では、エンジン回転速度Neと排気VTC変換角とから図34を内容とするマップを参照することにより、チョーク状態開始クランク角CACOMP[degCA]を算出する。   In step 172, the choke state start crank angle CACOMP [degCA] is calculated by referring to the map having the contents shown in FIG. 34 from the engine speed Ne and the exhaust VTC conversion angle.

ステップ173〜178での操作そのものは図37のステップ144〜149での操作と同じである。すなわち、図37のステップ144〜149では、吸気バルブ開時期IVOでの差分値PCTRMを求め、この差分値PCTRMと平均排気圧力PEXとを加算した値を吸気バルブ開時期での燃焼室内圧力PIVOとして求めたが、図43のステップ173〜178ではチョーク状態開始クランク角CACOMPでの差分値PCTRM”を求め、この差分値PCTRM”と平均排気圧力PEXとを加算した値をチョーク状態開始クランク角での燃焼室内圧力P0として求める。なお、燃焼室5から排気ポート11に吹き出すガスの流れがチョーク状態にならない場合と区別するため、差分値Pmin、Pmax、PCTRMに「”」を付ける。   The operations in steps 173 to 178 are the same as the operations in steps 144 to 149 in FIG. That is, in steps 144 to 149 in FIG. 37, a difference value PCTRM at the intake valve opening timing IVO is obtained, and a value obtained by adding the difference value PCTRM and the average exhaust pressure PEX is used as the combustion chamber pressure PIVO at the intake valve opening timing. In Steps 173 to 178 in FIG. 43, a difference value PCTRM ″ at the choke state start crank angle CACOMP is obtained, and a value obtained by adding the difference value PCTRM ″ and the average exhaust pressure PEX is obtained at the choke state start crank angle. Calculated as the combustion chamber pressure P0. In order to distinguish from the case where the flow of gas blown from the combustion chamber 5 to the exhaust port 11 is not choked, “” is added to the difference values Pmin, Pmax, and PCTRM.

詳述すると、ステップ173で、チョーク状態開始クランク角CACOMPから排気VTC変換角を差し引いたクランク角とエンジン回転速度Neから、充填効率最小時の各クランク角での燃焼室内圧力と平均排気圧力との差分値のマップ(図6参照)を参照することにより、充填効率最小時の吸気バルブ開時期での燃焼室内圧力と平均排気圧力との差分値Pmin”を求める。ステップ173では、同じくチョーク状態開始クランク角CACOMPから排気VTC変換角を差し引いたクランク角とエンジン回転速度Neから、充填効率最大時の各クランク角での燃焼室内圧力と平均排気圧力との差分値のマップ(図6参照)を参照することにより、充填効率最大時の吸気バルブ開時期での燃焼室内圧力と平均排気圧力との差分値Pmax”をめる。   More specifically, in step 173, from the crank angle obtained by subtracting the exhaust VTC conversion angle from the choke state start crank angle CACOMP and the engine rotational speed Ne, the combustion chamber pressure and the average exhaust pressure at each crank angle when the charging efficiency is minimum are calculated. By referring to the difference value map (see FIG. 6), a difference value Pmin "between the pressure in the combustion chamber and the average exhaust pressure at the intake valve opening timing when the charging efficiency is the minimum is obtained. Refer to the map (see Fig. 6) of the difference value between the combustion chamber pressure and the average exhaust pressure at each crank angle when the charging efficiency is maximum, from the crank angle obtained by subtracting the exhaust VTC conversion angle from the crank angle CACOMP and the engine speed Ne. By doing so, the difference value Pmax between the pressure in the combustion chamber and the average exhaust pressure when the intake valve is opened at the maximum charging efficiency Mel.

ステップ175、176では実際の充填効率ITAC[%]、充填効率最小値ITACMN[%]、充填効率最大値ITACMX[%]から、
a=ITAC−ITACMN …(94)
b=ITACMX−ITAC …(95)
の式によりa、b[%]を計算し、これらa、bと上記の差分値Pmax”、Pmin”を用いステップ177で実際の充填効率のときのチョーク状態開始クランク角での燃焼室内圧力と平均排気圧力との差分値PCTRM”[kPa]を、
PCTRM”=Pmin”+(Pmax”−Pmin”)×a/(a+b)
…(96)
の式により算出し、この差分値PCTRM”と平均排気圧力PEXとを用いステップ178で、
P0=PEX+PCTRM” …(97)
の式によりチョーク状態開始クランク角での燃焼室内圧力P0[kPa]を算出する。
In steps 175 and 176, from the actual filling efficiency ITAC [%], the filling efficiency minimum value ITACMN [%], and the filling efficiency maximum value ITACMX [%],
a = ITAC-ITACMN (94)
b = ITACMX-ITAC (95)
A, b [%] is calculated by the following equation, and the pressure in the combustion chamber at the choke state start crank angle at the actual charging efficiency is determined in step 177 using the difference values Pmax ″ and Pmin ″. The difference value PCTRM "[kPa] from the average exhaust pressure is
PCTRM ″ = Pmin ″ + (Pmax ″ −Pmin ″) × a / (a + b)
... (96)
In step 178, using this difference value PCTRM "and the average exhaust pressure PEX,
P0 = PEX + PCTR ”” (97)
The combustion chamber pressure P0 [kPa] at the choke state start crank angle is calculated by the following equation.

ステップ179ではチョーク状態開始クランク角CACOMPから上記(補22)式、(補23)式を用いてチョーク状態開始クランク角での燃焼室内容積V0[m^3]を算出する。   In step 179, the combustion chamber volume V0 [m ^ 3] at the choke state start crank angle is calculated from the choke state start crank angle CACOMP using the above (complement 22) and (complement 23) equations.

ステップ180では排気バルブ閉時期EVCと排気VTC変換角とから図45を内容とするマップを参照(補間計算付き)することにより、積分値∫(CDAex2/V)dθの値を算出する。図45に示したように、積分値∫(CDAex2/V)dθの特性は上記図36と同様の特性である。 In step 180, the value of the integral value ∫ (C D Aex2 / V) dθ is calculated by referring to a map having the contents shown in FIG. 45 from the exhaust valve closing timing EVC and the exhaust VTC conversion angle (with interpolation calculation). As shown in FIG. 45, the characteristic of the integral value ∫ (C D Aex2 / V) dθ is the same as that of FIG.

ステップ181ではこのようにして求めたチョーク状態開始クランク角での燃焼室内圧力P0、チョーク状態開始クランク角での燃焼室内容積V0、積分値∫(CDAex2/V)dθの値を用いて上記(91)式により、燃焼室5から排気ポート11に吹き出すガスの流れがチョーク状態になるときの排気バルブ閉時期での燃焼室内圧力PEVC’を算出する。 In step 181, the combustion chamber pressure P0 at the choke state start crank angle, the combustion chamber volume V0 at the choke state start crank angle, and the integral value ∫ (C D Aex2 / V) dθ are used as described above. The combustion chamber pressure PEVC ′ at the exhaust valve closing timing when the flow of the gas blown from the combustion chamber 5 to the exhaust port 11 is in the choked state is calculated by the equation (91).

図44は本発明の第8実施形態の吸気バルブ開期間と排気バルブ開期間のオーバーラップがないときの燃焼室内残留ガス量を算出するためのもので、図43に続けて一定時間毎(例えば10ms毎)に演算する。   FIG. 44 is for calculating the residual gas amount in the combustion chamber when there is no overlap between the intake valve open period and the exhaust valve open period according to the eighth embodiment of the present invention. Every 10 ms).

ステップ191では、図43のステップ171と同様に、排気ガス定数REX[kJ/mol/K](上記(6)式により算出済み)、平均排気温度TEX[K](上記(23)式により算出済み)、排気の比熱比κ[−](上記(19)式によりまたは図28より算出済み)、排気バルブ閉時期での燃焼室内容積VEVC[m^3]、燃焼室5から排気ポート11に吹き出すガスの流れがチョーク状態になるときの排気バルブ閉時期での燃焼室内圧力PEVC’[kPa](図43より算出済み)を読み込む。   In step 191, similarly to step 171 in FIG. 43, the exhaust gas constant REX [kJ / mol / K] (calculated by the above equation (6)) and the average exhaust temperature TEX [K] (calculated by the above equation (23)). Exhaust) specific heat ratio κ [−] (calculated from the above equation (19) or from FIG. 28), the combustion chamber volume VEVC [m ^ 3] when the exhaust valve is closed, and the combustion chamber 5 to the exhaust port 11 The pressure in the combustion chamber PEVC ′ [kPa] (calculated from FIG. 43) at the exhaust valve closing timing when the flow of gas to be blown is in the choked state is read.

ステップ192では平均排気温度TEX、燃焼室5から排気ポート11に吹き出すガスの流れがチョーク状態になるときの排気バルブ閉時期での燃焼室内圧力PEVC’、排気ガス定数REX、排気の比熱比κを用いて、燃焼室5から排気ポート11に吹き出すガスの流れがチョーク状態になるときの排気バルブ閉時期での燃焼室内温度TEVC[K]を上記(92)式により算出し、ステップ193でこの排気バルブ閉時期での燃焼室内温度TEVC、燃焼室5から排気ポート11に吹き出すガスの流れがチョーク状態になるときの排気バルブ閉時期での燃焼室内圧力PEVC’、排気バルブ閉時期での燃焼室内容積VEVC、排気ガス定数REXを用いて排気バルブ閉時期での燃焼室内ガス量MR1’[kg]を上記(93)式により算出し、ステップ194でこの排気バルブ閉時期での燃焼室内ガス量MR1’をそのまま吸気バルブ開期間と排気バルブ開期間のオーバーラップがないときの燃焼室内残留ガス量とする。   In step 192, the average exhaust temperature TEX, the combustion chamber pressure PEVC 'at the exhaust valve closing timing when the flow of the gas blown from the combustion chamber 5 to the exhaust port 11 becomes choked, the exhaust gas constant REX, and the specific heat ratio κ of the exhaust are determined. The combustion chamber temperature TEVC [K] at the exhaust valve closing timing when the flow of the gas blown from the combustion chamber 5 to the exhaust port 11 becomes choked is calculated by the above equation (92). Combustion chamber temperature TEVC at the valve closing timing, combustion chamber pressure PEVC 'at the exhaust valve closing timing when the flow of gas blown from the combustion chamber 5 to the exhaust port 11 becomes choked, and the combustion chamber volume at the exhaust valve closing timing Using the VEVC and the exhaust gas constant REX, the combustion chamber gas amount MR1 ′ [kg] at the exhaust valve closing timing is calculated by the above equation (93). And, a combustion chamber residual gas quantity when there is no overlap as the intake valve open period and an exhaust valve open period of the combustion chamber gas amount MR1 'at the exhaust valve closing timing in step 194.

ここで、本発明の第8実施形態の作用効果を説明する。   Here, the function and effect of the eighth embodiment of the present invention will be described.

先願装置では、吸気バルブ開時期での燃焼室内圧力PIVOが排気圧力に等しいと仮定して吸気バルブ開時期での燃焼室内ガス量MR1を上記(1)式により算出し、吸気バルブ開期間と排気バルブ開期間のオーバーラップがないときにはこの吸気バルブ開時期での燃焼室内ガス量MR1をそのまま燃焼室内残留ガス量としている(図19参照)。   In the prior application device, assuming that the combustion chamber pressure PIVO at the intake valve opening timing is equal to the exhaust pressure, the combustion chamber gas amount MR1 at the intake valve opening timing is calculated by the above equation (1), and the intake valve opening period and When there is no overlap in the exhaust valve opening period, the combustion chamber gas amount MR1 at the intake valve opening timing is directly used as the residual gas amount in the combustion chamber (see FIG. 19).

しかしながら、図42に示したように、吸気バルブ開期間と排気バルブ開期間のオーバーラップがないときにおいても、排気行程で燃焼室5内から排気ポート11に吹き出すガスの流れがチョーク状態になり、燃焼室内圧力Pcylが排気圧力Pexから離れて上昇することがあることを見出している。従ってこうした場合にも、吸気バルブ開時期での燃焼室内圧力PIVOが排気圧力に等しいと仮定して吸気バルブ開時期での燃焼室内ガス量MR1を算出したのでは、燃焼室内圧力Pcylの排気圧力Pexからの圧力差に相当する誤差が、吸気バルブ開期間と排気バルブ開期間のオーバーラップがないときの燃焼室内残留ガス量の推定に生じてしまう。   However, as shown in FIG. 42, even when there is no overlap between the intake valve open period and the exhaust valve open period, the flow of gas blown out from the combustion chamber 5 to the exhaust port 11 in the exhaust stroke becomes choked. It has been found that the combustion chamber pressure Pcyl may rise away from the exhaust pressure Pex. Therefore, even in such a case, if the combustion chamber gas amount MR1 at the intake valve opening timing is calculated on the assumption that the combustion chamber pressure PIVO at the intake valve opening timing is equal to the exhaust pressure, the exhaust pressure Pex of the combustion chamber pressure Pcyl is calculated. An error corresponding to the pressure difference from the above occurs in the estimation of the residual gas amount in the combustion chamber when there is no overlap between the intake valve open period and the exhaust valve open period.

本発明の第8実施形態(請求項5、10に記載の発明)によれば、ピストン6の動きに伴う燃焼室内容積変化量と、排気バルブ通過可能なガス量とに基づいて燃焼室内圧力が排気行程で圧縮される場合であるか否かを判定し、燃焼室内圧力が排気行程で圧縮される場合に、燃焼室内容積変化量が排気バルブ通過可能なガス量と等しくなるクランク角を、燃焼室5内から排気ポート11に吹き出すガスの流れがチョーク状態を開始するクランク角CACOMPとして算出し(図43のステップ172参照)、この算出したチョーク状態開始クランク角CACOMPに基づいて燃焼室5から排気ポート11に吹き出すガスの流れがチョーク状態になるときの排気バルブ閉時期での燃焼室内圧力PEVC’を算出し(図43のステップ173〜181参照)、この算出した燃焼室5から排気ポート11に吹き出すガスの流れがチョーク状態になるときの排気バルブ閉時期での燃焼室内圧力PEVC’に基づいて排気バルブ閉時期での燃焼室内ガス量MR1’を算出し(図44のステップ191〜193参照)、この排気バルブ閉時期での燃焼室内ガス量MR1’を排気バルブ開期間と吸気バルブ開期間のオーバーラップがないときの燃焼室内残留ガス量として推定する(図44のステップ194参照)ので、吸気バルブ開期間と排気バルブ開期間のオーバーラップがない場合に排気行程で燃焼室5内から排気ポート11に吹き出すガスの流れがチョーク状態になるときにも、排気バルブ開期間と吸気バルブ開期間のオーバーラップがないときの燃焼室内残留ガス量を精度良く推定することができる。   According to the eighth embodiment of the present invention (inventions according to claims 5 and 10), the pressure in the combustion chamber is set based on the volume change in the combustion chamber accompanying the movement of the piston 6 and the amount of gas that can pass through the exhaust valve. It is determined whether or not it is compressed in the exhaust stroke, and when the pressure in the combustion chamber is compressed in the exhaust stroke, the crank angle at which the volume change in the combustion chamber is equal to the amount of gas that can pass through the exhaust valve is combusted. The flow of the gas blown out from the chamber 5 to the exhaust port 11 is calculated as a crank angle CACOMP that starts the choke state (see step 172 in FIG. 43), and the exhaust gas is exhausted from the combustion chamber 5 based on the calculated choke state start crank angle CACOMP. The combustion chamber pressure PEVC ′ at the closing timing of the exhaust valve when the flow of gas blown out to the port 11 becomes choked is calculated (steps 173 to 18 in FIG. 43). Reference), and the combustion chamber gas amount MR1 at the exhaust valve closing timing based on the combustion chamber pressure PEVC 'at the exhaust valve closing timing when the flow of the gas blown out from the combustion chamber 5 to the exhaust port 11 becomes the choke state. Is calculated (see steps 191 to 193 in FIG. 44), and the combustion chamber gas amount MR1 ′ at the exhaust valve closing timing is determined as the residual gas amount in the combustion chamber when there is no overlap between the exhaust valve opening period and the intake valve opening period. (See step 194 in FIG. 44), the flow of gas blown out from the combustion chamber 5 to the exhaust port 11 in the exhaust stroke becomes choked when there is no overlap between the intake valve open period and the exhaust valve open period. Sometimes, accurately estimate the amount of residual gas in the combustion chamber when there is no overlap between the exhaust valve opening period and the intake valve opening period. It can be.

燃焼室5から排気ポート11に吹き出すガスの流れがチョーク状態になるときの排気バルブ閉時期での燃焼室内圧力PEVC’は排気バルブ開口面積の影響を受ける。例えば、排気バルブ用VTC機構28の作動時になると、排気VTC変換角に応じて排気バルブ閉時期EVCが変化し、燃焼室5から排気ポート11に吹き出すガスの流れがチョーク状態になるときの排気バルブ閉時期での燃焼室内圧力PEVC’が排気バルブ用VTC機構28の非作動状態での値から変化する。従って、排気バルブ用VTC機構28の非作動状態で燃焼室5から排気ポート11に吹き出すガスの流れがチョーク状態になるときの排気バルブ閉時期での燃焼室内圧力PEVC’が精度良く算出されるように充填効率最小時の各クランク角での燃焼室内圧力と平均排気圧力との差分値のマップ(図6参照)及び充填効率最大時の各クランク角での燃焼室内圧力と平均排気圧力との差分値のマップ(図6参照)をマッチングしている場合において排気バルブ用VTC機構28の作動時に、排気VTC変換角を考慮することなく同じマップを用いるだけだと、排気バルブ用VTC機構28の作動時に、排気VTC変換角に応じた誤差が、燃焼室5から排気ポート11に吹き出すガスの流れがチョーク状態になるときの排気バルブ閉時期での燃焼室内圧力PEVC’の算出に生ずるのであるが、本発明の第8実施形態(請求項6に記載の発明)によれば、燃焼室5から排気ポート11に吹き出すガスの流れがチョーク状態になるときの排気バルブ閉時期での燃焼室内圧力PEVC’を、排気VTC変換角に基づいても算出するので(図43のステップ173〜178、181参照)、排気バルブ用VTC機構28の作動時にも、燃焼室5から排気ポート11に吹き出すガスの流れがチョーク状態になるときの排気バルブ閉時期での燃焼室内圧力PEVC’を精度良く算出できる。   The pressure in the combustion chamber PEVC 'at the exhaust valve closing timing when the flow of gas blown from the combustion chamber 5 to the exhaust port 11 is choked is affected by the exhaust valve opening area. For example, when the exhaust valve VTC mechanism 28 is activated, the exhaust valve closing timing EVC changes in accordance with the exhaust VTC conversion angle, and the exhaust valve when the flow of gas blown from the combustion chamber 5 to the exhaust port 11 becomes choked. The pressure PEVC ′ in the combustion chamber at the closing timing changes from the value when the exhaust valve VTC mechanism 28 is not in operation. Therefore, the combustion chamber pressure PEVC ′ at the exhaust valve closing timing when the flow of the gas blown from the combustion chamber 5 to the exhaust port 11 is in the choked state when the exhaust valve VTC mechanism 28 is not operated is calculated with high accuracy. In addition, a map (see FIG. 6) of a difference value between the combustion chamber pressure and the average exhaust pressure at each crank angle when the charging efficiency is minimum, and a difference between the combustion chamber pressure and the average exhaust pressure at each crank angle when the charging efficiency is maximum. When matching the value map (see FIG. 6), when the exhaust valve VTC mechanism 28 is operated, if the same map is used without considering the exhaust VTC conversion angle, the operation of the exhaust valve VTC mechanism 28 is performed. Sometimes, an error corresponding to the exhaust VTC conversion angle causes combustion at the exhaust valve closing timing when the flow of gas blown from the combustion chamber 5 to the exhaust port 11 becomes choked. This occurs in the calculation of the internal pressure PEVC '. According to the eighth embodiment of the present invention (the invention described in claim 6), when the flow of gas blown from the combustion chamber 5 to the exhaust port 11 is in a choke state. Since the combustion chamber pressure PEVC ′ at the exhaust valve closing timing is also calculated based on the exhaust VTC conversion angle (see steps 173 to 178 and 181 in FIG. 43), the combustion is performed even when the exhaust valve VTC mechanism 28 is operated. The combustion chamber pressure PEVC ′ at the exhaust valve closing timing when the flow of gas blown from the chamber 5 to the exhaust port 11 is in the choked state can be calculated with high accuracy.

本発明の第6、第7、第8の実施形態では、排気バルブ用VTC機構28に与える指令値が排気VTC変換角であり、この排気VTC変換角によって排気バルブの閉時期EVCや開時期(バルブ開閉時期)が定まる場合で説明したが、これに限られるものでない。例えば、排気バルブの開閉時期は排気バルブ中心角によっても定まるので、排気バルブ用VTC機構28に与える指令値が排気バルブ中心角を指示するものであれば、その排気バルブ中心角を、排気VTC変換角に代えて用いることができる。   In the sixth, seventh, and eighth embodiments of the present invention, the command value given to the exhaust valve VTC mechanism 28 is the exhaust VTC conversion angle, and the exhaust valve closing timing EVC and the opening timing ( Although the case where the valve opening / closing timing is determined has been described, the present invention is not limited to this. For example, the opening / closing timing of the exhaust valve is also determined by the exhaust valve center angle. Therefore, if the command value given to the exhaust valve VTC mechanism 28 indicates the exhaust valve center angle, the exhaust valve center angle is converted into the exhaust VTC conversion. It can be used instead of the corner.

本発明の第6実施形態では、燃焼室内圧力が排気行程で圧縮される場合であるのか圧縮されない場合であるのかを判定する判定手段が、排気バルブ開口面積Aex(排気バルブ開閉時期)と、エンジンの運転状態(ピストン6の動きに伴う排気上死点付近での燃焼室内容積変化量dV/dθ、エンジン回転速度Ne、排気のガス定数REX、平均排気温度TEX、比熱比κ、空気抵抗係数CD)とに基づいて燃焼室5内から排気ポート11に吹き出すガスの流れがチョーク状態になるか否かを判定する判定手段である場合で説明したが、これに限らず、吸気バルブ用VTC機構27(吸気バルブの開閉時期を変化させ得る吸気バルブ開閉時期可変機構)と、排気バルブ用VTC機構28(排気バルブの開閉時期を変化させ得る排気バルブ開閉時期可変機構)との少なくとも一方を備え、燃焼室内圧力が排気行程で圧縮される場合であるのか圧縮されない場合であるのかを判定する判定手段が、吸気バルブ開閉時期と排気バルブ開閉時期の少なくとも一方と、エンジンの運転状態とに基づいて燃焼室5内から排気ポート11に吹き出すガスの流れがチョーク状態になるか否かを判定する判定手段であってもかまわない。 In the sixth embodiment of the present invention, the determination means for determining whether the pressure in the combustion chamber is compressed in the exhaust stroke or not is the exhaust valve opening area Aex (exhaust valve opening / closing timing), the engine Of the combustion chamber volume change dV / dθ near the exhaust top dead center due to the movement of the piston 6, engine rotational speed Ne, exhaust gas constant REX, average exhaust temperature TEX, specific heat ratio κ, air resistance coefficient C D ), the determination means for determining whether or not the flow of the gas blown out from the combustion chamber 5 to the exhaust port 11 is in the choke state is not limited to this. 27 (an intake valve opening / closing timing variable mechanism capable of changing the opening / closing timing of the intake valve) and an exhaust valve VTC mechanism 28 (when the exhaust valve opening / closing can change the opening / closing timing of the exhaust valve) At least one of the intake valve opening timing and the exhaust valve opening timing And determining means for determining whether or not the flow of gas blown out from the combustion chamber 5 to the exhaust port 11 is choked based on the operating state of the engine.

本発明の第6、第7、第8の実施形態では、排気バルブ用VTC機構28の非作動時に排気バルブ開閉時期が初期位置としての最進角位置にあり、作動時になると、排気バルブ開閉時期をこの初期位置より遅角側に変化させる場合で説明したが、この場合に限定されるものでない。例えば、排気バルブ用VTC機構28の非作動時に排気バルブ開閉時期が初期位置としての最遅角位置にあり、作動時になると、排気バルブ開閉時期をこの初期位置より進角側に変化させる場合にも本発明の適用があることはいうまでもない。   In the sixth, seventh, and eighth embodiments of the present invention, when the exhaust valve VTC mechanism 28 is not in operation, the exhaust valve opening / closing timing is at the most advanced angle position as the initial position. However, the present invention is not limited to this case. For example, when the exhaust valve VTC mechanism 28 is not operated, the exhaust valve opening / closing timing is at the most retarded position as the initial position, and when the exhaust valve opening / closing timing is activated, the exhaust valve opening / closing timing may be changed from the initial position to the advance side. Needless to say, the present invention is applicable.

請求項1に記載の発明において、判定手段の機能は図29のステップ108〜110により、推定手段の機能は図37のステップ143、図38のステップ150、159、図39の111、図40のステップ123、126、127によりそれぞれ果たされている。   In the first aspect of the present invention, the function of the judging means is the steps 108 to 110 in FIG. 29, and the function of the estimating means is the step 143 in FIG. 37, the steps 150 and 159 in FIG. 38, the 111 in FIG. This is accomplished by steps 123, 126, and 127, respectively.

請求項5に記載の発明において、判定手段の機能はエンジンコントローラ31により、推定手段の機能は図43のステップ172、181、図44のステップ193、194によりそれぞれ果たされている。   In the fifth aspect of the present invention, the function of the determining means is performed by the engine controller 31, and the function of the estimating means is performed by steps 172 and 181 in FIG. 43 and steps 193 and 194 in FIG.

請求項9に記載の発明において、判定処理手順は図29のステップ108〜110により、推定処理手順は図37のステップ143、図38のステップ150、159、図39の111、図40のステップ123、126、127によりそれぞれ果たされている。   In the invention according to claim 9, the determination processing procedure is based on steps 108 to 110 in FIG. 29, and the estimation processing procedure is step 143 in FIG. 37, steps 150 and 159 in FIG. 38, 111 in FIG. 39, and step 123 in FIG. , 126, 127, respectively.

請求項10に記載の発明において、判定処理手順はエンジンコントローラ31により、推定処理手順は図43のステップ172、181、図44のステップ193、194によりそれぞれ果たされている。   In the invention described in claim 10, the determination processing procedure is executed by the engine controller 31, and the estimation processing procedure is executed by steps 172 and 181 in FIG. 43 and steps 193 and 194 in FIG.

先願装置の第1実施形態のエンジンの残留ガス量推定装置の概略構成図。The schematic block diagram of the residual gas amount estimation apparatus of the engine of 1st Embodiment of a prior application apparatus. 吸気バルブ開時期での燃焼室内残留ガス量の算出方法を説明するための行程図。FIG. 3 is a stroke diagram for explaining a method of calculating the amount of residual gas in the combustion chamber when the intake valve is open. 目標当量比のマップ特性図。The map characteristic figure of a target equivalence ratio. 反応後の生成分子のモル数をまとめた表図。The table | surface which put together the number of moles of the production | generation molecule | numerator after reaction. 充填効率、回転速度、吸気バルブ開時期での差分値の関係を示す特性図。The characteristic view which shows the relationship between the difference value in charging efficiency, rotational speed, and intake valve opening timing. 充填効率最小時または充填効率最大時の燃焼室内圧力と平均排気圧力との差分値のマップ特性図。The map characteristic figure of the difference value of the combustion chamber pressure and average exhaust pressure at the time of the filling efficiency minimum or the filling efficiency maximum. 排気温度が基準排気温度にある条件で排気バルブ開時期を最遅角位置から所定値進角させたときの燃焼室内圧力の圧力脈動波形のずれを表す波形図。FIG. 6 is a waveform diagram showing a shift in the pressure pulsation waveform of the pressure in the combustion chamber when the exhaust valve opening timing is advanced by a predetermined value from the most retarded position under the condition that the exhaust temperature is at the reference exhaust temperature. 排気温度が基準排気温度より高温側の条件へと変化しかつ排気バルブ開時期を最遅角位置から所定値進角させたときの燃焼室内圧力の圧力脈動波形のずれを表す波形図。FIG. 6 is a waveform diagram showing a shift in the pressure pulsation waveform of the pressure in the combustion chamber when the exhaust temperature changes to a condition higher than the reference exhaust temperature and the exhaust valve opening timing is advanced by a predetermined value from the most retarded position. 排気温度と廃熱量比の関係を表す特性図。The characteristic view showing the relationship between exhaust temperature and waste heat quantity ratio. 実トルク推定値のマップ特性図。The map characteristic figure of an actual torque estimated value. マイナスオーバラップとプラスオーバーラップの違いを表す行程図。A stroke diagram showing the difference between minus overlap and plus overlap. 排気バルブ開期間と吸気バルブ開期間のオーバーラップ中の燃焼室内圧力、排気圧力、排気バルブ周りガス流量、吸気バルブ及び排気バルブの各開口面積の変化波形図。The combustion chamber pressure, the exhaust pressure, the gas flow rate around the exhaust valve, and the change waveform diagram of each opening area of the intake valve and the exhaust valve during the overlap between the exhaust valve open period and the intake valve open period. 2直線による吹き返しガス量の算出を説明するための図。The figure for demonstrating calculation of the blow-back gas amount by 2 straight lines. 排気バルブ開時期から吸気バルブ閉時期までのクランク角区間における燃焼室内圧力、排気圧力、吸気圧力の関係を示す波形図。The waveform diagram which shows the relationship between the pressure in a combustion chamber, the exhaust pressure, and the intake pressure in the crank angle section from the exhaust valve opening timing to the intake valve closing timing. 燃焼室内圧力の脈動を表す波形図。The wave form diagram showing the pulsation of the pressure in a combustion chamber. 排気温度が基準排気温度にある条件で排気弁用VTC機構を作動させたときの脈動分のずれを表す波形図。FIG. 6 is a waveform diagram showing a pulsation shift when the exhaust valve VTC mechanism is operated under the condition that the exhaust temperature is at the reference exhaust temperature. 排気温度が基準排気温度より高温側の条件へと変化したときの脈動分のずれ及びこの状態でさらに排気バルブ開時期を最遅角位置から所定値進角させたときの脈動分のずれを表す波形図。This represents the pulsation deviation when the exhaust temperature changes to a condition higher than the reference exhaust temperature, and the pulsation deviation when the exhaust valve opening timing is further advanced from the most retarded position by a predetermined value in this state. Waveform diagram. 排気弁用VTC機構を作動させたときの、クランク角θ2での排気バルブ開口面積のずれを表す波形図。The wave form diagram showing the deviation | shift of the exhaust valve opening area in crank angle (theta) 2 when operating the VTC mechanism for exhaust valves. エンジンコントローラで実行される排気バルブ開期間と吸気バルブ開期間のオーバーラップ終了後の燃焼室内残留ガス量の算出のためのブロック図。The block diagram for calculation of the residual gas amount in a combustion chamber after the end of the overlap of the exhaust valve opening period and the intake valve opening period, which is executed by the engine controller. オーバーラップ期間が所定値未満の場合と、オーバーラップ期間が所定値より長い場合の、吸気バルブ開期間と排気バルブ開期間のオーバーラップ中の排気バルブ周りガス流量の各変化波形図。FIG. 5 is a waveform diagram showing changes in the gas flow rate around the exhaust valve during the overlap between the intake valve open period and the exhaust valve open period when the overlap period is less than a predetermined value and when the overlap period is longer than the predetermined value. 先願装置の第2実施形態のオーバーラップ期間が所定値より長い場合の、吸気バルブ開期間と排気バルブ開期間のオーバーラップ中の排気バルブ周りガス流量の変化波形図。FIG. 12 is a waveform diagram showing a change in the gas flow rate around the exhaust valve during the overlap between the intake valve open period and the exhaust valve open period when the overlap period of the second embodiment of the prior application device is longer than a predetermined value. 先願装置の第2実施形態の、排気バルブ周りガス流量がゼロとなるときのクランク角θ0での排気バルブ周りガス流量の傾き(dm2/d2θ)0と(EVC−θ2)/(EVC−IVO)との関係を示す特性図。The inclinations (dm 2 / d 2 θ) 0 and (EVC−θ 2) / () of the exhaust gas flow around the exhaust valve at the crank angle θ 0 when the gas flow around the exhaust valve becomes zero in the second embodiment of the prior application device. The characteristic view which shows the relationship with EVC-IVO). 先願装置の第3実施形態の排気バルブ開期間と吸気バルブ開期間のオーバーラップ中吹き返しガス量算出部のブロック図。The block diagram of the blowback gas amount calculation part during overlap of the exhaust valve opening period and intake valve opening period of 3rd Embodiment of a prior application apparatus. 本発明の第6実施形態の排気バルブ開期間と吸気バルブ開期間のオーバーラップ中の排気バルブ周りガス流量の波形図。The wave form diagram of the gas flow volume around the exhaust valve during the overlap of the exhaust valve open period and the intake valve open period of the sixth embodiment of the present invention. 図24左、中、右の状態での排気バルブ周りガス流量波形に、さらに吸気圧力、排気圧力、燃焼室内圧力の圧力履歴及び吸排気バルブの各開口面積を加えた波形図。FIG. 24 is a waveform diagram in which the intake valve, exhaust pressure, pressure history of the pressure in the combustion chamber, and each opening area of the intake and exhaust valves are added to the exhaust gas flow waveform around the exhaust valve in the left, middle, and right states. 燃焼室内圧力が排気行程で圧縮される理由を説明するための特性図。The characteristic view for explaining the reason why the pressure in the combustion chamber is compressed in the exhaust stroke. 排気バルブ開口面積の特性図。FIG. 6 is a characteristic diagram of an exhaust valve opening area. 比熱比の特性図。The characteristic diagram of specific heat ratio. 本発明の第6、第7の実施形態の波形判定フラグの設定を説明するためのフローチャート。The flowchart for demonstrating the setting of the waveform determination flag of the 6th, 7th embodiment of this invention. 排気バルブ開期間と吸気バルブ開期間のオーバーラップ中の排気バルブ周りガス流量波形を直線近似する方法と、算出する面積とを示す特性図。FIG. 6 is a characteristic diagram showing a method for linearly approximating the exhaust gas flow waveform around the exhaust valve during the overlap between the exhaust valve open period and the intake valve open period, and the area to be calculated. 本発明の第6実施形態の排気バルブ開期間と吸気バルブ開期間のオーバーラップ終了後の燃焼室内残留ガス量の算出を説明するためのフローチャート。The flowchart for demonstrating calculation of the residual gas amount in a combustion chamber after completion | finish of the overlap of the exhaust valve open period and intake valve open period of 6th Embodiment of this invention. 本発明の第6実施形態の排気バルブ開期間と吸気バルブ開期間のオーバーラップ終了後の燃焼室内残留ガス量の算出を説明するためのフローチャート。The flowchart for demonstrating calculation of the residual gas amount in a combustion chamber after completion | finish of the overlap of the exhaust valve open period and intake valve open period of 6th Embodiment of this invention. 本発明の第6実施形態の排気バルブ開期間と吸気バルブ開期間のオーバーラップ終了後の燃焼室内残留ガス量の算出を説明するためのフローチャート。The flowchart for demonstrating calculation of the residual gas amount in a combustion chamber after completion | finish of the overlap of the exhaust valve open period and intake valve open period of 6th Embodiment of this invention. 本発明の第6実施形態のチョーク状態開始クランク角の特性図。The characteristic view of the choke state start crank angle of the sixth embodiment of the present invention. 本発明の第7実施形態の吸気圧力、排気圧力、燃焼室内圧力、排気バルブ開口面積、吸気バルブ開口面積の各変化を示すタイミングチャート。The timing chart which shows each change of the intake pressure of the 7th embodiment of the present invention, exhaust pressure, pressure in a combustion chamber, exhaust valve opening area, and intake valve opening area. 本発明の第7実施形態の3つの基準排気VTC変換角での積分値∫(CDAex2/V)dθの各特性図。FIG. 16 is a characteristic diagram of an integral value ∫ (C D Aex2 / V) dθ at three reference exhaust VTC conversion angles according to the seventh embodiment of the present invention. 本発明の第7実施形態の燃焼室から排気ポートに吹き出すガスの流れがチョーク状態になるときの吸気バルブ開時期での燃焼室内圧力の算出を説明するためのフローチャート。The flowchart for demonstrating calculation of the pressure in a combustion chamber in the intake valve opening timing when the flow of the gas which blows off from a combustion chamber to an exhaust port of 7th Embodiment of this invention will be in a choke state. 本発明の第7実施形態の燃焼室から排気ポートに吹き出すガスの流れがチョーク状態になるときの吸気バルブ開時期での燃焼室内圧力の算出を説明するためのフローチャート。The flowchart for demonstrating calculation of the pressure in a combustion chamber in the intake valve opening timing when the flow of the gas which blows off from a combustion chamber to an exhaust port of 7th Embodiment of this invention will be in a choke state. 本発明の第7実施形態の排気バルブ開期間と吸気バルブ開期間のオーバーラップ終了後の燃焼室内残留ガス量の算出を説明するためのフローチャート。The flowchart for demonstrating calculation of the combustion chamber residual gas amount after completion | finish of the overlap of the exhaust valve open period and intake valve open period of 7th Embodiment of this invention. 本発明の第7実施形態の排気バルブ開期間と吸気バルブ開期間のオーバーラップ終了後の燃焼室内残留ガス量の算出を説明するためのフローチャート。The flowchart for demonstrating calculation of the combustion chamber residual gas amount after completion | finish of the overlap of the exhaust valve open period and intake valve open period of 7th Embodiment of this invention. 本発明の第7実施形態の排気バルブ開期間と吸気バルブ開期間のオーバーラップ終了後の燃焼室内残留ガス量の算出を説明するためのフローチャート。The flowchart for demonstrating calculation of the combustion chamber residual gas amount after completion | finish of the overlap of the exhaust valve open period and intake valve open period of 7th Embodiment of this invention. 本発明の第8実施形態の吸気圧力、排気圧力、燃焼室内圧力、排気バルブ開口面積、吸気バルブ開口面積の各変化を示すタイミングチャート。The timing chart which shows each change of the intake pressure of the 8th Embodiment of this invention, an exhaust pressure, a combustion chamber pressure, an exhaust valve opening area, and an intake valve opening area. 本発明の第8実施形態の燃焼室から排気ポートに吹き出すガスの流れがチョーク状態になるときの排気バルブ閉時期での燃焼室内圧力の算出を説明するためのフローチャート。The flowchart for demonstrating calculation of the pressure in a combustion chamber in the exhaust valve closing time when the flow of the gas which blows off from a combustion chamber to an exhaust port of 8th Embodiment of this invention will be in a choke state. 本発明の第8実施形態の吸気バルブ開期間と排気バルブ開期間のオーバーラップがないときの燃焼室内残留ガス量の算出を説明するためのフローチャート。The flowchart for demonstrating calculation of the amount of residual gas in a combustion chamber when there is no overlap of the intake valve open period and exhaust valve open period of 8th Embodiment of this invention. 本発明の第8実施形態の3つの基準排気VTC変換角での積分値∫(CDAex2/V)dθの各特性図。Each characteristic diagram of integral value ∫ (C D Aex2 / V) dθ at three reference exhaust VTC conversion angles according to the eighth embodiment of the present invention.

符号の説明Explanation of symbols

1 エンジン
5 燃焼室
15 吸気バルブ
16 排気バルブ
28 排気バルブ用VTC機構(排気バルブ開閉時期可変機構)
31 エンジンコントローラ
1 Engine 5 Combustion chamber 15 Intake valve 16 Exhaust valve 28 Exhaust valve VTC mechanism (Exhaust valve opening / closing timing variable mechanism)
31 Engine controller

Claims (10)

ピストンの動きに伴う燃焼室内容積変化量と、排気バルブ通過可能なガス量とに基づいて燃焼室内圧力が排気行程で圧縮される場合であるか否かを判定する判定手段と、
この判定結果により燃焼室内圧力が排気行程で圧縮される場合に、
前記燃焼室内容積変化量が前記排気バルブ通過可能なガス量と等しくなるクランク角を、燃焼室内から排気ポートに吹き出すガスの流れがチョーク状態を開始するクランク角として算出し、
この算出したチョーク状態開始クランク角に基づいて燃焼室から排気ポートに吹き出すガスの流れがチョーク状態になるときの吸気バルブ開時期での燃焼室内圧力を算出し、
この算出した燃焼室から排気ポートに吹き出すガスの流れがチョーク状態になるときの吸気バルブ開時期での燃焼室内圧力に基づいて燃焼室内から排気ポートへの吹き出しガス量を算出し、
吸気バルブ開時期での燃焼室内ガス量とこの吹き出しガス量とから排気バルブ開期間と吸気バルブ開期間のオーバーラップ終了後の燃焼室内残留ガス量を推定する推定手段と
を備えることを特徴とするエンジンの残留ガス量推定装置。
Determining means for determining whether or not the pressure in the combustion chamber is compressed in the exhaust stroke based on the amount of change in the volume in the combustion chamber accompanying the movement of the piston and the amount of gas that can pass through the exhaust valve;
When the pressure in the combustion chamber is compressed in the exhaust stroke according to this determination result,
The crank angle at which the volume change in the combustion chamber is equal to the amount of gas that can pass through the exhaust valve is calculated as the crank angle at which the flow of gas blown from the combustion chamber to the exhaust port starts a choke state,
Based on the calculated choke state start crank angle, calculate the pressure in the combustion chamber at the intake valve opening timing when the flow of gas blown out from the combustion chamber to the exhaust port becomes the choke state,
Calculate the amount of gas blown from the combustion chamber to the exhaust port based on the pressure in the combustion chamber at the intake valve opening timing when the flow of gas blown out from the combustion chamber to the exhaust port is in the choke state,
And an estimation means for estimating the amount of residual gas in the combustion chamber after the overlap of the exhaust valve opening period and the intake valve opening period from the amount of gas in the combustion chamber when the intake valve is open and the amount of blown gas. Engine residual gas amount estimation device.
少なくとも排気バルブの開閉時期を変化させ得る排気バルブ開閉時期可変機構を備え、
前記チョーク状態開始クランク角をエンジン回転速度および前記排気バルブ開閉時期可変機構に与える指令値に基づいて算出することを特徴とする請求項1に記載のエンジンの残留ガス量推定装置。
Equipped with at least an exhaust valve opening / closing timing variable mechanism that can change the opening / closing timing of the exhaust valve,
2. The engine residual gas amount estimating device according to claim 1, wherein the choke state start crank angle is calculated based on an engine rotational speed and a command value given to the exhaust valve opening / closing timing variable mechanism.
少なくとも排気バルブの開閉時期を変化させ得る排気バルブ開閉時期可変機構を備え、
前記吸気バルブ開時期での燃焼室内圧力を、前記排気バルブ開閉時期可変機構に与える指令値に基づいても算出することを特徴とする請求項1に記載のエンジンの残留ガス量推定装置。
Equipped with at least an exhaust valve opening / closing timing variable mechanism that can change the opening / closing timing of the exhaust valve,
2. The engine residual gas amount estimating device according to claim 1, wherein the pressure in the combustion chamber at the time of opening the intake valve is also calculated based on a command value given to the exhaust valve opening / closing timing variable mechanism.
少なくとも排気バルブの開閉時期を変化させ得る排気バルブ開閉時期可変機構を備え、
前記判定手段は、前記排気バルブ開閉時期とエンジンの運転状態とに基づいて燃焼室内から排気ポートに吹き出すガスの流れがチョーク状態になるか否かを判定する判定手段であり、
前記燃焼室内から排気ポートに吹き出すガスの流れがチョーク状態になる場合に前記燃焼室内圧力が排気行程で圧縮される場合であると判定することを特徴とする請求項1に記載のエンジンの残留ガス量推定装置。
Equipped with at least an exhaust valve opening / closing timing variable mechanism that can change the opening / closing timing of the exhaust valve,
The determination means is a determination means for determining whether the flow of gas blown from the combustion chamber to the exhaust port is in a choked state based on the exhaust valve opening / closing timing and the operating state of the engine,
The residual gas of the engine according to claim 1, wherein when the flow of gas blown from the combustion chamber to the exhaust port is in a choke state, it is determined that the pressure in the combustion chamber is compressed in an exhaust stroke. Quantity estimation device.
ピストンの動きに伴う燃焼室内容積変化量と、排気バルブ通過可能なガス量とに基づいて燃焼室内圧力が排気行程で圧縮される場合であるか否かを判定する判定手段と、
この判定結果により燃焼室内圧力が排気行程で圧縮される場合に、
前記燃焼室内容積変化量が前記排気バルブ通過可能なガス量と等しくなるクランク角を、燃焼室内から排気ポートに吹き出すガスの流れがチョーク状態を開始するクランク角として算出し、
この算出したチョーク状態開始クランク角に基づいて排気バルブ閉時期での燃焼室内圧力を算出し、
この算出した排気バルブ閉時期での燃焼室内圧力に基づいて燃焼室から排気ポートに吹き出すガスの流れがチョーク状態になるときの排気バルブ閉時期での燃焼室内ガス量を算出し、
この排気バルブ閉時期での燃焼室内ガス量を排気バルブ開期間と吸気バルブ開期間のオーバーラップがないときの燃焼室内残留ガス量として推定する推定手段と
を備えることを特徴とするエンジンの残留ガス量推定装置。
Determining means for determining whether or not the pressure in the combustion chamber is compressed in the exhaust stroke based on the amount of change in the volume in the combustion chamber accompanying the movement of the piston and the amount of gas that can pass through the exhaust valve;
When the pressure in the combustion chamber is compressed in the exhaust stroke according to this determination result,
The crank angle at which the volume change in the combustion chamber is equal to the amount of gas that can pass through the exhaust valve is calculated as the crank angle at which the flow of gas blown from the combustion chamber to the exhaust port starts a choke state,
Based on this calculated choke state start crank angle, the combustion chamber pressure at the exhaust valve closing timing is calculated,
Based on the calculated pressure in the combustion chamber at the exhaust valve closing timing, the amount of gas in the combustion chamber at the exhaust valve closing timing when the flow of gas blown from the combustion chamber to the exhaust port is in a choked state is calculated,
And an estimation means for estimating the amount of gas in the combustion chamber when the exhaust valve is closed as the amount of residual gas in the combustion chamber when there is no overlap between the exhaust valve opening period and the intake valve opening period. Quantity estimation device.
少なくとも排気バルブの開閉時期を変化させ得る排気バルブ開閉時期可変機構を備え、
前記燃焼室から排気ポートに吹き出すガスの流れがチョーク状態になるときの排気バルブ閉時期での燃焼室内圧力を、前記排気バルブ開閉時期可変機構に与える指令値に基づいても算出することを特徴とする請求項5に記載のエンジンの残留ガス量推定装置。
Equipped with at least an exhaust valve opening / closing timing variable mechanism that can change the opening / closing timing of the exhaust valve,
The combustion chamber pressure at the closing timing of the exhaust valve when the flow of gas blown from the combustion chamber to the exhaust port is in a choke state is also calculated based on a command value given to the exhaust valve opening / closing timing variable mechanism. The residual gas amount estimation device for an engine according to claim 5.
少なくとも排気バルブの開閉時期を変化させ得る排気バルブ開閉時期可変機構を備え、
前記チョーク状態開始クランク角をエンジン回転速度および前記排気バルブ開閉時期可変機構に与える指令値に基づいて算出することを特徴とする請求項5に記載のエンジンの残留ガス量推定装置。
Equipped with at least an exhaust valve opening / closing timing variable mechanism that can change the opening / closing timing of the exhaust valve,
6. The engine residual gas amount estimating device according to claim 5, wherein the choke state start crank angle is calculated based on an engine rotational speed and a command value given to the exhaust valve opening / closing timing variable mechanism.
少なくとも排気バルブの開閉時期を変化させ得る排気バルブ開閉時期可変機構を備え、
前記判定手段は、前記排気バルブ開閉時期とエンジンの運転状態とに基づいて燃焼室内から排気ポートに吹き出すガスの流れがチョーク状態になるか否かを判定する判定手段であり、
前記燃焼室内から排気ポートに吹き出すガスの流れがチョーク状態になる場合に前記燃焼室内圧力が排気行程で圧縮される場合であると判定することを特徴とする請求項5に記載のエンジンの残留ガス量推定装置。
Equipped with at least an exhaust valve opening / closing timing variable mechanism that can change the opening / closing timing of the exhaust valve,
The determination means is a determination means for determining whether the flow of gas blown from the combustion chamber to the exhaust port is in a choked state based on the exhaust valve opening / closing timing and the operating state of the engine,
6. The engine residual gas according to claim 5, wherein when the flow of gas blown from the combustion chamber to the exhaust port is in a choked state, it is determined that the pressure in the combustion chamber is compressed in an exhaust stroke. Quantity estimation device.
ピストンの動きに伴う燃焼室内容積変化量と、排気バルブ通過可能なガス量とに基づいて燃焼室内圧力が排気行程で圧縮される場合であるか否かを判定する判定処理手順と、
この判定結果により燃焼室内圧力が排気行程で圧縮される場合に、
前記燃焼室内容積変化量が前記排気バルブ通過可能なガス量と等しくなるクランク角を、燃焼室内から排気ポートに吹き出すガスの流れがチョーク状態を開始するクランク角として算出し、
この算出したチョーク状態開始クランク角に基づいて燃焼室から排気ポートに吹き出すガスの流れがチョーク状態になるときの吸気バルブ開時期での燃焼室内圧力を算出し、
この算出した燃焼室から排気ポートに吹き出すガスの流れがチョーク状態になるときの吸気バルブ開時期での燃焼室内圧力に基づいて燃焼室内から排気ポートへの吹き出しガス量を算出し、
吸気バルブ開時期での燃焼室内ガス量とこの吹き出しガス量とから排気バルブ開期間と吸気バルブ開期間のオーバーラップ終了後の燃焼室内残留ガス量を推定する推定処理手順と
を含むことを特徴とするエンジンの残留ガス量推定方法。
A determination processing procedure for determining whether or not the pressure in the combustion chamber is compressed in the exhaust stroke based on the amount of change in the combustion chamber volume accompanying the movement of the piston and the amount of gas that can pass through the exhaust valve;
When the pressure in the combustion chamber is compressed in the exhaust stroke according to this determination result,
The crank angle at which the volume change in the combustion chamber is equal to the amount of gas that can pass through the exhaust valve is calculated as the crank angle at which the flow of gas blown from the combustion chamber to the exhaust port starts a choke state,
Based on the calculated choke state start crank angle, calculate the pressure in the combustion chamber at the intake valve opening timing when the flow of gas blown out from the combustion chamber to the exhaust port becomes the choke state,
Calculate the amount of gas blown from the combustion chamber to the exhaust port based on the pressure in the combustion chamber at the intake valve opening timing when the flow of gas blown out from the combustion chamber to the exhaust port is in the choke state,
And an estimation processing procedure for estimating the amount of residual gas in the combustion chamber after the overlap of the exhaust valve opening period and the intake valve opening period from the amount of gas in the combustion chamber at the time of intake valve opening and this amount of blown gas. Engine residual gas amount estimation method.
ピストンの動きに伴う燃焼室内容積変化量と、排気バルブ通過可能なガス量とに基づいて燃焼室内圧力が排気行程で圧縮される場合であるか否かを判定する判定処理手順と、
この判定結果により燃焼室内圧力が排気行程で圧縮される場合に、
前記燃焼室内容積変化量が前記排気バルブ通過可能なガス量と等しくなるクランク角を、燃焼室内から排気ポートに吹き出すガスの流れがチョーク状態を開始するクランク角として算出し、
この算出したチョーク状態開始クランク角に基づいて排気バルブ閉時期での燃焼室内圧力を算出し、
この算出した排気バルブ閉時期での燃焼室内圧力に基づいて燃焼室から排気ポートに吹き出すガスの流れがチョーク状態になるときの排気バルブ閉時期での燃焼室内ガス量を算出し、
この排気バルブ閉時期での燃焼室内ガス量を排気バルブ開期間と吸気バルブ開期間のオーバーラップがないときの燃焼室内残留ガス量として推定する推定処理手順と
を含むことを特徴とするエンジンの残留ガス量推定方法。
A determination processing procedure for determining whether or not the pressure in the combustion chamber is compressed in the exhaust stroke based on the amount of change in the combustion chamber volume accompanying the movement of the piston and the amount of gas that can pass through the exhaust valve;
When the pressure in the combustion chamber is compressed in the exhaust stroke according to this determination result,
The crank angle at which the volume change in the combustion chamber is equal to the amount of gas that can pass through the exhaust valve is calculated as the crank angle at which the flow of gas blown from the combustion chamber to the exhaust port starts a choke state,
Based on this calculated choke state start crank angle, the combustion chamber pressure at the exhaust valve closing timing is calculated,
Based on the calculated pressure in the combustion chamber at the exhaust valve closing timing, the amount of gas in the combustion chamber at the exhaust valve closing timing when the flow of gas blown from the combustion chamber to the exhaust port is in a choked state is calculated,
An estimation process procedure for estimating the amount of gas in the combustion chamber at the time when the exhaust valve is closed as the amount of residual gas in the combustion chamber when there is no overlap between the exhaust valve opening period and the intake valve opening period. Gas amount estimation method.
JP2007333907A 2007-12-26 2007-12-26 Engine residual gas amount estimation device and residual gas amount estimation method Expired - Fee Related JP4941280B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007333907A JP4941280B2 (en) 2007-12-26 2007-12-26 Engine residual gas amount estimation device and residual gas amount estimation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007333907A JP4941280B2 (en) 2007-12-26 2007-12-26 Engine residual gas amount estimation device and residual gas amount estimation method

Publications (2)

Publication Number Publication Date
JP2009156121A JP2009156121A (en) 2009-07-16
JP4941280B2 true JP4941280B2 (en) 2012-05-30

Family

ID=40960398

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007333907A Expired - Fee Related JP4941280B2 (en) 2007-12-26 2007-12-26 Engine residual gas amount estimation device and residual gas amount estimation method

Country Status (1)

Country Link
JP (1) JP4941280B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108572079B (en) * 2018-06-26 2024-01-30 湖南罗创动力科技有限公司 Device and method for detecting residual exhaust gas coefficient of engine under transient working condition

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5026717B2 (en) * 2006-03-20 2012-09-19 日産自動車株式会社 Engine residual gas measuring device

Also Published As

Publication number Publication date
JP2009156121A (en) 2009-07-16

Similar Documents

Publication Publication Date Title
CN100529383C (en) Ignition timing control for internal combustion engine
JP4918892B2 (en) Engine residual gas amount estimation method and residual gas amount estimation device
CN100529382C (en) Ignition timing control for internal combustion engine
JP2008008242A (en) Control method for compressed self-ignition internal combustion engine
JP2009275691A (en) Combustion control method and control device for internal combustion engine
JP4774893B2 (en) Engine ignition timing control method and engine ignition timing control device
JP4973435B2 (en) Engine residual gas amount estimation device and residual gas amount estimation method
JP4604903B2 (en) Engine ignition timing control device
JP5026717B2 (en) Engine residual gas measuring device
JP4941280B2 (en) Engine residual gas amount estimation device and residual gas amount estimation method
JP4120620B2 (en) Engine control device
JP4241511B2 (en) Engine knock control device
JP4055647B2 (en) Engine ignition timing control device
JP4872383B2 (en) Engine ignition timing control method and engine ignition timing control device
JP4251069B2 (en) Engine knock detection device and knock control device
JP4055648B2 (en) Ignition timing control device for internal combustion engine
JP4747763B2 (en) Engine ignition timing control method and engine ignition timing control device
JP4254605B2 (en) Engine ignition timing control device
JP2010144584A (en) Control device for internal combustion engine
JP2005226481A (en) Deposit quantity detection device and knocking control device for engine
JP2008196506A (en) Engine knock control device and engine ignition timing control device
JP4239607B2 (en) Engine ignition control device
JP4241510B2 (en) Engine knock control device and engine ignition timing control device.
JP4055632B2 (en) Ignition timing control device for internal combustion engine
JP4055646B2 (en) Engine ignition timing control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120131

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120131

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120213

R150 Certificate of patent or registration of utility model

Ref document number: 4941280

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150309

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees