JP4939565B2 - Electron beam exposure system - Google Patents

Electron beam exposure system Download PDF

Info

Publication number
JP4939565B2
JP4939565B2 JP2009091979A JP2009091979A JP4939565B2 JP 4939565 B2 JP4939565 B2 JP 4939565B2 JP 2009091979 A JP2009091979 A JP 2009091979A JP 2009091979 A JP2009091979 A JP 2009091979A JP 4939565 B2 JP4939565 B2 JP 4939565B2
Authority
JP
Japan
Prior art keywords
electron
irradiation
electron beam
exposure
effective
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009091979A
Other languages
Japanese (ja)
Other versions
JP2009152645A (en
Inventor
昌彦 奥貫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2009091979A priority Critical patent/JP4939565B2/en
Publication of JP2009152645A publication Critical patent/JP2009152645A/en
Application granted granted Critical
Publication of JP4939565B2 publication Critical patent/JP4939565B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Electron Sources, Ion Sources (AREA)
  • Electron Beam Exposure (AREA)

Description

本発明は、子ビーム露光装置に関する。 The present invention relates to electronic beam exposure apparatus.

半導体メモリデバイス製造の量産段階においては、高い生産性を持つ光ステッパが用いられてきたが、線幅が0.2μm以下の1G、4GDRAM以降のメモリデバイスの生産においては、光露光方式に代わる露光技術の1つとして、解像度が高い電子ビーム露光法が期待されている。   In the mass production stage of semiconductor memory device manufacturing, an optical stepper with high productivity has been used. However, in the production of memory devices after 1G and 4GDRAM having a line width of 0.2 μm or less, exposure instead of the optical exposure method is used. As one of the techniques, an electron beam exposure method with high resolution is expected.

従来の電子ビーム露光法は、単一ビームのガウシアン方式と可変成形方式とが中心であった。これら電子ビーム露光方法は、生産性が低いことから、マスク描画や超LSIの研究開発、少量生産のASICデバイスの露光等に用いられてきた。   Conventional electron beam exposure methods have centered on a single beam Gaussian method and a variable shaping method. Since these electron beam exposure methods have low productivity, they have been used for mask drawing, ultra-LSI research and development, and exposure of small-volume production ASIC devices.

この様に、電子ビーム露光法の量産化への課題は、生産性を如何に向上させるかであったが、近年、この課題解決の1つの方法として、部分一括転写方式が提案されている。これら可変形成方式又は、部分一括転写方式の露光装置は図8の(a)に示すように、電子源7bとウエネルト電極8と接地電極9とアパーチャ10aを備える電子銃20および、偏向器13、照明レンズ11a,11b、アパーチャ10b(又は電子ビームマスク15)で構成する照明装置21と、電子ビームマスク15を通った電子ビームを偏向器14を経てステージ17上のウエハ16に投影する投影レンズ12を備える投影レンズ系22とを有する。特に部分一括転写方式の露光装置は、メモリ回路パターンの繰り返し部分を数μm領域にセル化することで、露光のショット回数を低減できることから、描画の生産性を向上することが出来る。   As described above, the problem for mass production of the electron beam exposure method has been how to improve productivity. Recently, a partial batch transfer method has been proposed as one method for solving this problem. As shown in FIG. 8 (a), these variable formation type or partial batch transfer type exposure apparatuses include an electron gun 20 including an electron source 7b, a Wehnelt electrode 8, a ground electrode 9, and an aperture 10a, a deflector 13, An illumination device 21 including illumination lenses 11a and 11b and an aperture 10b (or electron beam mask 15), and a projection lens 12 that projects an electron beam that has passed through the electron beam mask 15 onto a wafer 16 on a stage 17 through a deflector 14. A projection lens system 22. In particular, the partial batch transfer type exposure apparatus can reduce the number of exposure shots by making the repeated portion of the memory circuit pattern into a cell of several μm, thereby improving the drawing productivity.

一方、露光装置の生産性と同時に露光線幅精度の確保は、露光装置として実用上重要な要素であることから、露光領域の照射強度の一様性は、全露光領域において、0.5%以下にすることが要求されている。この一様性の高い照射電子ビームを得るためには、電子銃から放射する数10mradの電子ビームの中から、特性の良い数mradの開き角の領域の電子ビームをアパーチャ10bで遮蔽することにより、照射ビームとして取り出していた(図8の(b)参照)。   On the other hand, ensuring the exposure line width accuracy as well as the productivity of the exposure apparatus is an important element for practical use as an exposure apparatus. Therefore, the uniformity of the irradiation intensity in the exposure area is 0.5% in the entire exposure area. It is required to: In order to obtain an irradiation electron beam with high uniformity, an aperture 10b shields an electron beam in an opening angle region of several mrad with good characteristics from among several tens of mrad emitted from an electron gun. And extracted as an irradiation beam (see FIG. 8B).

近年、生産性の更なる向上のために、露光領域を更に大きくする方式が提案されている。例えば、電子ビーム散乱マスクを用いた電子ビーム転写方法:SCALPEL(S.D.Berger et. al. "Projection electron beam lithography: A new approach." J. Vac. Sci. Technology B9, 2996, (1991))は、高速電子ビーム露光の一つの露光方法である。この方式は、従来の可変成形方式やセル露光方式に比べて露光面積が2500倍以上も大きいことから、クーロン効果による電子−電子相互作用の影響を低減できるため、照射電子ビーム電流を従来露光方法に比べて1桁以上高くして露光することが可能であり、高い生産性が期待できる。しかし、この電子ビーム露光方法は、広い露光領域において一様性の高い照射強度が要求される。また、照射電流の増大に伴い、電子源から発生した電子ビームを電子銃とカラム内のアパーチャで遮蔽する電子ビーム量が増大することとなった。   In recent years, a method for further increasing the exposure area has been proposed in order to further improve productivity. For example, an electron beam transfer method using an electron beam scattering mask: SCALPEL (SDBerger et. Al. “Projection electron beam lithography: A new approach.” J. Vac. Sci. Technology B9, 2996, (1991)) This is one exposure method of high-speed electron beam exposure. In this method, since the exposure area is 2500 times or more larger than the conventional variable forming method and cell exposure method, the influence of the electron-electron interaction due to the Coulomb effect can be reduced. It is possible to carry out exposure with an order of magnitude higher than the above, and high productivity can be expected. However, this electron beam exposure method requires a highly uniform irradiation intensity in a wide exposure region. As the irradiation current increases, the amount of electron beam that shields the electron beam generated from the electron source with the electron gun and the aperture in the column increases.

一方、円弧ビームを用いた電子ビームマスク転写装置(特許出願平成8年283814号参照)においては、露光領域の幅は数mmであり、前記転写露光(SCALPEL)に比べ約6倍以上大きくできることから、マスクとウエハの走査露光により高速露光が可能であるが、広い領域を一様に照明するために、電子銃から放射した電子ビームの周辺ビームの一部がリング状または円弧状ビームとして露光の照射用ビームに用いられていた。特に、電子銃から一様に放射する電子ビームを用いた場合、放射電子ビームの利用効率が、1/1000程度となり、発生電子ビームのほとんどの電子ビームを電子銃とカラム内のアパーチャで遮蔽すると言った問題が生じていた。   On the other hand, in an electron beam mask transfer apparatus using an arc beam (refer to Japanese Patent Application No. 283814), the width of the exposure area is several mm, which is about 6 times larger than the transfer exposure (SCALPEL). High-speed exposure is possible by scanning exposure of the mask and wafer, but in order to uniformly illuminate a wide area, part of the peripheral beam of the electron beam emitted from the electron gun is exposed as a ring-shaped or arc-shaped beam. Used for irradiation beams. In particular, when an electron beam radiated uniformly from an electron gun is used, the use efficiency of the emitted electron beam is about 1/1000, and most of the generated electron beam is shielded by the electron gun and the aperture in the column. The problem that I said occurred.

従来の露光方式では、照射ビームが少なく、電子銃やカラム内の途中のアパーチャ電極で電子を遮蔽していても問題にならなかったが、前記生産性の高い露光方式では、ウエハ上の照射ビーム電流が数10μAと従来露光方法に比べて1桁以上大きな電流で露光することになり、アパーチャ電極で遮蔽する電子電流は数mAと大きな値となった。   In the conventional exposure method, the irradiation beam is small, and it was not a problem if electrons were shielded by an electron gun or an aperture electrode in the middle of the column. However, in the high-productivity exposure method, the irradiation beam on the wafer The exposure was performed with a current of several tens of μA, which is one digit greater than that of the conventional exposure method, and the electron current shielded by the aperture electrode was a large value of several mA.

そのため、従来の、放射電子ビームを途中のビーム遮蔽電極で遮蔽する方法では、遮蔽電極の温度上昇・電極の溶解問題が発生するだけでなく、カラム内温度の上昇や遮蔽した電子の散乱によるカラム内のチャージアップ現象が、露光性能で重要なビームの位置精度の劣化原因に繋がることから、照射電流を大きくしてスループットを改善することが難しかった。更に、電子発生装置電源負荷が従来の電子発生装置と比べて大きくなることで、電源の高安定化や低価格化を難しくしていた。   Therefore, the conventional method of shielding a radiated electron beam with a beam shielding electrode in the middle not only raises the temperature of the shielding electrode and the problem of dissolution of the electrode, but also raises the temperature inside the column or scatters the shielded electrons. The charge-up phenomenon in the above leads to the deterioration of the beam position accuracy, which is important for the exposure performance, so it is difficult to increase the irradiation current and improve the throughput. Furthermore, since the power load of the electron generator is larger than that of the conventional electron generator, it is difficult to stabilize the power supply and reduce the price.

本発明の目的は、熱電子源からの電子ビームを成形するアパーチャで遮蔽される電子ビームを低減することにある。   An object of the present invention is to reduce an electron beam shielded by an aperture for shaping an electron beam from a thermal electron source.

上記目的を達成するために本発明は、複数の電子ビームで複数の露光領域を同時に露光する電子ビーム露光装置であって、
熱電子源と、該熱電子源から放出された電子のクロスオーバを形成する電極とを含み、該クロスオーバから電子線を放射する電子銃と、
前記電子銃から放射された電子ビームの一部を遮蔽して、各前記露光領域に照射する照射電子ビームを成形するアパーチャと、を有し、
熱電子源の電子放出面は、複数の照射有効領域と、該複数の照射有効領域の間に配置された照射制限領域とを含み、該複数の照射有効領域は、該照射制限領域より、電子放出効率が高く、
前記複数の照射有効領域は、前記複数の照射有効領域から放出された複数の電子ビームそれぞれの一部が前記アパーチャで遮蔽されて前記照射電子ビームが前記アパーチャにより成形されるように、前記照射電子ビームで照射する各前記露光領域と対応づけて配置されている、ことを特徴とする。
In order to achieve the above object, the present invention provides an electron beam exposure apparatus that simultaneously exposes a plurality of exposure areas with a plurality of electron beams,
An electron gun that includes a thermionic source and an electrode that forms a crossover of electrons emitted from the thermionic source, and emits an electron beam from the crossover ;
An aperture that blocks a part of the electron beam emitted from the electron gun and forms an irradiation electron beam that irradiates each of the exposure regions; and
Electron emission surface of the thermionic source comprises a plurality of effective irradiation area, an irradiation restricted region disposed between the effective irradiation area of the plurality of, effective irradiation area of said plurality of, from the irradiation restricted area, High electron emission efficiency
The plurality of irradiation effective regions include the irradiation electrons so that a part of each of the plurality of electron beams emitted from the plurality of irradiation effective regions is shielded by the apertures and the irradiation electron beams are shaped by the apertures. It is characterized by being arranged in association with each of the exposure areas irradiated with a beam.

(作用)上記のとおりの発明では、電子銃の熱電子源の電子放出面に電子放出効率の異なる照射有効領域と照射制限領域を設け、照射有効領域を露光に寄与する有効な電子放射領域とし、照射制限領域を、露光には直接寄与せず、制限されていなければ電子銃またはカラム内のアパーチャ電極で遮蔽される電子ビームを放射する領域とした。これにより、放射電子の照射利用効率を上げることができる。さらに、カラム内のアパーチャ電極に照射される電子ビーム量が大幅に低減するので、電子ビーム照射によるカラム内温度上昇、カラム内のチャージアップ、アパーチャの溶融等の問題を解決することが出来る。また、必要なビームだけをカラム内に取り出すことで、電子−電子相互作用によるビーム解像性能の劣化を防ぐことが出来る。   (Operation) In the invention as described above, an irradiation effective area and an irradiation limiting area having different electron emission efficiencies are provided on the electron emission surface of the thermionic source of the electron gun, and the irradiation effective area is defined as an effective electron emission area contributing to exposure. The irradiation limited region is a region that does not directly contribute to exposure and emits an electron beam shielded by an electron gun or an aperture electrode in the column if not limited. Thereby, the irradiation utilization efficiency of a radiated electron can be raised. Furthermore, since the amount of electron beam irradiated to the aperture electrode in the column is greatly reduced, problems such as a rise in column temperature due to electron beam irradiation, charge-up in the column, and melting of the aperture can be solved. Further, by taking out only the necessary beam into the column, it is possible to prevent the beam resolution performance from being deteriorated due to the electron-electron interaction.

本発明は、熱電子源からの電子ビームを成形するアパーチャで遮蔽される電子ビームを低減することができる。   The present invention can reduce the electron beam shielded by the aperture that shapes the electron beam from the thermionic source.

本発明の実施の形態による電子ビーム照明装置の、電子放出表面に照射有効領域と照射制限領域を備えた電子源の形状を示した図である。It is the figure which showed the shape of the electron source provided with the irradiation effective area | region and the irradiation limited area | region in the electron emission surface of the electron beam illuminating device by embodiment of this invention. 本発明の実施の形態による電子ビーム照明装置の電子源の電子放出表面に照射制限領域を形成するための製法例を説明する図である。It is a figure explaining the example of a manufacturing method for forming an irradiation limited area | region in the electron emission surface of the electron source of the electron beam illuminating device by embodiment of this invention. 本発明の実施の形態による電子ビーム照明装置の電子源を露光方式に適用したときの電子銃特性を説明するための図であり、(a)は電子源の電子放出表面から放出した電子の軌道を模式的に示し、図1の(a)で示した電子源を適用した時の電子銃特性を示している。It is a figure for demonstrating the electron gun characteristic when the electron source of the electron beam illuminating device by embodiment of this invention is applied to an exposure system, (a) is the track | orbit of the electron discharge | released from the electron emission surface of the electron source The electron gun characteristics when the electron source shown in FIG. 1A is applied are schematically shown. 本発明の実施の形態による面状電子ビームを照射する電子ビーム照明装置を備えた電子ビームマスク転写露光装置の例を示した図である。It is the figure which showed the example of the electron beam mask transfer exposure apparatus provided with the electron beam illumination apparatus which irradiates the planar electron beam by embodiment of this invention. 図1の(b)に示すようなリング状の照射有効領域を電子放出面に形成した電子源を電子銃に用いたときの角度分布特性を示す図である。It is a figure which shows an angle distribution characteristic when the electron source which formed the ring-shaped irradiation effective area | region as shown in FIG.1 (b) in the electron emission surface is used for an electron gun. 図1の(e)に示すようなリング状の照射有効領域を凹形状の電子放出面に形成した電子源を電子銃に用いたときの角度分布特性を示す図である。It is a figure which shows an angle distribution characteristic when the electron source which formed the ring-shaped irradiation effective area | region in FIG. 1 (e) in the concave electron emission surface was used for the electron gun. 本発明の実施の形態による円弧状電子ビームを照射する電子ビーム照明装置を備えた電子ビームマスク転写露光装置の例を示した図である。It is the figure which showed the example of the electron beam mask transfer exposure apparatus provided with the electron beam illumination apparatus which irradiates the arc-shaped electron beam by embodiment of this invention. 従来の電子ビーム露光装置の一例を示す図である。It is a figure which shows an example of the conventional electron beam exposure apparatus.

以下、本発明の電子ビーム照明装置について具体的に説明する。   Hereinafter, the electron beam illumination apparatus of the present invention will be described in detail.

(原理説明)
まず、電子ビーム照明原理を一例を挙げて説明する。
(Principle explanation)
First, the principle of electron beam illumination will be described with an example.

電子源の電子放出表面から放射した電子ビームは、電子銃で加速、集束され、クロスオーバを形成する(後に説明する図3(a)参照)。電子ビーム露光装置では、このクロスオーバから発散する電子ビームのある角度成分をウエハ上の照射領域に照射する照射電子ビームとして取り出している。電子源の電子放出表面の位置とクロスオーバから発散するビームの角度成分とは略対応していることから、露光に寄与する照射電子ビームを、熱電子源の電子放出表面位置と対応付けることが出来る。   The electron beam emitted from the electron emission surface of the electron source is accelerated and focused by an electron gun to form a crossover (see FIG. 3A described later). In the electron beam exposure apparatus, a certain angle component of the electron beam diverging from the crossover is taken out as an irradiation electron beam for irradiating the irradiation region on the wafer. Since the position of the electron emission surface of the electron source substantially corresponds to the angular component of the beam diverging from the crossover, the irradiation electron beam contributing to the exposure can be associated with the electron emission surface position of the thermal electron source. .

そこで、電子放出表面において、露光に寄与する有効な電子放射領域を電子放出表面の照射有効領域とし、また、露光には直接寄与せず、制限されていなければ電子銃またはカラム内のアパーチャ電極で遮蔽される電子ビームを放射する領域を照射制限領域とした。そして電子放出表面の前記照射有効領域と照射制限領域とに電子放射効率の差を設けることによって、放射電子の照射利用効率を上げることが出来る。   Therefore, on the electron emission surface, the effective electron emission region contributing to the exposure is set as the irradiation effective region of the electron emission surface, and does not directly contribute to the exposure, and if not limited by an electron gun or an aperture electrode in the column. The area that emits the shielded electron beam was defined as an irradiation limited area. Further, by providing a difference in electron emission efficiency between the irradiation effective region and the irradiation limited region on the electron emission surface, it is possible to increase the irradiation utilization efficiency of the emitted electrons.

具体的には、熱電子放出表面の仕事関数に差を設けることによって、前記照射有効領域と照射制限領域の電子発生効率に差を設けることとした。   Specifically, a difference is provided in the electron generation efficiency between the irradiation effective region and the irradiation limited region by providing a difference in the work function of the thermionic emission surface.

熱電子源からの放射する電子の電流密度は、Richardsonの式で導かれる。   The current density of electrons emitted from the thermionic source is derived from the Richardson equation.

[数1]
J=AT2exp(−W/kT)
J:電流密度A:Richardsonの式の定数T:熱カソードの絶対温度W:カソード表面の仕事関数k:Boltzman定数そこで、電子放射表面において、電子放射効率の高い照射有効領域の仕事関数をWa、その効率の低い照射制限領域の仕事関数をWbとすると、両領域の仕事関数の差は、
[Equation 1]
J = AT 2 exp (-W / kT)
J: Current density A: Richardson equation constant T: Thermal cathode absolute temperature W: Cathode surface work function k: Boltzman constant Therefore, on the electron emission surface, the work function of the irradiation effective region with high electron emission efficiency is Wa, If the work function of the irradiation limited region with low efficiency is Wb, the difference between the work functions of both regions is

[数2]
ΔW=Wb−Wa両領域の電子放出効率の比Rは、
[Equation 2]
ΔW = Wb−Wa The ratio R of electron emission efficiency in both regions is

[数3]
R=Jb/Ja=exp(−ΔW)
で示すことが出来る。
[Equation 3]
R = J b / J a = exp (−ΔW)
Can be shown.

一例として、電子放出表面の照射有効領域に電子放出効率の高い材料として硼化化合物(ここでは、LaB6 を例とした)を用い、放射制限領域に電子放射効率の低い材料として炭素を用いた場合、それぞれの仕事関数は、LaB6 (硼化ランタン)が、略2.7eV、炭素が、略4.7eVであることから、両領域の仕事関数の差は、 As an example, a boride compound (in this example, LaB 6 was used) as a material with high electron emission efficiency in the irradiation effective region of the electron emission surface, and carbon was used as a material with low electron emission efficiency in the radiation limited region. In this case, LaB 6 (lanthanum boride) is approximately 2.7 eV and carbon is approximately 4.7 eV, so the difference between the work functions of both regions is

[数4]
ΔW=(WC−WLaB6)=2.0eV
両領域の電子放出効率の比は、
[Equation 4]
ΔW = (W C −W LaB6 ) = 2.0 eV
The ratio of electron emission efficiency in both regions is

[数5]
R=JC/JLaB6=0.14
となり、照射有効領域と照射制限領域の電子放出効率に有効な差をつけることが出来る。しかも、炭素は、LaB6 に対して高温でも反応しない、安定な材料であることから、熱的安定性の高い装置が提供できる。
[Equation 5]
R = J C / J LaB6 = 0.14
Thus, an effective difference can be made in the electron emission efficiency between the irradiation effective region and the irradiation limited region. Moreover, since carbon is a stable material that does not react with LaB 6 even at high temperatures, an apparatus with high thermal stability can be provided.

さらに他の例として、高融点金属を熱電子源とした場合について示す。特に、ここでは、電子放射面の照射有効領域の材料に単原子層陰極材料として代表されるTh-Wを、また照射制限領域の表面材料に炭素を用いた場合、Th-Wの仕事関数は、2.63eVであり、両領域の仕事関数の差は、   As yet another example, a case where a refractory metal is used as a thermionic source will be described. In particular, when Th-W represented by a monoatomic layer cathode material is used as the material of the irradiation effective region of the electron emission surface and carbon is used as the surface material of the irradiation limited region, the work function of Th-W is 2.63 eV, and the difference between the work functions of both regions is

[数6]
ΔW=(WC−WTh-W)=1.4eV
両領域の電子放出効率の比は、
[Equation 6]
ΔW = (W C −W Th−W ) = 1.4 eV
The ratio of electron emission efficiency in both regions is

[数7]
R=JC/JTh-W=0.07
となり、高融点金属材料を熱電子源とした場合でも有効であることが分かる。
[Equation 7]
R = J C / J Th-W = 0.07
Thus, it can be seen that it is effective even when a refractory metal material is used as a thermionic source.

また、Th-W(仕事関数2.63eV)とW(仕事関数4.5eV)の高融点材料を照射有効領域と照射制限領域材料にそれぞれ適用しても、ΔWが1.87eVであるので有効な組合わせである。単原子層陰極の他の組合わせとして、前記Th-W以外の材料、例えばZr-W(仕事関数3.14eV)、Th-W2C(仕事関数2.18eV)、Cs-W(仕事関数1.4eV)、Ba-W(仕事関数1.63eV)などを用いることができる。 Further, even when a high melting point material of Th-W (work function 2.63 eV) and W (work function 4.5 eV) is applied to the irradiation effective region and the irradiation limited region material, ΔW is 1.87 eV, which is effective. Combination. Other combinations of monoatomic cathodes include materials other than Th-W, such as Zr-W (work function 3.14 eV), Th-W 2 C (work function 2.18 eV), Cs-W (work function). 1.4 eV), Ba-W (work function 1.63 eV), or the like can be used.

また、Wの代わりに、Pt(仕事関数5.3eV)やPd(仕事関数4.8eV)の高融点材料を用いることも出来る。   Further, instead of W, a high melting point material of Pt (work function 5.3 eV) or Pd (work function 4.8 eV) can be used.

つまり、電子放出効率の比を0.4以下にするには、電子放出表面の仕事関数の差ΔWを1.0eV以上大きく設定すれば良いことが分かる。   That is, it can be seen that in order to make the ratio of electron emission efficiency 0.4 or less, the work function difference ΔW of the electron emission surface should be set larger by 1.0 eV or more.

(実施の形態)
次に、電子ビーム露光方式の露光領域に適合した本発明による電子放出表面の構造と、その特性、および適用装置例について図面を用いて説明する。
(Embodiment)
Next, the structure of the electron emission surface according to the present invention adapted to the exposure region of the electron beam exposure method, its characteristics, and an example of an application apparatus will be described with reference to the drawings.

図1は、電子ビーム露光方法に合わせて、電子放出表面に照射有効領域と照射制限領域を備えた電子源の形状を示した図であり、図1の(a)〜(d)と(h)は、平面からなる電子放出表面に照射制限領域1を形成した例を示している。また、図1の(e)〜(g)は電子放出表面を加工して凹面、および曲面形状を形成した例を示す。これらの図に示す様々な形状の照射制限領域1を除いた照射有効領域2の形状は図1の(a)では平面内円形、(b)では平面内リング状、(c)では平面内直線状、(d)では平面内複線状、(e)では凹面上内リング状、(f)では凸曲面内リング状、(g)では凹曲面内リング状、(h)では平面内多点状となっている。   FIG. 1 is a diagram showing the shape of an electron source having an irradiation effective region and an irradiation limiting region on the electron emission surface in accordance with the electron beam exposure method, and FIGS. 1 (a) to (d) and (h) ) Shows an example in which the irradiation restricted region 1 is formed on a flat electron emission surface. FIGS. 1E to 1G show examples in which the electron emission surface is processed to form concave and curved shapes. The shape of the irradiation effective region 2 excluding the irradiation limited regions 1 having various shapes shown in these drawings is a circular shape in a plane in FIG. 1A, a ring shape in a plane in FIG. 1B, and a straight line in a plane in FIG. (D) is in-plane double line, (e) is in-concave ring shape, (f) is in convex curve ring shape, (g) is in concave curve ring shape, (h) is multi-plane shape in plane It has become.

このように様々な電子放出面形状の電子源の中で、面状ビームを露光ビームとする露光法では、図1の(a)に示すものが適している。また、図1の(b),(e),(f),(g)に示したリング状の照射有効領域2を持つ電子源は、円弧状ビームを用いた露光法に適している。ライン状の照射有効領域2を持つ図1の(c)における電子源は、露光領域の縦横比が異なる露光法に適している。さらに、電子ビームをマルチ化して複数の露光領域を同時に露光する露光方法に対しては、照射有効領域2を離散的に配置した図1の(d),(h)の電子源が適当である。   Among the electron sources having various electron emission surface shapes as described above, the exposure method shown in FIG. 1A is suitable for an exposure method using a planar beam as an exposure beam. In addition, the electron source having the ring-shaped irradiation effective region 2 shown in FIGS. 1B, 1E, 1F, and 1G is suitable for the exposure method using an arc beam. The electron source in FIG. 1C having the linear irradiation effective area 2 is suitable for an exposure method in which the aspect ratio of the exposure area is different. Furthermore, the electron source shown in FIGS. 1D and 1H in which the irradiation effective areas 2 are discretely arranged is suitable for an exposure method in which a plurality of exposure areas are exposed simultaneously by using multiple electron beams. .

図2は、前記電子放出表面に照射制限領域を形成するための製法例を説明する図で、ここでは図1の(b)に示した電子源の照射制限領域を形成する場合を示す。電子源の照射有効領域の材料として、表面サイズが0.5〜2mmφのLaB6 単結晶(100)を用いている。照射制限領域は、図2の(a)〜(e)に示すように、半導体プロセスと類似した方法で形成することが出来る。つまり、LaB6 単結晶3の表面にレジスト4を塗布し、所望する照射制限領域の形状にパターンニングした後、レジストが除去されたLaB63表面とレジストパターン部5上に低電子放出効率材料をコーティングし、その後、レジストパターン部5を剥離する。 FIG. 2 is a diagram for explaining an example of a manufacturing method for forming an irradiation limiting region on the electron emission surface, and here, shows a case where the irradiation limiting region of the electron source shown in FIG. 1B is formed. A LaB 6 single crystal (100) having a surface size of 0.5 to 2 mmφ is used as a material for the irradiation effective region of the electron source. The irradiation limited region can be formed by a method similar to a semiconductor process, as shown in FIGS. That is, the resist 4 is applied to the surface of the LaB 6 single crystal 3, patterned into a desired irradiation limited region shape, and then the low electron emission efficiency material on the LaB 6 3 surface and the resist pattern portion 5 from which the resist has been removed. Then, the resist pattern portion 5 is peeled off.

特に図2の(d)に示した工程では、照射制限領域の形成として、炭素を電子放出表面にコーティングしている。電子源の表面材料の形成方法としては、真空蒸着法、スパッタリング法、イオンプレーティング法、CVD(Chemical Vapor Deposition)法の何れの方法でも良い。また、コーティング膜の厚さは、電子放出表面の仕事関数を変えることが目的であることから、極めて薄くてよく、例えば、数nmから数十nmの厚さで十分な特性を得ることが出来る。この厚さは、電子源の電子放出表面に形成される静電界の分布を乱すことがないため、放出電子の電子軌道が影響されることはない。   In particular, in the step shown in FIG. 2D, carbon is coated on the electron emission surface as the formation of the irradiation restricted region. As a method for forming the surface material of the electron source, any of a vacuum vapor deposition method, a sputtering method, an ion plating method, and a CVD (Chemical Vapor Deposition) method may be used. The thickness of the coating film may be very thin because the purpose is to change the work function of the electron emission surface. For example, sufficient thickness can be obtained with a thickness of several nanometers to several tens of nanometers. . Since this thickness does not disturb the distribution of the electrostatic field formed on the electron emission surface of the electron source, the electron trajectory of the emitted electrons is not affected.

また、別の表面形成方法として、約60keVの低エネルギーの炭素イオンをLaB6 表面に注入することで、仕事関数を上げることが出来る。このイオン注入による電子放出表面の改質手法は、特に表面状態が安定しているため、前記表面形成方法の中でも、特に安定で高寿命特性が得られることと、照射有効領域と照射制限領域の境界に段差が生じないため、放出電子の電子軌道にその境界が影響することはない。 As another surface formation method, a work function can be increased by implanting low energy carbon ions of about 60 keV into the surface of LaB 6 . This method of modifying the electron emission surface by ion implantation is particularly stable because the surface state is stable. Among the surface formation methods, particularly stable and long-life characteristics can be obtained, and the irradiation effective region and the irradiation limited region can be obtained. Since no step is generated at the boundary, the boundary does not affect the electron trajectory of the emitted electrons.

図3は、前記電子源を露光方式に適用したときの電子銃特性を説明するための図である。図3の(a)は、電子源の電子放出表面から放出した電子の軌道を模式的に示している。電子源7aは面状電子源であり、表面から放出された電子は、電子銃20を構成するウエネルト電極8や接地電極9等によって加速、集束され、クロスオーバCOを形成すると同時にある放射角をもって電子銃20より放射する。その後、電子ビーム露光に使用する照射ビームは、放射電子ビームの中から均一性の高い領域を得るために電子銃とカラム内のアパーチャ電極で遮蔽して形成される。   FIG. 3 is a diagram for explaining electron gun characteristics when the electron source is applied to an exposure method. FIG. 3A schematically shows the trajectory of electrons emitted from the electron emission surface of the electron source. The electron source 7a is a planar electron source, and electrons emitted from the surface are accelerated and focused by the Wehnelt electrode 8 and the ground electrode 9 constituting the electron gun 20 to form a crossover CO and have a certain radiation angle. Radiated from the electron gun 20. Thereafter, an irradiation beam used for electron beam exposure is formed by shielding with an electron gun and an aperture electrode in the column in order to obtain a highly uniform region from the emitted electron beam.

図3の(b)は面状露光のための電子源として、図1の(a)で示したものを用いた時の電子銃特性を示している。面状露光に用いる電子放射ビームは、露光領域の電子ビーム照射強度の一様性を上げるために、中心軸から数mradの特性の良い放射電子ビームを用いている。従来の照射制限領域を持たない場合の放射電子の角度分布特性は図3の(b)中に点線で示されている。これは、2分の1の強度分布を持つ放射半角が、約50mradの開き角を持っている。それに対して、本発明の電子源では電子放出表面に照射制限領域を設けることで、図3の(b)中に実線で示した角度分布特性に示すように、放射半角を約10mradにすることが出来る。   FIG. 3B shows electron gun characteristics when the electron source shown in FIG. 1A is used as the electron source for surface exposure. As the electron radiation beam used for the surface exposure, a radiation electron beam having a good characteristic of several mrad from the central axis is used in order to increase the uniformity of the electron beam irradiation intensity in the exposure region. The angular distribution characteristics of emitted electrons when there is no conventional irradiation restricted region are indicated by dotted lines in FIG. This is because a radiation half angle with a half intensity distribution has an opening angle of about 50 mrad. On the other hand, in the electron source of the present invention, by providing an irradiation limited region on the electron emission surface, the radiation half angle is set to about 10 mrad as shown by the angle distribution characteristic shown by the solid line in FIG. I can do it.

図4は、前記面状電子ビームを用いた電子ビームマスク転写露光装置の例を示している。この図で示される露光装置は、電子銃20および、放射電子ビームの中から一様性の高い強度領域を得るためのアパーチャ10a、照明レンズ11a,11b、遮蔽して電子ビームマスク15上に矩形の電子ビームSBを形成する矩形アパーチャ10cで構成する照明装置21と、電子ビームマスク15を通った電子ビームをアパーチャ10eで大きさの制限をすると共にステージ17上のウエハ16に投影する投影レンズ12a,12bで構成する投影レンズ系22とを有する。この露光装置では、電子源の電子放出面に照射制限領域を設けることで照明装置21に入射する電子ビームEBは電子銃20のところで制限されている(図3(b)参照)。従って、カラム内のアパーチャ10cに照射される電子ビーム量を大幅に低減することが出来ることから、電子ビーム照射によるカラム内温度上昇、カラム内のチャージアップ、アパーチャの溶融等の問題を解決することが出来る。   FIG. 4 shows an example of an electron beam mask transfer exposure apparatus using the planar electron beam. The exposure apparatus shown in this figure has an electron gun 20, an aperture 10 a for obtaining a highly uniform intensity region from a radiated electron beam, illumination lenses 11 a and 11 b, a rectangular shape on an electron beam mask 15 that is shielded. A projection lens 12a that limits the size of the electron beam that has passed through the electron beam mask 15 by the aperture 10e and projects it onto the wafer 16 on the stage 17 while forming a rectangular aperture 10c that forms the electron beam SB. , 12b and a projection lens system 22. In this exposure apparatus, the electron beam EB incident on the illumination device 21 is restricted at the electron gun 20 by providing an irradiation restriction region on the electron emission surface of the electron source (see FIG. 3B). Accordingly, since the amount of electron beam irradiated to the aperture 10c in the column can be greatly reduced, problems such as temperature increase in the column, charge-up in the column, and melting of the aperture can be solved. I can do it.

図5は、図1の(b)に示すようなリング状の照射有効領域を電子放出面に形成した電子源7aを電子銃20に用いたときの角度分布特性である。この図における実線は本発明の特性、点線は従来の特性を示している。従来の方法では電子放出表面全体から放射した電子の中から、リング状に放射電子ビームを切り出して照射電子ビームを形成していた。これに対し、本発明では電子源の電子放出表面にリング状の照射有効領域を形成する照射制限領域を平らな結晶表面に設けることで、リング内側の露光に寄与しない放射電子ビームを、電子銃とカラム内のアパーチャでなく、電子放出面のところで制限することが出来る。   FIG. 5 shows angular distribution characteristics when an electron source 7a in which a ring-shaped irradiation effective region as shown in FIG. In this figure, the solid line indicates the characteristic of the present invention, and the dotted line indicates the conventional characteristic. In the conventional method, a radiation electron beam is formed by cutting out a radiation electron beam in a ring shape from electrons emitted from the entire electron emission surface. On the other hand, in the present invention, by providing an irradiation limited region on the flat crystal surface that forms a ring-shaped irradiation effective region on the electron emission surface of the electron source, a radiated electron beam that does not contribute to exposure inside the ring It can be restricted at the electron emission surface, not the aperture in the column.

また、図6は、前記リング状の照射電子ビームの効率をさらに向上させる方法として、電子源の電子放出表面に図1の(e)に示す凹形状を用いた場合の角度分布特性を示している。この凹形状の電子源の特性としては、電子放出面周辺の電界を強めることで、空間電荷効果による影響を低減し、電流密度を高めることが出来る。図6中の点線は、照射制限領域を持たない電子源からの角度分布特性を示している。実線は、電子源に図1の(e)に示した凹面電子放出表面に照射制限領域を持った電子源を用いた場合の角度分布特性である。この様に、凹形状の電子放出面の最表面にリング状の照射有効領域を形成することで、電子銃からの放射電子の利用効率を向上することが出来る。   FIG. 6 shows angular distribution characteristics when the concave shape shown in FIG. 1E is used on the electron emission surface of the electron source as a method for further improving the efficiency of the ring-shaped irradiation electron beam. Yes. As the characteristics of the concave electron source, by increasing the electric field around the electron emission surface, the influence of the space charge effect can be reduced and the current density can be increased. The dotted line in FIG. 6 shows the angular distribution characteristic from an electron source that does not have an irradiation restricted region. The solid line represents the angular distribution characteristic when the electron source having the irradiation limited region on the concave electron emission surface shown in FIG. In this way, by forming the ring-shaped irradiation effective region on the outermost surface of the concave electron emission surface, it is possible to improve the utilization efficiency of the emitted electrons from the electron gun.

図7は、前記円弧状ビームを用いた電子ビームマスク転写露光装置の例を示している。この図で示される露光装置は、電子銃20および、放射電子ビームの中から一様性の高い強度領域を得るためのアパーチャ10a、照明レンズ11a,11b、遮蔽して電子ビームマスク15上に円弧状の電子ビームCBを形成する円弧形状アパーチャ10dで構成する照明装置21と、電子ビームマスク15を通った電子ビームをアパーチャ10eで大きさ制限すると共にステージ17上のウエハ16に投影する投影レンズ12a,12bで構成する投影レンズ系22とを有する。この装置では、照明装置21で形成されたマスク面上の円弧状ビームCBは、円弧形状アパーチャ10dの像が電子ビームマスク面上で結像する様に構成されている。投影レンズ系22は、円弧状のビームを用いることで像面湾曲収差を大幅に低減できることから、図4で示した面状電子ビームを用いた場合の露光領域の幅(円弧ビームの長さ)を10倍以上大きくすることができ、その結果、大電流照射ビームによる高速電子ビーム描画を可能とする。本方式では、図5および図6に示すリング状ビームを用いることで、照明レンズ内に入射する電子ビーム量を大幅に低減できることから、カラム内の円弧形状アパーチャ10dに照射される電子ビーム量を大幅に低減することが出来る。従って、電子ビーム照射によるカラム内温度上昇、カラム内のチャージアップ、アパーチャの溶融等の問題を解決することが出来る。   FIG. 7 shows an example of an electron beam mask transfer exposure apparatus using the arc-shaped beam. The exposure apparatus shown in this figure includes an electron gun 20, an aperture 10 a for obtaining a highly uniform intensity region from the radiated electron beam, illumination lenses 11 a and 11 b, and a circular shield on the electron beam mask 15. An illumination device 21 configured by an arc-shaped aperture 10d that forms an arc-shaped electron beam CB, and a projection lens 12a that limits the size of the electron beam that has passed through the electron beam mask 15 by the aperture 10e and projects it onto the wafer 16 on the stage 17. , 12b and a projection lens system 22. In this apparatus, the arc-shaped beam CB on the mask surface formed by the illumination device 21 is configured such that an image of the arc-shaped aperture 10d is formed on the electron beam mask surface. Since the projection lens system 22 can significantly reduce the curvature of field by using an arc-shaped beam, the width of the exposure area (the length of the arc beam) when the planar electron beam shown in FIG. 4 is used. Can be increased by 10 times or more, and as a result, high-speed electron beam writing can be performed with a large current irradiation beam. In this method, the amount of the electron beam incident on the illumination lens can be significantly reduced by using the ring-shaped beam shown in FIGS. 5 and 6, so that the amount of the electron beam applied to the arc-shaped aperture 10d in the column can be reduced. It can be greatly reduced. Accordingly, it is possible to solve problems such as temperature rise in the column due to electron beam irradiation, charge up in the column, and melting of the aperture.

なお、本発明は、マスク転写の方法だけでなく、ビーム束を複数用いて複数の露光領域を同時に露光するマルチビーム露光方式においても、各露光領域の位置に基づいて図1の(d),(h)に示す様に、電子源の電子放出面に照射有効領域を離散的に設けることは、同様の理由で有効である。   Note that the present invention is not limited to the mask transfer method, but also in a multi-beam exposure method in which a plurality of exposure areas are simultaneously exposed using a plurality of beam bundles, (d), FIG. As shown in (h), it is effective for the same reason to discretely provide irradiation effective regions on the electron emission surface of the electron source.

以上、実施の形態による本発明は、広い露光領域を持つ高速電子ビーム露光装置において、電子源から発生した放射電子ビームの利用効率が優れており、遮蔽ビーム量が低減するため、電子銃およびカラム内のチャージアップが減少し、ビームの位置精度が向上する。さらに、遮蔽ビームによる温度上昇が低減し、電子銃とカラムの熱的安定性が向上するだけでなく、遮蔽電極の溶融問題が解決する。このことから露光領域に大きな照射電流が投入できるためスループットの向上が期待できる。また、電子発生装置の電源負荷が低減できるため、装置コストを下げることが出来る。   As described above, according to the present invention according to the embodiment, in a high-speed electron beam exposure apparatus having a wide exposure area, the use efficiency of a radiated electron beam generated from an electron source is excellent, and the amount of shielding beam is reduced. The charge-up inside is reduced and the beam position accuracy is improved. Furthermore, the temperature rise due to the shielding beam is reduced, the thermal stability of the electron gun and the column is improved, and the problem of melting of the shielding electrode is solved. From this, a large irradiation current can be input to the exposure region, so that an improvement in throughput can be expected. Further, since the power load of the electron generator can be reduced, the device cost can be reduced.

1 照射制限領域
2 照明有効領域
3 LaB6単結晶
4 レジスト
5 レジストパターン部
6 低電子放出効率材料
7a 電子源
8 ウエネルト電極
9 接地電極
10a,10b,10e アパーチャ
10c 矩形アパーチャ
10d 円弧形状アパーチャ
11a 第1照明レンズ
11b 第2照明レンズ
12a 第1投影レンズ
12b 第2投影レンズ
15 電子ビームマスク
16 ウエハ
17 ステージ
EB 電子ビーム
SB マスク面上の矩形ビーム
CB マスク面上の円弧ビーム
1 irradiation restricted area 2 illuminated effective region 3 LaB 6 single crystal 4 resist 5 resist pattern portion 6 low electron emission efficiency material 7a electron source 8 Wehnelt electrode 9 ground electrode 10a, 10b, 10e aperture 10c rectangular aperture 10d arcuate aperture 11a first Illumination lens 11b Second illumination lens 12a First projection lens 12b Second projection lens 15 Electron beam mask 16 Wafer 17 Stage EB Electron beam SB Rectangular beam CB on mask surface Arc beam on mask surface

Claims (3)

複数の電子ビームで複数の露光領域を同時に露光する電子ビーム露光装置であって、
熱電子源と、該熱電子源から放出された電子のクロスオーバを形成する電極とを含み、該クロスオーバから電子線を放射する電子銃と、
前記電子銃から放射された電子ビームの一部を遮蔽して、各前記露光領域に照射する照射電子ビームを成形するアパーチャと、を有し、
熱電子源の電子放出面は、複数の照射有効領域と、該複数の照射有効領域の間に配置された照射制限領域とを含み、該複数の照射有効領域は、該照射制限領域より、電子放出効率が高く、
前記複数の照射有効領域は、前記複数の照射有効領域から放出された複数の電子ビームそれぞれの一部が前記アパーチャで遮蔽されて前記照射電子ビームが前記アパーチャにより成形されるように、前記照射電子ビームで照射する各前記露光領域と対応づけて配置されている、ことを特徴とする電子ビーム露光装置。
An electron beam exposure apparatus that simultaneously exposes a plurality of exposure areas with a plurality of electron beams,
An electron gun that includes a thermionic source and an electrode that forms a crossover of electrons emitted from the thermionic source, and emits an electron beam from the crossover ;
An aperture that blocks a part of the electron beam emitted from the electron gun and forms an irradiation electron beam that irradiates each of the exposure regions; and
Electron emission surface of the thermionic source comprises a plurality of effective irradiation area, an irradiation restricted region disposed between the effective irradiation area of the plurality of, effective irradiation area of said plurality of, from the irradiation restricted area, High electron emission efficiency
The plurality of irradiation effective regions include the irradiation electrons so that a part of each of the plurality of electron beams emitted from the plurality of irradiation effective regions is shielded by the apertures and the irradiation electron beams are shaped by the apertures. An electron beam exposure apparatus, wherein the electron beam exposure apparatus is arranged in association with each of the exposure areas irradiated with a beam.
前記複数の照射有効領域は、それぞれ直線状の形状である、ことを特徴とする請求項1に記載の電子ビーム露光装置。The electron beam exposure apparatus according to claim 1, wherein each of the plurality of irradiation effective regions has a linear shape. 前記複数の照射有効領域は、それぞれ点状の形状である、ことを特徴とする請求項1に記載の電子ビーム露光装置。The electron beam exposure apparatus according to claim 1, wherein each of the plurality of irradiation effective areas has a dot shape.
JP2009091979A 2009-04-06 2009-04-06 Electron beam exposure system Expired - Fee Related JP4939565B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009091979A JP4939565B2 (en) 2009-04-06 2009-04-06 Electron beam exposure system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009091979A JP4939565B2 (en) 2009-04-06 2009-04-06 Electron beam exposure system

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP10349021A Division JP2000173900A (en) 1998-12-08 1998-12-08 Electron beam emitting device and electron beam exposure system equipped therewith

Publications (2)

Publication Number Publication Date
JP2009152645A JP2009152645A (en) 2009-07-09
JP4939565B2 true JP4939565B2 (en) 2012-05-30

Family

ID=40921328

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009091979A Expired - Fee Related JP4939565B2 (en) 2009-04-06 2009-04-06 Electron beam exposure system

Country Status (1)

Country Link
JP (1) JP4939565B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102399340B1 (en) 2016-07-19 2022-05-17 덴카 주식회사 Electron source and manufacturing method thereof
JP7295974B2 (en) * 2019-12-24 2023-06-21 株式会社日立ハイテク Electron source, electron beam apparatus, and method for manufacturing electron source

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5453352A (en) * 1977-10-06 1979-04-26 Kokusai Gijutsu Kaihatsu Kk Clothing dryer
JPS60225345A (en) * 1984-04-20 1985-11-09 Hitachi Ltd Power supply for electric field emitting cathode
JPH03257746A (en) * 1990-03-06 1991-11-18 Nec Corp Linear cathode for linear electron beam source device
JPH05242796A (en) * 1992-02-28 1993-09-21 Matsushita Electric Ind Co Ltd Manufacture of electron emission element
JPH06162918A (en) * 1992-11-19 1994-06-10 Canon Inc Semiconductor electron emission element and manufacture thereof
JP2615411B2 (en) * 1993-12-27 1997-05-28 工業技術院長 Multiple electron beam irradiation apparatus and irradiation method
US5898269A (en) * 1995-07-10 1999-04-27 The Board Of Trustees Of The Leland Stanford Jr. University Electron sources having shielded cathodes
WO1997036693A1 (en) * 1996-04-01 1997-10-09 The Regents Of The University Of California Process to modify work functions using ion implantation
JP3666151B2 (en) * 1996-12-06 2005-06-29 株式会社日立製作所 Electron beam source, electron gun, electron beam drawing apparatus, and pattern forming method using the same
US5892231A (en) * 1997-02-05 1999-04-06 Lockheed Martin Energy Research Corporation Virtual mask digital electron beam lithography
JPH10289844A (en) * 1997-04-11 1998-10-27 Fujitsu Ltd Charged particle beam exposure method and system therefor
JPH10308340A (en) * 1997-05-08 1998-11-17 Canon Inc Electron beam exposing method and device

Also Published As

Publication number Publication date
JP2009152645A (en) 2009-07-09

Similar Documents

Publication Publication Date Title
US6333508B1 (en) Illumination system for electron beam lithography tool
US6465797B2 (en) Electron beam illumination apparatus, electron beam exposure apparatus, and device manufacturing method
JP4113032B2 (en) Electron gun and electron beam exposure apparatus
JPWO2008102435A1 (en) Electron gun, electron beam exposure apparatus and exposure method
CN109473329B (en) Spatially coherent X-ray source with surface-emitting transmission type array structure
TW200402602A (en) Electron beam exposure apparatus, exposure method of using electron beam, control method of electron beam, and manufacturing method of semiconductor device
US9269542B2 (en) Plasma cathode charged particle lithography system
JP3986792B2 (en) Apparatus for suppressing aberrations due to space charge in charged particle projection lithography systems
EP1052677B1 (en) Electron emitters for lithography tools
JP3658235B2 (en) Electron gun, drawing apparatus using electron gun, and electron beam application apparatus
JP2018519649A (en) Repeller for ion implanter, cathode, chamber wall, slit member, and ion generator including the same
US6091187A (en) High emittance electron source having high illumination uniformity
WO2001026134A1 (en) Array of multiple charged particle beamlet emitting columns
JP4939565B2 (en) Electron beam exposure system
JP4959723B2 (en) Electron gun and electron beam exposure apparatus
US7345290B2 (en) Lens array for electron beam lithography tool
US6621090B2 (en) Electron-beam sources exhibiting reduced spherical aberration, and microlithography apparatus comprising same
US6670620B1 (en) Electron gun, illumination apparatus using the electron gun, and electron beam exposure apparatus using the illumination apparatus
JP2011146250A (en) Method for using emitter for electron gun
JP2019114340A (en) Cathode
US6541785B1 (en) Electron-beam sources and electron-beam microlithography apparatus comprising same
KR20080100158A (en) Electron gun, electron beam exposure apparatus and exposure method
JP3666151B2 (en) Electron beam source, electron gun, electron beam drawing apparatus, and pattern forming method using the same
JPH0451438A (en) Electron beam exposure device and method
JP2005183335A (en) Electron gun and electron beam projection and exposure device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090406

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110907

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111206

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120221

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120224

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150302

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150302

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees