JP4939385B2 - Method for producing molded product and method for producing mold - Google Patents

Method for producing molded product and method for producing mold Download PDF

Info

Publication number
JP4939385B2
JP4939385B2 JP2007310943A JP2007310943A JP4939385B2 JP 4939385 B2 JP4939385 B2 JP 4939385B2 JP 2007310943 A JP2007310943 A JP 2007310943A JP 2007310943 A JP2007310943 A JP 2007310943A JP 4939385 B2 JP4939385 B2 JP 4939385B2
Authority
JP
Japan
Prior art keywords
molding
glass material
molded
deformation amount
test
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007310943A
Other languages
Japanese (ja)
Other versions
JP2009132578A (en
Inventor
良幸 佐藤
山本  明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoya Corp
Original Assignee
Hoya Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya Corp filed Critical Hoya Corp
Priority to JP2007310943A priority Critical patent/JP4939385B2/en
Publication of JP2009132578A publication Critical patent/JP2009132578A/en
Application granted granted Critical
Publication of JP4939385B2 publication Critical patent/JP4939385B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)

Description

本発明は、熱垂下成形法による成形品の製造方法および熱垂下成形法に使用される成形型の製造方法に関する。   The present invention relates to a method for producing a molded article by a hot droop molding method and a method for producing a mold used for the hot droop molding method.

眼鏡レンズ用ガラスモールドの成形方法としては、機械的研削研磨法や、機械的研削法や放電加工等の電気的加工法により作成した耐熱性母型を用い、これにガラスブランクスを接触加熱軟化させて母型の面形状を転写する方法等、得ようとする面形状ごとに研削プログラムを用いたり、対応する面形状を有する母型を成形する方法が採用されている。   Glass molds for eyeglass lenses are molded using a heat-resistant mold created by mechanical grinding and polishing, or electrical machining methods such as mechanical grinding and electrical discharge machining, and glass blanks are softened by contact heating. For example, a grinding program is used for each surface shape to be obtained, such as a method of transferring the surface shape of the mother die, or a method of forming a mother die having a corresponding surface shape.

近年、軸対称の非球面レンズ設計を組み入れることにより、薄肉軽量化を図った多焦点眼鏡レンズの需要が増大している。そのため、このような複雑な形状の眼鏡レンズを得るためのモールドの成形法として、熱垂下成形法が提案されている(特開平6−130333号公報(特許文献1)、特開平4−275930号公報(特許文献2)参照)。熱垂下成形法は、ガラス等の熱軟化性物質からなるガラス素材を型の上に載せ、その軟化点以上の温度に加熱することによりガラス素材を軟化させて型と密着させることにより、型形状をガラス素材の上面に転写させて所望の面形状を有する成形品を得る成形法である。   In recent years, there has been an increasing demand for multifocal spectacle lenses that are thinner and lighter by incorporating axisymmetric aspheric lens designs. Therefore, as a molding method for obtaining such a complex-shaped spectacle lens, a hot droop molding method has been proposed (JP-A-6-130333 (Patent Document 1), JP-A-4-275930). Publication (refer patent document 2)). In the hot drooping molding method, a glass material made of a thermosoftening substance such as glass is placed on a mold and heated to a temperature equal to or higher than its softening point to soften the glass material and adhere to the mold, thereby forming the mold shape. Is a molding method for obtaining a molded product having a desired surface shape by transferring the material onto the upper surface of the glass material.

熱垂下成形法では、成形型成形面形状、被成形素材形状、成形面と成形素材下面との離間距離、加熱条件等の因子が成形精度に影響し得る。通常、形状制御を容易にするために上記因子中のいくつかを固定し、いくつかを可変とした上で成形条件が決定される。一般には、形状の異なるガラスブランクスと成形型を多数準備し、成形面と被成形ガラス素材の離間距離が所定値(一般に幾何中心部離間距離にて0.1mm〜2.0mm程度)となるようなガラスブランクスと成形型との組み合わせを選択した上で、予備成形を繰り返しガラスブランクスおよび/または成形型の形状に補正を加えた後に実成形が行われる。これは一般に、成形型とブランクスの間隔を極力小さくすることにより、形状制御が容易になるからである。しかし、上記方法では、多数のガラスブランクスや成形型のストックを準備する必要がある、ガラスブランクスと成形型の組み合わせを選択した後の形状補正が煩雑である、等の課題があった。   In the hot sag molding method, factors such as the shape of the molding surface, the shape of the material to be molded, the distance between the molding surface and the bottom surface of the molding material, and heating conditions can affect the molding accuracy. Usually, in order to facilitate shape control, some of the above factors are fixed and some are variable, and then the molding conditions are determined. In general, a large number of glass blanks and molds with different shapes are prepared, and the separation distance between the molding surface and the glass material to be molded is a predetermined value (generally about 0.1 mm to 2.0 mm at the geometric center separation distance). After selecting a combination of the blanks and the mold, the preforming is repeated, and then the glass blanks and / or the shape of the mold are corrected, and then actual molding is performed. This is because the shape control is generally facilitated by reducing the distance between the mold and the blanks as much as possible. However, in the above method, there are problems that it is necessary to prepare a large number of glass blanks and stock of molds, and that shape correction after selecting a combination of glass blanks and molds is complicated.

これに対し、本願出願人は、特許文献3において、ガラス素材の上面を成形型成形面に対する略オフセット面に成形することを提案した。特許文献3には、まず所望のガラス素材上面形状に基づき成形型成形面の形状を決定し、決定された成形型成形面形状に基づきガラス素材の形状を決定することが提案されている。
特開平6−130333号公報 特開平4−275930号公報 WO2007/058353 A1
On the other hand, the applicant of the present application has proposed in Patent Document 3 that the upper surface of the glass material is formed into a substantially offset surface with respect to the forming die forming surface. Patent Document 3 proposes to first determine the shape of a molding die molding surface based on a desired glass material upper surface shape, and to determine the shape of the glass material based on the determined molding die molding surface shape.
JP-A-6-130333 JP-A-4-275930 WO2007 / 058353 A1

熱垂下成形法の簡便性を高めるアプローチの1つとしては、特許文献3に記載の方法のように成形型成形面形状に基づきガラス素材形状を決定することが挙げられる。一方、他のアプローチとしては、ガラス素材の形状に基づき成形型成形面形状を決定することが考えられる。この方法によれば、単一形状のガラス素材から様々な異なる形状の成形品を得ることが可能となり、熱垂下成形法の簡便性をより一層高めることができる。   One approach for improving the simplicity of the hot drooping molding method is to determine the glass material shape based on the molding die molding surface shape as in the method described in Patent Document 3. On the other hand, as another approach, it is conceivable to determine the shape of the molding surface based on the shape of the glass material. According to this method, it is possible to obtain molded products having various different shapes from a single-shaped glass material, and the convenience of the hot sag forming method can be further enhanced.

そこで本発明の目的は、熱垂下成形法により容易かつ簡便に所望形状を有する成形品を得るための手段を提供することにある。   Therefore, an object of the present invention is to provide means for obtaining a molded product having a desired shape easily and simply by a hot droop molding method.

本発明者らは上記目的を達成するために鋭意検討を重ねた。その結果、被成形ガラス素材の熱軟化による変形量と、被成形ガラス素材の厚さには相関があること、この相関関係を利用することにより被成形ガラス素材の形状から成形型成形面形状を決定できること、を見出し本発明を完成するに至った。   The inventors of the present invention have made extensive studies in order to achieve the above object. As a result, there is a correlation between the amount of deformation due to thermal softening of the glass material to be molded and the thickness of the glass material to be molded, and by using this correlation, the shape of the mold surface is changed from the shape of the glass material to be molded. The present invention has been completed by finding out that it can be determined.

即ち、上記目的は、下記手段により達成された。
[1]成形型成形面上に被成形ガラス素材を配置すること、および、
成形型成形面上に配置された被成形ガラス素材に加熱処理を施すことにより、前記被成形ガラス素材の上面を成形して成形品を得る成形品の製造方法であって、
前記成形型として、被成形ガラス素材の厚さに依存する被成形ガラス素材の予測変形量に基づき決定された成形面形状を有する成形型を使用し、
試験用ガラス素材を、試験用成形型成形面上に配置すること、
試験用成形型成形面上に配置された試験用ガラス素材を、前記加熱処理と同一加熱条件下でテスト加熱すること、および
前記テスト加熱による試験用ガラス素材の変形量を求めること、
を含み、
前記予測変形量を、前記試験用ガラス素材の変形量と試験用ガラス素材の厚みt1と被成形用ガラス素材の厚みt2との比t2/t1に基づき決定することを特徴とする成形品の製造方法
[2]被成形ガラス素材は、下面周縁部の少なくとも一部が成形面と接触し、かつ下面中央部が成形面と離間した状態になるように成形型成形面上に配置され、
前記予測変形量は、被成形ガラス素材下面と成形面との離間距離に依存する予測変形量を含み、かつ前記離間距離に依存する予測変形量は、離間距離に比例する値である[1]に記載の成形品の製造方法
[3]成形型成形面上に被成形ガラス素材を配置すること、および、
成形型成形面上に配置された被成形ガラス素材に加熱処理を施すことにより、前記被成形ガラス素材の上面を成形して成形品を得る成形品の製造方法であって、
前記成形型として、被成形ガラス素材の厚さに依存する被成形ガラス素材の予測変形量に基づき決定された成形面形状を有する成形型を使用し、
被成形ガラス素材は、下面周縁部の少なくとも一部が成形面と接触し、かつ下面中央部が成形面と離間した状態になるように成形型成形面上に配置され、
前記予測変形量は、被成形ガラス素材下面と成形面との離間距離に依存する予測変形量を含み、かつ前記離間距離に依存する予測変形量は、離間距離に比例する値であることを特徴とする成形品の製造方法。
[4]成形型成形面上に被成形ガラス素材を配置すること、および、
成形型成形面上に配置された被成形ガラス素材に加熱処理を施すことにより、前記被成形ガラス素材の上面を成形して成形品を得る成形法に使用される成形型の製造方法であって、
前記成形面形状を、被成形ガラス素材の厚さに依存する被成形ガラス素材の予測変形量に基づき決定し、
試験用ガラス素材を、試験用成形型成形面上に配置すること、
試験用成形型成形面上に配置された試験用ガラス素材を、前記加熱処理と同一加熱条件下でテスト加熱すること、および
前記テスト加熱による試験用ガラス素材の変形量を求めること、
を含み、
前記予測変形量を、前記試験用ガラス素材の変形量と試験用ガラス素材の厚みt1と被成形用ガラス素材の厚みt1との比t2/t1に基づき決定することを特徴とする成形型の製造方法。
[5]被成形ガラス素材は、下面周縁部の少なくとも一部が成形面と接触し、かつ下面中央部が成形面と離間した状態になるように成形型成形面上に配置され、
前記予測変形量は、被成形ガラス素材下面と成形面との離間距離に依存する予測変形量を含み、かつ前記離間距離に依存する予測変形量は、離間距離に比例する値である[4]に記載の成形型の製造方法。
[6]成形型成形面上に被成形ガラス素材を配置すること、および、
成形型成形面上に配置された被成形ガラス素材に加熱処理を施すことにより、前記被成形ガラス素材の上面を成形して成形品を得る成形法に使用される成形型の製造方法であって、
前記成形面形状を、被成形ガラス素材の厚さに依存する被成形ガラス素材の予測変形量に基づき決定し、
被成形ガラス素材は、下面周縁部の少なくとも一部が成形面と接触し、かつ下面中央部が成形面と離間した状態になるように成形型成形面上に配置され、
前記予測変形量は、被成形ガラス素材下面と成形面との離間距離に依存する予測変形量を含み、かつ前記離間距離に依存する予測変形量は、離間距離に比例する値であることを特徴とする成形型の製造方法。
That is, the above object was achieved by the following means.
[1] disposing a glass material to be molded on the molding surface of the mold; and
A method for producing a molded product that obtains a molded product by molding the upper surface of the glass material to be molded by subjecting the glass material to be molded disposed on the molding surface to a heat treatment,
As the mold, using a mold having a molding surface shape determined based on the predicted deformation amount of the glass material to be molded that depends on the thickness of the glass material to be molded ,
Placing the test glass material on the test mold surface,
Test heating the test glass material placed on the test mold surface under the same heating conditions as the heat treatment, and
Obtaining a deformation amount of the test glass material by the test heating,
Including
The predicted deformation amount is determined based on a ratio t2 / t1 between the deformation amount of the test glass material, the thickness t1 of the test glass material, and the thickness t2 of the glass material to be molded, Way .
[2 ] The glass material to be molded is disposed on the molding surface so that at least a part of the peripheral edge of the lower surface is in contact with the molding surface and the center of the lower surface is separated from the molding surface,
The predicted deformation amount is predicted deformation amount of viewing including the predicted deformation amount that depends on the distance between the molding surface and the glass molding material lower surface, and depends on the distance is a value proportional to the distance [1 ] The manufacturing method of the molded article of description .
[3] Arranging the glass material to be molded on the molding surface of the mold, and
A method for producing a molded product that obtains a molded product by molding the upper surface of the glass material to be molded by subjecting the glass material to be molded disposed on the molding surface to a heat treatment,
As the mold, using a mold having a molding surface shape determined based on the predicted deformation amount of the glass material to be molded that depends on the thickness of the glass material to be molded,
The glass material to be molded is disposed on the molding die molding surface such that at least a part of the peripheral edge of the lower surface is in contact with the molding surface and the central portion of the lower surface is separated from the molding surface,
The predicted deformation amount includes a predicted deformation amount that depends on a separation distance between a lower surface of the glass material to be molded and a molding surface, and the predicted deformation amount that depends on the separation distance is a value proportional to the separation distance. A method for manufacturing a molded product.
[4 ] disposing a glass material to be molded on the molding surface of the mold, and
A manufacturing method of a molding die used in a molding method for forming a molded product by molding the upper surface of the molding glass material by subjecting the molding glass material arranged on the molding surface to a heat treatment. ,
The molding surface shape is determined based on the predicted deformation amount of the glass molding material depending on the thickness of the glass molding material ,
Placing the test glass material on the test mold surface,
Test heating the test glass material placed on the test mold surface under the same heating conditions as the heat treatment, and
Obtaining a deformation amount of the test glass material by the test heating,
Including
The predicted deformation amount is determined based on a ratio t2 / t1 between the deformation amount of the test glass material, the thickness t1 of the test glass material, and the thickness t1 of the glass material to be molded. Method.
[5 ] The glass material to be molded is disposed on the molding surface so that at least a part of the peripheral edge of the lower surface is in contact with the molding surface and the center of the lower surface is separated from the molding surface,
The predicted deformation amount is predicted deformation amount of viewing including the predicted deformation amount that depends on the distance between the molding surface and the glass molding material lower surface, and depends on the distance is a value proportional to the distance [4 ] The manufacturing method of the shaping | molding die of description.
[6] disposing a glass material to be molded on the molding surface of the mold, and
A manufacturing method of a molding die used in a molding method for forming a molded product by molding the upper surface of the molding glass material by subjecting the molding glass material arranged on the molding surface to a heat treatment. ,
The molding surface shape is determined based on the predicted deformation amount of the glass molding material depending on the thickness of the glass molding material,
The glass material to be molded is disposed on the molding die molding surface such that at least a part of the peripheral edge of the lower surface is in contact with the molding surface and the central portion of the lower surface is separated from the molding surface,
The predicted deformation amount includes a predicted deformation amount that depends on a separation distance between a lower surface of the glass material to be molded and a molding surface, and the predicted deformation amount that depends on the separation distance is a value proportional to the separation distance. A method for manufacturing a mold.

本発明によれば、同一形状のガラス素材を用いて異なる形状の成形品を得ることが可能となる。これにより、熱垂下成形法におけるガラス素材の製造および管理が容易となり、熱垂下成形法の簡便性を顕著に向上することができる。   According to the present invention, it is possible to obtain molded products having different shapes by using glass materials having the same shape. Thereby, manufacture and management of the glass material in the hot sag forming method are facilitated, and the simplicity of the hot sag forming method can be significantly improved.

本発明の成形品の製造方法は、成形型成形面上に被成形ガラス素材を配置すること、および、成形型成形面上に配置された被成形ガラス素材に加熱処理を施すことにより、前記被成形ガラス素材の上面を成形して成形品を得る成形品の製造方法であり、前記成形型として、被成形ガラス素材の厚さに依存する被成形ガラス素材の予測変形量に基づき決定された成形面形状を有する成形型を使用する。   The method for producing a molded article according to the present invention includes arranging the glass material to be molded on the molding surface of the mold, and subjecting the glass material to be molded disposed on the molding surface of the mold to heat treatment. A method of manufacturing a molded product that obtains a molded product by molding the upper surface of the molded glass material, and the molding is determined based on the predicted deformation amount of the glass material to be molded that depends on the thickness of the glass material to be molded. A mold having a surface shape is used.

図1に、熱垂下成形法の説明図を示す。
通常、熱垂下成形法では、被成形ガラス素材を、ガラス素材下面中央部と成形型成形面が離間した状態となるように成形型上に配置した状態(図1(a))で加熱処理を施す。これにより、被成形ガラス素材の下面は自重により変形し成形型成形面と密着し(図1(b))、成形型成形面形状がガラス素材上面に転写され、その結果、ガラス素材上面を所望形状に成形することができる。
FIG. 1 shows an explanatory diagram of the hot sag forming method.
Usually, in the hot sag forming method, the heat treatment is performed in a state where the glass material to be molded is arranged on the mold (FIG. 1 (a)) so that the glass material lower surface center part and the mold surface are separated. Apply. As a result, the lower surface of the glass material to be molded is deformed by its own weight and is in close contact with the molding surface (FIG. 1B), and the shape of the molding surface is transferred to the upper surface of the glass material. It can be formed into a shape.

本発明者らは、熱垂下成形法におけるガラス素材の加熱による変形量は、ガラス素材の厚みに依存することを新たに見出した。即ち、厚みのみが異なる複数のガラス素材間を同一条件下で加熱した場合、変形量の違いは厚みの差に依存する。従って、あるガラス素材(試験用ガラス素材)についてテスト加熱を行い変形量を測定すれば、試験用ガラス素材の厚みをt1、実成形に使用するガラス素材(厚み以外は試験用ガラス素材と同一)の厚みをt2とすると、テスト加熱と同一加熱条件で行われる実成形におけるガラス素材(被成形ガラス素材)の予測変形量は、以下のように算出できる。
予測変形量=試験用ガラス素材の変形量×厚み変化比率CC・・・(式α)
(厚み変化比率CC=被成形用ガラス素材の厚みt2/試験用ガラス素材の厚みt1)
The present inventors have newly found that the amount of deformation of a glass material by heating in the hot sag forming method depends on the thickness of the glass material. That is, when a plurality of glass materials having different thicknesses are heated under the same conditions, the difference in deformation depends on the difference in thickness. Therefore, if test heating is performed on a certain glass material (test glass material) and the amount of deformation is measured, the thickness of the test glass material is t1, and the glass material used for actual molding (except for the thickness, the same as the test glass material) When the thickness of t is t2, the predicted deformation amount of the glass material (molded glass material) in the actual forming performed under the same heating conditions as the test heating can be calculated as follows.
Predicted deformation amount = deformation amount of glass material for test × thickness change ratio CC (formula α)
(Thickness change ratio CC = thickness t2 of glass material to be molded / thickness t1 of glass material for test)

前記式αは、テスト成形における成形型成形面とガラス素材の離間距離と、実成形における成形型成形面とガラス素材の離間距離が同一または近似している場合に好適である。   The formula α is suitable when the distance between the mold surface and the glass material in test molding is the same as or close to the distance between the mold surface and the glass material in actual molding.

一方、本発明者らは、図1に示すように成形型成形面とガラス素材下面とが離間した状態で加熱処理が行われる場合のガラス素材の加熱による変形量は、「ガラス素材下面と成形型成形面との離間距離(以下、単に「離間距離」ともいう)に依存しない変形量」と「離間距離に依存する変形量」との2成分を含むことを新たに見出した。従って、「離間距離に依存しない変形量」と「離間距離に依存する変形量」とを独立の項に分離した関係式をテスト成形を行い実験的に導出し、導出された関係式にテスト成形で使用したガラス素材と実成形で使用するガラス素材の厚み比による補正を加えることにより、同一形状の被成形ガラス素材から異なる上面形状を有する成形品を得るための成形型成形面形状を決定するために使用可能な補正関数を導出することができる。   On the other hand, as shown in FIG. 1, the present inventors show that when the heat treatment is performed in a state where the molding die forming surface and the glass material lower surface are separated from each other, the deformation amount due to heating of the glass material is “the glass material lower surface and the molding. It has been newly found that it includes two components: a “deformation amount that does not depend on a separation distance from the mold forming surface (hereinafter also simply referred to as“ separation distance ”)” and a “deformation amount that depends on the separation distance”. Therefore, a relational expression in which the “deformation amount independent of the separation distance” and “deformation amount dependent on the separation distance” are separated into independent terms is experimentally derived by test molding, and the test molding is derived into the derived relational expression. Determine the molding surface shape to obtain a molded product with a different top surface shape from the same shaped glass material by adding a correction based on the thickness ratio of the glass material used in the actual molding and the glass material used in actual molding. A correction function that can be used for this purpose can be derived.

上記関係式を得るためのテスト成形は、複数の同一形状および同一組成の試験用ガラス素材を使用し、各試験用ガラス素材を、試験用成形型成形面上に配置した状態で前記加熱処理と同一加熱条件下でテスト加熱することを、試験用ガラス素材下面と試験用成形型成形面との離間距離を変化させて繰り返して行うことができる。なお、各試験用ガラス素材の組成および形状にについて、「同一」とは、ガラス素材製造において通常生じ得る程度の差が存在する場合も含むものとする。   The test molding to obtain the above relational expression uses a plurality of test glass materials having the same shape and the same composition, and each of the test glass materials is placed on the test mold forming surface and the heat treatment. The test heating under the same heating conditions can be repeated by changing the distance between the lower surface of the test glass material and the test mold forming surface. In addition, about the composition and shape of each glass material for a test, "same" shall include the case where the difference of the grade which can usually arise in glass material manufacture exists.

以下に、上記関係式の導出方法を、具体的態様に基づき説明する。但し本発明は、下記態様に限定されるものではない。   Hereinafter, a method for deriving the above relational expression will be described based on specific embodiments. However, the present invention is not limited to the following embodiments.

関係式の導出方法
(工程1)テスト成形1
離間距離がゼロとなるような成形面形状を有する成形型上に試験用ガラス素材を配置し、実成形で使用する加熱条件と同条件で加熱処理を行う。次いで、加熱処理により発生する変形量を測定する。「変形量」とは、例えば、加熱処理前と加熱処理後における、幾何中心を基準としたサジタルハイト(中心を基準とする鉛直方向高さ)の差分として表すことができる。上記変形量は、例えばタリサーフ(接触式2次元形状測定装置)により測定することができる。
(工程2)テスト成形2
成形型成形面と試験用ガラス素材下面中央部が所定距離をもって離間するような成形面形状を有する成形型上に試験用ガラス素材を配置し変形量を求める工程を、使用する成形型を変えることにより離間距離を変化させて繰り返す。
(工程3)離間距離に依存する変形量算出のための係数決定
下記式1’に前記テスト成形1、2の数値を代入して係数kを求める。
テスト成形2において測定された変形量=テスト成形1において測定された変形量+各測定点における離間距離×k(kは実験的に求められる定数)・・・(式1’)
以下に、上記各工程を更に詳細に説明するが、本発明は下記態様に限定されるものではない。
Relational expression derivation method (step 1) test molding 1
A test glass material is placed on a mold having a molding surface shape such that the separation distance is zero, and heat treatment is performed under the same conditions as those used in actual molding. Next, the amount of deformation generated by the heat treatment is measured. The “deformation amount” can be expressed, for example, as a difference between sagittal height (vertical height with respect to the center) before and after the heat treatment, with respect to the geometric center. The amount of deformation can be measured by, for example, Talysurf (a contact type two-dimensional shape measuring device).
(Process 2) Test molding 2
Changing the mold to be used in the process of placing the test glass material on the mold having a molding surface shape such that the molding surface and the center of the lower surface of the test glass material are separated by a predetermined distance. Repeat by changing the separation distance.
(Step 3) Determination of Coefficient for Calculation of Deformation Dependence on Separation Distance The coefficient k is determined by substituting the numerical values of the test moldings 1 and 2 into the following formula 1 ′.
Deformation measured in test molding 2 = deformation measured in test molding 1 + separation distance at each measurement point × k (k is a constant determined experimentally) (Equation 1 ′)
The above steps will be described in more detail below, but the present invention is not limited to the following embodiments.

(工程1)テスト成形1
前述の通り、成形型成形面上に離間状態で配置されたガラス素材の加熱による変形量は、「離間距離に依存しない変形量」と「離間距離に依存する変形量」との2成分を含み、例えば、
離間距離に依存しない変形量CA+離間距離に依存する変形量CB・・・(式a)
として表すことができる。テスト成形1は、離間距離に依存しない変形量CAを求めるための工程であり、離間距離がゼロとなるような成形面形状を有する成形型上に試験用ガラス素材を嵌合配置し、実成形で使用する加熱条件と同条件で加熱処理を行い離間距離ゼロでの変形量を測定する。ガラス素材を、ガラス素材下面と一致または略一致する形状を有する成形面上にガラス素材を配置することによりガラス素材下面と成形面を嵌合させることができる。
(Process 1) Test molding 1
As described above, the amount of deformation due to heating of the glass material arranged in a separated state on the mold surface includes two components: a “deformation amount not dependent on the separation distance” and a “deformation amount dependent on the separation distance”. For example,
Deformation amount CA that does not depend on the separation distance + Deformation amount CB that depends on the separation distance (Expression a)
Can be expressed as The test molding 1 is a process for obtaining a deformation amount CA that does not depend on the separation distance, and a test glass material is fitted and arranged on a molding die having a molding surface shape such that the separation distance becomes zero, and actual molding is performed. The heat treatment is performed under the same conditions as those used in the above, and the amount of deformation at a separation distance of zero is measured. By arranging the glass material on a molding surface having a shape that matches or substantially matches the glass material lower surface, the glass material lower surface and the molding surface can be fitted.

(工程2)テスト成形2
工程2は、離間距離に依存する変形量CBを求めるための工程であり、テスト成形1で使用したガラス素材と同一組成かつ同一形状の新たな試験用ガラス素材を、ガラス素材下面が成形型成形面と離間した状態になるように成形型上に配置し工程1と同条件下で加熱処理を施す。成形型成形面の加工曲率半径を変化させることにより離間距離を変えることができる。離間距離は、ガラス素材下面の幾何中心から成形型成形面までの鉛直方向距離として、例えば0.2mm、0.5mm、1.0mmと3通り設定することができるが、設定する離間距離および設定数は良好な成形精度が得られる範囲で適宜変更することができる。ガラス素材下面における離間距離は測定位置において異なり、例えば図1に示すように、上面が凹面、下面が凸面のガラス素材を、凹面形状を有する成形型成形面上に配置する場合、中心部から周縁部に向かって離間距離は小さくなる。例えば幾何中心から0.1mm〜4mmピッチ程度、例えば2mmピッチ程度でガラス素材下面の複数点において離間距離と加熱後の変形量を測定することが好ましい。このように複数点で測定を行い得られたデータを平均化し離間距離と変形量との相関を求めることにより、信頼性の高い補正関数を得ることができる。具体的には、例えば図2に示すようにガラス素材と成形型のノッチ部分を合わせてガラス素材を配置し、ノッチ方向を基準の0°方向とし、0°方向に直交する方向を90°方向として、それぞれの方向において測定することができる。前述の工程1における変形量測定も、同様の理由から複数点で行うことが好ましい。なお、連続式電気炉を使用し加熱処理を行う場合、上記0°方向または90°方向のいずれか一方を炉内での進行方向とすることが好ましい。連続式電気炉内には温度分布があり、一般に進行方向では温度変化があり進行方向に直交する方向における温度変化は少ない。2方向での測定値を平均化することにより、温度分布による影響を低減し信頼性の高いデータを得ることができる。
(Process 2) Test molding 2
Step 2 is a step for obtaining the deformation amount CB depending on the separation distance. A new test glass material having the same composition and shape as the glass material used in the test molding 1 is formed on the lower surface of the glass material by molding. It arrange | positions on a shaping | molding die so that it may be in the state spaced apart from the surface, and heat-processes on the same conditions as process 1. The separation distance can be changed by changing the processing curvature radius of the molding surface of the mold. The separation distance can be set, for example, as 0.2 mm, 0.5 mm, and 1.0 mm as the vertical direction distance from the geometric center of the lower surface of the glass material to the mold forming surface. The number can be changed as appropriate as long as good molding accuracy is obtained. The separation distance on the lower surface of the glass material differs at the measurement position. For example, as shown in FIG. 1, when a glass material having a concave upper surface and a convex lower surface is disposed on a molding surface having a concave shape, The separation distance decreases toward the part. For example, it is preferable to measure the separation distance and the deformation amount after heating at a plurality of points on the lower surface of the glass material at a pitch of about 0.1 mm to 4 mm from the geometric center, for example, about 2 mm. A highly reliable correction function can be obtained by averaging the data obtained by performing measurement at a plurality of points in this manner and obtaining the correlation between the separation distance and the deformation amount. Specifically, for example, as shown in FIG. 2, the glass material and the notch portion of the mold are aligned, the notch direction is set to the standard 0 ° direction, and the direction orthogonal to the 0 ° direction is the 90 ° direction. Can be measured in each direction. The deformation amount measurement in the above-described step 1 is also preferably performed at a plurality of points for the same reason. In addition, when performing a heat processing using a continuous electric furnace, it is preferable to make any one of the said 0 degree direction or 90 degree direction into the advancing direction in a furnace. There is a temperature distribution in the continuous electric furnace, generally there is a temperature change in the traveling direction, and there is little temperature change in the direction orthogonal to the traveling direction. By averaging the measured values in the two directions, it is possible to reduce the influence of the temperature distribution and obtain highly reliable data.

例えば、下記表1に示す4種のガラス素材を使用し、幾何中心における離間距離を0mm、0.2mm、0.5mm、1.0mmと変化させてガラス素材上面のタリサーフにより測定した変形量((加熱処理後のDepth測定値)―(加熱処理前のDepth測定値);以下、「Depth変化量」ともいう)を、幾何中心からの半径方向距離に対してプロットしたグラフを図3に示す。測定は、図2に示す2方向において合計38点行った。なお、下記4種のガラス素材は、ガラス組成は同一であり、いずれも法線方向に等厚であった。   For example, using four types of glass materials shown in Table 1 below, the amount of deformation measured by Talysurf on the upper surface of the glass material with the separation distance at the geometric center being changed to 0 mm, 0.2 mm, 0.5 mm, and 1.0 mm ( FIG. 3 is a graph in which (Depth measurement value after heat treatment) − (Depth measurement value before heat treatment); hereinafter also referred to as “Depth change amount” is plotted against the radial distance from the geometric center. . A total of 38 measurements were performed in the two directions shown in FIG. In addition, the following four types of glass materials have the same glass composition, and all have the same thickness in the normal direction.

図3に示すように、離間距離ゼロの場合にも加熱前後でDepth変化が発生している。本発明者らは、この離間距離ゼロでのDepth変化量が、離間状態におけるDepth変化量に含まれるガラス素材固有の値であると考えた。そこで離間状態でのDepth変化量から離間距離ゼロでのDepth変化量を差し引き差分を求め、各測定点における離間距離と上記差分との関係をプロットしたところ、図4に示すように幾何中心における離間距離にかかわらず直線関係が得られた。この結果から、離間状態における変形量は、上記式aに示すように、「離間距離に依存しない変形量CA」と「離間距離に依存する変形量CB」との和として表すことができることがわかり、更にCBは離間距離に比例する値として表すことができることもわかる。本態様では、下記工程3により離間距離に依存する変形量算出のための係数を求めることができる。   As shown in FIG. 3, the depth change occurs before and after heating even when the separation distance is zero. The inventors of the present invention have considered that the Depth change amount when the separation distance is zero is a value unique to the glass material included in the Depth change amount in the separation state. Therefore, a difference is obtained by subtracting the Depth change amount at zero separation distance from the Depth change amount in the separation state, and the relationship between the separation distance at each measurement point and the above difference is plotted. As shown in FIG. A linear relationship was obtained regardless of the distance. From this result, it can be seen that the deformation amount in the separated state can be expressed as the sum of “the deformation amount CA that does not depend on the separation distance” and “the deformation amount CB that depends on the separation distance”, as shown in the above formula a. It can also be seen that CB can be expressed as a value proportional to the separation distance. In this aspect, the coefficient for calculating the deformation amount depending on the separation distance can be obtained by the following step 3.

(工程3)離間距離に依存する変形量算出のための係数決定
上記の通り、離間状態における変形量は、離間距離に依存しない変形量CAと離間距離に依存する変形量CBの和として表すことができ、更にCBは離間距離tに比例する値として表すことができる。そこで離間距離に基づき実成形における被成形ガラス素材の総変形量を予測するための関係式としては、下記式1を用いることができる。
総変形量=CA+CB=CA+(t×k)・・・(式1)
上記kは実験的に求められる係数である。工程3では、下記式1’に前記テスト成形1、2において得た測定値を代入して係数kを求める。kは、ガラス素材等により変化するが、例えば図3および図4に示す態様では1.013〜1.225程度となる。D1613について、k=1.1196であった。テスト成形2において測定された変形量=テスト成形1において測定された変形量(離間距離ゼロでの変形量)+各測定点における離間距離×k・・・(式1’)
(Step 3) Determination of coefficient for calculating deformation amount depending on separation distance As described above, the deformation amount in the separation state is expressed as the sum of the deformation amount CA that does not depend on the separation distance and the deformation amount CB that depends on the separation distance. Further, CB can be expressed as a value proportional to the separation distance t. Therefore, as a relational expression for predicting the total deformation amount of the glass material to be molded in actual forming based on the separation distance, the following expression 1 can be used.
Total deformation amount = CA + CB = CA + (t × k) (Equation 1)
K is a coefficient obtained experimentally. In step 3, the coefficient k is obtained by substituting the measured values obtained in the test moldings 1 and 2 into the following equation 1 ′. Although k changes with glass raw materials etc., in the aspect shown in FIG. 3 and FIG. 4, it will be about 1.013-1.225, for example. For D1613, k = 1.1196. Deformation amount measured in test molding 2 = deformation amount measured in test molding 1 (deformation amount at zero separation distance) + separation distance at each measurement point × k (Equation 1 ′)

成形面形状決定
テスト成形における実測値、上記工程3により求められた係数k、および試験用ガラス素材と実成形に使用する被成形ガラス素材との厚み変化比率CCから、被成形ガラス素材の予測変形量を求めることができる。離間距離に依存しない変形量成分は、下記式2により求めることができる。
離間距離に依存しない変形量=テスト成形(離間なし)における変形量×厚み変化比率CC+(t×k)・・・(式2)
Molded surface shape determination Test deformation of the glass material to be molded from the actual measurement value in the test molding, the coefficient k obtained in the above step 3, and the thickness change ratio CC between the glass material for testing and the glass material to be molded used for actual molding. The amount can be determined. The deformation amount component that does not depend on the separation distance can be obtained by the following equation 2.
Deformation amount independent of separation distance = deformation amount in test molding (no separation) × thickness change ratio CC + (t × k) (Equation 2)

更に、離間距離に依存する変形量の成分は、下記式3により求めることが好ましく、総変形量を上記式2と下記式3を組み合わせて求めることが更に好ましい。   Further, the component of the deformation amount depending on the separation distance is preferably obtained by the following equation 3, and the total deformation amount is more preferably obtained by combining the above equation 2 and the following equation 3.

離間距離に依存する変形量=[CD+(実成形での離間距離)−(テスト成形(離間)での離間距離)]×厚み変形比率CC×k・・・(式3)
ここで、CD=[ [(テスト成形(離間)での上面変形量)−(テスト成形(離間なし)での上面変形量)]×実成形での下面幾何中心における離間距離+(テスト成形(離間なし)での上面変形量)]+実成形での下面幾何中心における離間距離
Deformation amount dependent on separation distance = [CD + (separation distance in actual molding) − (separation distance in test molding (separation))] × thickness deformation ratio CC × k (Equation 3)
Here, CD = [[(upper surface deformation amount in test molding (separation)) − (upper surface deformation amount in test molding (no separation))] × separation distance at lower surface geometric center in actual molding + (test molding ( Top surface deformation amount without separation))] + separation distance at bottom surface geometric center in actual molding

本発明において使用されるガラス素材は、鉛直方向または法線方向において厚みが異なるガラスであってもよいが、等厚であることが好ましい。中でも、法線方向に等厚のガラス素材はWO2007/058353 A1に記載されているように形状制御が容易であり特に好ましい。   The glass material used in the present invention may be glass having different thicknesses in the vertical direction or the normal direction, but is preferably equal. Among them, a glass material having an equal thickness in the normal direction is particularly preferable because shape control is easy as described in WO2007 / 058353 A1.

以上の工程により試験用ガラス素材を使用したテスト成形における測定値および試験用ガラス素材と被成形ガラス素材の厚み変化比率から、被成形用ガラス素材の変形量を予測するための補正関数を得ることができる。これにより、ある形状のガラス素材の上面を所望形状にするための変形量(予測変形量)が決定されれば、離間距離ゼロの場合は式αにより、離間距離>0の場合は式2および/または式3により、所望形状の成形品を得るための成形型成形面形状を決定できる。予測変形量の算出は、ガラス素材上の複数点について行うことが成形面形状補正の精度を高める上で好ましい。具体的には、ガラス素材の幾何中心から周縁部まで1〜3mm間隔で15〜20点程度行うことや、0.1〜4mm間隔で9〜400点程度行うことが好適である。   Obtaining a correction function for predicting the amount of deformation of the glass material for molding from the measured values in the test molding using the glass material for testing and the thickness change ratio of the glass material for testing and the glass material to be molded by the above process. Can do. Thereby, if the deformation amount (predicted deformation amount) for making the upper surface of a glass material of a certain shape into a desired shape is determined, the equation α when the separation distance is zero, and the equation 2 when the separation distance> 0 // By Formula 3, the shaping | molding die molding surface shape for obtaining the molded article of a desired shape can be determined. The calculation of the predicted deformation amount is preferably performed for a plurality of points on the glass material in order to improve the accuracy of the molding surface shape correction. Specifically, it is preferable to perform about 15 to 20 points at intervals of 1 to 3 mm from the geometric center to the peripheral portion of the glass material, or about 9 to 400 points at intervals of 0.1 to 4 mm.

その後、実成形で使用する成形型に対し、決定された成形面形状となるように成形型成形面に形状補正を加えることにより、所望形状の成形品を得るための成形型を得ることができる。形状補正は研削、研磨等の公知の加工方法によって行うことができる。   After that, the mold for obtaining a molded product having a desired shape can be obtained by applying shape correction to the mold surface so that the determined mold surface shape is obtained with respect to the mold used in actual molding. . The shape correction can be performed by a known processing method such as grinding or polishing.

次いで、形状補正を加えた成形型成形面上に被成形ガラス素材を配置し加熱処理を施すことにより実成形を行うことができる。被成形ガラス素材が、補正関数により求められる予測変形量と同一または近似する変形量で変形すれば、被成形ガラス素材の上面を所望形状に成形することができる。被成形ガラス素材を、離間距離>0で成形型成形面上に配置する場合、安定配置のためにはガラス素材が下面周縁部の3点以上で成形型成形面と接触することが好ましく、周縁部全周にわたって成形型成形面と接触することが更に好ましい。   Next, actual molding can be performed by placing a glass material to be molded on the molding surface on which the shape correction has been performed and applying heat treatment. If the glass material to be formed is deformed with a deformation amount that is the same as or close to the predicted deformation amount obtained by the correction function, the upper surface of the glass material to be formed can be formed into a desired shape. When the glass material to be molded is arranged on the mold molding surface with a separation distance> 0, it is preferable that the glass material is in contact with the mold molding surface at three or more points on the lower peripheral edge for stable arrangement. More preferably, the part contacts the molding surface over the entire circumference.

前記試験用ガラス素材は、実成形で使用されるガラス素材と同一のガラス組成を有するものを使用することが成形型成形面の形状補正精度を高める上で好ましい。更に、同様の理由から、試験用ガラス素材は、実成形で使用されるガラス素材と外形が同一または略同一であることが好ましい。   It is preferable to use the test glass material having the same glass composition as the glass material used in actual molding in order to increase the shape correction accuracy of the molding surface. Furthermore, for the same reason, it is preferable that the test glass material has the same or substantially the same outer shape as the glass material used in actual molding.

本発明の成形品の製造方法において使用されるガラス素材のガラス組成および形状は特に限定されるものではなく、所望の成形品に応じて決定することができる。試験用ガラス素材としては、例えば球面屈折力のみを含み乱視屈折力を含まない形状を有するガラス素材が好適である。   The glass composition and shape of the glass material used in the method for producing a molded product of the present invention are not particularly limited, and can be determined according to a desired molded product. As the test glass material, for example, a glass material having a shape that includes only spherical refractive power and does not include astigmatic refractive power is suitable.

被成形ガラス素材としては、比較的大きな曲率半径(例えば下面の曲率半径が1607〜1613mm)、中程度の曲率半径(例えば下面の曲率半径が128〜222mm)、比較的小さな曲率半径(例えば下面の曲率半径が89〜95mm)のいずれも使用可能である。曲率半径が大きいガラス素材に対しては予測変形量を算出する算出点を増加することにより、成形面補正精度を高めることができる。ガラス素材の詳細については、例えばWO2007/058353 A1等を参照できる。また加熱処理の条件等の詳細についても、WO2007/058353 A1等を参照できる。   Examples of the glass material to be molded include a relatively large radius of curvature (for example, a curvature radius of the lower surface of 1607 to 1613 mm), a medium curvature radius (for example, a curvature radius of the lower surface of 128 to 222 mm), and a relatively small radius of curvature (for example, of the lower surface). Any of those having a radius of curvature of 89 to 95 mm can be used. For a glass material having a large curvature radius, the forming surface correction accuracy can be increased by increasing the number of calculation points for calculating the predicted deformation amount. For details of the glass material, for example, WO2007 / 058353 A1 can be referred to. For details on the conditions of the heat treatment and the like, WO2007 / 058353 A1 and the like can be referred to.

更に本発明は、成形型成形面上に被成形ガラス素材を配置すること、および、成形型成形面上に配置された被成形ガラス素材に加熱処理を施すことにより、前記被成形ガラス素材の上面を成形して成形品を得る成形法に使用される成形型の製造方法に関する。本発明の成形型の製造方法では、成形面形状を、被成形ガラス素材の厚さに依存する被成形ガラス素材の予測変形量に基づき決定する。本発明の成形型の製造方法の詳細は、先に本発明の成形品の製造方法について述べた通りである。また、成形型の素材、加工方法等の詳細は、WO2007/058353 A1等を参照できる。   Furthermore, the present invention provides an upper surface of the glass material to be molded by disposing the glass material to be molded on the molding surface of the mold, and applying heat treatment to the glass material to be molded disposed on the molding surface of the mold. The present invention relates to a method for manufacturing a mold used in a molding method for molding a mold to obtain a molded product. In the manufacturing method of the shaping | molding die of this invention, a shaping | molding surface shape is determined based on the predicted deformation amount of the glass material to be molded depending on the thickness of the glass material to be molded. The details of the manufacturing method of the molding die of the present invention are as described above for the manufacturing method of the molded product of the present invention. For details of the mold material, processing method, and the like, reference can be made to WO2007 / 058353 A1.

本発明の成形品の製造方法は、注型重合により眼鏡レンズを得るための眼鏡レンズ用鋳型または鋳型の一部を製造する方法として好適である。前記加熱処理により上面が成形されたガラス素材は、そのままの状態で、または周縁部など一部を除去して眼鏡レンズ用鋳型として使用することができる。また本発明により製造される成形型は、上記製造方法において好適に使用することができる。例えば眼鏡レンズの形状種類は1種類の製品ごとに平均度数屈折力について40種、乱視屈折力について8種あり、合計320種類にもなる、さらに累進屈折力レンズでは加入屈折力について14種類が処方値のパラメータとして加わり1製品で4480種類にもなる。このように膨大な種類の形状に応じた形状を有するガラス素材や成形型を保管および管理することは容易ではない。また眼鏡レンズの形状に応じてガラス素材や成形型に対しトライアルアンドエラーを繰り返し形状補正を加えていくことはきわめて煩雑である。これに対し、本発明によれば、先に説明したように、テスト成形により得られた測定値を基礎データとして求められた補正関数により成形型の成形面形状を決定することができる。これにより熱垂下成形法の簡便性を顕著に高めることができる。   The method for producing a molded article of the present invention is suitable as a method for producing a spectacle lens mold or a part of a mold for obtaining a spectacle lens by cast polymerization. The glass material with the upper surface formed by the heat treatment can be used as it is or as a spectacle lens mold by removing a part such as a peripheral portion. Moreover, the shaping | molding die manufactured by this invention can be used conveniently in the said manufacturing method. For example, there are 40 types of spectacle lenses for each product, 40 for average power, 8 for astigmatic power, and a total of 320 types. Furthermore, for progressive power lenses, 14 types are added for the addition power. As a value parameter, there are 4480 types per product. Thus, it is not easy to store and manage a glass material or a mold having shapes corresponding to a huge variety of shapes. In addition, it is extremely complicated to repeatedly perform trial and error shape correction on a glass material or mold according to the shape of the spectacle lens. On the other hand, according to the present invention, as described above, the molding surface shape of the mold can be determined by a correction function obtained using the measurement value obtained by the test molding as basic data. Thereby, the simplicity of the hot droop molding method can be remarkably enhanced.

以下、本発明を実施例に基づき更に説明する。但し本発明は、実施例に示す態様に限定されるものではない。   Hereinafter, the present invention will be further described based on examples. However, the present invention is not limited to the embodiment shown in the examples.

(比較例)
加熱条件および成形すべき成形品の面形状を決定した。保管されている成形型の中から使用する成形型を選択した。被成形ガラス素材として表1に示すD222を選択し、被成形ガラス素材の上面が所望の面形状に収束するまで選択した成形型の成形面形状に補正を加えながらテスト成形を繰り返した。テスト成形回数は4回であった。
(Comparative example)
The heating conditions and the surface shape of the molded product to be molded were determined. The mold to be used was selected from the stored molds. D222 shown in Table 1 was selected as the glass material to be molded, and the test molding was repeated while correcting the molding surface shape of the selected mold until the upper surface of the glass material to be molded converged to the desired surface shape. The number of test moldings was four.

(実施例)
図3および4に示す測定により得られたD1613について求めた定数k(k=1.1196)を使用し、被成形ガラス素材として表1に示すD222を選択し、前述の式2および式3を使用し成形面形状を決定した。D1613の法線方向における厚さは6.002mm、D222の法線方向における厚さは6.110mmであった。比較例で選択した成形型と同一面形状を有する成形型の成形面を、決定された成形面形状に補正した。
(Example)
Using the constant k (k = 1.1196) obtained for D1613 obtained by the measurement shown in FIGS. 3 and 4, D222 shown in Table 1 is selected as the glass material to be molded, and the above-described Equations 2 and 3 are obtained. Used to determine the shape of the molding surface. The thickness in the normal direction of D1613 was 6.002 mm, and the thickness in the normal direction of D222 was 6.110 mm. The molding surface of the molding die having the same surface shape as the molding die selected in the comparative example was corrected to the determined molding surface shape.

実施例および比較例における補正量を図5に示す。図5中、「評価位置」とは、成形型成形面上における幾何中心からの距離である。図5に示すように、実施例と比較例ではほぼ同等の補正値が得られた。この結果から、本発明によれば、ある形状を有するガラス素材を使用してテスト成形を行えば、以降は成形テストを行うことなく補正値を得ることができることがわかる。このように本発明によればトライアルアンドエラーによる補正を行うことなく、成形型成形面の形状を決定できるため、熱垂下成形法により所望形状の成形品を容易かつ簡便に得ることができる。   FIG. 5 shows correction amounts in the example and the comparative example. In FIG. 5, “evaluation position” is a distance from the geometric center on the molding surface. As shown in FIG. 5, substantially the same correction value was obtained in the example and the comparative example. From this result, it can be seen that according to the present invention, if test molding is performed using a glass material having a certain shape, a correction value can be obtained without performing a molding test thereafter. As described above, according to the present invention, since the shape of the molding surface can be determined without performing trial and error correction, a molded product having a desired shape can be obtained easily and simply by the hot droop molding method.

本発明の製造方法は、眼鏡レンズ用鋳型の製造方法として好適である。   The manufacturing method of the present invention is suitable as a method for manufacturing a spectacle lens mold.

熱垂下成形法の説明図である。It is explanatory drawing of a hot droop molding method. ガラス素材変形量の測定方向の説明図である。It is explanatory drawing of the measurement direction of glass raw material deformation amount. 表1に示す4種のガラス素材の加熱前後の変形量を示す。The deformation amounts before and after heating of the four glass materials shown in Table 1 are shown. 表1に示す4種のガラス素材の離間距離に依存する変形量を示す。The deformation amount depending on the separation distance of the four types of glass materials shown in Table 1 is shown. 実施例および比較例における成形型補正値を示す。The shaping | molding die correction value in an Example and a comparative example is shown.

Claims (6)

成形型成形面上に被成形ガラス素材を配置すること、および、
成形型成形面上に配置された被成形ガラス素材に加熱処理を施すことにより、前記被成形ガラス素材の上面を成形して成形品を得る成形品の製造方法であって、
前記成形型として、被成形ガラス素材の厚さに依存する被成形ガラス素材の予測変形量に基づき決定された成形面形状を有する成形型を使用し、
試験用ガラス素材を、試験用成形型成形面上に配置すること、
試験用成形型成形面上に配置された試験用ガラス素材を、前記加熱処理と同一加熱条件下でテスト加熱すること、および
前記テスト加熱による試験用ガラス素材の変形量を求めること、
を含み、
前記予測変形量を、前記試験用ガラス素材の変形量と試験用ガラス素材の厚みt1と被成形用ガラス素材の厚みt2との比t2/t1に基づき決定することを特徴とする成形品の製造方法。
Placing the glass material to be molded on the molding surface, and
A method for producing a molded product that obtains a molded product by molding the upper surface of the glass material to be molded by subjecting the glass material to be molded disposed on the molding surface to a heat treatment,
As the mold, using a mold having a molding surface shape determined based on the predicted deformation amount of the glass material to be molded that depends on the thickness of the glass material to be molded ,
Placing the test glass material on the test mold surface,
Test heating the test glass material placed on the test mold surface under the same heating conditions as the heat treatment, and
Obtaining a deformation amount of the test glass material by the test heating,
Including
The predicted deformation amount is determined based on a ratio t2 / t1 between the deformation amount of the test glass material, the thickness t1 of the test glass material, and the thickness t2 of the glass material to be molded, Method.
被成形ガラス素材は、下面周縁部の少なくとも一部が成形面と接触し、かつ下面中央部が成形面と離間した状態になるように成形型成形面上に配置され、
前記予測変形量は、被成形ガラス素材下面と成形面との離間距離に依存する予測変形量を含み、かつ前記離間距離に依存する予測変形量は、離間距離に比例する値である請求項1に記載の成形品の製造方法。
The glass material to be molded is disposed on the molding die molding surface such that at least a part of the peripheral edge of the lower surface is in contact with the molding surface and the central portion of the lower surface is separated from the molding surface,
The predicted deformation amount claim predicted deformation amount of viewing including the predicted deformation amount that depends on the distance between the molding surface and the glass molding material lower surface, and depends on the distance is a value proportional to the distance A method for producing the molded article according to 1 .
成形型成形面上に被成形ガラス素材を配置すること、および、Placing the glass material to be molded on the molding surface, and
成形型成形面上に配置された被成形ガラス素材に加熱処理を施すことにより、前記被成形ガラス素材の上面を成形して成形品を得る成形品の製造方法であって、A method for producing a molded product that obtains a molded product by molding the upper surface of the glass material to be molded by subjecting the glass material to be molded disposed on the molding surface to a heat treatment,
前記成形型として、被成形ガラス素材の厚さに依存する被成形ガラス素材の予測変形量に基づき決定された成形面形状を有する成形型を使用し、As the mold, using a mold having a molding surface shape determined based on the predicted deformation amount of the glass material to be molded that depends on the thickness of the glass material to be molded,
被成形ガラス素材は、下面周縁部の少なくとも一部が成形面と接触し、かつ下面中央部が成形面と離間した状態になるように成形型成形面上に配置され、The glass material to be molded is disposed on the molding die molding surface such that at least a part of the peripheral edge of the lower surface is in contact with the molding surface and the central portion of the lower surface is separated from the molding surface,
前記予測変形量は、被成形ガラス素材下面と成形面との離間距離に依存する予測変形量を含み、かつ前記離間距離に依存する予測変形量は、離間距離に比例する値であることを特徴とする成形品の製造方法。The predicted deformation amount includes a predicted deformation amount that depends on a separation distance between a lower surface of the glass material to be molded and a molding surface, and the predicted deformation amount that depends on the separation distance is a value proportional to the separation distance. A method for manufacturing a molded product.
成形型成形面上に被成形ガラス素材を配置すること、および、
成形型成形面上に配置された被成形ガラス素材に加熱処理を施すことにより、前記被成形ガラス素材の上面を成形して成形品を得る成形法に使用される成形型の製造方法であって、
前記成形面形状を、被成形ガラス素材の厚さに依存する被成形ガラス素材の予測変形量に基づき決定し、
試験用ガラス素材を、試験用成形型成形面上に配置すること、
試験用成形型成形面上に配置された試験用ガラス素材を、前記加熱処理と同一加熱条件下でテスト加熱すること、および
前記テスト加熱による試験用ガラス素材の変形量を求めること、
を含み、
前記予測変形量を、前記試験用ガラス素材の変形量と試験用ガラス素材の厚みt1と被成形用ガラス素材の厚みt1との比t2/t1に基づき決定することを特徴とする成形型の製造方法。
Placing the glass material to be molded on the molding surface, and
A manufacturing method of a molding die used in a molding method for forming a molded product by molding the upper surface of the molding glass material by subjecting the molding glass material arranged on the molding surface to a heat treatment. ,
The molding surface shape is determined based on the predicted deformation amount of the glass molding material depending on the thickness of the glass molding material ,
Placing the test glass material on the test mold surface,
Test heating the test glass material placed on the test mold surface under the same heating conditions as the heat treatment, and
Obtaining a deformation amount of the test glass material by the test heating,
Including
The predicted deformation amount is determined based on a ratio t2 / t1 between the deformation amount of the test glass material, the thickness t1 of the test glass material, and the thickness t1 of the glass material to be molded. Method.
被成形ガラス素材は、下面周縁部の少なくとも一部が成形面と接触し、かつ下面中央部が成形面と離間した状態になるように成形型成形面上に配置され、
前記予測変形量は、被成形ガラス素材下面と成形面との離間距離に依存する予測変形量を含み、かつ前記離間距離に依存する予測変形量は、離間距離に比例する値である請求項4に記載の成形型の製造方法。
The glass material to be molded is disposed on the molding die molding surface such that at least a part of the peripheral edge of the lower surface is in contact with the molding surface and the central portion of the lower surface is separated from the molding surface,
The predicted deformation amount claim predicted deformation amount of viewing including the predicted deformation amount that depends on the distance between the molding surface and the glass molding material lower surface, and depends on the distance is a value proportional to the distance 5. A method for producing a mold according to 4 .
成形型成形面上に被成形ガラス素材を配置すること、および、Placing the glass material to be molded on the molding surface, and
成形型成形面上に配置された被成形ガラス素材に加熱処理を施すことにより、前記被成形ガラス素材の上面を成形して成形品を得る成形法に使用される成形型の製造方法であって、A manufacturing method of a molding die used in a molding method for forming a molded product by molding the upper surface of the molding glass material by subjecting the molding glass material arranged on the molding surface to a heat treatment. ,
前記成形面形状を、被成形ガラス素材の厚さに依存する被成形ガラス素材の予測変形量に基づき決定し、The molding surface shape is determined based on the predicted deformation amount of the glass molding material depending on the thickness of the glass molding material,
被成形ガラス素材は、下面周縁部の少なくとも一部が成形面と接触し、かつ下面中央部が成形面と離間した状態になるように成形型成形面上に配置され、The glass material to be molded is disposed on the molding die molding surface such that at least a part of the peripheral edge of the lower surface is in contact with the molding surface and the central portion of the lower surface is separated from the molding surface,
前記予測変形量は、被成形ガラス素材下面と成形面との離間距離に依存する予測変形量を含み、かつ前記離間距離に依存する予測変形量は、離間距離に比例する値であることを特徴とする成形型の製造方法。The predicted deformation amount includes a predicted deformation amount that depends on a separation distance between a lower surface of the glass material to be molded and a molding surface, and the predicted deformation amount that depends on the separation distance is a value proportional to the separation distance. A method for manufacturing a mold.
JP2007310943A 2007-11-30 2007-11-30 Method for producing molded product and method for producing mold Expired - Fee Related JP4939385B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007310943A JP4939385B2 (en) 2007-11-30 2007-11-30 Method for producing molded product and method for producing mold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007310943A JP4939385B2 (en) 2007-11-30 2007-11-30 Method for producing molded product and method for producing mold

Publications (2)

Publication Number Publication Date
JP2009132578A JP2009132578A (en) 2009-06-18
JP4939385B2 true JP4939385B2 (en) 2012-05-23

Family

ID=40864858

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007310943A Expired - Fee Related JP4939385B2 (en) 2007-11-30 2007-11-30 Method for producing molded product and method for producing mold

Country Status (1)

Country Link
JP (1) JP4939385B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6056736U (en) * 1983-09-27 1985-04-20 中尾 勝光 lens molding table
JPH1025123A (en) * 1996-07-09 1998-01-27 A F C Ceramic:Kk Curved mold for glass plate
KR20130020846A (en) * 2005-11-18 2013-02-28 호야 가부시키가이샤 Process for production of molded articles, glass material, and method for determing the surface shapes of glass material and mold

Also Published As

Publication number Publication date
JP2009132578A (en) 2009-06-18

Similar Documents

Publication Publication Date Title
CN104503711B (en) A kind of adaptive layered method of 3D printing
US9010153B2 (en) Method of making shaped glass articles
JP5615799B2 (en) Method for manufacturing lens mold and method for manufacturing spectacle lens
BRPI0618657A2 (en) method of making a shaped article, glassware for use in a forming method, and method of determining a shape of a surface
US20160209677A1 (en) Eyeglass lens and eyeglass lens manufacturing method
JP5319555B2 (en) Manufacturing method of lens mold
CN108088407B (en) Method and system for correcting morphology deviation of optical glass product
US20110304064A1 (en) Method of manufacturing lens casting mold
JP4939385B2 (en) Method for producing molded product and method for producing mold
JP4939384B2 (en) Method for producing molded product and method for producing mold
JP2009161361A (en) Method for producing molded article and method for producing molding die
JP4405170B2 (en) Optical element mold design method
JP6096019B2 (en) Mold for mold, mold and method for manufacturing spectacle lens
JP2010271540A (en) Method for manufacturing optical ceramic lens, molding die, rough preform, preform, and optical ceramic lens
JP3946106B2 (en) Mold for press and method for manufacturing lens
JP5495529B2 (en) Manufacturing method of lens mold and manufacturing method of lens
JP2807318B2 (en) Method for selecting glass sheet bending method and method for bending glass sheet
JP4128828B2 (en) Lens manufacturing method
CN206553391U (en) A kind of mould for 2D glass lens hot bendings
CN104015276A (en) Manufacturing method of aspheric glass mold
CN106630561A (en) Mold for hot bending 2D (Two-Dimensional) glass lens and hot bending process applying mold
JP2004307330A (en) Method of manufacturing lens
CN110889200B (en) Mould pressing forming pre-compensation method for aspherical glass lens
JP5953906B2 (en) Optical element molding apparatus and molding method
JP2007114217A (en) Measurement method for lens shape or formed surface shape

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100909

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120221

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120224

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150302

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees