JP4938638B2 - Bamboo fiber rope manufacturing method and bamboo fiber rope - Google Patents

Bamboo fiber rope manufacturing method and bamboo fiber rope Download PDF

Info

Publication number
JP4938638B2
JP4938638B2 JP2007334953A JP2007334953A JP4938638B2 JP 4938638 B2 JP4938638 B2 JP 4938638B2 JP 2007334953 A JP2007334953 A JP 2007334953A JP 2007334953 A JP2007334953 A JP 2007334953A JP 4938638 B2 JP4938638 B2 JP 4938638B2
Authority
JP
Japan
Prior art keywords
bamboo
bamboo fiber
rope
fiber bundle
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007334953A
Other languages
Japanese (ja)
Other versions
JP2009154387A (en
Inventor
邦生 柳橋
陽作 池尾
孝寿 小川
秀文 山内
康司 栗本
貴信 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takenaka Corp
Original Assignee
Takenaka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takenaka Corp filed Critical Takenaka Corp
Priority to JP2007334953A priority Critical patent/JP4938638B2/en
Publication of JP2009154387A publication Critical patent/JP2009154387A/en
Application granted granted Critical
Publication of JP4938638B2 publication Critical patent/JP4938638B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Chemical And Physical Treatments For Wood And The Like (AREA)
  • Debarking, Splitting, And Disintegration Of Timber (AREA)

Description

本発明は竹繊維縄の製造方法、特には、高弾性率であり、補強材などに有用な竹繊維縄の製造方法およびそれにより得られた竹繊維縄に関する。 The present invention bamboo fiber rope manufacturing method, in particular is a high elastic modulus relates to the production process and thereby resulting bamboo fiber rope useful bamboo fiber rope or the like reinforcing material.

近年、環境問題への関心の高まりから、天然材料としての竹繊維が注目されている。竹の導管や師管を形成する繊維束鞘は、高強度のセルロース細胞およびリグニンの集合体であり、この繊維束を取り出すことで、高強度でかつ所定の長さを有する竹繊維束が得られる。このような所定の長さを有する繊維束は高強度で靭性に優れ、且つ、生分解性を有するため、繊維補強材として注目され、例えば、繊維を補強材とする複合樹脂ボード、建設工事に用いられる木質系ボード、繊維補強された無機系(セメント系)ボード、木質系ブロック、繊維補強された無機系ブロックに用いられる補強繊維などへの利用が期待されている。   In recent years, bamboo fiber as a natural material has attracted attention due to increasing interest in environmental issues. The fiber bundle sheath forming the bamboo conduit and the mentor tube is an aggregate of high-strength cellulose cells and lignin. By taking out this fiber bundle, a bamboo fiber bundle having high strength and a predetermined length can be obtained. It is done. A fiber bundle having such a predetermined length has high strength, excellent toughness, and biodegradability, so it has been attracting attention as a fiber reinforcement, for example, a composite resin board using fibers as a reinforcement, for construction work. It is expected to be used for wood-based boards, fiber-reinforced inorganic (cement-based) boards, wood-based blocks, reinforcing fibers used for fiber-reinforced inorganic blocks, and the like.

従来からの竹繊維の利用としては、パルプなどの短繊維を得るため、強アルカリや強酸による加水分解反応や熱分解反応による解繊が一般に行われており、また、このような繊維を効率よく取り出すため、竹材を冷凍し、解凍した上で、解繊処理を施す技術が提案されている(例えば、特許文献1参照。)。
また、竹材を圧延装置により竹の生長方向に粗砕する第一工程と、該粗砕品を特定の機構を有するハンマーミル型粉砕装置により繊維化する第二工程と、繊維化された竹材(竹繊維)中に混在する竹材内側の薄皮部を分離する第三工程と、によって竹繊維を製造する技術が提案されている(例えば、特許文献2参照。)。
Conventionally, bamboo fiber is used in order to obtain short fibers such as pulp. Generally, the fiber is hydrolyzed by a strong alkali or strong acid, or defibrated by a thermal decomposition reaction. In order to take out, the technique which performs a defibrating process after freezing and defrosting bamboo material is proposed (for example, refer patent document 1).
In addition, a first step of roughly crushing bamboo material in the growth direction of the bamboo with a rolling device, a second step of fiberizing the coarsely crushed product with a hammer mill type crusher having a specific mechanism, There has been proposed a technique for producing bamboo fiber by a third step of separating the thin skin portion inside the bamboo material mixed in the bamboo fiber) (see, for example, Patent Document 2).

更に、圧力缶体に竹材を入れて水蒸気を噴出して圧力缶体内の温度を100℃以上にし、竹材中の繊維と繊維とをつなぎ止めているリグニン層に熱を与え、次に缶体内の圧力を瞬間的に開放する操作を数回〜数十回行うことで竹繊維を痛めることなくリグニン層だけを分解し竹繊維を取り出す技術が提案されている(例えば、特許文献3参照。)。
また更には、長手方向に間隔を以って裁断された竹材を圧縮して、開裂させて、平板状に圧縮形成し、該平板状の竹材を加熱水蒸気の雰囲気下で蒸煮し、蒸煮された竹材を常圧下で常温より高い温度下で解繊することにより綿状の竹繊維を製造する技術が提案されている(例えば、特許文献4参照。)。
しかし、これらの方法によって得られる竹繊維においても、十分な弾性を得ることが出来なかった。
特開2005−153160号公報 特開平6−15616号公報 特開2003−155677号公報 特開2005−193405号公報
Furthermore, the bamboo material is put into the pressure can body, and water vapor is jetted to raise the temperature inside the pressure can body to 100 ° C. or more, and heat is applied to the lignin layer that holds the fibers in the bamboo material together, and then the inside of the can body A technique for decomposing only the lignin layer and taking out the bamboo fiber without damaging the bamboo fiber by performing an operation of instantaneously releasing the pressure several times to several tens of times has been proposed (see, for example, Patent Document 3).
Still further, the bamboo material cut at intervals in the longitudinal direction is compressed, cleaved and compressed into a flat plate shape, and the flat bamboo material is cooked and steamed in an atmosphere of heated steam. A technique for producing a cotton-like bamboo fiber by defibrating bamboo material at a temperature higher than normal temperature under normal pressure has been proposed (for example, see Patent Document 4).
However, even with bamboo fibers obtained by these methods, sufficient elasticity could not be obtained.
JP 2005-153160 A JP-A-6-15616 JP 2003-155679 A JP 2005-193405 A

上記問題点を考慮してなされた本発明の目的は、高弾性率であり、補強材などに有用な竹繊維縄を製造することができる竹繊維縄の製造方法、および上記本発明の竹繊維縄の製造方法により得られた、高弾性率の竹繊維縄を提供することにある The object of the present invention made in consideration of the above problems is a method for producing a bamboo fiber rope that has a high elastic modulus and can produce a bamboo fiber rope useful as a reinforcing material, and the bamboo fiber of the present invention. An object of the present invention is to provide a bamboo fiber rope having a high elastic modulus obtained by a method for producing a rope .

上記課題は、以下の本発明によって解決される。
即ち、本発明の構成は以下の通りである。
<1> 竹繊維束を複数撚り合わせて縄状に形成する撚り工程と、縄状に形成された竹繊維束に樹脂を含浸させる樹脂含浸工程と、樹脂を含浸した縄状の竹繊維束を、強度が樹脂硬化時の最終到達強度の70〜100%に到達するまで、撚り合わせていない竹繊維束の破断荷重の6〜20%となる条件で引張荷重をかけて張架しながら樹脂を硬化させる張架工程と、を有し、樹脂硬化後に荷重を解放して樹脂含有竹繊維縄を得ることを特徴とする竹繊維縄の製造方法。
<2> 前記竹繊維束が、竹材料の厚み方向の内皮側から1/3以上の領域を除去した残余の領域における竹材料を、長辺が繊維束に平行となるよう短冊状に切断して竹片を得る竹片作製工程と、該竹片の繊維質を結束している物質を除去して解繊し竹繊維束を得る解繊工程と、を経て製造されることを特徴とする請求項1に記載の竹繊維の製造方法。
<3> 前記竹片作製工程において、竹材料の厚み方向の内皮側から2/3以上の領域を除去した残余の領域における竹材料から竹片を作製することを特徴とする前記<2>に記載の竹繊維の製造方法。
<4> 前記解繊工程は、前記竹片に対しpH10〜14のアルカリ水溶液中でアルカリ処理を施すことで、竹片の繊維質を結束している物質を除去して解繊し竹繊維束を得る工程であることを特徴とする前記<2>または<3>に記載の竹繊維の製造方法。
<5> 前記解繊工程は、前記竹片を圧力装置内に配置し、該圧力装置内で10気圧以上の圧力を加える加圧処理と、前記圧力装置内の圧力を開放する減圧処理と、を施すことで、竹片の繊維質を結束している物質を除去して解繊し竹繊維束を得る工程であることを特徴とする前記<2>または<3>に記載の竹繊維の製造方法。
<6> 前記<1>に記載の竹繊維縄の製造方法により得られたことを特徴とする竹繊維縄。
The above problems are solved by the present invention described below.
That is, the configuration of the present invention is as follows.
<1> A twisting step of twisting a plurality of bamboo fiber bundles to form a rope, a resin impregnation step of impregnating a bamboo fiber bundle formed in a rope shape with a resin, and a rope-like bamboo fiber bundle impregnated with a resin Until the strength reaches 70 to 100% of the ultimate strength when the resin is cured, the resin is stretched by applying a tensile load under the condition of 6 to 20% of the breaking load of the untwisted bamboo fiber bundle. A method for producing a bamboo fiber rope, comprising: a stretching step for curing, and releasing a load after the resin is cured to obtain a resin-containing bamboo fiber rope.
<2> The bamboo fiber bundle is cut into a strip shape so that the long side is parallel to the fiber bundle in the remaining region from which the region of 1/3 or more is removed from the inner side of the bamboo material in the thickness direction. wherein the bamboo reed manufacturing step of obtaining a bamboo strip, and defibration to obtain a defibrated and bamboo fiber bundles by removing material that bundling fibrous該竹piece, that is produced through the Te The method for producing a bamboo fiber rope according to claim 1 .
<3> In the above-mentioned <2>, in the bamboo piece production step, the bamboo piece is produced from the bamboo material in the remaining region obtained by removing 2/3 or more region from the inner side of the bamboo material in the thickness direction. The manufacturing method of the bamboo fiber rope of description.
<4> In the defibrating step, the bamboo pieces are subjected to alkali treatment in an alkaline aqueous solution having a pH of 10 to 14 to remove substances that bind the fibers of the bamboo pieces, and then defibrated to obtain a bamboo fiber bundle. The method for producing a bamboo fiber rope according to <2> or <3>, wherein
<5> In the defibrating step, the bamboo piece is placed in a pressure device, a pressure treatment for applying a pressure of 10 atm or more in the pressure device, and a pressure reduction treatment for releasing the pressure in the pressure device; The bamboo fiber rope according to the above <2> or <3>, wherein the bamboo fiber bundle is a step of removing a substance binding the fibrous material of the bamboo piece and defibrating to obtain a bamboo fiber bundle Manufacturing method.
<6> A bamboo fiber rope obtained by the method for producing a bamboo fiber rope according to <1>.

尚、本発明における竹繊維束とは、竹材料から低密度の柔組織を除去して得られた密度1.0以上で長さ10mm以上の繊維状組織の集合体を指す。竹繊維では、ヘミセルロースを多く含む柔組織を除去した後に残るセルロースがリグニンで接着された繊維状の集合体であり、元々導管や師管の周囲にあった繊維束鞘に相当する。   The bamboo fiber bundle in the present invention refers to an aggregate of fibrous structures having a density of 1.0 or more and a length of 10 mm or more obtained by removing low-density soft tissue from bamboo material. Bamboo fiber is a fibrous aggregate in which cellulose remaining after removing soft tissue rich in hemicellulose is bonded with lignin, and corresponds to a fiber bundle sheath originally around a conduit or phloem.

本発明によれば、高弾性率であり、補強材などに有用な竹繊維縄を製造することができる竹繊維縄の製造方法、および上記本発明の竹繊維縄の製造方法により得られた、高弾性率の竹繊維縄を提供することができる According to the present invention, it is a high elastic modulus, obtained by a method for manufacturing a bamboo fiber rope that can produce a bamboo fiber rope useful as a reinforcing material, and the method for manufacturing a bamboo fiber rope of the present invention, A high-modulus bamboo fiber rope can be provided .

<竹繊維束およびその製造方法>
本発明の竹繊維束の製造方法は、後述の本発明の竹繊維縄の製造方法に好適に用い得る竹繊維束を製造する方法である。
本発明の竹繊維束の製造方法においては、竹材料において、内皮方向から厚み方向1/3以上の領域を除去し、厚み方向の外側2/3未満の領域で得られた竹材料を原料として使用することを特徴とする。
原料となる竹材料を得るには、まず、竹を繊維束に略垂直方向に切断して節を除去し、節と節との間の竹を用い、該竹材料を、長辺が繊維束に平行となるよう短冊状に切断する。このとき、まず短冊状に切断し、その後、内皮側1/3以上の領域から得られた切断片を除去してもよく、内皮側から厚み方向に少なくとも1/3以上の領域を切断し除去したのち、短冊状に切断して原料となる竹片を作製してもよい。
本発明の製造方法では、このように、竹材料の厚み方向の内皮側から1/3以上の領域を除去した残余の領域における竹材料を、長辺が繊維束に平行となるよう短冊状に切断して竹片を得る(I)竹片作製工程と、該竹片の繊維質を結束している物質を除去して解繊し竹繊維束を得る(II)解繊工程と、を有することを特徴とする。
以下、この方法を工程順に説明する。
<Bamboo fiber bundle and manufacturing method thereof>
The method for producing a bamboo fiber bundle of the present invention is a method for producing a bamboo fiber bundle that can be suitably used in the method for producing a bamboo fiber rope of the present invention described later.
In the method for producing a bamboo fiber bundle according to the present invention, a bamboo material obtained by removing a region of 1/3 or more in the thickness direction from the endothelium direction and less than 2/3 of the outside in the thickness direction is used as a raw material. It is characterized by using.
In order to obtain a bamboo material as a raw material, first, bamboo is cut into a fiber bundle in a substantially vertical direction to remove a node, and a bamboo between the nodes is used. Cut into strips so that they are parallel to each other. At this time, it may be cut into strips first, and then the cut pieces obtained from the region 1/3 or more of the endothelium side may be removed, and at least 1/3 or more region in the thickness direction from the endothelium side is cut and removed. After that, a bamboo piece as a raw material may be produced by cutting into strips.
In the manufacturing method of the present invention, the bamboo material in the remaining region obtained by removing a region of 1/3 or more from the inner side of the bamboo material in the thickness direction is formed in a strip shape so that the long side is parallel to the fiber bundle. Cutting to obtain a bamboo piece (I), a bamboo piece preparation step, and removing a substance binding the fibers of the bamboo piece to obtain a bamboo fiber bundle (II) defibration step It is characterized by that.
Hereinafter, this method will be described in the order of steps.

〔(I)竹片作製工程〕
この(I)竹片作製工程では、竹材料を、長辺が繊維束に平行となるよう短冊状に切断すると共に、内皮側から厚み方向に少なくとも1/3以上(より好ましくは2/3以上)の領域を切断し除去し、残余の領域を原料として竹片を作製する。除去される内皮側の領域が上記範囲未満である場合、強度に優れた竹繊維束を得ることができず、また収率も低下する。
なお、上記のように内皮側を除去し、残余の領域から得られる竹片を原料とすることにより、高強度の竹繊維束が得られるが、除去した内皮側の竹材料は、柔細胞を多く含むため、糖化などの手法によってエネルギーへ転換できる可能性もあるため、除去した内皮側の竹材料を他の目的に分別利用することができる。
[(I) Bamboo piece production process]
In this (I) bamboo piece manufacturing step, the bamboo material is cut into a strip shape so that the long side is parallel to the fiber bundle, and at least 1/3 or more in the thickness direction from the inner side (more preferably 2/3 or more). ) Are cut and removed, and bamboo pieces are produced using the remaining region as a raw material. When the area | region of the endothelium side removed is less than the said range, the bamboo fiber bundle excellent in intensity | strength cannot be obtained and a yield also falls.
In addition, by removing the endothelium side as described above and using bamboo pieces obtained from the remaining region as a raw material, a high-strength bamboo fiber bundle can be obtained. Since it is contained in a large amount, it may be converted into energy by a technique such as saccharification, and thus the removed bamboo material on the endothelium side can be used for other purposes.

(I)竹片作製工程においては竹材料を短冊状に切断するが、短冊状の木片の長辺に相当する方向を繊維束の方向と平行にすることで短冊の長辺と略同一、即ち、竹片の長辺と同一或いは僅かに短い長さの繊維束を得ることができる。
これらの竹片の大きさには特に制限はないが、例えば、後述のアルカリ処理や爆砕処理を施す場合には、処理容器(アルカリ溶液槽や圧力装置等)に入る大きさであって、取り扱いが可能な重量の範囲であることが好ましい。また、アルカリ処理を施す場合には、アルカリの効果を及ぼしやすい断面の大きさであることを考慮して選択すればよい。例えば、竹片の長さは得ようとする竹繊維束の長さに応じて、10mm以上であることが必要であり、50mm以上であることが好ましく、取り扱い性の観点から、長さは1000mm以下であることが好ましい。
また、竹材料を短冊状に切断する際には、得られる竹繊維束の均一性の観点からは節部を含まないことが好ましく、また、得られる竹繊維束の長さが長いほど、補強材などの種々の応用に適することから、節と節との間を長辺とする竹片を得ることが好ましい。
また、竹片の断面積(繊維束方向に垂直の切断面における断面積)は、引き続き行われる解繊処理効果の観点から、30cm以内であることが好ましく、断面積が30cmの場合、例えば、厚さ5mm、幅60mm程度となる。
(I) Bamboo material is cut into strips in the bamboo piece manufacturing process, but the direction corresponding to the long side of the strip-like wooden piece is substantially the same as the long side of the strip by making the direction parallel to the direction of the fiber bundle, A fiber bundle having the same or slightly shorter length than the long side of the bamboo piece can be obtained.
There are no particular restrictions on the size of these bamboo pieces. For example, when performing the alkali treatment or explosion treatment described below, the size of the bamboo pieces can be accommodated in a treatment container (such as an alkali solution tank or a pressure device). Is preferably in the possible weight range. In addition, when the alkali treatment is performed, the selection may be made in consideration of the size of the cross section that easily exerts an alkali effect. For example, the length of the bamboo piece needs to be 10 mm or more according to the length of the bamboo fiber bundle to be obtained, and is preferably 50 mm or more. From the viewpoint of handling, the length is 1000 mm. The following is preferable.
In addition, when cutting the bamboo material into strips, it is preferable not to include a node from the viewpoint of the uniformity of the obtained bamboo fiber bundle, and the longer the bamboo fiber bundle obtained, the greater the reinforcement. Since it is suitable for various applications such as wood, it is preferable to obtain a bamboo piece having a long side between the nodes.
In addition, the cross-sectional area of the bamboo pieces (the cross-sectional area at the cut surface perpendicular to the fiber bundle direction) is preferably within 30 cm 2 from the viewpoint of the effect of the subsequent defibrating treatment, and when the cross-sectional area is 30 cm 2 , For example, the thickness is about 5 mm and the width is about 60 mm.

竹材料を切断する方法としては、特に限定されるものではなく、不要な内側部分を除去した後切断してもよく、まず、切断して竹片を作製し、内皮側の不要部分を除いてもよいが、外皮側の2/3未満の領域(より好ましくは1/3未満の領域)を無駄なく有効に使用する観点から、好ましくは、(1)まず竹材料を繊維束に平行な方向に切断して短冊状に分割し、その後短冊状に分割した竹材料の内皮側を更に切断して除去する方法が好ましく挙げられる。
また、(2)竹材料を圧縮して開裂させ平板状に形成し、その後平板状に形成された竹材料の内皮側を切断して除去する方法も好ましく用いることができる。竹材料を圧縮して開裂させ平板状に形成する方法としては、ロールによって圧縮する方法、油圧プレスにより圧縮する方法等が挙げられる。
The method of cutting the bamboo material is not particularly limited, and may be cut after removing the unnecessary inner portion. First, cut to produce a bamboo piece, and remove the unnecessary portion on the endothelium side. However, from the viewpoint of effectively using an area of less than 2/3 on the outer skin side (more preferably, an area of less than 1/3) without waste, (1) First, the bamboo material is parallel to the fiber bundle. It is preferable to cut it into two strips, and then cut and remove the endothelium side of the bamboo material divided into strips.
Further, (2) a method in which the bamboo material is compressed and cleaved to form a flat plate, and then the endothelium side of the flat bamboo material is cut and removed can be preferably used. Examples of the method for compressing and cleaving bamboo material to form a flat plate include a method of compressing with a roll and a method of compressing with a hydraulic press.

ここで本発明における竹材料とは、節を取り除いた竹を指し、用いられる竹材料には特に制限はない。導管、師管を形成する繊維束鞘の強度、得られる繊維束の靭性という観点からは、孟宗竹、マダケなどが好ましく挙げられる。   Here, the bamboo material in the present invention refers to the bamboo from which the nodes are removed, and the bamboo material used is not particularly limited. From the viewpoints of the strength of the fiber bundle sheath that forms the conduit and the mentor tube, and the toughness of the obtained fiber bundle, preferred are Misotake and Madake.

〔(II)解繊工程〕
この(II)解繊工程では、竹片の繊維質を結束している物質を除去して解繊し竹繊維束を得る。解繊する方法としては、特に限定されるものではないが、(A)アルカリ処理を施す方法、(B)爆砕処理を施す方法、等が挙げられる。
[(II) Defibration process]
In this (II) defibrating step, the material that binds the fibers of the bamboo pieces is removed and defibrated to obtain a bamboo fiber bundle. The method for defibrating is not particularly limited, and examples thereof include (A) an alkali treatment method, (B) an explosion treatment method, and the like.

(A)アルカリ処理を施す方法
アルカリ処理を施すことで、竹片の繊維質を結束している物質、例えば、リグニン層等の繊維質を結束している物質が除去され、繊維束鞘を中心とする繊維束が得られる。
このアルカリ処理では、pH10〜14のアルカリ水溶液を用いることが好ましく、pH12以上の条件であることがより好ましい。このようなアルカリ水溶液中に、前記(I)工程で得られた竹片を浸漬する。
アルカリ処理工程における、アルカリ水溶液の温度は、40〜100℃に維持されることが好ましく、更には60〜80℃の範囲であることがより好ましい。アルカリ水溶液中での処理時間は、竹材料の種類、竹片のサイズ、アルカリ溶液の濃度、温度により適宜選択されるが、3〜24時間の範囲であることが好ましい。
(A) Method of performing alkali treatment By performing alkali treatment, the material that binds the fibers of the bamboo pieces, for example, the material that binds the fibers such as the lignin layer is removed, and the fiber bundle sheath is the center. A fiber bundle is obtained.
In this alkali treatment, it is preferable to use an alkaline aqueous solution having a pH of 10 to 14, and more preferably a pH of 12 or more. The bamboo pieces obtained in the step (I) are immersed in such an alkaline aqueous solution.
The temperature of the aqueous alkali solution in the alkali treatment step is preferably maintained at 40 to 100 ° C, and more preferably in the range of 60 to 80 ° C. The treatment time in the alkaline aqueous solution is appropriately selected depending on the type of bamboo material, the size of the bamboo piece, the concentration of the alkaline solution, and the temperature, but is preferably in the range of 3 to 24 hours.

アルカリ水溶液は、公知のアルカリ剤、例えば、水酸化ナトリウム、水酸化カリウム、
などを用い、pHを測定しながら、これらを適切な量、水に溶解して調整することができる。pHの微調整は、アンモニアや無機酸類などの公知のpH調整剤を用いて行うこともできる。また、pHの測定は公知の方法、例えば、pH電極を用いる方法や、呈色反応を示すpH試験紙による方法などにより行うことができる。
アルカリ水溶液の溶媒となる水には特に制限はなく、工業用水、水道水、イオン交換水、純水などを用いることができるが、アルカリ性の調整や、酵素に対する影響を考慮して、有機質の不純物が少なく、酸性物質を含まない水を選択して用いることが好ましい。
特に好ましくは、1000mlあたり水酸化ナトリウム1.0〜10.0gを溶解させた水溶液が用いられる。
The alkaline aqueous solution is a known alkaline agent such as sodium hydroxide, potassium hydroxide,
These can be adjusted by dissolving them in water in an appropriate amount while measuring the pH. The fine adjustment of the pH can also be performed using a known pH adjusting agent such as ammonia or inorganic acids. The pH can be measured by a known method such as a method using a pH electrode or a method using a pH test paper showing a color reaction.
There are no particular restrictions on the water used as the solvent of the alkaline aqueous solution, and industrial water, tap water, ion-exchanged water, pure water, etc. can be used, but organic impurities are considered in consideration of alkalinity adjustment and effects on enzymes. Therefore, it is preferable to select and use water that has a small amount and does not contain an acidic substance.
Particularly preferably, an aqueous solution in which 1.0 to 10.0 g of sodium hydroxide is dissolved per 1000 ml is used.

所定時間浸漬し、アルカリ処理を経た後、竹片から繊維束同士を互いに接着させていたリグニン、ヘミセルロースなどが除去され、直径0.1〜3mm程度、長さが短冊状に加工した竹片の長さとほぼ同一の繊維束が得られる。ここで、アルカリ水溶液を除去し、その後過剰の水で洗浄して残存するアルカリ成分を除去し、以下に挙げるような任意の方法で解繊し、繊維束を取り出す。
上記解繊の方法としては、櫛を用いて手作業で処理物を抄く方法、機械的に振動や衝撃を加えて、柔組織をふるい落とす方法などが挙げられる。
(A)アルカリ処理を施す方法を用いることにより、短冊状に加工された竹片の長さと略同一の長さを有し、繊維束の表面における不純物の付着を良好に抑制した高純度な竹繊維束を得ることができる。また、本発明においてアルカリ処理を適用した場合、竹繊維束の収率が高いことから、アルカリ水溶液の廃液を低減することができる。
After immersing for a predetermined time and passing through alkali treatment, lignin, hemicellulose, etc. that bonded the fiber bundles to each other were removed from the bamboo pieces, and the pieces of bamboo pieces processed into strips with a diameter of about 0.1 to 3 mm were obtained. A fiber bundle having almost the same length is obtained. Here, the alkaline aqueous solution is removed, and then the remaining alkaline component is removed by washing with excess water, and the fibers are defibrated by any method as described below, and the fiber bundle is taken out.
Examples of the defibrating method include a method of manually producing a processed product using a comb, and a method of mechanically applying vibration and impact to screen off the soft tissue.
(A) A high-purity bamboo that has a length approximately the same as the length of a bamboo piece processed into a strip shape by using an alkali treatment method, and that favorably suppresses the adhesion of impurities on the surface of the fiber bundle. A fiber bundle can be obtained. In addition, when the alkali treatment is applied in the present invention, the yield of bamboo fiber bundles is high, so that the waste solution of the alkaline aqueous solution can be reduced.

(B)爆砕処理を施す方法
竹片に対し圧力装置内で高い圧力を加える加圧処理と、前記圧力装置内の圧力を開放する減圧処理と、を行う爆砕処理を施すことで、竹片の繊維質を結束している物質、例えば、リグニン層等の繊維質を結束している物質が除去され、繊維束鞘を中心とする繊維束が得られる。
この爆砕処理では、圧力装置内で高い圧力が加えられるが、該圧力は10気圧以上であることが好ましく、12〜15気圧であることがより好ましい。また、圧力装置内の最高到達温度は、170〜180℃であることが好ましく、更には180℃であることがより好ましい。加圧処理の時間は、竹材料の種類、竹片のサイズ等により適宜選択されるが、1〜6時間の範囲であることが好ましい。上記の条件にて加圧処理が施された後、圧力装置内の圧力が瞬時に開放されることにより減圧処理が施される。
また、上記加圧処理および減圧処理は複数回繰り返すことも好ましい。2回目以降の加圧処理における気圧および温度は上記と同様である。
上記爆砕処理に用いられる圧力装置の例としては、オートクレーブや木材乾燥装置等が挙げられる。
(B) Method of performing a blasting treatment By applying a blasting treatment for applying a high pressure in the pressure device to the bamboo piece and a decompression treatment for releasing the pressure in the pressure device, The material that binds the fibers, for example, the material that binds the fibers such as the lignin layer is removed, and a fiber bundle centered on the fiber bundle sheath is obtained.
In this blasting treatment, a high pressure is applied in the pressure device, and the pressure is preferably 10 atm or more, and more preferably 12 to 15 atm. Moreover, it is preferable that the highest reached temperature in a pressure apparatus is 170-180 degreeC, and it is more preferable that it is 180 degreeC. The pressure treatment time is appropriately selected according to the type of bamboo material, the size of the bamboo piece, etc., but is preferably in the range of 1 to 6 hours. After the pressure treatment is performed under the above conditions, the pressure reduction processing is performed by instantaneously releasing the pressure in the pressure device.
Moreover, it is also preferable to repeat the said pressurization process and pressure reduction process in multiple times. The pressure and temperature in the second and subsequent pressurizing processes are the same as described above.
Examples of the pressure device used for the explosion treatment include an autoclave and a wood drying device.

ここで、上記爆砕処理の一例を挙げて説明する。
まず、竹片を圧力装置内に封入し、蒸気を供給して圧力装置内を加熱加圧する。第一回目の加圧サイクルでは、圧力装置内の気圧を10気圧、温度を180℃に維持し、30分〜1時間加熱加圧を行う。その後圧力装置を開放し蒸気を放出して減圧する。次いで、再び圧力装置を密閉し蒸気を供給する。第二回目以降の加圧サイクルでは、圧力装置内の気圧および温度を第一回目と同様にし、30分〜1時間加熱加圧を行う。その後圧力装置を開放し蒸気を放出して減圧する。以下、この第二回目以降の加熱・減圧サイクルを所望の回数繰り返すことができる。用いる竹片の大きさ(厚み等)にもよるが、上記加熱・減圧サイクルは1〜5回繰り返すことが好ましい。
Here, an example of the explosion process will be described.
First, a bamboo piece is enclosed in a pressure device, and steam is supplied to heat and pressurize the pressure device. In the first pressurization cycle, the pressure in the pressure device is maintained at 10 atm and the temperature at 180 ° C., and heating and pressurization is performed for 30 minutes to 1 hour. After that, the pressure device is opened and the pressure is reduced by releasing steam. Next, the pressure device is again sealed and steam is supplied. In the second and subsequent pressurization cycles, the pressure and pressure in the pressure device are the same as in the first, and heating and pressurization are performed for 30 minutes to 1 hour. After that, the pressure device is opened and the pressure is reduced by releasing steam. Thereafter, the second and subsequent heating / depressurization cycles can be repeated a desired number of times. Although depending on the size (thickness, etc.) of the bamboo piece to be used, the heating / depressurization cycle is preferably repeated 1 to 5 times.

爆砕処理を経た後、竹片から繊維束同士を互いに接着させていたリグニン、ヘミセルロースなどが除去され、直径0.1〜3mm程度、長さが短冊状に加工した竹片の長さとほぼ同一の繊維束が得られる。次いで、以下に挙げるような任意の方法で解繊し、繊維束を取り出す。
上記解繊の方法としては、櫛を用いて手作業で処理物を抄く方法、機械的に振動や衝撃を加えて、柔組織をふるい落とす方法などが挙げられる。
(B)爆砕処理を施す方法を用いることにより、物理的な処理であってアルカリ水溶液等の廃液を排出することがないため、環境配慮の面で好ましい方法によって竹繊維束を製造することができる。
After the blasting treatment, lignin, hemicellulose, etc. that bonded the fiber bundles to each other were removed from the bamboo pieces, and the diameter was about the same as the length of the bamboo pieces processed into strips of about 0.1 to 3 mm in diameter. A fiber bundle is obtained. Next, the fiber is defibrated by an arbitrary method as described below, and the fiber bundle is taken out.
Examples of the defibrating method include a method of manually producing a processed product using a comb, and a method of mechanically applying vibration and impact to screen off the soft tissue.
(B) Bamboo fiber bundles can be manufactured by a method that is preferable in terms of environmental considerations because the method of performing the explosion treatment is a physical treatment and does not discharge waste liquid such as an alkaline aqueous solution. .

上記(I)切断工程および(II)解繊工程を経て得られた本発明の竹繊維束は、高強度である。また、短冊状に加工した竹片の長さと略同一の長さを有し、後述の竹繊維縄の製造に用いる場合などにおいても加工性に優れる。
このように本発明の竹繊維束は、軽量、高強度であり、且つ生分解性を有する。また、以下のように撚って縄状に形成し、竹繊維縄として好適に用いられる。
The bamboo fiber bundle of the present invention obtained through the above (I) cutting step and (II) defibrating step has high strength. Moreover, it has the length substantially the same as the length of the bamboo piece processed into strip shape, and is excellent in workability, when using for the manufacture of the bamboo fiber rope mentioned later.
Thus, the bamboo fiber bundle of the present invention is lightweight, high in strength, and biodegradable. Moreover, it twists as follows and it forms in a rope shape, and is used suitably as a bamboo fiber rope.

<竹繊維縄の製造方法>
本発明の竹繊維縄の製造方法は、竹繊維束を複数撚り合わせて縄状に形成する撚り工程と、縄状に形成された竹繊維束に樹脂を含浸させる樹脂含浸工程と、樹脂を含浸した縄状の竹繊維束を、強度が樹脂硬化時の最終到達強度の70〜100%に到達するまで、撚り合わせていない竹繊維束の破断荷重の6〜20%となる条件で引張荷重をかけて張架しながら樹脂を硬化させる張架工程と、を有し、樹脂硬化後に荷重を解放して樹脂含有竹繊維縄を得ることを特徴とする。
尚、本発明の竹繊維縄の製造方法に用いる竹繊維束としては、上述した本発明の竹繊維束の製造方法によって得られる竹繊維束を用いることが好ましい。
以下、この方法を工程順に説明する。
<Method of manufacturing bamboo fiber rope>
The method for producing a bamboo fiber rope of the present invention includes a twisting process in which a plurality of bamboo fiber bundles are twisted together to form a rope, a resin impregnation process in which a bamboo fiber bundle formed in a rope shape is impregnated with a resin, and a resin impregnation Until the strength reaches 70 to 100% of the ultimate strength when the resin is cured, the tensile load is applied under the condition that it becomes 6 to 20% of the breaking load of the bamboo fiber bundle that is not twisted. A stretching step of curing the resin while stretching, and releasing the load after the resin is cured to obtain a resin-containing bamboo fiber rope.
In addition, as a bamboo fiber bundle used for the manufacturing method of the bamboo fiber rope of this invention, it is preferable to use the bamboo fiber bundle obtained by the manufacturing method of the bamboo fiber bundle of this invention mentioned above.
Hereinafter, this method will be described in the order of steps.

〔(i)撚り工程〕
この(i)撚り工程では、複数の竹繊維束を撚って縄状に形成する。例えば、前述の方法により製造された竹繊維束は、短冊状に加工した竹片の長さと略同一の長さを有しており、竹繊維縄の製造においても優れた加工性を得ることができる。
竹繊維束を撚る方法としては、手綯いして撚る方法、撚り機によって撚る方法、組紐機により紐打ちする方法等が挙げられる。
撚り工程に用いる竹繊維束の本数は、用いる竹繊維束の太さや長さ、得ようとする竹繊維縄の太さや長さ等によっても異なるが、繊維間の長さ方向の接合を効率的に得ること、部位間のばらつきを低減することなどの観点から、3〜100本の竹繊維束を用いて撚る態様、或いは、予め撚り合わせた細撚り体をさらに2〜32組撚り合わせる態様などをとることが好ましい。
撚り工程を経て、複数本の竹繊維束が撚り合わされて縄状に形成されたものが得られる。
[(I) Twist process]
In this (i) twisting step, a plurality of bamboo fiber bundles are twisted to form a rope shape. For example, the bamboo fiber bundle manufactured by the above-mentioned method has a length substantially the same as the length of the bamboo piece processed into a strip shape, and it is possible to obtain excellent processability even in the manufacture of the bamboo fiber rope. it can.
Examples of the method of twisting the bamboo fiber bundle include a method of twisting by hand, a method of twisting with a twister, a method of stringing with a braiding machine, and the like.
The number of bamboo fiber bundles used in the twisting process varies depending on the thickness and length of the bamboo fiber bundle used and the thickness and length of the bamboo fiber rope to be obtained. From the viewpoints of obtaining the above, reducing the variation between the parts, etc., an aspect in which 3 to 100 bamboo fiber bundles are twisted, or an aspect in which 2 to 32 pairs of pre-twisted fine twisted bodies are further twisted It is preferable to take
Through a twisting process, a plurality of bamboo fiber bundles are twisted together to form a rope shape.

〔(ii)樹脂含浸工程〕
この(ii)樹脂含浸工程では、(i)撚り工程で縄状に形成された竹繊維束に樹脂を含浸させる。
用いる樹脂としては、二液の混合によって化学反応を生じ硬化する二液式の樹脂、熱やエネルギー放射などの外的要因によって化学反応を生じ硬化する一液式の樹脂、溶質が溶媒に溶解しており該溶媒の気化によって硬化する樹脂、コンクリートモルタル等、竹繊維束に含浸させることができるものであれば特に限定されるものではない。
尚、竹繊維束に含浸させやすいという観点からより低粘度であること、硬化時の肉やせが少ないことが好ましく、上記の中でも化学反応により硬化する樹脂がより好ましい。より具体的には、エポキシ樹脂、イソシアネート系樹脂、ユリア樹脂、フェノール樹脂が挙げられる。
また、上記樹脂を含浸させる方法としては、縄状に形成された竹繊維束を樹脂中に浸漬する方法、縄状に形成された竹繊維束に樹脂を塗布する方法、縄状に形成された竹繊維束に張力を与えながら樹脂包埋する方法等が用いられる。
[(Ii) Resin impregnation step]
In the (ii) resin impregnation step, the bamboo fiber bundle formed in a rope shape in the (i) twisting step is impregnated with the resin.
The resin used is a two-component resin that cures by a chemical reaction caused by mixing the two components, a one-component resin that cures by a chemical reaction due to external factors such as heat and energy radiation, and a solute that dissolves in the solvent. The resin is not particularly limited as long as it can be impregnated into the bamboo fiber bundle, such as a resin cured by vaporization of the solvent, concrete mortar, and the like.
In addition, from the viewpoint of easy impregnation into bamboo fiber bundles, it is preferable that the viscosity is lower, and that there is little fleshiness at the time of curing, and among these, resins that are cured by chemical reaction are more preferable. More specifically, an epoxy resin, an isocyanate resin, a urea resin, and a phenol resin can be used.
Moreover, as a method of impregnating the resin, a method of immersing a bamboo fiber bundle formed in a rope shape in the resin, a method of applying a resin to a bamboo fiber bundle formed in a rope shape, and a rope shape A method of embedding resin while applying tension to the bamboo fiber bundle is used.

〔(iii)張架工程〕
この(iii)張架工程では、樹脂を含浸した竹繊維束を、強度が樹脂硬化時の最終到達強度の70〜100%に到達するまで、撚り合わせていない竹繊維束の破断荷重の6〜20%となる条件で引張荷重をかけて張架しながら樹脂を硬化させ、硬化後に荷重を解放して竹繊維縄を得る。引張荷重を上記範囲に制御し、樹脂の硬化による強度が上記範囲に到達するまでの時間張架することにより、高弾性率であり、補強材などに有用な竹繊維縄を製造することができる。
尚、上記張架は、強度が樹脂硬化時の最終到達強度の少なくとも70〜100%に到達するまで行われ、80〜100%に到達するまで行うことが特に好ましい。また、引張荷重は撚り合わせていない竹繊維束の破断荷重の6〜20%であり、撚り合わせていない竹繊維束の破断荷重の10〜20%であることが特に好ましい。
ここで、「撚り合わせていない竹繊維束の(単位断面積あたりの)破断荷重」は、撚り合わせていない竹繊維束に樹脂を含浸させ、これを張架して破断するまで荷重を掛け、破断した時点での引張荷重を測定して単位断面積あたりの破断荷重を算出することができる。
前記「撚り合わせていない竹繊維束の破断荷重の6〜20%となる条件」とは、上記「撚り合わせていない竹繊維束の(単位断面積あたりの)破断荷重」の6〜20%となる引張荷重を、張架工程において竹繊維束に掛けることを意味する。
[(Iii) Stretching process]
In this (iii) stretching step, the bamboo fiber bundle impregnated with resin is 6 to 6% of the breaking load of the bamboo fiber bundle that is not twisted until the strength reaches 70 to 100% of the ultimate strength when the resin is cured. The resin is cured while being stretched by applying a tensile load under the condition of 20%, and the bamboo fiber rope is obtained by releasing the load after curing. By controlling the tensile load within the above range and stretching the time until the strength due to the curing of the resin reaches the above range, a bamboo fiber rope having a high elastic modulus and useful as a reinforcing material can be produced. .
The stretching is performed until the strength reaches at least 70 to 100% of the final ultimate strength at the time of curing the resin, and is particularly preferably performed until it reaches 80 to 100%. Further, the tensile load is preferably 6 to 20% of the breaking load of the untwisted bamboo fiber bundle, and particularly preferably 10 to 20% of the breaking load of the untwisted bamboo fiber bundle.
Here, "the breaking load (per unit cross-sectional area) of the untwisted bamboo fiber bundle" impregnates the bamboo fiber bundle that is not twisted with resin, and stretches this to apply a load until it breaks, The breaking load per unit cross-sectional area can be calculated by measuring the tensile load at the time of breaking.
The above-mentioned “conditions for 6-20% of the breaking load of the untwisted bamboo fiber bundle” means 6-20% of the “breaking load (per unit cross-sectional area) of the untwisted bamboo fiber bundle” This means that a tensile load is applied to the bamboo fiber bundle in the stretching process.

さらに、この張架工程の開始は、樹脂含浸工程を完了し樹脂の硬化が始まる前、または、縄の撚りを抑制するため、樹脂の硬化開始後、強度が樹脂硬化時の最終到達強度の50%を超えないうちに行うことが好ましい。
尚、縄の撚りを抑制する目的で、張架工程は、鉛直に張った縄におもりをかける方法で行わずに、おもり側を滑車等で荷重の向きを変えることにより、縄が容易に回転しないようにする方法でもよい。
Further, the stretching process is started before the resin impregnation process is completed and the resin is hardened, or in order to suppress twisting of the rope. It is preferable to carry out before exceeding%.
In addition, for the purpose of suppressing twisting of the rope, the tensioning process is not performed by applying a weight to the vertically stretched rope, but the rope is easily rotated by changing the direction of the load with a pulley or the like on the weight side. It is also possible to avoid this.

上記断面積とは、縄状に形成された竹繊維束において径方向(太さ方向)に切断した断面積を表す。
また、上記強度あるいは最終到達強度(引張強度(MPa))の測定は、測定装置としてORIENTEC社製、商品名:STA−1150型万能材料試験機を用い、試験片を当該試験機に装着後、竹繊維束のみに荷重がかかるように台紙を切断し、荷重速度を1分間あたり2mmに調整して測定することができる。
The said cross-sectional area represents the cross-sectional area cut | disconnected in radial direction (thickness direction) in the bamboo fiber bundle formed in the shape of a rope.
Moreover, the measurement of the said intensity | strength or ultimate ultimate strength (tensile strength (MPa)) uses the product made from ORIENTEC as a measuring apparatus, and a brand name: STA-1150 type universal material testing machine, After mounting a test piece to the said testing machine, The mount can be cut so that only the bamboo fiber bundle is loaded, and the load speed can be adjusted to 2 mm per minute.

張架する方法としては、樹脂含浸工程後、ただちに一端を固定し反対側の端部におもりを吊るす方法や、油圧式のジャッキ等により両端に加力する方法、油圧式のジャッキ等により両端に加力して両端を固定する方法等が挙げられ、これらの中でも簡便で低コストであるという観点から、一端を固定し反対側の端部におもりを吊るす方法がより好ましい。   As a method of stretching, after the resin impregnation step, one end is fixed immediately and a weight is hung on the opposite end, a method using a hydraulic jack or the like, a method using a hydraulic jack, etc., a method using a hydraulic jack, etc. Examples of the method include fixing both ends by applying force, and among these, a method of fixing one end and hanging a weight on the opposite end is more preferable from the viewpoint of simplicity and low cost.

また、上記張架工程は樹脂の硬化工程も兼ねており、用いる樹脂等によって、張架すると共に乾燥の環境を調節することが好ましい。例えば樹脂として低粘性のエポキシ樹脂を用いる場合であれば、その乾燥温度は、20〜120℃であることが好ましい。また、架橋を形成するとで硬化する樹脂を用いた場合、その硬化時間に適した時間を選択する。この場合、25℃前後の常温で張架工程を実施してもよいが、硬化反応促進の目的で、40〜110℃に加熱したり、50〜120℃の温風を吹き付けたりすることもできる。   The stretching step also serves as a resin curing step, and it is preferable to stretch and adjust the drying environment depending on the resin used. For example, when a low-viscosity epoxy resin is used as the resin, the drying temperature is preferably 20 to 120 ° C. Moreover, when using resin which hardens | cures by forming bridge | crosslinking, the time suitable for the hardening time is selected. In this case, the stretching step may be performed at a room temperature of about 25 ° C., but it may be heated to 40 to 110 ° C. or hot air of 50 to 120 ° C. may be blown for the purpose of promoting the curing reaction. .

上記(i)撚り工程、(ii)樹脂含浸工程および(iii)張架工程を経て、樹脂の硬化が確認された後、荷重を除くことにより、竹繊維縄が得られる。得られた竹繊維縄は、高弾性率の部材であり、繊維質補強材などとして好適に用いることができる。
このような竹繊維縄の用途としては、木材の補強材、鉄筋の代替材料等が挙げられる。
Bamboo fiber ropes are obtained by removing the load after the resin has been cured through the above (i) twisting step, (ii) resin impregnation step, and (iii) stretching step. The obtained bamboo fiber rope is a member having a high elastic modulus, and can be suitably used as a fibrous reinforcing material.
Examples of the use of such bamboo fiber ropes include wood reinforcing materials and reinforcing steel substitutes.

以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。尚、以下に示す実施例1〜3および比較例1〜2は、本発明における参考例として示すものである。
<竹繊維束の作製>
〔実施例1、2〕
竹材料(孟宗竹)の節を除くように切断し、さらに繊維束に平行な方向に切断して環状の部分を8〜32個に短冊状に分割した。次いで、短冊状に分割した竹材料を、外皮側から
・外層(最大厚み部分1.5mm、
竹材料の総厚みに対する前記最大厚み部分の比率20%(1/3以下))
・中層(最大厚み部分2.0mm、
竹材料の総厚みに対する前記最大厚み部分の比率26%(1/3以下))
・内層(最小厚み部分4.0mm、
竹材料の総厚みに対する前記最小厚み部分の比率53%(1/3以上))
の3層に分割した竹片を得た。
外層(実施例1)、中層(実施例2)、内層(比較例1)のそれぞれの竹片を、アルカリ水溶液(NaOH 8質量%溶液、pH14、温度100℃)に4〜12時間浸漬してアルカリ処理を施した。処理後、組織全体が軟化し、繊維束を容易に解繊できる状態となった。これを溶液中から取りだし、水洗し、その後櫛を用いて手解繊し竹繊維束を得た。収率を下記表1に示す。また、(1gの竹繊維束を得るのに使用したアルカリ水溶液の量)を下記表1に示す。
EXAMPLES Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto. In addition, Examples 1-3 and Comparative Examples 1-2 shown below are shown as reference examples in the present invention.
<Production of bamboo fiber bundle>
Examples 1 and 2
It cut | disconnected so that the node of bamboo material (Moso bamboo) might be removed, and also it cut | disconnected in the direction parallel to a fiber bundle, and divided | segmented the cyclic | annular part into 8-32 strip shape. Next, the bamboo material divided into strips, from the outer skin side ・ Outer layer (maximum thickness portion 1.5mm,
Ratio of the maximum thickness part to the total thickness of bamboo material 20% (1/3 or less))
-Middle layer (maximum thickness portion 2.0 mm,
Ratio of the maximum thickness part to the total thickness of bamboo material 26% (1/3 or less))
-Inner layer (minimum thickness portion 4.0 mm,
Ratio of the minimum thickness part to the total thickness of the bamboo material 53% (1/3 or more))
A bamboo piece divided into three layers was obtained.
Each bamboo piece of the outer layer (Example 1), the middle layer (Example 2), and the inner layer (Comparative Example 1) is immersed in an alkaline aqueous solution (NaOH 8 mass% solution, pH 14, temperature 100 ° C.) for 4 to 12 hours. Alkali treatment was applied. After the treatment, the entire tissue was softened, and the fiber bundle could be easily defibrated. This was taken out from the solution, washed with water, and then manually defibrated using a comb to obtain a bamboo fiber bundle. The yield is shown in Table 1 below. Table 1 below shows (amount of aqueous alkali solution used to obtain 1 g of bamboo fiber bundle).

上記より得た3種の竹繊維束の引張強度(MPa)を、以下の方法により測定した。結果を下記表1に示す。
各実施例および比較例それぞれの繊維束から、見かけ上1本から数本(質量で繊維長さ150mmあたり約0.025g)の繊維になるまで分離を行い、無作為にそれぞれ10本を抽出した。選んだ繊維を厚紙の台紙に挟み、長さ20mmで試験ができるよう繊維を配して試験体とした。試験片は20℃・65%RH下で質量が恒量に達するまで養生し、試験に用いた。
上記試験片を用い、測定装置としてORIENTEC社製、商品名:STA−1150型万能材料試験機を用い、試験片を当該試験機に装着後、繊維束のみに荷重がかかるように台紙を切断し、荷重速度を1分間あたり2mmに調整して引張強度(MPa)を測定した。
The tensile strength (MPa) of the three types of bamboo fiber bundles obtained above was measured by the following method. The results are shown in Table 1 below.
Separation was performed from the fiber bundles of each Example and Comparative Example until apparently 1 to several fibers (mass: about 0.025 g per 150 mm fiber length), and 10 were randomly extracted. . The selected fiber was sandwiched between cardboard mounts, and the fiber was arranged so that the test could be performed with a length of 20 mm to obtain a test specimen. The test piece was cured at 20 ° C. and 65% RH until the mass reached a constant weight and used for the test.
Using the above test piece, using the ORIENTEC Co., Ltd. product name: STA-1150 universal material testing machine as a measuring device, after mounting the test piece on the testing machine, cut the mount so that only the fiber bundle is loaded The tensile strength (MPa) was measured by adjusting the load speed to 2 mm per minute.

以上より、竹材料は外皮側に近いほど高収率で竹繊維束を得ることができ、必要とするアルカリ水溶液の量も少なくて済むことが確認された。また外皮側に近いほど高強度であることが確認された。   From the above, it was confirmed that the bamboo material bundle can be obtained with higher yield as the bamboo material is closer to the outer skin side, and the amount of the alkaline aqueous solution required is small. Moreover, it was confirmed that the closer to the outer skin side, the higher the strength.

〔実施例3〕
実施例1、2に使用した外層と中層に該当する部分の双方から得られた竹片を混合して原料として用いたこと以外は、実施例1と同様にして竹繊維束を得た。
・(最大厚み部分3.5mm、
竹材料の総厚みに対する前記最大厚み部分の比率46%(2/3以下))
Example 3
Bamboo fiber bundles were obtained in the same manner as in Example 1 except that bamboo pieces obtained from both the outer layer and the middle layer used in Examples 1 and 2 were mixed and used as raw materials.
・ (Maximum thickness part 3.5mm,
Ratio of the maximum thickness portion to the total thickness of the bamboo material 46% (2/3 or less))

〔比較例2〕
実施例3において、切断して除去する内皮側の領域を以下の範囲としたこと以外は、実施例3と同様にして竹繊維束を得た。
・(最小厚み部分1.0mm、
竹材料の総厚みに対する前記最小厚み部分の比率13%(1/3未満))
[Comparative Example 2]
In Example 3, a bamboo fiber bundle was obtained in the same manner as in Example 3 except that the endothelium side region to be cut and removed was within the following range.
・ (Minimum thickness part 1.0mm,
Ratio of the minimum thickness part to the total thickness of bamboo material 13% (less than 1/3))

Figure 0004938638
Figure 0004938638

<竹繊維縄の作製>
〔比較例3および実施例4〜7〕
竹繊維束として上記実施例2で得られた竹繊維束を用い、二本撚り・S巻き(右縄)にて手綯いした。得られた縄の外径は下記表2の通りである。この縄を下記表2に示す条件で荷重を負荷して張架し、その状態でエポキシ樹脂(コニシ(株)製、超低粘度型エポキシ樹脂、ボンドE205)を塗布含浸させた。除荷後、常温(25℃)にて1週間養生し、各実施例における竹繊維縄を得た。
<Production of bamboo fiber rope>
[Comparative Example 3 and Examples 4-7]
The bamboo fiber bundle obtained in Example 2 was used as the bamboo fiber bundle, and was hand-made by double twisting and S winding (right rope). The outer diameter of the obtained rope is as shown in Table 2 below. The rope was stretched by applying a load under the conditions shown in Table 2 below, and in that state, an epoxy resin (manufactured by Konishi Co., Ltd., ultra-low viscosity epoxy resin, Bond E205) was applied and impregnated. After unloading, it was cured at room temperature (25 ° C.) for 1 week to obtain bamboo fiber ropes in each example.

尚、張架直後(除荷直後)の竹繊維縄の強度と、樹脂が完全に硬化しきった後(除荷後7日間放置した後)の最終到達強度とを、前述の引張強度(MPa)に記載の測定方法により測定した。   Note that the strength of the bamboo fiber rope immediately after stretching (immediately after unloading) and the final ultimate strength after the resin is completely cured (after being left for 7 days after unloading) are the tensile strength (MPa) described above. It was measured by the measurement method described in 1.

次いで、得られた竹繊維縄の弾性率を測定した。
まず、竹繊維縄を150mmに切り、両端部を補強材料で補強して試験体とした。ひずみの測定には2枚の箔ゲージを対象になるように接着し、絶縁テープにて養生して、計算にはその平均値を用いた。試験は、万能試験機(ORIENTEC製、商品名:STA−1150)を用い、単純引張にて行った。荷重速度は1mm/minとした。結果を下記表2に示す。
Next, the elastic modulus of the obtained bamboo fiber rope was measured.
First, a bamboo fiber rope was cut into 150 mm, and both ends were reinforced with a reinforcing material to obtain a test specimen. For the measurement of the strain, two foil gauges were bonded so as to be a target, cured with an insulating tape, and the average value was used for the calculation. The test was performed by simple tension using a universal testing machine (trade name: STA-1150, manufactured by ORIENTEC). The load speed was 1 mm / min. The results are shown in Table 2 below.

Figure 0004938638
Figure 0004938638

Claims (6)

竹繊維束を複数撚り合わせて縄状に形成する撚り工程と、縄状に形成された竹繊維束に樹脂を含浸させる樹脂含浸工程と、樹脂を含浸した縄状の竹繊維束を、強度が樹脂硬化時の最終到達強度の70〜100%に到達するまで、撚り合わせていない竹繊維束の破断荷重の6〜20%となる条件で引張荷重をかけて張架しながら樹脂を硬化させる張架工程と、を有し、樹脂硬化後に荷重を解放して樹脂含有竹繊維縄を得ることを特徴とする竹繊維縄の製造方法。   A twisting process in which a plurality of bamboo fiber bundles are twisted together to form a rope, a resin impregnation process in which a bamboo fiber bundle formed in a rope shape is impregnated with a resin, and a rope-like bamboo fiber bundle impregnated with a resin Tension that cures the resin while stretching it under a tensile load under the condition of 6 to 20% of the breaking load of the untwisted bamboo fiber bundle until it reaches 70 to 100% of the ultimate strength when the resin is cured A method of manufacturing a bamboo fiber rope, comprising: a laying step, and releasing a load after the resin is cured to obtain a resin-containing bamboo fiber rope. 前記竹繊維束が、竹材料の厚み方向の内皮側から1/3以上の領域を除去した残余の領域における竹材料を、長辺が繊維束に平行となるよう短冊状に切断して竹片を得る竹片作製工程と、該竹片の繊維質を結束している物質を除去して解繊し竹繊維束を得る解繊工程と、を経て製造されることを特徴とする請求項1に記載の竹繊維の製造方法。 The bamboo fiber bundle is cut into strips so that the long side is parallel to the fiber bundle, and the bamboo material in the remaining area from which the 1/3 or more area has been removed from the inner side in the thickness direction of the bamboo material and bamboo reed manufacturing step of obtaining, characterized in that it is produced through the fibrillating obtaining a fibrillating and bamboo fiber bundles by removing material that bundling fibrous該竹piece, the claim 1 A method for producing a bamboo fiber rope according to claim 1. 前記竹片作製工程において、竹材料の厚み方向の内皮側から2/3以上の領域を除去した残余の領域における竹材料から竹片を作製することを特徴とする請求項2に記載の竹繊維の製造方法。 3. The bamboo fiber according to claim 2, wherein, in the bamboo piece producing step, bamboo pieces are produced from the bamboo material in the remaining region obtained by removing 2/3 or more region from the inner side in the thickness direction of the bamboo material. A method of manufacturing a rope . 前記解繊工程は、前記竹片に対しpH10〜14のアルカリ水溶液中でアルカリ処理を施すことで、竹片の繊維質を結束している物質を除去して解繊し竹繊維束を得る工程であることを特徴とする請求項2または請求項3に記載の竹繊維の製造方法。 In the defibrating step, the bamboo piece is subjected to an alkali treatment in an alkaline aqueous solution having a pH of 10 to 14, thereby removing a substance that binds the fiber of the bamboo piece and defibrating to obtain a bamboo fiber bundle. The method for producing a bamboo fiber rope according to claim 2 or claim 3, wherein 前記解繊工程は、前記竹片を圧力装置内に配置し、該圧力装置内で10気圧以上の圧力を加える加圧処理と、前記圧力装置内の圧力を開放する減圧処理と、を施すことで、竹片の繊維質を結束している物質を除去して解繊し竹繊維束を得る工程であることを特徴とする請求項2または請求項3に記載の竹繊維の製造方法。 In the defibrating step, the bamboo pieces are placed in a pressure device, and a pressure treatment for applying a pressure of 10 atm or more in the pressure device and a pressure reduction treatment for releasing the pressure in the pressure device are performed. 4. The method for producing a bamboo fiber rope according to claim 2 or 3, wherein the bamboo fiber rope is a step of removing a substance binding the fiber of the bamboo pieces and defibrating to obtain a bamboo fiber bundle. 請求項1に記載の竹繊維縄の製造方法により得られたことを特徴とする竹繊維縄。   A bamboo fiber rope obtained by the method for producing a bamboo fiber rope according to claim 1.
JP2007334953A 2007-12-26 2007-12-26 Bamboo fiber rope manufacturing method and bamboo fiber rope Expired - Fee Related JP4938638B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007334953A JP4938638B2 (en) 2007-12-26 2007-12-26 Bamboo fiber rope manufacturing method and bamboo fiber rope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007334953A JP4938638B2 (en) 2007-12-26 2007-12-26 Bamboo fiber rope manufacturing method and bamboo fiber rope

Publications (2)

Publication Number Publication Date
JP2009154387A JP2009154387A (en) 2009-07-16
JP4938638B2 true JP4938638B2 (en) 2012-05-23

Family

ID=40958922

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007334953A Expired - Fee Related JP4938638B2 (en) 2007-12-26 2007-12-26 Bamboo fiber rope manufacturing method and bamboo fiber rope

Country Status (1)

Country Link
JP (1) JP4938638B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6335545B2 (en) * 2014-02-25 2018-05-30 大倉工業株式会社 Particle board
CN109093797B (en) * 2018-09-18 2023-06-27 浙江农林大学暨阳学院 Preparation method and system of bamboo fiber rope
CN110144648A (en) * 2019-05-14 2019-08-20 张毅 The production technology of the compound rope yarn of bamboo fiber reinforcement
CN114683361B (en) * 2022-04-27 2022-09-23 浙江味老大工贸有限公司 Formaldehyde-free anti-cracking flattened bamboo chopping board and preparation method thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62181101A (en) * 1986-02-06 1987-08-08 株式会社名南製作所 Method of treating veneer, back thereof is cracked
JP3595609B2 (en) * 1995-07-10 2004-12-02 株式会社エーアンドエーマテリアル Reinforcing bamboo fiber, method for producing the same, and inorganic molded article using the reinforcing bamboo fiber and method for producing the same
JP3621372B2 (en) * 2001-11-16 2005-02-16 株式会社ヤスジマ Bamboo fiber and carbonized bamboo fiber manufacturing method
JP4234087B2 (en) * 2004-10-25 2009-03-04 バン株式会社 Bamboo fiber manufacturing method
JP2006150819A (en) * 2004-11-30 2006-06-15 Nichimen Kagaku Kogyo Kk Bamboo fiber reinforced plastic and its manufacturing process
JP5139692B2 (en) * 2006-07-03 2013-02-06 株式会社豊夢 Manufacturing method for building components
JP4867005B2 (en) * 2006-07-19 2012-02-01 国立大学法人 鹿児島大学 Thermal insulation and moisture absorption / release sheet made of bamboo vascular sheath fiber

Also Published As

Publication number Publication date
JP2009154387A (en) 2009-07-16

Similar Documents

Publication Publication Date Title
Ma et al. Effects of water, alkali solution and temperature ageing on water absorption, morphology and mechanical properties of natural FRP composites: Plant-based jute vs. mineral-based basalt
Lazorenko et al. Sustainable geopolymer composites reinforced with flax tows
Manalo et al. Effects of alkali treatment and elevated temperature on the mechanical properties of bamboo fibre–polyester composites
Nurazzi et al. Mechanical properties of sugar palm yarn/woven glass fiber reinforced unsaturated polyester composites: Effect of fiber loadings and alkaline treatment
Laverde et al. Use of vegetable fibers as reinforcements in cement-matrix composite materials: a review
Wei et al. Improving degradation resistance of sisal fiber in concrete through fiber surface treatment
Swamy et al. Study of areca-reinforced phenol formaldehyde composites
Goud et al. Effect of fibre content and alkali treatment on mechanical properties of Roystonea regia-reinforced epoxy partially biodegradable composites
Coutts et al. Bonding in wood fibre-cement composites
Bera et al. A study on interfacial properties of jute-PP composites
Walte et al. Mechanical characterization of coir fiber reinforced composite
JP4938638B2 (en) Bamboo fiber rope manufacturing method and bamboo fiber rope
Musil et al. Green composite: sodium‐based geopolymer reinforced with chemically extracted corn husk fibers
Tong et al. Influence of alkali treatment on physico-chemical properties of Malaysian bamboo fiber: A preliminary study
Kumar A study of short areca fiber reinforced PF composites
Ramadan et al. Short-term durability of hemp fibers
Coutts From forest to factory to fabrication
Ridzuan et al. Effects of alkaline concentrations on the tensile properties of Napier grass fibre
Lu et al. Long-term moisture cycling performance and unexpected strengthening of non-dry flax fibre composites
Andersons et al. Strength and damage of elementary flax fibers extracted from tow and long line flax
JP4719633B2 (en) Method for producing wood fiber bundle and wood fiber bundle obtained thereby
Bui et al. Recycling of tropical natural fibers in building materials
Salih et al. Water absorption behaviour and its effect on the mechanical properties of Gigantochloa scortechinii (buluh simantan)
Manap et al. Effect of fibre treatment on longitudinal and transverse tensile properties of unidirectional kenaf composite
JP2006214043A (en) Rubber-reinforcing carbon yarn

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100929

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111013

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111206

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120221

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120223

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150302

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees