JP4936508B2 - Vitreous staining agent and staining method of eye containing fluorescent nanoparticles - Google Patents

Vitreous staining agent and staining method of eye containing fluorescent nanoparticles Download PDF

Info

Publication number
JP4936508B2
JP4936508B2 JP2006013760A JP2006013760A JP4936508B2 JP 4936508 B2 JP4936508 B2 JP 4936508B2 JP 2006013760 A JP2006013760 A JP 2006013760A JP 2006013760 A JP2006013760 A JP 2006013760A JP 4936508 B2 JP4936508 B2 JP 4936508B2
Authority
JP
Japan
Prior art keywords
vitreous
staining
fluorescent nanoparticles
staining agent
vitreous body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006013760A
Other languages
Japanese (ja)
Other versions
JP2007191454A (en
Inventor
健二 山本
悟 山本
昭芳 星野
法義 真鍋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Center for Global Health and Medicine
Original Assignee
National Center for Global Health and Medicine
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Center for Global Health and Medicine filed Critical National Center for Global Health and Medicine
Priority to JP2006013760A priority Critical patent/JP4936508B2/en
Publication of JP2007191454A publication Critical patent/JP2007191454A/en
Application granted granted Critical
Publication of JP4936508B2 publication Critical patent/JP4936508B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Medicinal Preparation (AREA)

Description

本発明は、ヒト及び/又はヒト以外の動物の眼の硝子体を染色するために用いる染色剤及び方法に関する。   The present invention relates to a staining agent and method used to stain the vitreous body of human and / or non-human animal eyes.

近年、多くの眼科的疾患が硝子体の生理的及び/又は病理的変化と関連していることが解明されてきた。たとえば、加齢による硝子体の液化は網膜裂孔や網膜剥離を誘導し得るし、後部硝子体皮質前ポケットによって黄斑円孔や黄斑上膜が起こると考えられている。また、硝子体が黄斑部を牽引することによって引き起こされる黄斑症も存在する。これらの中には、重症化して終には失明をもたらす疾患もある。   In recent years, it has been elucidated that many ophthalmic diseases are associated with physiological and / or pathological changes in the vitreous. For example, liquefaction of the vitreous due to aging can induce retinal tears and retinal detachment, and it is thought that the macular hole and the upper macular membrane are caused by the posterior vitreous cortex pocket. There is also macular disease caused by the vitreous towing the macula. Some of these diseases become severe and eventually lead to blindness.

そのため、硝子体の液化や混濁の状態、病変の有無を観察することは非常に重要である。しかし、硝子体は透明なゲル状物質により構成されているため、硝子体の観察は困難である。   For this reason, it is very important to observe the liquefaction and turbidity of the vitreous body and the presence or absence of lesions. However, it is difficult to observe the vitreous because the vitreous is composed of a transparent gel substance.

硝子体を細隙灯顕微鏡、走査レーザ検眼鏡(Scanning Laser Ophthalmoscope;SLO)、超音波診断装置、光干渉断層画像化装置(Optical Coherence Tomography;OCT)、スペクトロスコピー(Spectroscopy)、動的光散乱測定装置(Dynamic Light Scattering;DLS)で観察することは可能ではある(非特許文献1)が、どれをとってみても、硝子体を十分に、かつ容易に観察できるとは言い難い。   Slit lamp microscope, Scanning Laser Ophthalmoscope (SLO), Ultrasound diagnostic device, Optical Coherence Tomography (OCT), Spectroscopy, Dynamic light scattering measurement Although it is possible to observe with a device (Dynamic Light Scattering; DLS) (Non-patent Document 1), it is difficult to say that the vitreous body can be observed sufficiently and easily no matter which one is taken.

現在、眼科領域で使用されている染色物質には、トリアムシノロンアセトニド、インドシアニングリーン、フルオレセインナトリウム、ローズベンガル、リサミングリーン、スルフォローダミンなどがあるが、臨床で硝子体を染色するために用いられる物質はトリアムシノロンアセトニドのみである。   Currently, there are triamcinolone acetonide, indocyanine green, sodium fluorescein, rose bengal, lissamine green, sulferodamine, etc., which are used in the ophthalmology field, but are used for clinically staining the vitreous. The only substance that can be obtained is triamcinolone acetonide.

トリアムシノロンアセトニドは、硝子体観察用として使用するといっても硝子体手術時に使用することがほとんどであり、手術以外での使用は、その副腎皮質ホルモンとしての薬理作用を用いた治療薬としての硝子体注入が主である。したがって、硝子体観察用として用いられているとは言い難い。   Even though triamcinolone acetonide is used for vitreous observation, it is mostly used during vitreous surgery, and it is used for treatment other than surgery as a therapeutic drug using its pharmacological action as a corticosteroid. Body injection is the main. Therefore, it cannot be said that it is used for vitreous body observation.

しかも、トリアムシノロンアセトニドは白色であるため、硝子体中のWeiss Ringなどの生理的/病理的変化とコントラストがつきづらく、対象物の観察が困難になり易い。また、トリアムシノロンアセトニドは、粉状であるがために、硝子体に注入後も粒子が硝子体に点在した状態となり、粒子同士の連続性が乏しく、それゆえ観察像も粗くなるという欠点もある。さらに、近年、トリアムシノロンアセトニド注入後の眼圧上昇、白内障の発生・悪化、及び眼内炎などの副作用も報告されている。   Moreover, since triamcinolone acetonide is white, it is difficult to contrast with physiological / pathological changes such as Weiss Ring in the vitreous body, and it is difficult to observe the object. In addition, since triamcinolone acetonide is in the form of powder, the particles are scattered in the vitreous body even after being injected into the vitreous body, and the continuity between the particles is poor, and therefore the observation image becomes rough. is there. Furthermore, in recent years, side effects such as increased intraocular pressure after the injection of triamcinolone acetonide, the occurrence / aggravation of cataract, and endophthalmitis have been reported.

蛍光ナノ粒子は、輝度が高く、光退色を起こし難い蛍光体として種々の応用が考えられており、細胞内マーカーなどとしても使用されてきている。   Fluorescent nanoparticles are considered to have various applications as phosphors having high brightness and hardly causing photobleaching, and have been used as intracellular markers.

J. Sebag, Journal of Biomedical Optics January/February 2004 Vol. 9 No. 1 p38-46J. Sebag, Journal of Biomedical Optics January / February 2004 Vol. 9 No. 1 p38-46 Hoshino, A. et al., Biochem. Biophys. Res. Comm. 314 (2004) pp.46-53Hoshino, A. et al., Biochem. Biophys. Res. Comm. 314 (2004) pp.46-53 Hanaki, K. et al., Biochem. Biophys. Res. Comm. 302 (2003) pp.496-501Hanaki, K. et al., Biochem. Biophys. Res. Comm. 302 (2003) pp.496-501 Hoshino, A. et al., Nano Letters 2004, Vol. 4, No. 11, pp. 2163-2169Hoshino, A. et al., Nano Letters 2004, Vol. 4, No. 11, pp. 2163-2169

本発明は、日常的な診断及び/又は手術などにおいて、眼の硝子体を簡便に安全に観察し得る手段及び方法を提供することを目的とする。   An object of the present invention is to provide means and a method capable of easily and safely observing the vitreous body of an eye in daily diagnosis and / or surgery.

本発明は、
〔1〕蛍光ナノ粒子を含む眼の硝子体染色剤;
〔2〕蛍光ナノ粒子が、コア単層構造又はコア・シェル重層構造を有する、前記〔1〕記載の染色剤;
〔3〕蛍光ナノ粒子が、半導体元素を含む、前記〔1〕又は〔2〕記載の染色剤;
〔4〕前記〔1〕〜〔3〕のいずれか1項記載の染色剤を眼の硝子体に注入することを含む、眼の硝子体の染色方法、
を提供する。
The present invention
[1] Vitreous staining agent for eyes containing fluorescent nanoparticles;
[2] The staining agent according to [1], wherein the fluorescent nanoparticles have a core monolayer structure or a core-shell multilayer structure;
[3] The staining agent according to [1] or [2], wherein the fluorescent nanoparticles include a semiconductor element;
[4] A method for staining the vitreous body of the eye, comprising injecting the staining agent according to any one of [1] to [3] into the vitreous body of the eye,
I will provide a.

本発明によれば、従来適切な観察方法がなかった硝子体を簡便に安全に観察することができ、硝子体の異常の有無及び程度などを容易に検出することができる。具体的には、本発明の染色剤は、無用な拡散を起こしにくく、残留性が低い、蛍光の持続時間が長い、透明でコントラストが高い染色が得られるので硝子体の変化が非常に見易い、などの利点を有する。したがって、本発明の染色剤及び染色法は、ヒト及び動物に対する眼科的診断・治療に際しても有用である。   According to the present invention, it is possible to easily and safely observe a vitreous that has not been provided with an appropriate observation method in the past, and it is possible to easily detect the presence or absence and degree of abnormality of the vitreous. Specifically, the staining agent of the present invention is less likely to cause unnecessary diffusion, has low persistence, has a long fluorescence duration, and provides a transparent and high-contrast staining, so the vitreous changes are very easy to see, Have advantages such as. Therefore, the staining agent and staining method of the present invention are useful for ophthalmic diagnosis and treatment for humans and animals.

本発明の染色剤は、赤色などの蛍光色を有し、輝度が高く、光退色をおこし難い蛍光体である蛍光ナノ粒子を使用しているため、硝子体内の生理的/病理的変化による病変などのコントラストがつきやすく対象物を確認し易い。また、硝子体自体や液化腔などの観察の際も、粒子が小さいため、きめ細かな観察像を得易い。さらに、濃度を調節することによって半透明にできるため、網膜など周囲の組織との相対的位置が確認しやすいという利点もある。これらの利点により硝子体手術の際に本発明の染色剤を用いると極めて安全な手術が可能となる。   Since the staining agent of the present invention uses fluorescent nanoparticles that are fluorescent substances having a fluorescent color such as red, having high brightness, and hardly causing photobleaching, lesions caused by physiological / pathological changes in the vitreous body It is easy to check the object. In addition, when observing the vitreous body or the liquefaction cavity, since the particles are small, it is easy to obtain a fine observation image. Furthermore, since it can be made translucent by adjusting the concentration, there is an advantage that the relative position with respect to surrounding tissues such as the retina can be easily confirmed. Due to these advantages, extremely safe surgery is possible when the staining agent of the present invention is used during vitrectomy.

本発明の染色剤を用いて硝子体を観察することにより、簡便、安全、正確に硝子体切除術を行うことができる。特に、硝子体手術においては、透明な硝子体が染色されることにより硝子体の視認性が格段に向上するだけでなく、眼内の他組織が透視できるため網膜・網膜血管・視神経乳頭・毛様体・水晶体後嚢などと、手術している硝子体との位置関係を把握することが容易となり、安全で正確な硝子体手術を施術できる。また、硝子体の創口への嵌頓や硝子体の牽引・接着など微細な硝子体の状況も容易に確認することができ、丁寧で合併症の少ない手術が可能となる。さらに、白内障手術などにより硝子体脱出がある際には、前房内に存在したり眼外に脱出した硝子体を容易に視認できるため、正確に判断し処理することが可能となる。   By observing the vitreous using the staining agent of the present invention, vitrectomy can be performed simply, safely and accurately. In particular, in vitreous surgery, not only the vitreous body visibility is markedly improved by staining the transparent vitreous body, but also other tissues in the eye can be seen through, so the retina, retinal blood vessels, optic nerve head, hair It becomes easy to grasp the positional relationship between the cadaver and the posterior capsule of the lens and the vitreous being operated, and safe and accurate vitreous surgery can be performed. In addition, it is possible to easily confirm the minute vitreous body condition such as the insertion of the vitreous body into the wound opening and the traction / adhesion of the vitreous body, which makes it possible to perform an operation that is polite and has few complications. Furthermore, when there is a vitreous escape due to a cataract surgery or the like, the vitreous that is present in the anterior chamber or has escaped from the eye can be easily seen, so that it can be accurately determined and processed.

また、本発明の染色剤は、実際の手術のみではなく、動物モデルなどの硝子体を用いて、眼科の診断や手術の技術習得のために用いることもできる。   Further, the staining agent of the present invention can be used not only for actual surgery but also for ophthalmic diagnosis and skill acquisition using a vitreous body such as an animal model.

さらに、本発明の染色剤及び染色法は、医学、薬学、及び獣医学などの領域において、加齢、各種の疾患、症状、身体の状態などと眼の硝子体の状態との関係、治療又は予防処置と効果との関係などを研究するために使用することができ、研究用試薬・方法としても有用である。   Further, the staining agent and staining method of the present invention are used in the fields of medicine, pharmacy, veterinary medicine, etc., the relationship between aging, various diseases, symptoms, physical conditions, etc. and the vitreous state of the eye, treatment or It can be used to study the relationship between preventive measures and effects, and is also useful as a research reagent and method.

蛍光ナノ粒子
本発明において使用される蛍光ナノ粒子は、ナノサイズの微細粒子であって、量子サイズ効果などによって蛍光を発し得るものであり、量子ドットと呼ばれるものを含む。
Fluorescent Nanoparticles The fluorescent nanoparticles used in the present invention are nano-sized fine particles that can emit fluorescence due to the quantum size effect or the like, and include what are called quantum dots.

蛍光ナノ粒子は、蛍光波長より短波長であれば励起が可能であり、連続励起時には約30分程度又はそれ以上にわたって安定に蛍光を発することができるように耐光性に優れている。また、従来の有機蛍光物質に比して高輝度であるという特徴を有する。波長蛍光波長は粒径に依存し、小さいものほど短波長の蛍光を発する。したがって、本発明において使用される蛍光ナノ粒子は、好ましくは、後述するような元素の原子10〜10個、さらに好ましくは10〜10個程度からなっており、粒径は一般に1〜100nm、好ましくは1〜20nm、さらに好ましくは2〜10nm程度である。 The fluorescent nanoparticles can be excited if the wavelength is shorter than the fluorescence wavelength, and have excellent light resistance so that the fluorescence can be stably emitted for about 30 minutes or more during continuous excitation. In addition, it has a feature of high brightness as compared with conventional organic fluorescent materials. The wavelength fluorescence wavelength depends on the particle size, and the smaller the wavelength, the shorter the wavelength. Therefore, the fluorescent nanoparticles used in the present invention are preferably composed of 10 to 10 4 element atoms as described later, more preferably about 10 2 to 10 3, and the particle size is generally 1 to 4. The thickness is about 100 nm, preferably about 1 to 20 nm, more preferably about 2 to 10 nm.

蛍光ナノ粒子は、一般的には、基本的に半導体元素から構成されるが、非金属元素、金属元素などを含むもの又はそれらからなるものであってもよい。また、構造としては、蛍光ナノ粒子は、コア単層構造(即ち、粒子全体が均質である)であってもよく、コア・シェル重層構造(即ち、粒子が2層以上の異なる層を有する)であってもよい。コア・シェル重層構造の蛍光ナノ粒子の例としては、金属ナノ結晶の核(コア)と、遷移金属のコーティング(シェル)とを有する量子ドットが挙げられる。   In general, the fluorescent nanoparticles are basically composed of a semiconductor element, but may contain non-metallic elements, metallic elements, or the like. In addition, as a structure, the fluorescent nanoparticles may have a core monolayer structure (that is, the whole particle is homogeneous), or a core-shell multilayer structure (that is, the particles have two or more different layers). It may be. Examples of the fluorescent nanoparticle having a core-shell multilayer structure include a quantum dot having a metal nanocrystal nucleus (core) and a transition metal coating (shell).

たとえば、コアの材料としては、1種以上のII族金属元素(亜鉛、カドミウム、水銀、銅など)と1種以上のVI族元素(セレン、硫黄、酸素など)との組合せ;1種以上のIII族元素(ホウ素、アルミニウム、ガリウム、インジウムなど)と1種以上のV族元素(窒素、リンなど)との組合せ;及び1種以上のIV族元素(炭素、ケイ素、ゲルマニウム、スズ、鉛)、からなる群から選択される1種又は2種以上の組合せが挙げられる。これらの材料には遷移金属元素からなる微量添加剤が含有されていてもよい。シェルの材料としては、硫化亜鉛、酸化亜鉛、インジウム、ガリウム、ケイ素、リンなどが挙げられる。   For example, the core material may be a combination of one or more Group II metal elements (zinc, cadmium, mercury, copper, etc.) and one or more Group VI elements (selenium, sulfur, oxygen, etc.); A combination of group III elements (boron, aluminum, gallium, indium, etc.) and one or more group V elements (nitrogen, phosphorus, etc.); and one or more group IV elements (carbon, silicon, germanium, tin, lead) One type or a combination of two or more types selected from the group consisting of These materials may contain a trace additive composed of a transition metal element. Examples of the shell material include zinc sulfide, zinc oxide, indium, gallium, silicon, and phosphorus.

コア・シェル重層構造の蛍光ナノ粒子は、シェル層の外側にさらに付加的な層(コーティング層)を有していてもよい。たとえば、このような付加的な層の機能としては、粒子表面に水溶性を付与したり、金属の溶出を防止することなどが挙げられ、また、材質としては、各種ポリマー(PEG、アミノ酸、オリゴペプチド及びその誘導体など)、ガラス被膜(シランコートなど)などが挙げられ、層の厚さとしては、一般にいずれも約10nm以下である。また、コーティング層が多いと、蛍光が明るくなるので好都合であるが、一般にはコーティング層としては1〜4層程度である。   The fluorescent nanoparticles having a core-shell multilayer structure may further have an additional layer (coating layer) outside the shell layer. For example, the function of such an additional layer includes imparting water solubility to the particle surface and preventing elution of metal, and the materials include various polymers (PEG, amino acid, oligos). Peptides and derivatives thereof), glass coatings (silane coatings, etc.), etc., and the thickness of each layer is generally about 10 nm or less. Moreover, although there are many coating layers, since fluorescence becomes bright, it is convenient, but generally it is about 1-4 layers as a coating layer.

このような蛍光ナノ粒子としては各種のものが市販されているので、適宜選択して市販品を使用してもよい。市販品としては、たとえば「QDot」(商品名;Quantum Dot Corporation社)、「EviDots」(商品名;Evident Technologies社)などが挙げられる。製造方法としては、公知のいずれの方法を用いてもよい。このような方法としては、たとえば、CVD法、レーザー法、スパッタ法などの気相法;噴霧法、アルコキシド法、逆ミセル法などの液相法などが挙げられる。   Since various kinds of such fluorescent nanoparticles are commercially available, commercially available products may be selected as appropriate. Examples of commercially available products include “QDot” (trade name: Quantum Dot Corporation), “EviDots” (trade name: Evident Technologies). Any known method may be used as the production method. Examples of such methods include vapor phase methods such as CVD, laser, and sputtering; liquid phase methods such as spraying, alkoxide, and reverse micelle methods.

本発明の染色剤に使用する蛍光ナノ粒子を製造する場合、一例としては以下のような方法が挙げられる。まず、上記のような原料物質を、トリ−n−オクチルホスフィンオキシド(TOPO)などを含有する配位溶媒中に分散させ、上記原料物質の微粒子をTOPOでミセル化(TOPOミセル)する。次いで、TOPOミセルをアルゴンガス封入条件下で加熱して、TOPOミセル内の原料物質の微粒子を成長させ、表面にTOPOが固定された蛍光ナノ粒子を作製する。なお、この状態の蛍光ナノ粒子は、トルエンやテトラヒドロフラン(THF)などの有機溶媒に可溶である。   When producing fluorescent nanoparticles for use in the staining agent of the present invention, the following method can be given as an example. First, the raw material as described above is dispersed in a coordinating solvent containing tri-n-octylphosphine oxide (TOPO) or the like, and the fine particles of the raw material are micellized with TOPO (TOPO micelle). Next, the TOPO micelles are heated under an argon gas sealing condition to grow the fine particles of the raw material in the TOPO micelles, thereby producing fluorescent nanoparticles having TOPO fixed on the surface. The fluorescent nanoparticles in this state are soluble in an organic solvent such as toluene or tetrahydrofuran (THF).

その後、作製したTOPO固定粒子をTHFに溶解させて85℃に加温し、そこにエタノール、クロロホルムなどの極性溶媒に溶解させた親水性化合物(たとえばアミノ酸、オリゴペプチド、アリール及びその誘導体など;ここで、誘導体としては、アミド化、脱アミン化、脱カルボン酸化、及び/又はビオチン化などを行ったものが挙げられる)を滴下させ、12時間程度還流させる。次に、NaOH水溶液を加え、加熱してTHFを蒸発させ、濾過及びカラムなどを用いて未反応物の除去、目的物の精製及び濃縮を行うことで、表面に親水性化合物が固定された親水性の蛍光ナノ粒子を製造する。   Thereafter, the prepared TOPO-fixed particles are dissolved in THF, heated to 85 ° C., and then dissolved in a polar solvent such as ethanol or chloroform (for example, amino acids, oligopeptides, aryl and derivatives thereof; In addition, examples of the derivatives include those subjected to amidation, deamination, decarboxylation, and / or biotinylation, and the like, and the mixture is refluxed for about 12 hours. Next, an aqueous NaOH solution is added, heated to evaporate the THF, and unreacted substances are removed using filtration and a column, etc., and the target product is purified and concentrated. Fluorescent nanoparticles are produced.

染色剤
本発明の染色剤の必須成分は、上記のような蛍光ナノ粒子のみである。染色剤は、付加的な成分として、担体を含有することが好ましい。担体としては、水、生理食塩水、各種緩衝液(PBS、Tris緩衝液など)、細胞培養用培地(D−MEM、HBSSなど)、又は輸液(乳酸リンゲル液など)のような水性液体が挙げられる。本発明において使用する場合、上記のような蛍光ナノ粒子は、担体中に、0.001〜100μM、好ましくは1〜100nM程度の濃度で含有させると取り扱いがしやすくなる。
一般的な使用においては、このような溶液の形態の染色剤を、1回あたり100〜250μL程度使用する。この量は、適用対象の動物種又は眼球の大きさなどによって適宜調節することができる。また、蛍光ナノ粒子の量は多いほど蛍光が強くなるが、多過ぎても少なすぎても見にくいため、染色剤の量は適宜調節する。
Staining agent The essential component of the staining agent of the present invention is only fluorescent nanoparticles as described above. The staining agent preferably contains a carrier as an additional component. Examples of the carrier include aqueous liquids such as water, physiological saline, various buffer solutions (PBS, Tris buffer solution, etc.), cell culture media (D-MEM, HBSS, etc.), or infusion solutions (lactic acid Ringer solution, etc.). . When used in the present invention, the fluorescent nanoparticles as described above are easy to handle when contained in a carrier at a concentration of about 0.001 to 100 μM, preferably about 1 to 100 nM.
In general use, about 100 to 250 μL of the dye in the form of such a solution is used at one time. This amount can be appropriately adjusted depending on the animal species to be applied or the size of the eyeball. Further, the larger the amount of the fluorescent nanoparticles, the stronger the fluorescence. However, since it is difficult to see if the amount is too much or too little, the amount of the staining agent is appropriately adjusted.

染色方法
使用に際しては、上記のような染色剤を、眼の毛様体扁平部の位置に相当する強膜(経毛様体扁平部)や角膜(経角膜)から、注射針(たとえば27ゲージ)などで硝子体腔内に刺入したり、その他の方法(点眼、経静脈など)で眼内に注入する。注入後、眼内に拡散した蛍光ナノ粒子によって染色された硝子体を、細隙灯顕微鏡や手術用顕微鏡などで観察する。細隙灯顕微鏡で観察する際は、前置レンズなどを使用してもよい。引き続き、異常組織や病変が認められた部分は、切除・吸引することができる。
When using the staining method , the above-described staining agent is applied to the injection needle (for example, 27 gauge) from the sclera (transciliary flat portion) or cornea (transcornea) corresponding to the position of the ciliary flat portion of the eye. ) Or the like, or injected into the eye by other methods (eye drops, intravenous vein, etc.). After injection, the vitreous body stained with fluorescent nanoparticles diffused in the eye is observed with a slit lamp microscope or a surgical microscope. When observing with a slit lamp microscope, a front lens or the like may be used. Subsequently, the part where the abnormal tissue or lesion is observed can be excised and aspirated.

染色剤の製造
蛍光ナノ粒子(水性コロイド量子ドット)は、以下のようにして製造した。まず、アルゴン気流下、トリ−n−オクチルホスフィンオキシド(TOPO)(関東化学)7.5gに、ステアリン酸(関東化学)2.9g、n−テトラデシルホスホン酸(AVOCADO)620mg、及び酸化カドミニウム(Wako)250mgを加え、370℃に加熱混合した。これを270℃まで自然冷却させた後、予めトリブチルフォスフィン(関東化学)2.5mLにセレン(STREM CHEMICAL)200mgを溶解させた溶液を加え、減圧乾燥し、TOPOで被覆されたCdSe微粒子を得た。
Manufacture of dyeing | staining agent The fluorescent nanoparticle (aqueous colloid quantum dot) was manufactured as follows. First, under an argon stream, 7.5 g of tri-n-octylphosphine oxide (TOPO) (Kanto Chemical), 2.9 g of stearic acid (Kanto Chemical), 620 mg of n-tetradecylphosphonic acid (AVOCADO), and cadmium oxide ( Wako) 250 mg was added and heated to 370 ° C. After naturally cooling this to 270 ° C., a solution in which 200 mg of selenium (STREM CHEMICAL) is dissolved in 2.5 mL of tributylphosphine (Kanto Chemical) is added in advance and dried under reduced pressure to obtain CPO particles coated with TOPO. It was.

次いで、得られたCdSe微粒子に、TOPO 15gを加えて加熱し、引き続き270℃でトリオクチルホスフィン(アルドリッチ)10mLにジエチルジチオカルバミン酸亜鉛(東京化成)1.1gを溶解した溶液を加え、表面にTOPOが固定された、CdSeのナノ結晶をコアとし、ZnSをシェルとする蛍光ナノ粒子(以下で「TOPO固定量子ドット」という)を得た。なお、この状態の量子ドットは、トルエンやテトラヒドロフラン(THF)等の有機溶媒に可溶である。   Next, 15 g of TOPO was added to the obtained CdSe fine particles and heated, and subsequently, a solution of 1.1 g of zinc diethyldithiocarbamate (Tokyo Kasei) dissolved in 10 mL of trioctylphosphine (Aldrich) was added at 270 ° C., and TOPO was added to the surface. Fluorescent nanoparticles (hereinafter referred to as “TOPO-fixed quantum dots”) having CdSe nanocrystals as the core and ZnS as the shell were obtained. In addition, the quantum dot of this state is soluble in organic solvents, such as toluene and tetrahydrofuran (THF).

その後、作製したTOPO固定量子ドットをTHFに溶解させて85℃に加温し、そこにエタノールに溶解させたN−[(S)−3−メルカプト−2−メチルプロピオニル]−L−プロリン(100mg;シグマ社)を滴下させ、12時間程度還流させた。12時間還流後、NaOH水溶液を加え、2時間、90℃で加熱してTHFを蒸発させた。得られた未精製の量子ドットを、限外濾過(「Microcon」、Millipore社)及びセファデックスカラム(「MicroSpin G−25Columns」、Amersham Biosciences社)を用いて精製と濃縮とを行うことで、量子ドットの表面にN−[(S)−3−メルカプト−2−メチルプロピオニル]−L−プロリンが固定された親水性量子ドットを製造した。   Thereafter, the prepared TOPO-fixed quantum dots were dissolved in THF, heated to 85 ° C., and N-[(S) -3-mercapto-2-methylpropionyl] -L-proline (100 mg) dissolved in ethanol there. Sigma) was added dropwise and refluxed for about 12 hours. After refluxing for 12 hours, an aqueous NaOH solution was added, and the mixture was heated at 90 ° C. for 2 hours to evaporate THF. The obtained unpurified quantum dots are purified and concentrated using ultrafiltration (“Microcon”, Millipore) and Sephadex column (“MicroSpin G-25 Columns”, Amersham Biosciences). A hydrophilic quantum dot having N-[(S) -3-mercapto-2-methylpropionyl] -L-proline immobilized on the surface of the dot was produced.

得られた親水性量子ドット水溶液(800nM)を生理食塩水で希釈し、20nM親水性量子ドット/生理食塩水溶液を、染色剤として以後の実験に使用した。   The obtained hydrophilic quantum dot aqueous solution (800 nM) was diluted with physiological saline, and 20 nM hydrophilic quantum dot / physiological saline aqueous solution was used as a staining agent in the subsequent experiments.

本発明の染色剤を用いた硝子体観察及び硝子体切除術
上記で製造した染色剤0.1〜0.15mLを、27ゲージの針を用いて毛様体扁平部を通じて、ブタの摘出眼の硝子体腔に注入した。なお、加齢したブタ眼(8歳、大ヨークシャー種、雌)及び若いブタ眼(6ヶ月、食用雑種(デュロック、ランドレース、ヨークシャー、バークシャーの雑種))を用いた。その後、硝子体を細隙灯顕微鏡で観察し、本発明の染色剤を用いない場合と比較した。さらに、眼の硝子体切除を行った。
Vitreous observation and vitrectomy using the staining agent of the present invention 0.1 to 0.15 mL of the staining agent produced above was passed through the ciliary flat portion using a 27-gauge needle to remove the porcine eye. Injection into the vitreous cavity. Aged pig eyes (8 years old, large Yorkshire breed, female) and young pig eyes (6 months, edible hybrid (Duroc, Landrace, Yorkshire, Berkshire hybrid)) were used. Thereafter, the vitreous body was observed with a slit lamp microscope and compared with the case where the staining agent of the present invention was not used. In addition, vitrectomy of the eye was performed.

観察結果
染色剤を注入すると、直後に染色剤は硝子体腔中に拡散した。染色剤中の蛍光ナノ粒子から発光された蛍光(赤色)によって硝子体の構造が反射され、細隙灯顕微鏡によって容易に硝子体の所望の部位を観察することができ、硝子体の状態の詳細が判別できた。蛍光は、30分以上安定に持続した。
Observation result Immediately after the staining agent was injected, the staining agent diffused into the vitreous cavity. The structure of the vitreous body is reflected by the fluorescence (red) emitted from the fluorescent nanoparticles in the stain, and the desired part of the vitreous body can be easily observed with a slit lamp microscope. Could be determined. The fluorescence lasted stably for more than 30 minutes.

若年ブタでは、硝子体がしっかりしており、硝子体腔に液化によるポケット(後部硝子体皮質前ポケット)や後部硝子体剥離を認めず、硝子体腔が均一透明に見えた。   In young pigs, the vitreous body was solid, and the vitreous cavity did not show liquefaction pockets (posterior vitreous cortex pocket) or posterior vitreous detachment, and the vitreous cavity appeared to be uniformly transparent.

一方、加齢ブタでは、上記のような加齢による生理的変化が進行しており、特に後部硝子体剥離が視神経乳頭部に発生すると乳頭の輪郭に接着していた硝子体が剥がれ、それが乳頭輪郭状(即ちリング状)の白色混濁(Weiss Ring)として視神経乳頭付近の硝子体腔に認められた。この顕微鏡写真を図1に示す。図1において、中央に見える棒状の光(矢印(A)で示す)はスリットランプの光である。白丸の中にある構造物(矢印(B)で示す)はWeiss Ringである。本発明によれば、Weiss Ringを明確に識別することが可能である。なお、今回は発見されなかったが、一般に、上記とは逆に、そのWeiss RingとWeiss Ringに連続する後部硝子体皮質が細隙灯顕微鏡で観察されれば後部硝子体剥離が発生していると考えてよい。   On the other hand, in aging pigs, physiological changes due to aging as described above have progressed, and particularly when posterior vitreous detachment occurs in the optic nerve head, the vitreous body adhered to the contour of the nipple is peeled off. A nipple contour (ie, ring-shaped) white turbidity (Weiss Ring) was observed in the vitreous cavity near the optic nerve head. This micrograph is shown in FIG. In FIG. 1, the rod-shaped light (indicated by an arrow (A)) visible at the center is the light of the slit lamp. The structure inside the white circle (indicated by arrow (B)) is the Weiss Ring. According to the present invention, the Weiss Ring can be clearly identified. Although not discovered this time, in general, conversely to the above, if the posterior vitreous cortex continuing to the Weiss Ring and Weiss Ring is observed with a slit lamp microscope, posterior vitreous detachment has occurred. You may think.

細隙灯顕微鏡による観察の際に透明な硝子体の中に存在するWeiss Ringを探し出すことは困難であるが、本発明の染色剤を使用した場合は、硝子体が染色されているため白色のWeiss Ringとコントラストがついて、とても発見しやすくなった。また、Weiss Ringと連続する後部硝子体皮質は、Weiss Ringから上下左右に少しずつスキャンしながら確認していくのであるが、透明であるので見失い易い。しかし、これも硝子体が染色されているとWeiss Ringからの連続性を確認し易くなった。   It is difficult to find the Weiss Ring that exists in the transparent vitreous body when observing with a slit lamp microscope. However, when the stain of the present invention is used, the vitreous body is stained, so that the white Contrast with Weiss Ring, making it easier to find. In addition, the posterior vitreous cortex that continues to the Weiss Ring is confirmed while scanning little by little from top to bottom, left and right from the Weiss Ring, but it is transparent and easily lost. However, when the vitreous body was also stained, it became easier to confirm the continuity from the Weiss Ring.

硝子体切除術
硝子体切除術は、経毛様体的に潅流ポートと2個のサイドポートを作製し、ライトガイドと硝子体カッターをサイドポートから硝子体腔に刺入して施術した。
本発明の染色剤を用いた場合は、染色された硝子体がライトガイドの照明によって照らされて容易に視認され、また、硝子体の染色の程度を半透明にしておいたため、周囲の網膜・毛様体などとの位置関係も把握し易く、安全に硝子体を切除することが可能であった。
Vitrectomy vitrectomy, Keike-like body to produce a perfusion port and two side ports, and treatment by piercing the light guide and vitreous cutter from side port in the vitreous cavity.
When the staining agent of the present invention is used, the stained vitreous body is easily viewed by being illuminated by the light guide illumination, and the degree of staining of the vitreous body is made translucent, so that the surrounding retina It was easy to grasp the positional relationship with the ciliary body and the vitreous body could be safely removed.

図1は、本発明の染色剤によって染色した加齢ブタの眼の硝子体の、細隙灯顕微鏡による観察像(写真)である。中央に見える棒状の光(矢印(A)で示す)はスリットランプの光である。白丸の中にある構造物(矢印(B)で示す)はWeiss Ringである。FIG. 1 is an observation image (photograph) of a vitreous body of an eye of an aged pig stained with the staining agent of the present invention, using a slit lamp microscope. The rod-shaped light (indicated by an arrow (A)) seen in the center is the light of the slit lamp. The structure inside the white circle (indicated by arrow (B)) is the Weiss Ring.

Claims (4)

親水性量子ドットからなる蛍光ナノ粒子を含む眼の硝子体染色剤。 A vitreous staining agent for eyes containing fluorescent nanoparticles composed of hydrophilic quantum dots . 蛍光ナノ粒子が、コア単層構造又はコア・シェル重層構造を有する、請求項1記載の染色剤。   The staining agent according to claim 1, wherein the fluorescent nanoparticles have a core monolayer structure or a core-shell multilayer structure. 蛍光ナノ粒子が、半導体元素を含む、請求項1又は2記載の染色剤。   The dyeing | staining agent of Claim 1 or 2 in which a fluorescent nanoparticle contains a semiconductor element. 蛍光ナノ粒子の粒径が、1〜100nmである、請求項1〜3のいずれか1項記載の染色剤。 The particle size of the fluorescent nanoparticles is a 1 to 100 nm, dyeing agent according to any one of claims 1 to 3.
JP2006013760A 2006-01-23 2006-01-23 Vitreous staining agent and staining method of eye containing fluorescent nanoparticles Active JP4936508B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006013760A JP4936508B2 (en) 2006-01-23 2006-01-23 Vitreous staining agent and staining method of eye containing fluorescent nanoparticles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006013760A JP4936508B2 (en) 2006-01-23 2006-01-23 Vitreous staining agent and staining method of eye containing fluorescent nanoparticles

Publications (2)

Publication Number Publication Date
JP2007191454A JP2007191454A (en) 2007-08-02
JP4936508B2 true JP4936508B2 (en) 2012-05-23

Family

ID=38447430

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006013760A Active JP4936508B2 (en) 2006-01-23 2006-01-23 Vitreous staining agent and staining method of eye containing fluorescent nanoparticles

Country Status (1)

Country Link
JP (1) JP4936508B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009144983A1 (en) * 2008-05-28 2009-12-03 コニカミノルタエムジー株式会社 Inorganic nanoparticle labeling agent
CN101805606B (en) * 2010-02-22 2012-12-12 中国科学院苏州纳米技术与纳米仿生研究所 Method for preparing monodisperse near-infrared quantum dots
WO2015198245A1 (en) * 2014-06-25 2015-12-30 Novartis Ag Compositions and methods for visualization of the vitreous

Also Published As

Publication number Publication date
JP2007191454A (en) 2007-08-02

Similar Documents

Publication Publication Date Title
Tadayoni et al. Persistence of fundus fluorescence after use of indocyanine green for macular surgery
ES2324485T5 (en) Coloring composition for coloring an ophthalmic membrane
Farah et al. The use of vital dyes during vitreoretinal surgery-chromovitrectomy
Stalmans et al. Trypan blue not toxic for retinal pigment epithelium in vitro
Lüke et al. Retinal tolerance to dyes
EP2696900B1 (en) Dyes for membranes and biological structures
US20080206149A1 (en) Method, dye and medicament for staining the internal limiting membrane, epiretinal membrane, the vitreous and/or the capsule of an eye
Park et al. Comparative analysis of brilliant blue G and an intracameral illuminator in assisting visualization of the anterior capsule in eyes with vitreous hemorrhage
Francis et al. Subretinal transplantation of forebrain progenitor cells in nonhuman primates: survival and intact retinal function
JP4936508B2 (en) Vitreous staining agent and staining method of eye containing fluorescent nanoparticles
Sarwat et al. Quantum dots in ophthalmology: a literature review
CN110693831B (en) Preparation method of long-ocular-surface retention and high-corneal-permeability drug-loaded nano-micelle
Farah et al. Current concepts of trypan blue in chromovitrectomy
MX2012007282A (en) Topical ophthalmic peptide formulation.
Yamamoto et al. Visualizing vitreous using quantum dots as imaging agents
JPWO2008126720A1 (en) Suspension for visualizing eye transparent tissue
US20230102129A1 (en) Nano small peptide and its use in preparation of drugs for treating and preventing fundus vascular diseases
US20230256095A1 (en) Dyes for use in a method of treatment of vitreous opacity-related diseases
Caiado et al. State of the art in chromovitrectomy
Lin et al. Preliminary identification of β-carotene in the vitreous asteroid bodies by micro-Raman spectroscopy and HPLC analysis
EP2522368A1 (en) Microparticles for intraocular tissue marking
RU2790703C1 (en) Drug for the treatment of resistant fungal keratitis and its method of use
Sarwat et al. Quantum Dots in Ophthalmology: A Literature
Lui Utility of photoacoustic imaging, an advanced drug delivery approach and drug discovery for corneal neovascularisation diagnosis and treatment
US20230087023A1 (en) Nano small peptide and its use in preparation of drugs for treating and preventing fundus vascular diseases

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20080121

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110816

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20110927

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110927

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111014

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120207

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120220

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150302

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4936508

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250