JP4935718B2 - Setting method of optical transmission system - Google Patents

Setting method of optical transmission system Download PDF

Info

Publication number
JP4935718B2
JP4935718B2 JP2008057175A JP2008057175A JP4935718B2 JP 4935718 B2 JP4935718 B2 JP 4935718B2 JP 2008057175 A JP2008057175 A JP 2008057175A JP 2008057175 A JP2008057175 A JP 2008057175A JP 4935718 B2 JP4935718 B2 JP 4935718B2
Authority
JP
Japan
Prior art keywords
polarization
optical
optical fiber
transmission line
fiber transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008057175A
Other languages
Japanese (ja)
Other versions
JP2009218646A (en
Inventor
將弘 大黒
英明 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KDDI Corp
Original Assignee
KDDI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KDDI Corp filed Critical KDDI Corp
Priority to JP2008057175A priority Critical patent/JP4935718B2/en
Publication of JP2009218646A publication Critical patent/JP2009218646A/en
Application granted granted Critical
Publication of JP4935718B2 publication Critical patent/JP4935718B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Communication System (AREA)

Description

本発明は、光ファイバ伝送路を使用する光伝送システムを設定する方法に関する。   The present invention relates to a method for setting an optical transmission system using an optical fiber transmission line.

光ファイバを伝送路とする光伝送システムでは、伝送速度の高速化や伝送距離の長距離化を図ると、光伝送信号の1ビット間隔に対する偏波モード分散(Polarization Mode Dispersion:PMD)量が大きくなり、信号特性劣化の影響を無視できなくなる。結果として、PMDは、伝送速度の高速化や伝送距離の長距離化を困難にする。   In an optical transmission system using an optical fiber as a transmission path, if the transmission speed is increased or the transmission distance is increased, the amount of polarization mode dispersion (PMD) with respect to one bit interval of the optical transmission signal increases. Therefore, the influence of signal characteristic deterioration cannot be ignored. As a result, PMD makes it difficult to increase the transmission speed and increase the transmission distance.

PMDとは、光ファイバ中の群速度が偏波方向に依存するために発生する分散である。具体的には、光信号の互いに直行する偏波成分の伝搬速度が互いに異なることにより、光信号波形が劣化する現象である。光ファイバの偏波依存性は、主に、光ファイバの真円からのずれ、光ファイバ製造時に発生する内部応力の歪み、及び、光ファイバ敷設時と敷設後に発生する不均一な外部応力の歪みに起因する。PMDは、発生量が時間軸上及び波長軸上で変動し、結果として光波形が変動する現象であり、伝送速度を高速化して隣接パルス間との時間幅が短くなった場合に、非常に大きな劣化要因の一つとなり得る。   PMD is dispersion that occurs because the group velocity in an optical fiber depends on the polarization direction. Specifically, this is a phenomenon in which the optical signal waveform deteriorates due to the different propagation speeds of the orthogonal polarization components of the optical signal. The polarization dependence of an optical fiber is mainly due to the deviation from the perfect circle of the optical fiber, the distortion of internal stress that occurs during the production of the optical fiber, and the distortion of non-uniform external stress that occurs during and after the installation of the optical fiber. caused by. PMD is a phenomenon in which the generation amount fluctuates on the time axis and the wavelength axis, and as a result, the optical waveform fluctuates. When the transmission speed is increased and the time width between adjacent pulses is shortened, It can be one of the major deterioration factors.

電信柱に渡された電線のように光ファイバ伝送路を敷設した区間(「架空区間」と呼ぶ)では、光ファイバの振動や環境温度の変化によって光ファイバ中の信号の偏波状態(State of Polarization:SOP)が大きく速く変動することが知られている(非特許文献1−3)。   In the section where an optical fiber transmission line is laid like an electric wire passed to a telephone pole (called “aerial section”), the polarization state of the signal in the optical fiber (State of It is known that Polarization: SOP) fluctuates greatly and rapidly (Non-Patent Documents 1-3).

偏波モード分散の影響がある場合、偏波方向に依存した光ファイバ中の群速度差、いわゆる群速度遅延差(Differential Group Delay: DGD)によって、互いに直行するTE成分とTM成分が時間軸上で分離する。   When there is an influence of polarization mode dispersion, the TE component and the TM component that are orthogonal to each other on the time axis are caused by the group velocity difference in the optical fiber depending on the polarization direction, so-called differential group delay (DGD). Separate with.

DGDによる信号特性への影響を抑える手法として、偏光の主状態(Principle State of Polarization:PSP)に合致するように、光送信機出力信号光のSOPを調整するPMD抑圧方法が既に提案されている(非特許文献3)。   As a technique for suppressing the influence of DGD on the signal characteristics, a PMD suppression method for adjusting the SOP of the optical transmitter output signal light so as to match the principal state of polarization (PSP) has already been proposed. (Non-Patent Document 3).

また、特許文献1には、受信側の誤り率又はPMDが所定値を超えた場合に、送信側で偏波方向を制御する光伝送システムが記載されている。
特開2006−033213号公報 D. Waddy, P. Lu, L. Chen, and X. Bao, "Fast state of polarization changes in aerial fiber under different climatic conditions", IEEE Photonics Technology Letters, Vol. 13, no. 9, pp.1035-1037, 2001. H. Kogelnik, R. M. Jopson and L. E. Nelson, "Optical fiber telecommunications IVB systems and impairments", Chapter 15, Academic Press, 2002. I. Kaminow and T. L. Koch, "Optical Fiber Telecommunications III", Academic Press, 1997.
Patent Document 1 describes an optical transmission system that controls the polarization direction on the transmission side when the error rate or PMD on the reception side exceeds a predetermined value.
JP 2006-033213 A D. Waddy, P. Lu, L. Chen, and X. Bao, "Fast state of polarization changes in aerial fiber under different climatic conditions", IEEE Photonics Technology Letters, Vol. 13, no. 9, pp.1035-1037 , 2001. H. Kogelnik, RM Jopson and LE Nelson, "Optical fiber telecommunications IVB systems and impairments", Chapter 15, Academic Press, 2002. I. Kaminow and TL Koch, "Optical Fiber Telecommunications III", Academic Press, 1997.

非特許文献3に記載の方法では、経時的に変動するPMDに対して適切に対応できるものにならない。   The method described in Non-Patent Document 3 cannot appropriately cope with PMD that varies with time.

また、特許文献1に記載の構成では、帰還制御系を設ける必要があり、コストが増大する。   Further, in the configuration described in Patent Document 1, it is necessary to provide a feedback control system, which increases the cost.

本発明は、複雑な制御無しで、光ファイバ伝送路の長期にわたるPMDの変動に適切に対応可能な、光伝送システムの設定方法を提示することを目的とする。   It is an object of the present invention to provide an optical transmission system setting method that can appropriately cope with long-term PMD fluctuations in an optical fiber transmission line without complicated control.

本発明に係る光伝送システムの設定方法は、光ファイバ伝送路の入射側に偏光度測定用光送信装置を接続すると共に、出射側に偏光度測定用光受信装置を接続する計測準備ステップと、当該偏光度測定用光送信装置及び当該偏光度測定用光受信装置で当該光ファイバ伝送路の偏光度の変動を所定期間、計測する計測ステップと、当該計測ステップの計測結果からストークスパラメータの自己相関関数を計算する自己相関計算ステップと、当該自己相関計算ステップの計算結果に従い、平均的な偏波方向を決定する決定ステップと、当該平均的な偏波方向で、当該光ファイバ伝送路の当該入射側に光送信装置を接続するステップと、当該光ファイバ伝送路の当該出射側に当該光送信装置に対応する光受信装置を接続するステップとを具備することを特徴とする。 The optical transmission system setting method according to the present invention includes a measurement preparation step of connecting a polarization degree measurement optical transmitter to the incident side of the optical fiber transmission line and connecting a polarization degree measurement optical receiver to the output side; predetermined period variations in the degree of polarization of the optical fiber transmission line in the polarizing measuring optical transmission apparatus and the degree of polarization measuring light receiving device, a step of measuring the autocorrelation Stokes parameters from the measurement result of the measuring step An autocorrelation calculation step for calculating a function, a determination step for determining an average polarization direction according to the calculation result of the autocorrelation calculation step, and the incidence on the optical fiber transmission line in the average polarization direction Connecting an optical transmission device to the optical fiber transmission line, and connecting an optical reception device corresponding to the optical transmission device to the output side of the optical fiber transmission line. The features.

本発明によれば、複雑な制御無しに、光ファイバ伝送路の偏光状態の変動に対して、長期的にみて良好な伝送特性を得ることができる。   According to the present invention, good transmission characteristics can be obtained in the long term with respect to fluctuations in the polarization state of an optical fiber transmission line without complicated control.

以下、図面を参照して、本発明の実施例を詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図1は、本発明の一実施例を実施するための構成の概略構成図を示し、図2は、本実施例の設定手順を示す。   FIG. 1 shows a schematic configuration diagram of a configuration for carrying out an embodiment of the present invention, and FIG. 2 shows a setting procedure of the present embodiment.

光ファイバ伝送路10は、その一部又は全部が架空区間からなる。光ファイバ伝送路10の送信側に偏光度測定用光送信装置12を配置し、受信側に、偏光度測定用光送信装置12に対応する偏光度測定用光受信装置14を配置する。そして、偏光度測定用光送信装置12と偏光度測定用光受信装置14を使って、偏光度のストークスパラメータs1、s2、s3を長期(例えば、24時間程度)に渡り、計測する(S1)。ストークスパラメータを計測する方法には、例えばジョーンズマトリクス法がある。   Part or all of the optical fiber transmission line 10 is an aerial section. A polarization measuring optical transmitter 12 is arranged on the transmission side of the optical fiber transmission line 10, and a polarization measuring optical receiver 14 corresponding to the polarization measuring optical transmitter 12 is arranged on the receiving side. Then, the Stokes parameters s1, s2, and s3 of the polarization degree are measured over a long period (for example, about 24 hours) using the polarization degree measurement optical transmitter 12 and the polarization degree measurement optical receiver 14 (S1). . An example of a method for measuring the Stokes parameters is the Jones matrix method.

図3は、偏光度測定用光送信装置12と偏光度測定用光受信装置14により測定したストークスパラメータs1,s2,s3の時間変化の一例を示す。横軸は計測時間内の任意の期間を示し、縦軸はストークスパラメータs1,s2,s3の大きさを示す。ここでは、信号波長1558nmの光信号で、1分につき1376ポイントを連続計測した。図3は、23時間にわたり計測した結果の一部を示す。−1から+1の範囲で激しく乱雑に変動していることが分かる。   FIG. 3 shows an example of temporal changes of the Stokes parameters s1, s2, and s3 measured by the polarization measuring optical transmitter 12 and the polarization measuring optical receiver 14. The horizontal axis indicates an arbitrary period within the measurement time, and the vertical axis indicates the magnitude of the Stokes parameters s1, s2, and s3. Here, 1376 points per minute were continuously measured with an optical signal having a signal wavelength of 1558 nm. FIG. 3 shows part of the results measured over 23 hours. It can be seen that it fluctuates violently and randomly in the range of −1 to +1.

このように計測したストークスパラメータの自己相関関数を計算する(S2)。即ち、図2に示す計測結果の自己相関関数∫s(t)・s(t+τ)を求める。図2に示す計測結果に対する自己相関関数を図3に示す。実際には、下記式に示す有限積分により、

Figure 0004935718
自己相関関数A(τ)を求めた。 The autocorrelation function of the Stokes parameter measured in this way is calculated (S2). That is, the autocorrelation function ∫s (t) · s (t + τ) of the measurement result shown in FIG. 2 is obtained. FIG. 3 shows an autocorrelation function for the measurement result shown in FIG. Actually, by the finite integral shown in the following formula,
Figure 0004935718
An autocorrelation function A (τ) was obtained.

図3から、架空区間を有するのにもかかわらず、約0.4の相関係数を有することがわかる。即ち、偏光度がランダムに変化するわけではなく、ある程度の重みを持って、偏った状態をとる。   It can be seen from FIG. 3 that the correlation coefficient is about 0.4 despite having an imaginary section. That is, the degree of polarization does not change at random, but is biased with a certain amount of weight.

本実施例では、この計測結果に従い、長期的に見て平均的なSOPを決定し、光ファイバ伝送路10に入射する光信号の偏光方向を、そのSOPに合わせる。   In this embodiment, according to this measurement result, an average SOP is determined over the long term, and the polarization direction of the optical signal incident on the optical fiber transmission line 10 is adjusted to the SOP.

即ち、偏光度測定用光送信装置12の代わりに光送信装置20と偏波制御装置22を配置し、光送信装置20の出力信号光を、偏波制御装置22を介して光ファイバ伝送路10に入射する(S3)。そして、最も頻繁に発生したストークスパラメータの偏光状態になるように、偏光度測定用受信装置14の受信結果をモニタしながら、光ファイバ伝送路10への入力信号光の偏光状態を、偏波制御装置22を用いて調整する(S4)。勿論、偏波制御装置22を使用せずに、光送信装置20と光ファイバ伝送路10の入射端との位置関係を調整して、同様に、光ファイバ伝送路10に入射する信号光の偏波方向を調整しても良い。   That is, the optical transmission device 20 and the polarization control device 22 are arranged instead of the polarization degree measuring optical transmission device 12, and the output signal light of the optical transmission device 20 is transmitted through the polarization control device 22 to the optical fiber transmission line 10. (S3). Then, the polarization state of the input signal light to the optical fiber transmission line 10 is controlled by polarization while monitoring the reception result of the polarization measuring device 14 so that the polarization state of the Stokes parameter generated most frequently is obtained. Adjustment is performed using the device 22 (S4). Of course, without using the polarization controller 22, the positional relationship between the optical transmitter 20 and the incident end of the optical fiber transmission line 10 is adjusted, and similarly, the polarization of the signal light incident on the optical fiber transmission line 10 is adjusted. The wave direction may be adjusted.

最後に、光ファイバ伝送路10の出力端に、偏光度測定用光受信装置14の代わりに、光受信装置24を接続する(S5)。   Finally, the optical receiver 24 is connected to the output end of the optical fiber transmission line 10 instead of the polarization measuring optical receiver 14 (S5).

このように、光ファイバ伝送路10に入射する信号光の偏波方向を、光ファイバ伝送路10の長期的な観点で見たSOPに合致させることで、平均的に見て、良好なパフォーマンスを達成できる。   Thus, by matching the polarization direction of the signal light incident on the optical fiber transmission line 10 with the SOP viewed from the long-term viewpoint of the optical fiber transmission line 10, good performance can be obtained on average. Can be achieved.

特定の説明用の実施例を参照して本発明を説明したが、特許請求の範囲に規定される本発明の技術的範囲を逸脱しないで、上述の実施例に種々の変更・修整を施しうることは、本発明の属する分野の技術者にとって自明であり、このような変更・修整も本発明の技術的範囲に含まれる。   Although the invention has been described with reference to specific illustrative embodiments, various modifications and alterations may be made to the above-described embodiments without departing from the scope of the invention as defined in the claims. This is obvious to an engineer in the field to which the present invention belongs, and such changes and modifications are also included in the technical scope of the present invention.

本実施例のシステム構成を示す概略構成ブロック図である。It is a schematic block diagram showing the system configuration of the present embodiment. 本実施例に係る方法のフローチャートである。It is a flowchart of the method which concerns on a present Example. 偏光度の長期変動の計測結果である。It is a measurement result of long-term fluctuation of the degree of polarization. 図3に示す計測結果の自己相関関数である。It is an autocorrelation function of the measurement result shown in FIG.

符号の説明Explanation of symbols

10:光ファイバ伝送路
12:偏光度測定用光送信装置
14:偏光度測定用光受信装置
20:光送信装置
22:偏波制御装置
24:光受信装置
10: optical fiber transmission line 12: polarization measuring optical transmitter 14: polarization measuring optical receiver 20: optical transmitter 22: polarization controller 24: optical receiver

Claims (1)

光ファイバ伝送路の入射側に偏光度測定用光送信装置(12)を接続すると共に、出射側に偏光度測定用光受信装置(14)を接続する計測準備ステップと、
当該偏光度測定用光送信装置(12)及び当該偏光度測定用光受信装置(14)で当該光ファイバ伝送路の偏光度の変動を所定期間、計測する計測ステップと、
当該計測ステップの計測結果からストークスパラメータの自己相関関数を計算する自己相関計算ステップと、
当該自己相関計算ステップの計算結果に従い、平均的な偏波方向を決定する決定ステップと、
当該平均的な偏波方向で、当該光ファイバ伝送路の当該入射側に光送信装置を接続するステップと、
当該光ファイバ伝送路の当該出射側に当該光送信装置に対応する光受信装置を接続するステップ
とを具備することを特徴とする光伝送システムの設定方法。
A measurement preparation step of connecting the polarization measuring optical transmitter (12) to the incident side of the optical fiber transmission line and connecting the polarization measuring optical receiver (14) to the output side;
Predetermined period variations in the degree of polarization of the optical fiber transmission line in the polarizing measuring optical transmission device (12) and the polarization degree measurement optical receiver (14), a step of measuring,
An autocorrelation calculation step for calculating the autocorrelation function of the Stokes parameter from the measurement result of the measurement step;
In accordance with the calculation result of the autocorrelation calculation step, a determination step for determining an average polarization direction;
Connecting an optical transmission device to the incident side of the optical fiber transmission line in the average polarization direction;
And a step of connecting an optical receiver corresponding to the optical transmitter to the emission side of the optical fiber transmission line.
JP2008057175A 2008-03-07 2008-03-07 Setting method of optical transmission system Active JP4935718B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008057175A JP4935718B2 (en) 2008-03-07 2008-03-07 Setting method of optical transmission system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008057175A JP4935718B2 (en) 2008-03-07 2008-03-07 Setting method of optical transmission system

Publications (2)

Publication Number Publication Date
JP2009218646A JP2009218646A (en) 2009-09-24
JP4935718B2 true JP4935718B2 (en) 2012-05-23

Family

ID=41190132

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008057175A Active JP4935718B2 (en) 2008-03-07 2008-03-07 Setting method of optical transmission system

Country Status (1)

Country Link
JP (1) JP4935718B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230119766A1 (en) 2020-04-07 2023-04-20 Nec Corporation Polarization-fluctuation estimating device and polarization-fluctuation estimating method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001053677A (en) * 1999-08-12 2001-02-23 Totoku Electric Co Ltd Input level detecting method and optical transmission device
JP4282559B2 (en) * 2004-07-14 2009-06-24 日本電信電話株式会社 Optical transmission method and optical transmission system
JP4717724B2 (en) * 2006-06-08 2011-07-06 日本電信電話株式会社 Polarization dispersion measuring instrument

Also Published As

Publication number Publication date
JP2009218646A (en) 2009-09-24

Similar Documents

Publication Publication Date Title
US8488961B2 (en) Dispersion determining apparatus and automatic dispersion compensating system using the same
Luís et al. Comparing inter-core skew fluctuations in multi-core and single-core fibers
JP5471578B2 (en) Chromatic dispersion measurement method and apparatus, and optical transmission system
US8208807B2 (en) Transmission of eye information from opto-electronic modules
WO2007073586A1 (en) Method and arrangement for polarization mode dispersion mitigation
WO2013179604A1 (en) Optical transmission device, optical transmission system, and optical transmission method
WO2016107428A1 (en) Method and device for automatically adjusting power in optical fibre communication system
WO2012130001A1 (en) Method, device and system for optical power debugging
JP4935718B2 (en) Setting method of optical transmission system
JP4669103B2 (en) Polarization dispersion compensating apparatus and method in optical transmission system
JP6182945B2 (en) Method and apparatus for estimating cross-phase modulation damage
WO2012122784A1 (en) Method and device for activating onu quickly in gigabit-capable passive optical network
JP5149996B2 (en) Method and apparatus for optimizing optical receiver identification threshold
WO2013078656A1 (en) Method and device for frame synchronization in optical fiber system
US20030118263A1 (en) Real-time polarization mode dispersion characterization
US20160142146A1 (en) Transmission apparatus, line card and control method of transmission apparatus
EP3178174A1 (en) Distributed raman amplifier systems
Castro et al. The interaction of modal and chromatic dispersion in VCSEL based multimode fiber channel links and its effect on mode partition noise
Hu et al. High-dimensional Stokes-space analysis for monitoring fast change of mode dispersion in few-mode fibers
US20100221018A1 (en) Polarization mode dispersion suppressing method and polarization mode dispersion suppressing apparatus
Zhou et al. FrFT based blind chromatic dispersion estimation mitigating large DGD induced uncertainty
JP2010283752A (en) Optical communication method, station-side apparatus and optical communication system
JP2015230165A (en) Inter-mode power ratio measuring method, power ratio measuring device, and inter-mode power ratio measuring system
Safari et al. Analysis of degree of polarization as a control signal in PMD compensation systems aided by polarization scrambling
CN110971302B (en) Device and method for estimating optical fiber dispersion by low-speed delay sampling

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100709

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120124

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120206

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150302

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4935718

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150