JP4934986B2 - Emitter material for thermophotovoltaic power generation - Google Patents

Emitter material for thermophotovoltaic power generation Download PDF

Info

Publication number
JP4934986B2
JP4934986B2 JP2005119266A JP2005119266A JP4934986B2 JP 4934986 B2 JP4934986 B2 JP 4934986B2 JP 2005119266 A JP2005119266 A JP 2005119266A JP 2005119266 A JP2005119266 A JP 2005119266A JP 4934986 B2 JP4934986 B2 JP 4934986B2
Authority
JP
Japan
Prior art keywords
power generation
solidified body
radiation
emitter material
emitter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005119266A
Other languages
Japanese (ja)
Other versions
JP2006298671A (en
Inventor
耕司 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP2005119266A priority Critical patent/JP4934986B2/en
Publication of JP2006298671A publication Critical patent/JP2006298671A/en
Application granted granted Critical
Publication of JP4934986B2 publication Critical patent/JP4934986B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Description

本発明は熱光起電力発電技術に用いるエミッタ材料に係り、より具体的には、高温に加熱されたエミッタからの放射をその放射波長ピークの感度に整合した光電変換セル(PVセル)で受けて高効率に電力変換する固体素子発電システムである熱光起電力(TPV:Thermo-Photo-Voltaic)発電技術において用いる、選択的な波長で高い放射率を有する選択エミッタ材料に関する。   The present invention relates to an emitter material used in thermophotovoltaic power generation technology, and more specifically, radiation from an emitter heated to a high temperature is received by a photoelectric conversion cell (PV cell) matched to the sensitivity of the radiation wavelength peak. The present invention relates to a selective emitter material having a high emissivity at a selective wavelength, which is used in a thermo-photo-voltaic (TPV) power generation technology, which is a solid-state power generation system that converts power with high efficiency.

地球温暖化、化石燃料の枯渇など地球環境悪化への対応が緊急の課題となっていることから、環境への負荷が小さく、高効率で信頼性が高い発電システムが求められている。このような条件を満たす発電システムの有望な候補としてTPV発電技術が挙げられる。TPV発電技術では1000℃から2000℃程度に加熱されたある種の固体物質(エミッタ)からの放射エネルギーを波長フィルタリングして光電変換セルに照射することにより、高効率に電力を得ることができる。太陽光発電ではセルの受ける光のスペクトル分布は決まっているが、TPV発電技術では主にエミッタ材料の種類によりスペクトルを人為的に操作することが可能である。また、TPV発電技術のおいては、光照射密度が極めて高いなど、太陽光発電とは質及び量的にも優れていることが特徴である。   Response to the deterioration of the global environment, such as global warming and depletion of fossil fuels, is an urgent issue, and there is a need for a highly efficient and highly reliable power generation system that has a low environmental impact. A promising candidate for a power generation system that satisfies such conditions is TPV power generation technology. In the TPV power generation technology, power can be obtained with high efficiency by applying wavelength filtering to radiation energy from a certain solid substance (emitter) heated to about 1000 ° C. to 2000 ° C. and irradiating the photoelectric conversion cell. In solar power generation, the spectrum distribution of light received by a cell is determined, but in TPV power generation technology, the spectrum can be artificially manipulated mainly by the type of emitter material. In addition, the TPV power generation technology is characterized in that it is superior in quality and quantity with respect to solar power generation because the light irradiation density is extremely high.

こうしたTPV発電機を従来の熱利用システムに組み込み、発生した高熱を利用して発電することにより、総合発電効率を高めることもできる。また、化石燃料の燃焼、太陽光集光熱、放射性同位体崩壊熱等、多種の熱源を適用できることや稼動部がないため低騒音且つ保守性に優れるなどの特徴をもっており、需要地近接型の小規模分散電源への応用が進められている。   By integrating such a TPV generator into a conventional heat utilization system and generating electric power using the generated high heat, the total power generation efficiency can be increased. In addition, it has features such as the combustion of fossil fuels, sunlight condensing heat, radioactive isotope decay heat, and other heat sources, as well as low noise and excellent maintainability due to the absence of moving parts. Applications to scale-distributed power supplies are underway.

TPV発電技術は、1000℃から2000℃程度に加熱されたある種の固体物質(エミッタ)からの放射エネルギーを波長フィルタリングして光電変換セルに照射することにより、高効率に電力を得るシステムであることから、従来から光電変換セルの感度領域に適合した強い放射光を出す材料の開発が進められてきた。TPV発電用のエミッタ材料には、広い波長帯域にわたって放射光を出す灰色体放射体と、希土類元素の4f軌道遷移を利用した希土類選択エミッタがある。希土類元素は6s、6p軌道に3個の電子をもつ3価の状態になりやすく、例えばホルミウム(Ho)、エルビウム(Er)、ツリウム(Tm)、イッテルビウム(Yb)の4f殻電子系は、それぞれ10個、11個、12個、13個の電子をもつ多電子系であり、その高いエネルギー準位から低いエネルギー準位への遷移が起こると、そのエネルギー差は光として放出される。4f殻電子系は固体の結合に直接関与していないので、エネルギー準位は母材によって大きく変わることはない。よって、希土類イオンのf殻電子系は、固体中に合っても孤立した原子のように鋭く温度変化に対して安定な発光スペクトルを示す。Yb、Tm、Er、Hoのピーク波長はそれぞれ1.1μm、1.3μm、1.5μm、2.0μmである。   The TPV power generation technology is a system that obtains electric power with high efficiency by irradiating a photoelectric conversion cell with wavelength filtering of radiation energy from a certain solid substance (emitter) heated to about 1000 ° C. to 2000 ° C. For this reason, the development of materials that emit strong radiant light suitable for the sensitivity region of photoelectric conversion cells has been advanced. Emitter materials for TPV power generation include gray body radiators that emit radiation over a wide wavelength band, and rare earth selective emitters that utilize 4f orbital transitions of rare earth elements. Rare earth elements tend to be in a trivalent state with three electrons in 6s and 6p orbitals. For example, the 4f shell electron system of holmium (Ho), erbium (Er), thulium (Tm), and ytterbium (Yb) It is a multi-electron system having 10, 11, 12, and 13 electrons. When a transition from the high energy level to the low energy level occurs, the energy difference is emitted as light. Since the 4f-shell electron system is not directly involved in solid bonding, the energy level does not vary greatly depending on the base material. Therefore, the f-shell electron system of rare earth ions shows an emission spectrum that is sharp and stable with respect to a temperature change like an isolated atom even in a solid. The peak wavelengths of Yb, Tm, Er, and Ho are 1.1 μm, 1.3 μm, 1.5 μm, and 2.0 μm, respectively.

太陽光スペクトルのピーク波長は約550nmであり、太陽光発電では感度領域がそれに近いSi光電変換セルが使用される。Siのバンドギャップは1.1eVで、その吸収端は約1100nmである。即ち、1100nmより波長の短い光のみが発電に寄与する。1100nmという波長は、黒体放射スペクトルのピーク波長で2500℃以上に相当し、このような高温で使用できるエミッタ材料や熱源は限られることから、Si光電変換セルを熱光起電発電技術に適用すると高効率での発電は難しい。そこで、熱光起電発電技術には、長波長の光でも発電できる低バンドギャップの光電変換セルが適用され、現状では0.8〜1.7μmの感度領域を持つGaSbセルが一般的に使用される。   The peak wavelength of the sunlight spectrum is about 550 nm, and in photovoltaic power generation, a Si photoelectric conversion cell having a sensitivity region close to that is used. The band gap of Si is 1.1 eV, and its absorption edge is about 1100 nm. That is, only light having a wavelength shorter than 1100 nm contributes to power generation. The wavelength of 1100 nm corresponds to a peak wavelength of the black body radiation spectrum of 2500 ° C. or higher, and the emitter materials and heat sources that can be used at such high temperatures are limited. Therefore, the Si photoelectric conversion cell is applied to the thermophotovoltaic power generation technology. Then, it is difficult to generate electricity with high efficiency. Therefore, the thermophotovoltaic power generation technology uses a low-bandgap photoelectric conversion cell that can generate power even with long-wavelength light. Currently, a GaSb cell having a sensitivity region of 0.8 to 1.7 μm is generally used. Is done.

希土類元素を用いた選択エミッタは、初期には希土類酸化物の焼結体が使用されていたが、希土類酸化物は一般的に焼結しにくく、希土類元素の放射スペクトル強度も弱かった。そこで、希土類酸化物を炭化ケイ素などの基材の上に積層したものが開発されたが、表層の選択放射体は選択波長以外では光学的に透明なので、選択放射体が薄い場合や基材の放射率が高い場合には表層の選択放射体を通して基材の放射光が現れて単色性が失われ選択放射効率が低下する。   Although a rare earth oxide sintered body was initially used as the selective emitter using rare earth elements, rare earth oxides were generally difficult to sinter and the emission spectrum intensity of the rare earth elements was also weak. Therefore, a material in which a rare earth oxide is laminated on a substrate such as silicon carbide has been developed, but the selective radiator on the surface layer is optically transparent except for the selected wavelength. When the emissivity is high, the emitted light of the substrate appears through the selective radiator on the surface layer, the monochromaticity is lost, and the selective radiation efficiency is lowered.

これを改善するための工夫として、特許文献1等に記載のように、希土類金属元素を含むファイバー形状エミッタが開発された。直径約10μmのファイバー状にすることにより、放射光に基材の影響がなくなり、熱応力が緩和されて耐熱衝撃性が改善でき、熱容量も小さいので昇温が速くなり、装置始動から定常作動までのタイムラグが小さくなるので、バックアップ電源も小容量ですむという利点がある。しかし、最大の欠点は機械的強度が極めて低いため、振動はもちろん手で触れても壊れるほど脆い。また、ネット状のエミッタの間隙から燃焼炎が外部へ吹き出すと、エミッタの放射光だけでなく燃焼炎の放射光も重畳されるようになり、放射光の単色性が阻害されるという問題もある。   As a device for improving this, a fiber-shaped emitter containing a rare earth metal element has been developed as described in Patent Document 1 and the like. By making a fiber with a diameter of about 10 μm, the influence of the substrate on the emitted light is eliminated, the thermal stress is relaxed and the thermal shock resistance can be improved, and the temperature rises faster because the heat capacity is small, from the start of the device to the steady operation Therefore, there is an advantage that the backup power source requires a small capacity. However, the biggest drawback is that the mechanical strength is so low that vibrations are of course brittle enough to break even if touched by hand. In addition, when the combustion flame blows out from the gap between the net-like emitters, not only the emitted light of the emitter but also the emitted light of the combustion flame is superimposed, and there is a problem that monochromaticity of the emitted light is hindered. .

一方、NASAでは特許文献2、非特許文献1に記載のように、YAG(Yttrium Aluminum Garnet)単結晶にEr(1.5μm発光)及びHo(2.0μm発光)をドープしたエミッタを開発し、高い発光効率が得られている。しかしながら、単結晶への発光希土類元素のドープはあまり濃度を上げられないこと、単結晶は耐熱衝撃性や機械的強度に問題があるという欠点がある。   On the other hand, as described in Patent Document 2 and Non-Patent Document 1, NASA has developed an emitter in which YAG (Yttrium Aluminum Garnet) single crystal is doped with Er (1.5 μm light emission) and Ho (2.0 μm light emission). High luminous efficiency is obtained. However, the doping of the light-emitting rare earth element to the single crystal has a drawback that the concentration cannot be increased so much, and that the single crystal has problems in thermal shock resistance and mechanical strength.

これらの欠点を改善した材料として特許文献3に、室温から高温にわたって優れた機械的強度を有し、TPV発電機の作動温度での耐熱性、耐酸化性、耐熱衝撃性に優れ、高い選択放射率を示す希土類含有酸化物セラミックス複合材料エミッタ材料について記載されている。しかしながら、同明細書ではEr、Yb、Nd、Hoのうち少なくとも一種類の希土類元素を含む希土類含有酸化物セラミックス複合材料エミッタ材料について記載されているが、選択放射光のピーク幅を広げることについての言及はなく、またそのための具体的な組成についての記載もない。   As a material that has improved these defects, Patent Document 3 has excellent mechanical strength from room temperature to high temperature, excellent heat resistance, oxidation resistance, and thermal shock resistance at the operating temperature of the TPV generator, and high selective radiation. Rare earth-containing oxide ceramic composite emitter materials exhibiting rates are described. However, this specification describes a rare earth-containing oxide ceramic composite material containing at least one kind of rare earth element among Er, Yb, Nd, and Ho. There is no mention, and there is no description of a specific composition therefor.

米国特許第5080963号US Pat. No. 5,080,963 米国特許第5080724号US Pat. No. 5,080,724 特開2000−272955号公報JP 2000-272955 A NASA Technical Memorandum 103290 "Reappraisal Solid Selective Emitters"NASA Technical Memorandum 103290 "Reappraisal Solid Selective Emitters"

前述のように、TPV発電技術用の光電変換セルとして、GaSbセルが主に使用されている。光電変換セルの量子効率、即ち照射されたフォトン数に対する単位時間に外部回路に流れ出る電子数の比には波長依存性がある。図1に29th IEEE Photovoltaic Specialists Conference 2002 Proceedings, L. M. Fraas, et. al., "ELECTRICITY FROM CONCENTRATED SOLAR IR IN SOLAR LIGHTING APPLICATIONS" に記載されているGaSbセルの量子効率の波長依存性を示す。GaSbセルは0.8〜1.7μmの光を高い効率で電力に変換することができる。さらには、セル表面の反射防止膜を最適化することにより、感度領域内でほぼ同じ量子効率で変換することが可能になる。 As described above, GaSb cells are mainly used as photoelectric conversion cells for TPV power generation technology. The quantum efficiency of the photoelectric conversion cell, that is, the ratio of the number of electrons flowing out to the external circuit per unit time with respect to the number of irradiated photons has a wavelength dependency. 1 to 29 th IEEE Photovoltaic Specialists Conference 2002 Proceedings , LM Fraas, et. Al., Showing the wavelength dependence of the quantum efficiency of GaSb cell described in "ELECTRICITY FROM CONCENTRATED SOLAR IR IN SOLAR LIGHTING APPLICATIONS". The GaSb cell can convert 0.8 to 1.7 μm light into electric power with high efficiency. Furthermore, by optimizing the antireflection film on the cell surface, it is possible to perform conversion with almost the same quantum efficiency within the sensitivity region.

図2に、耐熱性、耐酸化性、耐熱衝撃性に優れた特許文献3に記載の、AlとErAl12からなる酸化物セラミックス複合材料の1900Kでの放射スペクトルを示す。この材料の選択放射光のピーク波長は1.3〜1.7μmであり、これらの放射光がGaSbセルの感度領域0.8〜1.7μm内にあり、光電変換に寄与している。しかしながら、熱光起電力発電の起電力がさらに優れたシステムが要求されている。そのため、GaSbセルの感度領域0.8〜1.7μm内において、特許文献3に記載のAlとErAl12からなる酸化物セラミックス複合材料を超える放射エネルギー強度の大きいエミッタ材料が求められている。 FIG. 2 shows a radiation spectrum at 1900 K of an oxide ceramic composite material composed of Al 2 O 3 and Er 3 Al 5 O 12 described in Patent Document 3 having excellent heat resistance, oxidation resistance, and thermal shock resistance. . The peak wavelength of the selective radiation of this material is 1.3 to 1.7 μm, and these radiations are in the sensitivity region 0.8 to 1.7 μm of the GaSb cell and contribute to photoelectric conversion. However, there is a need for a system that has even better electromotive force of thermophotovoltaic power generation. Therefore, within the sensitivity region 0.8 to 1.7 μm of the GaSb cell, an emitter material having a large radiant energy intensity exceeding the oxide ceramic composite material composed of Al 2 O 3 and Er 3 Al 5 O 12 described in Patent Document 3. Is required.

本発明は、上記問題点を鑑みなされたものであり、室温から高温にわたって優れた機械的強度を有し、TPV発電機の作動温度での耐熱性、耐酸化性、耐熱衝撃性に優れ、かつ、GaSb光電変換セルに適した高い選択放射率を示す熱光起電力発電用エミッタ材料を提供することを目的とする。   The present invention has been made in view of the above problems, has excellent mechanical strength from room temperature to high temperature, has excellent heat resistance, oxidation resistance, and thermal shock resistance at the operating temperature of the TPV generator, and An object of the present invention is to provide an emitter material for thermophotovoltaic power generation that exhibits a high selective emissivity suitable for a GaSb photoelectric conversion cell.

本発明者らは室温から高温にわたって優れた機械的特性を有し、高温における組織の熱安定性が飛躍的に改善された酸化物セラミックス複合材料を得るべく鋭意研究を重ねた結果、特定の組成の金属酸化物の凝固体が選択エミッタ材料として好適であることを見出した。   As a result of intensive studies to obtain an oxide ceramic composite material that has excellent mechanical properties from room temperature to high temperature and dramatically improves the thermal stability of the structure at high temperature, the present inventors have obtained a specific composition. It was found that a solidified body of metal oxide was suitable as a selective emitter material.

即ち、本発明は、熱により選択的な波長で放射光を発する熱光起電力発電用エミッタ材料であって、Alと、一般式(MEr1-xAl12で表わされるM(Mは、YbまたはTm)、ErおよびAlの複合酸化物とから構成される凝固体からなり、前記xが0.05以上0.5以下であることを特徴とする熱光起電力発電用エミッタ材料に関する。
That is, the present invention is an emitter material for thermophotovoltaic power generation that emits radiant light at a selective wavelength by heat, and includes Al 2 O 3 and a general formula (M x Er 1-x ) 3 Al 5 O 12. A heat light characterized by comprising a solidified body composed of a composite oxide of M (M is Yb or Tm), Er, and Al, wherein x is 0.05 or more and 0.5 or less The present invention relates to an emitter material for electromotive force power generation.

本発明の熱光起電力発電用エミッタ材料は、室温から高温にわたって優れた機械的強度を有し、TPV発電機の作動温度での耐熱性、耐酸化性、耐熱衝撃性に優れ、高い選択放射率を示す。   The emitter material for thermophotovoltaic power generation of the present invention has excellent mechanical strength from room temperature to high temperature, excellent heat resistance, oxidation resistance, and thermal shock resistance at the operating temperature of the TPV generator, and high selective radiation. Indicates the rate.

本発明では選択放射エミッタ材料の性能を評価するために選択放射効率ηSEFを定義した。本発明ではTPV発電技術用の光電変換セルとして最もよく使用されるGaSbセルを対象としているため、エミッタの全放射エネルギー(Etotal)に対する0.8〜1.7μmの範囲の放射エネルギー(選択放射エネルギーE0.8−1.7μm)の比を選択放射効率ηSEFとした(次式参照)。

選択放射効率ηSEF=(選択放射エネルギーE0.8-1.7μm)/(全放射エネルギーEtotal

但し、本発明の場合、光電変換セルをTPV発電機に一般的に用いられるGaSbセル(感度領域0.8〜1.7μm)としたが、同範囲の感度領域の光電変換セルであればGaSbセルに限るものではない。熱光起電力発電での光起電力は、選択放射エネルギーE0.8-1.7μmと光電変換セルの量子効率との積により求まるが、GaSbセルの量子効率は、図1に示したように0.8〜1.7μmの波長範囲内で、ほぼ一定の値を示していることから、上記の選択放射効率ηSEFにより、熱光起電力発電の効率を評価することができる。
In the present invention, the selective radiation efficiency η SEF is defined in order to evaluate the performance of the selective radiation emitter material. Since the present invention is directed to a GaSb cell that is most often used as a photoelectric conversion cell for TPV power generation technology, radiant energy (selective radiation) in the range of 0.8 to 1.7 μm with respect to the total radiant energy (E total ) of the emitter. The ratio of energy E 0.8-1.7 μm ) was defined as the selective radiation efficiency η SEF (see the following formula).

Selected radiation efficiency η SEF = (Selected radiation energy E 0.8-1.7μm ) / (Total radiation energy E total )

However, in the case of the present invention, the photoelectric conversion cell is a GaSb cell (sensitivity region 0.8 to 1.7 μm) that is generally used for a TPV generator. It is not limited to cells. The photovoltaic power in the thermophotovoltaic power generation is obtained by the product of the selected radiant energy E 0.8-1.7 μm and the quantum efficiency of the photoelectric conversion cell, and the quantum efficiency of the GaSb cell is 0. 0 as shown in FIG. Since it shows a substantially constant value within the wavelength range of 8 to 1.7 μm, the efficiency of thermophotovoltaic power generation can be evaluated by the selective radiation efficiency η SEF described above.

本発明の熱光起電力発電用エミッタ材料は、熱により選択的な波長で放射光を発する熱光起電力発電用エミッタ材料であって、焼結体ではなく、Alと、一般式(MEr1-xAl12で表わされるM(Mは、YbまたはTmのうち少なくとも1つ)、ErおよびAlの複合酸化物とから構成される凝固体であり、前記xが0.05以上0.5以下であることを特徴とする。特に好ましくは、本発明の熱光起電力発電用エミッタ材料は、Alと、一般式(YbEr1−xAl12で表わされる複合酸化物とから構成される凝固体(以下、Al/(YbEr1−xAl12凝固体と表わす)である。(YbEr1−xAl12は、Yb、ErおよびAlの酸化物から構成されており、ErAl12結晶構造のErの一部がYbで置換されたガーネット構造を有する複合酸化物である。本発明において、前記xは0.05以上0.5以下である。
The emitter material for thermophotovoltaic power generation according to the present invention is an emitter material for thermophotovoltaic power generation that emits radiation at a selective wavelength by heat, and is not a sintered body but Al 2 O 3 and a general formula. (M x Er 1-x ) 3 Al 5 O 12 represented by M (M is at least one of Yb or Tm), a composite oxide of Er and Al, Is 0.05 or more and 0.5 or less. Particularly preferably, the emitter material for thermophotovoltaic power generation of the present invention is a solidification composed of Al 2 O 3 and a composite oxide represented by the general formula (Yb x Er 1-x ) 3 Al 5 O 12. (Hereinafter referred to as an Al 2 O 3 / (Yb x Er 1-x ) 3 Al 5 O 12 solidified body). (Yb x Er 1-x ) 3 Al 5 O 12 is composed of oxides of Yb, Er, and Al, and a garnet structure in which part of Er in the Er 3 Al 5 O 12 crystal structure is substituted with Yb. It is a complex oxide having In the present invention, the x is 0.05 or more and 0.5 or less.

xが0.05以上0.5以下である本発明のAlと、一般式(YbEr1−xAl12で表わされる複合酸化物とから構成される凝固体(以下、Al/(YbEr1−xAl12凝固体と表わす)は、AlとYbAl12とから構成される凝固体(以下、Alと/YbAl12凝固体と表わす)、およびAlとErAl12とから構成される凝固体(以下、Alと/ErAl12凝固体と表わす)、のいずれよりも、GaSbセルの感度領域0.8〜1.7μm内において、大きい放射エネルギー強度を示す。 A solidified body composed of Al 2 O 3 of the present invention in which x is 0.05 or more and 0.5 or less and a composite oxide represented by the general formula (Yb x Er 1-x ) 3 Al 5 O 12 ( Hereinafter, Al 2 O 3 / (Yb x Er 1-x ) 3 Al 5 O 12 solidified body) is a solidified body composed of Al 2 O 3 and Yb 3 Al 5 O 12 (hereinafter referred to as Al 2 O 3 and / Yb 3 Al 5 O 12 solidified body), and a solidified body composed of Al 2 O 3 and Er 3 Al 5 O 12 (hereinafter referred to as Al 2 O 3 and / Er 3 Al 5 O 12). The radiant energy intensity is larger in the sensitivity region of 0.8 to 1.7 μm of the GaSb cell than any of the above.

Al/(YbEr1−xAl12凝固体の場合、ErイオンとYbイオンとではそれぞれのエネルギー準位の中にお互いに近い準位がある。つまり、Ybイオンの励起光がErイオンとイオン間相互作用することでErイオンを励起するというメカニズムも考えられ、これによりYb添加によるErイオン濃度の減少で1.5μmのピーク強度が下がらないともいえるが、そのメカニズムは明らかではない。なお、本発明は、前記メカニズムによって限定されるものではない。 In the case of the Al 2 O 3 / (Yb x Er 1-x ) 3 Al 5 O 12 solidified body, Er ions and Yb ions have levels close to each other in their respective energy levels. In other words, the mechanism that the excitation light of Yb ions excites Er ions by interaction between Er ions and ions, and the peak intensity of 1.5 μm does not decrease due to the decrease in Er ion concentration by adding Yb. The mechanism is not clear. The present invention is not limited by the mechanism.

本発明の他の熱光起電力発電用エミッタ材料は、Alと、一般式(Tm Er1− Al12で表わされる複合酸化物とから構成される凝固体(以下、Al/(Tm Er1− Al12凝固体と表わす)である。(Tm Er1− Al12は、Tm、ErおよびAlの酸化物から構成されており、ErAl12結晶構造のErの一部がTmで置換されたガーネット構造を有する複合酸化物である。本発明において、前記yは0.05以上0.5以下である。
Another emitter material for thermophotovoltaic power generation of the present invention is a solidified body composed of Al 2 O 3 and a composite oxide represented by the general formula (Tm x Er 1- x ) 3 Al 5 O 12 ( Hereinafter, it is expressed as Al 2 O 3 / (Tm x Er 1- x ) 3 Al 5 O 12 solidified body). (Tm x Er 1- x ) 3 Al 5 O 12 is composed of an oxide of Tm, Er, and Al, and a part of Er in the Er 3 Al 5 O 12 crystal structure is substituted with Tm. It is a complex oxide having In the present invention, the y is 0.05 or more and 0.5 or less.

が0.05以上0.5以下である本発明のAl/(Tm Er1− Al12凝固体は、AlとTmAl12とから構成される凝固体(以下、Al/TmAl12凝固体と表わす)、およびAl/ErAl12凝固体、のいずれよりも、GaSbセルの感度領域0.8〜1.7μm内において、大きい放射エネルギー強度を示す。
The Al 2 O 3 / (Tm x Er 1− x ) 3 Al 5 O 12 solidified body of the present invention in which x is 0.05 or more and 0.5 or less is composed of Al 2 O 3 and Tm 3 Al 5 O 12. The sensitivity region of the GaSb cell is greater than any of the solidified body (hereinafter referred to as the Al 2 O 3 / Tm 3 Al 5 O 12 solidified body) and the Al 2 O 3 / Er 3 Al 5 O 12 solidified body. A large radiant energy intensity is exhibited within 0.8 to 1.7 μm.

Al/(YbEr1−xAl12凝固体(但し、0.05≦x≦0.5)、およびAl/(Tm Er1- Al12凝固体(0.05≦≦0.5)は、それぞれ、共晶組成であり、各成分は結晶相からなり、Alと複合酸化物とは、3次元的に複雑に絡み合ったユニークな組織構造をしている。
Al 2 O 3 / (Yb x Er 1-x ) 3 Al 5 O 12 solidified body (where 0.05 ≦ x ≦ 0.5), and Al 2 O 3 / (Tm x Er 1- x ) 3 Al Each of the 5 O 12 solidified bodies (0.05 ≦ x ≦ 0.5) has a eutectic composition, each component is composed of a crystalline phase, and Al 2 O 3 and the complex oxide are three-dimensionally complicated. Has a unique organizational structure intertwined with each other.

本発明によれば、AlとErとYbまたはTmを含む複合酸化物との凝固体とし、これら希土類元素の含有量を制御することで、より高い選択放射効率を示す熱光起電力発電用エミッタ材料とすることができる。 According to the present invention, a thermophotovoltaic power that exhibits a higher selective radiation efficiency by controlling the content of these rare earth elements as a solidified body of a composite oxide containing Al 2 O 3 , Er, Yb, or Tm. It can be an emitter material for power generation.

本発明の熱光起電力発電用エミッタ材料である凝固体は、構成元素の酸化物の融液を凝固させて得られる。2種以上の金属酸化物を含む結晶組織を有する凝固体であるため、Yb、Tm、Erの希土類金属元素を含む酸化物の単体の場合と比べて融点が低く、共晶組成近傍では融液の粘性も低いため、比較的穏やかな温度条件、成長条件で製造可能であり、二つ以上の結晶が複雑に絡み合って成長していることから優れた高温強度特性を有し、単相の単結晶と比較して諸特性の方位依存性が少ないという特徴を有する。これによって、製造が容易で且つ必要な強度及び熱安定性を有し、且つYb、Tm、Erの希土類金属元素を多量に含むことができるので選択放射効率の高いエミッタを得ることが可能になる。   The solidified body, which is the emitter material for thermophotovoltaic power generation of the present invention, is obtained by solidifying an oxide melt of a constituent element. Since it is a solidified body having a crystal structure containing two or more kinds of metal oxides, it has a lower melting point than that of a simple substance containing rare earth metal elements such as Yb, Tm, and Er. Because of its low viscosity, it can be manufactured under relatively mild temperature and growth conditions.It has excellent high-temperature strength characteristics because two or more crystals grow intricately intertwined. Compared with crystals, it has the feature that the orientation dependency of various characteristics is small. As a result, it is easy to manufacture, has the necessary strength and thermal stability, and can contain a large amount of rare earth metal elements such as Yb, Tm, and Er, so that an emitter with high selective radiation efficiency can be obtained. .

本発明の熱光起電力発電用エミッタ材料である凝固体は、2種類以上の金属酸化物の融液を凝固させて2種類以上の酸化物の結晶組織として得られ、凝固体を構成する酸化物はいずれも単結晶又は多結晶の結晶相であり、これらの複数の結晶相は凝固条件を制御して3次元的に絡み合った、或いは海島構造の組織構造を有することができるが、本発明の目的のためには、そのような組織に限定されず、2種類以上の酸化物の融液を凝固させて2種類以上の酸化物の結晶組織として得られる凝固体であれば良い。また、凝固条件を制御して、結晶組織中にポア又は空隙或いはコロニーのない組織を得ることができる。   The solidified body which is the emitter material for thermophotovoltaic power generation of the present invention is obtained by solidifying a melt of two or more kinds of metal oxides to obtain a crystal structure of two or more kinds of oxides, and the oxidation constituting the solidified body. Each of the objects is a single crystal or a polycrystalline crystal phase, and the plurality of crystal phases can have a three-dimensional entanglement or a sea-island structure structure by controlling solidification conditions. For this purpose, the present invention is not limited to such a structure, but may be a solidified body obtained by solidifying a melt of two or more kinds of oxides to obtain a crystal structure of two or more kinds of oxides. Moreover, the solidification conditions can be controlled to obtain a structure free from pores, voids or colonies in the crystal structure.

本発明の熱光起電力発電用エミッタ材料は、前述のように、酸化物の融液を凝固させて得られる2種類以上の酸化物を含む凝固体であって、凝固体に含まれる酸化物、即ち、酸化物複合材料を構成する複合酸化物がErとYb及び/又はTmを含むことを特徴としている。例えば、Al/(YbEr1−xAl12組成場合、Al、Yb、Erの混合物の融液からの共晶反応を利用して得られる凝固共晶セラミックスであり、Al単結晶とErの一部がYbに置換された(YbEr1−xAl12単結晶が3次元的に複雑に絡み合ったユニークな組織構造をしているため、1)融点直下の約1800℃まで室温強度を保持することができる。2)空気中の1700℃において500時間熱処理後も重量変化、組織変化及び強度低下を起こさず優れた熱安定性を示すなど、従来の材料には見られなかった高温特性を有する。また、熱伝導率は放射特性を決める重要な因子であるが、本発明の熱光起電力用エミッタ材料はこれまでにNASAが開発しているYAGベースの選択エミッタより高い熱伝導度を有しており、選択エミッタ材料として優れている。 As described above, the emitter material for thermophotovoltaic power generation according to the present invention is a solidified body containing two or more kinds of oxides obtained by solidifying an oxide melt, and the oxide contained in the solidified body. That is, the composite oxide constituting the oxide composite material is characterized by containing Er, Yb and / or Tm. For example, in the case of the composition Al 2 O 3 / (Yb x Er 1-x ) 3 Al 5 O 12 , a eutectic reaction from a melt of a mixture of Al 2 O 3 , Yb 2 O 3 and Er 2 O 3 is used. This is a solidified eutectic ceramic obtained by three-dimensionally intricately intertwining an Al 2 O 3 single crystal and (Yb x Er 1-x ) 3 Al 5 O 12 single crystal in which part of Er is substituted with Yb. Because of its unique structure, 1) room temperature strength can be maintained up to about 1800 ° C. just below the melting point. 2) It has high temperature characteristics not found in conventional materials, such as excellent thermal stability without causing weight change, structural change and strength reduction even after heat treatment at 1700 ° C. in air for 500 hours. In addition, although thermal conductivity is an important factor that determines radiation characteristics, the thermoelectric emitter material of the present invention has higher thermal conductivity than the YAG-based selective emitters that NASA has developed so far. And is excellent as a selective emitter material.

本発明の熱光起電力発電用エミッタ材料は、Alと(YbEr1−xAl12との凝固体の場合、下記の方法で製造することができる。最初に、Al、Yb、Erの粉末を所望する成分比率のセラミックス複合材料を生成する割合で混合し、混合粉末を調製する。混合方法には特別な制限はなく、公知の混合方法を採用することができる。ついで、この混合粉末を公知の溶解炉、例えば、アーク溶解炉を用いて、両原料が溶解する温度、例えば、1900〜1950℃に加熱して溶解する。 In the case of the solidified body of Al 2 O 3 and (Yb x Er 1-x ) 3 Al 5 O 12 , the emitter material for thermophotovoltaic power generation of the present invention can be produced by the following method. First, powders of Al 2 O 3 , Yb 2 O 3 , and Er 2 O 3 are mixed at a ratio that generates a ceramic composite material having a desired component ratio to prepare a mixed powder. There is no particular limitation on the mixing method, and a known mixing method can be employed. Next, the mixed powder is heated and melted at a temperature at which both raw materials are melted, for example, 1900 to 1950 ° C., using a known melting furnace, for example, an arc melting furnace.

引き続き、上記の溶解物をそのままルツボに仕込み凝固させるか、或いは、上記溶解物を一旦凝固させた後に粉砕し、粉砕物をルツボに仕込み、次いで溶解させて凝固させることにより、本発明の酸化物セラミックス複合材料を製造する。別の方法として、上記溶解物を所定の温度に保持した後ルツボに鋳込み、冷却して凝固体を得る方法も採用することができる。   Subsequently, the melted product is charged into the crucible as it is, or the melted product is once solidified and then pulverized, and the ground product is charged into the crucible and then melted and solidified to solidify the oxide of the present invention. Manufacture ceramic composite materials. As another method, it is possible to employ a method in which the melt is held at a predetermined temperature and then cast into a crucible and cooled to obtain a solidified body.

これらの凝固の際に、限定するわけではないが、溶解凝固の際の雰囲気圧力を制御し、また一方向凝固し結晶成長を制御することにより、構成結晶相が相互に三次元的に絡み合った或いは海島構造の組織を有し、かつ気泡又はボイド或いはコロニーのない結晶組織からなる凝固体を得ることができる。このような凝固体は、高温強度及びクリープ特性などの熱安定性のより優れた熱光起電力用エミッタ材料となる。このような凝固体を製造するためには、溶解凝固の際の雰囲気圧力として4×10Pa以下が望ましく、0.13Pa以下がより好ましい。また、一方向凝固のためにルツボの移動速度、換言すると酸化物セラミックス複合材料の成長速度として1〜100mm/時間が好ましい。 During the solidification, the constituent crystal phases are entangled three-dimensionally by controlling the atmospheric pressure at the time of dissolution and solidification, and controlling the crystal growth by solidification. Alternatively, a solidified body having a sea-island structure and a crystal structure free from bubbles, voids, or colonies can be obtained. Such a solidified body becomes an emitter material for a thermophotovoltaic material that is more excellent in thermal stability such as high-temperature strength and creep characteristics. In order to produce such a solidified body, the atmospheric pressure during dissolution and solidification is preferably 4 × 10 4 Pa or less, and more preferably 0.13 Pa or less. Further, the moving speed of the crucible for unidirectional solidification, in other words, the growth speed of the oxide ceramic composite material is preferably 1 to 100 mm / hour.

熱光起電力発電用エミッタ材料が、Alと一般式(Tm Er1- Al12で表わされる複合酸化物とから構成される凝固体(0.05≦y≦0.5)の場合も、各構成元素の酸化物を原料として用いて、前記Alと(YbEr1−xAl12との凝固体の製造方法と同様な方法で製造することができる。
The emitter material for thermophotovoltaic power generation is a solidified body (0.05 ≦ y ≦ 0.05) composed of Al 2 O 3 and a composite oxide represented by the general formula (Tm x Er 1 -x ) 3 Al 5 O 12 In the case of 0.5), a method similar to the method for producing a solidified body of Al 2 O 3 and (Yb x Er 1-x ) 3 Al 5 O 12 using an oxide of each constituent element as a raw material Can be manufactured.

本発明に係る凝固体を選択エミッタとして使用するには、エミッタ材料として必要な形状、例えば、薄膜の場合には、一方向凝固法で製造したバルク素材を切断し薄片化すればよい。また、ファイバー状の素材が必要であれば、溶解ルツボの底に所定の穴をあけて、その穴からメルトを引き出しながらファイバー化する方法やメルトに所定の空隙を有した管を浸漬し、毛細管現象によってファイバー化する方法を採用すればよい。いずれの方法によっても、融液からの凝固プロセスであって、その凝固過程を制御することにより、2種類の酸化物結晶が3次元的に複雑に絡み合ったユニークな組織構造を有した高温特性の優れたエミッタ材料を得ることが可能である。   In order to use the solidified body according to the present invention as a selective emitter, in the case of a shape necessary as an emitter material, for example, in the case of a thin film, a bulk material manufactured by a unidirectional solidification method may be cut into thin pieces. Also, if a fiber-like material is required, a capillary hole is created by making a predetermined hole in the bottom of the melting crucible and making it into a fiber while drawing the melt from the hole, or immersing a tube having a predetermined gap in the melt. A method of forming a fiber according to the phenomenon may be adopted. Either method is a solidification process from a melt, and by controlling the solidification process, it has a high temperature characteristic with a unique structure in which two kinds of oxide crystals are intricately intertwined. It is possible to obtain an excellent emitter material.

また、本発明に係る凝固体を構成する2種以上の酸化物の内、Yb、Tm、Erを含まない金属酸化物相をエミッタ表面から一定の深さまで除去した表面構造にすると、TPV発電技術に用いる選択エミッタに必要な機械的強度や耐熱性を有しながら、選択的な波長での放射率を改良することができるので好ましい。   Further, when the surface structure is obtained by removing the metal oxide phase not containing Yb, Tm, and Er from the emitter surface to a certain depth among the two or more kinds of oxides constituting the solidified body according to the present invention, the TPV power generation technology It is preferable because the emissivity at a selective wavelength can be improved while having the mechanical strength and heat resistance necessary for the selective emitter used in the above.

以下に、本発明の実施例を示す。   Examples of the present invention are shown below.

(実施例1〜10)
原料としてα−Al粉末、Er粉末、Yb粉末及び/又はTm粉末を表1に示した割合でエタノール溶媒を用いた湿式ボールミルで混合し、得られたスラリーからロータリーエバポレーターを用いてエタノールを除去した。
(Examples 1 to 10)
It is obtained by mixing α-Al 2 O 3 powder, Er 2 O 3 powder, Yb 2 O 3 powder and / or Tm 2 O 3 powder as raw materials in a wet ball mill using an ethanol solvent in the ratio shown in Table 1. The ethanol was removed from the resulting slurry using a rotary evaporator.

得られた混合粉末をチャンバー内に設置されたモリブデンルツボに仕込み、0.013Paの雰囲気圧力に維持して、高周波コイルを用いてルツボを1900〜2000℃に加熱して混合粉末を溶解し、30分間保持した後に、内径40mm×高さ200mmのモリブデン鋳型に鋳込んでインゴットを作製した。得られたインゴットを外径50mm×高さ200mm×厚さ2mmのモリブデンルツボに仕込み、同一の雰囲気下において1920℃で溶解した後に、ルツボを5mm/時間の速度で下降し一方向凝固させ、φ40mm×70mmの凝固体を得た。   The obtained mixed powder was charged into a molybdenum crucible installed in the chamber, maintained at an atmospheric pressure of 0.013 Pa, and the crucible was heated to 1900-2000 ° C. using a high frequency coil to dissolve the mixed powder, 30 After holding for a minute, an ingot was produced by casting into a molybdenum mold having an inner diameter of 40 mm and a height of 200 mm. The obtained ingot was charged into a molybdenum crucible having an outer diameter of 50 mm, a height of 200 mm, and a thickness of 2 mm. After melting at 1920 ° C. in the same atmosphere, the crucible was lowered at a rate of 5 mm / hour and solidified unidirectionally, and φ40 mm A solidified body of × 70 mm was obtained.

一例として、実施例3で、このようにして得られたAlと(Yb0.2Er0.8Al12との凝固体の凝固方向に垂直な断面組織の走査型電子顕微鏡写真を図3に示す。図3において黒い部分がα−Al相で、白い部分がAl、Yb,Erから生成される複合酸化物である(Yb0.2Er0.8Al12相である。この凝固体はコロニーやポアが存在しない均一な組織を有している。 As an example, the scanning structure of the cross-sectional structure perpendicular to the solidification direction of the solidified body of Al 2 O 3 and (Yb 0.2 Er 0.8 ) 3 Al 5 O 12 obtained in this manner in Example 3 was used. An electron micrograph is shown in FIG. In FIG. 3, the black part is an α-Al 2 O 3 phase, and the white part is a composite oxide generated from Al 2 O 3 , Yb 2 O 3 , Er 2 O 3 (Yb 0.2 Er 0.8 ) 3 Al 5 O 12 phase. This solidified body has a uniform structure free from colonies and pores.

次に、得られた凝固体から、凝固方向に直角に10×10×0.3厚の薄片を切り出し、両面に鏡面研磨仕上げを施した。次に、この薄片を黒鉛製容器中に入れ、0.013Paの真空中で1600℃の温度で1時間熱処理を行い、表面部分のAl相のみを約100μm還元除去し、これを選択放射特性評価試験片とした。表1に示す試験片の高温での選択放射性能を評価するため、フーリエ分光器と標準黒体炉からなる放射強度測定装置で、放射強度スペクトルを測定した。1900Kで測定したときのAl/(YbEr1−xAl12凝固体及びAl/(Tm Er1− Al12凝固体の各放射スペクトルをそれぞれ図4及び図5に示す。この放射強度スペクトルから選択放射効率を求めた。結果を表1に示す。なお、表1において、xは、一般式(YbEr1−xAl12 、または一般式(Tm Er1− Al12中のを示す。
Next, from the obtained solidified body, a thin piece having a thickness of 10 × 10 × 0.3 was cut out at right angles to the solidification direction, and both surfaces were mirror-polished. Next, the flakes are put in a graphite vessel and heat-treated at a temperature of 1600 ° C. for 1 hour in a vacuum of 0.013 Pa to reduce and remove only the Al 2 O 3 phase on the surface portion by about 100 μm. It was set as the radiation characteristic evaluation test piece. In order to evaluate the selective radiation performance of the test piece shown in Table 1 at a high temperature, a radiation intensity spectrum was measured with a radiation intensity measuring apparatus comprising a Fourier spectrometer and a standard blackbody furnace. Radiation of Al 2 O 3 / (Yb x Er 1-x ) 3 Al 5 O 12 solidified body and Al 2 O 3 / (Tm x Er 1- x ) 3 Al 5 O 12 solidified body measured at 1900K The spectra are shown in FIGS. 4 and 5, respectively. The selective radiation efficiency was determined from this radiation intensity spectrum. The results are shown in Table 1. In Table 1, x denotes the general formula (Yb x Er 1-x) 3 Al 5 O 12 or the formula (Tm x Er 1- x) 3 Al 5 O 12 in x,.

(比較例1〜5)
原料としてα−Al粉末とEr粉末を表1に示した割合でエタノール溶媒を用いた湿式ボールミルで混合し、得られたスラリーからロータリーエバポレーターを用いてエタノールを除去した。得られた粉末を実施例と同様の方法で溶解させた後、一方向凝固させφ40mm×70mmの凝固体を得た。得られた凝固体から、実施例と同じ方法によって選択放射特性評価試験片を作製し、放射強度スペクトルを測定した。1900Kで測定したときのAl/(YbEr1−xAl12凝固体及びAl/(TmEr1−yAl12凝固体の各放射スペクトルをそれぞれ図4及び図5に示す。この放射スペクトルから選択放射効率を求めた。結果を表1に示す。
(Comparative Examples 1-5)
As raw materials, α-Al 2 O 3 powder and Er 2 O 3 powder were mixed in a wet ball mill using an ethanol solvent at a ratio shown in Table 1, and ethanol was removed from the resulting slurry using a rotary evaporator. The obtained powder was dissolved in the same manner as in the example, and then solidified in one direction to obtain a solidified body having a diameter of 40 mm × 70 mm. From the obtained solidified body, a selective radiation characteristic evaluation test piece was prepared by the same method as in the example, and a radiation intensity spectrum was measured. Al 2 O when measured at 1900K 3 / (Yb x Er 1 -x) 3 Al 5 O 12 each emission of the solidified body and Al 2 O 3 / (Tm y Er 1-y) 3 Al 5 O 12 clots The spectra are shown in FIGS. 4 and 5, respectively. The selective radiation efficiency was determined from this radiation spectrum. The results are shown in Table 1.

図4と図5に示した実施例と比較例の放射スペクトルより、凝固体中のEr濃度が低下しても直ちにErに由来する1.5μmの放射強度が低下するというわけではなく、特に、Al/(YbEr1−xAl12凝固体ではEr含有量が減少しても、少量であればむしろ強度が大きくなることがわかる。希土類元素のような固体中のイオンからの選択放射光は隣り合ったイオンとの間で発光と吸収を繰り返し、その結果としての光が表面から放射される。従って、一般的には放射強度とイオン濃度の関係はある濃度以下でしか比例関係が成り立たないし、それ以上の濃度ではいわゆる濃度消光現象が起こり放射強度は低下する。本発明でもErイオン濃度が減少したことで、かえって放射強度が増加したことがいえる。 From the radiation spectra of the examples and comparative examples shown in FIGS. 4 and 5, even if the Er concentration in the solidified body is decreased, the radiation intensity of 1.5 μm derived from Er does not immediately decrease, In the Al 2 O 3 / (Yb x Er 1-x ) 3 Al 5 O 12 solidified body, it can be seen that even if the Er content is decreased, the strength is rather increased if the amount is small. Selective radiant light from ions in a solid such as rare earth elements repeats light emission and absorption with adjacent ions, and the resulting light is emitted from the surface. Accordingly, in general, the relationship between the radiation intensity and the ion concentration is not proportional to a certain concentration or less, and at a concentration higher than that, a so-called concentration quenching phenomenon occurs and the radiation intensity decreases. In the present invention as well, it can be said that the radiation intensity increased because the Er ion concentration decreased.

また、表1より、本発明の熱光起電力発電用エミッタ材料は、ErとYb及び又はTmを含む特定の組成の凝固体とすることにより、Al/ErAl12凝固体、Al/YbAl12凝固体、Al/TmAl12凝固体、および本発明の組成範囲外のこれらの混合凝固体よりも高い選択放射効率を示し、優れた熱光起電力発電用エミッタ材料であることがわかる。 Further, from Table 1, the emitter material for thermophotovoltaic power generation of the present invention is a solidified body having a specific composition containing Er and Yb and / or Tm, so that Al 2 O 3 / Er 3 Al 5 O 12 solidified. Body, Al 2 O 3 / Yb 3 Al 5 O 12 coagulum, Al 2 O 3 / Tm 3 Al 5 O 12 coagulum, and higher selective radiation efficiency than these mixed coagulations outside the composition range of the present invention. It can be seen that this is an excellent emitter material for thermophotovoltaic power generation.

Figure 0004934986
Figure 0004934986

GaSbセルの量子効率の波長依存性を示す特性図である。It is a characteristic view which shows the wavelength dependence of the quantum efficiency of a GaSb cell. Al/ErAl12凝固体の放射スペクトル図である。A radiation spectrum of Al 2 O 3 / Er 3 Al 5 O 12 solidified body. 実施例3で得られたAl/(Yb0.2Er0.8Al5O12凝固体の凝固方向に垂直な断面組織を示す図面に代える電子顕微鏡写真である。4 is an electron micrograph in place of a drawing showing a cross-sectional structure perpendicular to the solidification direction of the Al 2 O 3 / (Yb 0.2 Er 0.8 ) 3 Al5O 12 solidified body obtained in Example 3. Al/(YbEr1−xAl12凝固体のxの値を変えたときの放射スペクトル図である。A radiation spectrum diagram when changing the value of the Al 2 O 3 / (Yb x Er 1-x) 3 Al 5 O 12 solidified body of x. Al/(Tm Er1− Al12凝固体のの値を変えたときの放射スペクトル図である。A radiation spectrum diagram when changing the value of the Al 2 O 3 / (Tm x Er 1- x) 3 Al 5 O 12 solidified body of x.

Claims (2)

熱により選択的な波長で放射光を発する熱光起電力発電用エミッタ材料であって、Alと、一般式(MEr1-xAl12で表わされるM(Mは、YbまたはTm)、ErおよびAlの複合酸化物とから構成される凝固体からなり、前記xが0.05以上0.5以下であることを特徴とする熱光起電力発電用エミッタ材料。 An emitter material for thermophotovoltaic power generation that emits radiant light at a selective wavelength by heat, which is expressed by Al 2 O 3 and M (M x Er 1-x ) 3 Al 5 O 12 represented by M (M Yb or Tm), a solidified body composed of a composite oxide of Er and Al, wherein x is 0.05 or more and 0.5 or less, and the emitter material for thermophotovoltaic power generation . 前記xが0.05以上0.4以下であることを特徴とする請求項1記載の熱光起電力発電用エミッタ材料。2. The emitter material for thermophotovoltaic power generation according to claim 1, wherein x is 0.05 or more and 0.4 or less.
JP2005119266A 2005-04-18 2005-04-18 Emitter material for thermophotovoltaic power generation Expired - Fee Related JP4934986B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005119266A JP4934986B2 (en) 2005-04-18 2005-04-18 Emitter material for thermophotovoltaic power generation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005119266A JP4934986B2 (en) 2005-04-18 2005-04-18 Emitter material for thermophotovoltaic power generation

Publications (2)

Publication Number Publication Date
JP2006298671A JP2006298671A (en) 2006-11-02
JP4934986B2 true JP4934986B2 (en) 2012-05-23

Family

ID=37467185

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005119266A Expired - Fee Related JP4934986B2 (en) 2005-04-18 2005-04-18 Emitter material for thermophotovoltaic power generation

Country Status (1)

Country Link
JP (1) JP4934986B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101029572B1 (en) 2009-12-28 2011-04-18 한국에너지기술연구원 Thermophotovoltaic generator using combustion in porous media of ceramic fiber
US9656861B2 (en) * 2014-02-13 2017-05-23 Palo Alto Research Center Incorporated Solar power harvesting system with metamaterial enhanced solar thermophotovoltaic converter (MESTC)
JP6021034B1 (en) * 2015-08-29 2016-11-02 和浩 別役 Radiation unit for thermophotovoltaic power generator and thermophotovoltaic power generator using the same
WO2017170768A1 (en) * 2016-03-31 2017-10-05 新日鐵住金株式会社 Thermo-optical conversion member

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0971416A (en) * 1995-09-06 1997-03-18 Nec Corp Crystal composition and solid laser apparatus produced by using the composition
JP2000272955A (en) * 1999-03-26 2000-10-03 Ube Ind Ltd Selective emitter material of rare earth
JP2002368239A (en) * 2001-06-07 2002-12-20 Toyota Motor Corp Photoelectric converter for thermo-optic generation

Also Published As

Publication number Publication date
JP2006298671A (en) 2006-11-02

Similar Documents

Publication Publication Date Title
US10544363B2 (en) Ceramic emitter
Li et al. Efficient perovskite solar cells enabled by ion-modulated grain boundary passivation with a fill factor exceeding 84%
CN109851377B (en) Laser-induced high-temperature solid-phase reaction for generating A2B2O7Method for forming thermal barrier coating material
JP6238149B2 (en) New compound semiconductors and their utilization
JP4934986B2 (en) Emitter material for thermophotovoltaic power generation
Li et al. Synthesis of highly sinterable Yb: SrF2 nanopowders for transparent ceramics
KR101673315B1 (en) Thermoelectric materials and their manufacturing method
WO2016208174A1 (en) Ceramic, method for producing same, emitter and thermophotovoltaic power generator
Ke et al. Suppressing photoinduced phase segregation in mixed halide perovskites
JP2000272955A (en) Selective emitter material of rare earth
JP6775841B2 (en) New compound semiconductors and their utilization
US20090087370A1 (en) Method and material for purifying iron disilicide for photovoltaic application
CN100447308C (en) Calcium dopped Ta-Ga garnet crystal prepn process and use
WO2018100653A1 (en) Ceramic, method for producing same, infrared radiation article, emitter, and thermo-photovoltaic power generator
Zhang et al. Effect of melting times on the down-shifting properties in Ce 3+-doped oxyfluoride glass ceramics for a-Si solar cells
JP6862937B2 (en) p-type thermoelectric material
KR101717750B1 (en) Compound semiconductors comprising hetero metal and oxide and method for fabricating the same
JP6609069B2 (en) New compound semiconductors and their utilization
JP6683376B2 (en) New compound semiconductor and its utilization
Zampiva Rare-earth doped forsterite: anti-reflection coating with upconversion properties as solar capture solution
KR101755559B1 (en) Compound semiconductors comprising hetero metal and method for fabricating the same
Xiong Enhancing CIGS Solar Cell Performance by Down Conversion
Jun-Jie et al. Infrared-to-green upconversion luminescence and mechanism of Ho3+, Nd3+ and Yb3+ ions in oxyfluoride glass ceramics
Sedov et al. Luminescent Ce-based nanoparticles embedded into polycrystalline diamond matrix: synthesis and optical properties
CN114188433A (en) h-BN photoelectric conversion device capable of being excited by near infrared light and preparation method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100402

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110419

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110616

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120124

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120206

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150302

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees