JP4934738B2 - High temperature steam turbine plant - Google Patents

High temperature steam turbine plant Download PDF

Info

Publication number
JP4934738B2
JP4934738B2 JP2010116013A JP2010116013A JP4934738B2 JP 4934738 B2 JP4934738 B2 JP 4934738B2 JP 2010116013 A JP2010116013 A JP 2010116013A JP 2010116013 A JP2010116013 A JP 2010116013A JP 4934738 B2 JP4934738 B2 JP 4934738B2
Authority
JP
Japan
Prior art keywords
turbine
temperature
vht
steam
boiler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010116013A
Other languages
Japanese (ja)
Other versions
JP2010174904A (en
Inventor
晋也 今野
英治 齊藤
雅樹 北村
淳 岩崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2010116013A priority Critical patent/JP4934738B2/en
Publication of JP2010174904A publication Critical patent/JP2010174904A/en
Application granted granted Critical
Publication of JP4934738B2 publication Critical patent/JP4934738B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)

Description

本発明は、主蒸気温度が675℃以上、出力が100MW以上の高温蒸気タービン発電プラントに関する。   The present invention relates to a high-temperature steam turbine power plant having a main steam temperature of 675 ° C. or higher and an output of 100 MW or higher.

蒸気タービン発電プラントの発電効率を向上させるためには、主蒸気温度の向上が有効である。現在は主蒸気温度が600℃を超えた蒸気タービン発電プラントが商用運転されており、主蒸気温度650℃クラスの蒸気タービンの開発が進められている。また、更なる効率向上をめざして、主蒸気温度を700℃以上とした蒸気タービンの開発も進められている。   In order to improve the power generation efficiency of the steam turbine power plant, it is effective to improve the main steam temperature. At present, a steam turbine power plant having a main steam temperature exceeding 600 ° C. is in commercial operation, and a steam turbine having a main steam temperature of 650 ° C. is being developed. Development of a steam turbine with a main steam temperature of 700 ° C. or higher is also being promoted with the aim of further improving efficiency.

主蒸気温度700℃以上を目指した蒸気タービンにおいては、従来、ロータ材に用いられてきた鉄鋼材料の耐用温度が650℃程度であるため、ロータ材などをNi基超合金にする必要がある。Ni基超合金は、鉄鋼材料と比較して強度は高いが高価であり、また、大型鍛造品の製作が困難である。現在、大型鍛造品の製作に優れたNi基超合金の開発・選定および実証作業が進められており、一部のNi基超合金では重量が10tonクラスの鍛造品の製作が可能な見通しが得られている。しかし、一般的な大型蒸気タービンのロータの重量は30〜40tonである。このため、複数の鍛造材を溶接により連結してロータとする溶接ロータ方式が検討されている。また、温度が高い部分だけを分割して、小型の高温タービンとするトップタービン形式が検討されている(例えば、特許文献1参照)。   In a steam turbine aiming at a main steam temperature of 700 ° C. or higher, since the service temperature of steel materials conventionally used for rotor materials is about 650 ° C., it is necessary to make the rotor materials etc. Ni-based superalloys. Ni-base superalloys are high in strength but expensive compared to steel materials, and it is difficult to produce large forgings. Currently, the development, selection and demonstration of Ni-base superalloys that excel in the production of large forgings are underway, and some Ni-base superalloys are expected to be able to produce forgings with a weight of 10 tons. It has been. However, the weight of a general large steam turbine rotor is 30 to 40 tons. For this reason, a welded rotor system in which a plurality of forged materials are connected by welding to form a rotor has been studied. Further, a top turbine type in which only a portion having a high temperature is divided into a small high-temperature turbine has been studied (for example, see Patent Document 1).

E.Saito,et al.,”Development of the Ultra-Supersritical Steam Turbine for Large Coal-fired Power Plants”,Proc.Power-Gen International,(2004)E. Saito, et al., “Development of the Ultra-Supersritical Steam Turbine for Large Coal-fired Power Plants”, Proc. Power-Gen International, (2004).

主蒸気温度700℃以上を目指した蒸気タービンプラントでは、Ni基超合金を用いてタービンやボイラの高温部を形成する技術に加え、従来の鉄鋼材料と比べて高価であるNi、更には一部のNi基超合金に多く含まれている高価なCo,Moの使用量を少なくすることが大きな課題である。   In a steam turbine plant aiming at a main steam temperature of 700 ° C or higher, Ni is more expensive than conventional steel materials, in addition to the technology of forming high-temperature parts of turbines and boilers using Ni-base superalloys. Reducing the amount of expensive Co and Mo contained in a large amount of Ni-base superalloys is a major issue.

溶接ロータ方式では、30〜40tonのロータを全てNi基超合金にすると、Ni使用量が膨大となるため、温度の高い部位(約10ton相当)を超合金とし、温度の低い部位を12Cr鋼などの鉄鋼材料として、両部位を接合する必要がある。温度の高い部位は、重量がせいぜい10ton程度であるから、Ni使用量を減らすことができる。   In the welded rotor system, if all 30-40 ton rotors are made of Ni-based superalloys, the amount of Ni used becomes enormous, so the high temperature part (equivalent to about 10 tonnes) is superalloy, and the low temperature part is 12Cr steel, etc. As a steel material, it is necessary to join both parts. Since the portion having a high temperature weighs about 10 tons at most, the amount of Ni used can be reduced.

しかし、異種材料の接合となるため、高温長時間の使用において、材料間の組成の違いによって起こる元素の拡散により、接合部が変質するため、信頼性の確保が難しい。また、鋼としては高温強度に優れたフェライト鋼が使用されることになるが、フェライト鋼とNi基超合金では、Ni基超合金の熱膨張係数の方が大きく、両者の熱膨張係数が異なることによって、接合時の熱応力による割れ、使用時の熱応力による疲労破壊が問題となる可能性がある。このため、熱膨張の小さいNi基超合金を用いる必要がある。   However, since bonding of dissimilar materials occurs, the bonding portion is deteriorated by diffusion of elements caused by a difference in composition between materials in use at a high temperature for a long time, so it is difficult to ensure reliability. Also, ferritic steel with excellent high-temperature strength will be used as the steel, but the ferritic steel and the Ni-base superalloy have a larger thermal expansion coefficient than the Ni-base superalloy, and the thermal expansion coefficients of the two differ. As a result, cracks due to thermal stress during joining and fatigue failure due to thermal stress during use may become a problem. For this reason, it is necessary to use a Ni-base superalloy having a small thermal expansion.

Ni基超合金の中にはFeを多く含みながらも高強度を有するNi−Fe基超合金が存在する。しかし、Feは線膨張係数を大きくするため、Ni−Fe基超合金は溶接ロータ材としては好ましくない。Ni基超合金の線膨張係数をフェライト鋼と同程度にするためには、安価なFeを添加しないことに加えて、熱膨張を小さくするMoを多く添加する必要がある。   Among Ni-base superalloys, there are Ni-Fe-base superalloys having high strength while containing a large amount of Fe. However, since Fe increases the coefficient of linear expansion, Ni—Fe based superalloys are not preferred as welded rotor materials. In order to make the linear expansion coefficient of the Ni-base superalloy similar to that of ferritic steel, in addition to not adding inexpensive Fe, it is necessary to add a large amount of Mo that reduces thermal expansion.

Moを多く含むNi基超合金は、溶接ロータ材として適しているが、安価なFeを含まず、Niよりも高価なMoを多く含むため、コスト的に問題である。トップタービン形式では、溶接部がないため信頼性が高く、また、低コストのNi−Fe基超合金を使用することができるが、タービンが一基増えることによるコストアップが問題である。   A Ni-base superalloy containing a large amount of Mo is suitable as a welded rotor material, but it does not contain cheap Fe and contains a lot of Mo that is more expensive than Ni. In the top turbine type, since there is no welded portion, the reliability is high and a low-cost Ni—Fe base superalloy can be used. However, the cost increase due to the addition of one turbine is a problem.

次に、蒸気タービンに供給する高圧蒸気を生成するボイラ側の課題について述べる。   Next, problems on the boiler side that generates high-pressure steam to be supplied to the steam turbine will be described.

大型蒸気タービンプラントのボイラは一般に70m以上の高さがあり、上部ほど高温となり、蒸気タービンに供給される高温高圧蒸気の配管は、ボイラ上部から地面にあるタービン建屋に引き回されるため、その長さは100m以上に及ぶことになる。   Boilers of large steam turbine plants generally have a height of 70 m or more, and the upper part is hotter, and the high temperature and high pressure steam piping supplied to the steam turbine is routed from the upper part of the boiler to the turbine building on the ground. The length will be over 100m.

主蒸気温度675℃以上の蒸気タービンプラントでは、鉄鋼材料の耐用温度が650℃程度であるため、上記の高温高圧蒸気配管はNi基超合金で製作する必要がある。この蒸気配管は600mm程度の外径、100mm程度の肉厚があり、その長さが100m以上に及ぶため、配管の総重量はタービンで使用するNi基超合金の量よりも遥かに多くなる。   In a steam turbine plant having a main steam temperature of 675 ° C. or higher, since the service temperature of the steel material is about 650 ° C., it is necessary to manufacture the high-temperature and high-pressure steam pipe using a Ni-base superalloy. This steam pipe has an outer diameter of about 600 mm and a thickness of about 100 mm, and its length reaches 100 m or more. Therefore, the total weight of the pipe is much larger than the amount of Ni-base superalloy used in the turbine.

また、ボイラ材としては、700℃以下の主蒸気温度では、Ni基超合金としてはコスト、製造性に優れたHR6WなどのNi−Fe基超合金を使用できるが、700℃以上では強度の優れたIN617などの固溶強化型Ni基超合金、720℃以上ではさらに強度特性に優れたNimonic263などの析出強化型Ni基超合金を使用する必要がある。IN617やNimonic263などは、コストが高いだけでなく、製造性が悪いため、600mm程度の外径を有する長尺配管の製作が不可能である。したがって、外径の小さい複数の配管で高温高圧の蒸気をボイラ建屋からタービン建屋に供給する必要があるが、配管を複数化した場合、流量面積あたりの重量が増えるため、配管重量が増し、これにより、さらにコストが増大する。   In addition, as a boiler material, at a main steam temperature of 700 ° C. or lower, Ni—Fe base superalloys such as HR6W, which are excellent in cost and manufacturability, can be used as Ni base superalloys. In addition, it is necessary to use a solid solution strengthened Ni-base superalloy such as IN617, and a precipitation strengthened Ni-base superalloy such as Nimonic 263 having excellent strength characteristics at 720 ° C. or higher. IN617, Nimonic 263, etc. are not only high in cost but also poor in manufacturability, so it is impossible to produce a long pipe having an outer diameter of about 600 mm. Therefore, it is necessary to supply high-temperature and high-pressure steam from the boiler building to the turbine building using multiple pipes with small outer diameters.However, when multiple pipes are used, the weight per flow area increases, which increases the pipe weight. This further increases the cost.

このような背景から、タービン建屋とボイラ建屋間の配管を短くすることを目的に、縦型のボイラを横に倒す試みがなされているが、燃焼効率が下がることと、設置面積が大幅に増えることが問題である。   Against this background, attempts have been made to lay down the vertical boiler sideways for the purpose of shortening the piping between the turbine building and the boiler building, but the combustion efficiency decreases and the installation area increases significantly. That is a problem.

本発明の目的は、信頼性とコストを両立し、燃焼効率に優れた縦型ボイラから構成される主蒸気温度675℃以上、出力100MW以上の高温蒸気タービン発電プラントを提供することである。   An object of the present invention is to provide a high-temperature steam turbine power plant having a main steam temperature of 675 ° C. or more and an output of 100 MW or more, which is composed of a vertical boiler having both reliability and cost and excellent combustion efficiency.

本発明では、主蒸気温度675℃以上、出力100MW以上の高温蒸気タービンプラントについて、トップタービン形式とし、以下のように構成にした。   In the present invention, a high-temperature steam turbine plant having a main steam temperature of 675 ° C. or more and an output of 100 MW or more is set as a top turbine type and configured as follows.

すなわち、上部にVHT(Very high temperature)タービンが設置された縦型ボイラを含むボイラ建屋と、地面を基礎として設置されたタービン建屋とを備え、VHTタービンの入口温度が675℃以上、出口温度が550℃以上650℃以下であり、縦型ボイラの上部にVHTタービンが設置され、VHTタービンと、ボイラ建屋とタービン建屋間の高圧配管とを合わせた総Ni当量が4トン以下である。   In other words, a boiler building including a vertical boiler with a VHT (Very high temperature) turbine installed at the top, and a turbine building installed on the ground, the inlet temperature of the VHT turbine is 675 ° C. or more, and the outlet temperature is It is 550 degreeC or more and 650 degrees C or less, the VHT turbine is installed in the upper part of a vertical boiler, and the total Ni equivalent combining the VHT turbine and the high pressure piping between a boiler building and a turbine building is 4 tons or less.

本発明により、コストおよび信頼性を両立する高効率な高温蒸気タービンプラントを提供することができた。   According to the present invention, it is possible to provide a high-efficiency high-temperature steam turbine plant that achieves both cost and reliability.

本発明の一実施例による高温蒸気タービンプラントの概略構成図である。It is a schematic block diagram of the high temperature steam turbine plant by one Example of this invention. 本発明の他の実施例による高温蒸気タービンプラントの概略構成図である。It is a schematic block diagram of the high temperature steam turbine plant by the other Example of this invention. 高温蒸気タービンプラントの参考例を示した概略構成図である。It is the schematic block diagram which showed the reference example of the high temperature steam turbine plant. 高温蒸気タービンプラントの従来例を示した概略構成図である。It is the schematic block diagram which showed the prior art example of the high temperature steam turbine plant. 高温蒸気タービンプラントの別の従来例を示した概略構成図である。It is the schematic block diagram which showed another conventional example of the high temperature steam turbine plant. 高温蒸気タービンプラントの比較例を示した概略構成図である。It is the schematic block diagram which showed the comparative example of the high temperature steam turbine plant. 別の比較例による高温蒸気タービンプラントの概略構成図である。It is a schematic block diagram of the high temperature steam turbine plant by another comparative example. 他の比較例による高温蒸気タービンプラントの概略構成図である。It is a schematic block diagram of the high temperature steam turbine plant by another comparative example.

VHTタービンは、トップタービンを意味する。ボイラ建屋とタービン建屋間の最も高圧な蒸気配管の材質をフェライト鋼またはFeを50重量%以上含むオーステナイト鋼とするためには、これらの材料の耐用温度上限が650℃であるため、VHTタービンの出口温度を650℃以下にしなくてはならない。これにより、従来はNi基超合金で製作していたタービン建屋とボイラ建屋間の最も高圧な蒸気配管を鉄鋼材料で製作できるため、Niの使用量が大幅に低減できる。   A VHT turbine means a top turbine. In order to make the material of the highest pressure steam pipe between the boiler building and the turbine building be ferritic steel or austenitic steel containing 50% by weight or more of Fe, since the upper limit of the service temperature of these materials is 650 ° C., the VHT turbine The outlet temperature must be below 650 ° C. As a result, the highest pressure steam pipe between the turbine building and the boiler building, which has been conventionally made of a Ni-base superalloy, can be made of a steel material, so that the amount of Ni used can be greatly reduced.

ただし、耐用温度が630℃を超えるフェライト鋼は、溶解および鍛造コストが高いため、後流の配管やタービンロータのコストを考慮すると、VHTタービン出口温度を630℃以下とすることが好ましい。   However, ferritic steel having a service temperature exceeding 630 ° C. has high melting and forging costs. Therefore, considering the costs of the downstream piping and the turbine rotor, the VHT turbine outlet temperature is preferably 630 ° C. or lower.

高い信頼性を得るためには、VHTタービンをNi基超合金での一体型にすることが望ましい。しかし、Ni基超合金では10tonを大きく上回る鍛造品の製作は困難であり、VHTタービンの大きさには限界がある。VHTタービンの出口温度を低くすると、タービン段落数が増え、ロータも長くなり重量が増す。VHTタービンの出口温度を高くすると、ロータが短くなり重量も軽くなる。Ni基超合金の製造限界から、Ni基超合金での一体型VHTタービンでは、入口温度を690〜720℃とし、出口温度を600℃以上、620℃以下とすることが望ましい。   In order to obtain high reliability, it is desirable to integrate the VHT turbine with a Ni-base superalloy. However, it is difficult to produce a forged product greatly exceeding 10 tons with a Ni-base superalloy, and the size of the VHT turbine is limited. When the outlet temperature of the VHT turbine is lowered, the number of turbine stages increases, the rotor becomes longer, and the weight increases. Increasing the outlet temperature of the VHT turbine shortens the rotor and reduces the weight. From the production limit of Ni-base superalloys, it is desirable that the inlet temperature is 690 to 720 ° C. and the outlet temperature is 600 ° C. or higher and 620 ° C. or lower in an integrated VHT turbine made of Ni-base superalloy.

Ni基超合金の製造限界を超える長さのロータについては、出口温度が620℃以下となるためフェライト鋼を溶接するのがよい。しかし、この場合、一体型であればNi含有量の少ないNi−Fe基超合金を使用できるが、溶接ロータではNiだけでなく、高価なMoを多く含むNi基超合金を使用する必要があるため、コストアップとなる。超合金同士を溶接し長さを稼ぐ方法もあるが、超合金が増えた分だけNi使用量が増え、コストアップとなる。   For the rotor having a length exceeding the production limit of the Ni-base superalloy, the outlet temperature is 620 ° C. or lower, so it is preferable to weld ferritic steel. However, in this case, a Ni—Fe base superalloy with a low Ni content can be used if it is an integral type, but it is necessary to use not only Ni but also a Ni base superalloy containing a large amount of expensive Mo in the welding rotor. Therefore, the cost increases. There is also a method of increasing the length by welding the superalloys, but the amount of Ni used increases as the superalloy increases, resulting in an increase in cost.

620℃以下の蒸気であれば、フェライト鋼製の配管でボイラ建屋にあるフェライト製のタービンに送り仕事をさせることが好ましい。ただし、主蒸気温度が700℃を大きく超え、10tonクラスの鍛造品からなるロータで、出口温度を630℃以上650℃以下にできない場合は、超合金の鍛造品同士を溶接してロータ長さを稼ぎ、出口温度を630℃〜650℃以下にする必要がある。すなわち、VHTタービンの入口温度が720℃以上、出口温度が630℃〜650℃であって、超合金同士の溶接ロータで製作される上記のVHTから構成される高温蒸気タービンプラントも本発明の範疇である。本発明では、タービン建屋内のタービンは最高圧の蒸気入口温度が550〜600℃であり、現在商用運転中の主蒸気温度550〜600℃クラスの蒸気タービンプラントと同等の構造であることから、主蒸気温度550〜600℃クラスの蒸気タービンプラントを700℃級にリプレースするのにも適しており、このようなリプレースされた蒸気タービンプラントについても本発明の範疇である。   If it is steam of 620 ° C. or lower, it is preferable to feed the ferritic turbine in the boiler building with a ferritic steel pipe. However, if the main steam temperature exceeds 700 ° C and the rotor is made of a 10 ton class forged product and the outlet temperature cannot be made 630 ° C or higher and 650 ° C or lower, the superalloy forged products are welded together to increase the rotor length. It is necessary to make the outlet temperature 630 ° C. to 650 ° C. or less. That is, a high-temperature steam turbine plant composed of the above-described VHT having a VHT turbine inlet temperature of 720 ° C. or higher and an outlet temperature of 630 ° C. to 650 ° C. manufactured by a superalloy welded rotor is also within the scope of the present invention. It is. In the present invention, the turbine in the turbine building has a maximum pressure steam inlet temperature of 550 to 600 ° C., and has a structure equivalent to a steam turbine plant having a main steam temperature of 550 to 600 ° C. currently in commercial operation. It is also suitable to replace a steam turbine plant having a main steam temperature of 550 to 600 ° C. class to a 700 ° C. class, and such a replaced steam turbine plant is also within the scope of the present invention.

出力500MWクラス、主蒸気温度700℃の一段再熱式蒸気タービンプラントに本発明を適用した場合の例を、参考例、比較例とともに以下に示す。   An example in which the present invention is applied to a one-stage reheat steam turbine plant with an output of 500 MW class and a main steam temperature of 700 ° C. is shown below together with a reference example and a comparative example.

表1は、本実施例の蒸気タービンプラントのVHTタービン、HPタービン、タービン建屋とボイラ建屋間の高圧配管に用いた材料の組成(重量%)とNi当量を示す。本発明ではコストと信頼性を両立することが目的であるため、高価なNiの使用量を最小化する必要がある、Niの他、超合金にはMo,Co,Wなどの高価な元素を含む場合があるため、表1に示すNi当量を超合金の素材費指標とした。表2には総Ni当量を示した。   Table 1 shows the composition (% by weight) and Ni equivalent of the materials used for the VHT turbine, HP turbine, high-pressure piping between the turbine building and the boiler building of the steam turbine plant of this example. Since the object of the present invention is to achieve both cost and reliability, it is necessary to minimize the amount of expensive Ni used. In addition to Ni, the superalloy contains expensive elements such as Mo, Co, and W. In some cases, the Ni equivalent shown in Table 1 was used as the material cost index of the superalloy. Table 2 shows the total Ni equivalent.

Figure 0004934738
Figure 0004934738

Figure 0004934738
Figure 0004934738

図4は、溶接ロータによりHPタービンを構成した場合の従来例であり、従来Aとする。この構成の蒸気タービンプラントにおいて、溶接ロータ41に用いる超合金は、フェライト鋼と線膨張係数の近い超合金Aである。高圧配管16についても、高温高圧であるため強度と加工性のバランスから超合金Aを用いる必要がある。この場合の高圧配管およびHPタービンのNi当量の総和は54.6トン(ton)である。   FIG. 4 shows a conventional example in which an HP turbine is configured by a welding rotor, and is assumed to be a conventional A. In the steam turbine plant having this configuration, the superalloy used for the welding rotor 41 is superalloy A having a linear expansion coefficient close to that of ferritic steel. Since the high-pressure pipe 16 is also high-temperature and high-pressure, it is necessary to use the superalloy A from the balance between strength and workability. In this case, the sum of the Ni equivalents of the high-pressure piping and the HP turbine is 54.6 tons.

図5は、トップタービン形式の蒸気タービンプラントの従来例であり、従来Bとする。
この場合、溶接構造をとらないため、VHTタービン51に用いる材料は、フェライト鋼と線膨張係数を合わせる必要はなく、Feを多く含み製造性にも優れている超合金Bを使用することができる。この場合のNi当量は49.5であり、従来Aより小さな値となるが、タービンが一基増えることによるコスト増が問題となる。
FIG. 5 shows a conventional example of a top turbine type steam turbine plant.
In this case, since a welded structure is not used, the material used for the VHT turbine 51 does not need to match the linear expansion coefficient with that of ferritic steel, and a superalloy B that is rich in Fe and excellent in manufacturability can be used. . In this case, the Ni equivalent is 49.5, which is smaller than the conventional value A, but there is a problem of an increase in cost due to the addition of one turbine.

図1は本発明の一実施例であり、本発明A1とする。本発明A1の蒸気タービプラントは、上部にVHTタービン12と発電機13が設置された縦型ボイラ11を含むボイラ建屋14と、地面を基礎として設置されたタービン建屋15とから構成される。縦型ボイラ11の上部にVHTタービン11が設置され、さらに、VHTタービン11と連結された発電機13が設置される。VHTタービン12の入口温度を650℃以下とすることにより、従来は超合金を50ton程度使用していたタービン建屋15とボイラ建屋14間の高圧配管16をフェライト鋼に代えている。   FIG. 1 shows an embodiment of the present invention, which is referred to as the present invention A1. The steam turbine plant of the present invention A1 includes a boiler building 14 including a vertical boiler 11 in which a VHT turbine 12 and a generator 13 are installed at an upper portion, and a turbine building 15 installed on the ground. A VHT turbine 11 is installed on top of the vertical boiler 11, and a generator 13 connected to the VHT turbine 11 is further installed. By setting the inlet temperature of the VHT turbine 12 to 650 ° C. or less, the high-pressure pipe 16 between the turbine building 15 and the boiler building 14 that conventionally used a superalloy of about 50 tons is replaced with ferritic steel.

本発明A1では、出口温度を610℃としていることから、高圧配管16には鋼C、HPタービン17のロータには鋼Aを用いることができる。   In the present invention A1, since the outlet temperature is 610 ° C., steel C can be used for the high-pressure pipe 16 and steel A can be used for the rotor of the HP turbine 17.

VHTタービン12の入口温度と出口温度の差が大きくなると、VHTタービンの全長が長くなり、ロータの重量が増すため、超合金Aおよび超合金Bの製造限界である10tonを超え、一体構造では製作できなくなる。本発明A1でのVHTタービンロータ重量は、超合金Bの製造限界を越えないぎりぎりの重量であり、一体構造のVHTタービンロータである。この場合の総Ni当量は4であり、従来Aおよび従来Bと比較して大幅に低い値となっている。従来Aと比較すると、Ni当量は50ton以上低減されており、小型タービン一基、小型発電機一基が増えるコストデメリットを補ってあまりがあり、従来Aよりもコスト的に優れており、また、回転部に溶接部を含まないことから信頼性も高い。   When the difference between the inlet temperature and the outlet temperature of the VHT turbine 12 increases, the total length of the VHT turbine becomes longer and the weight of the rotor increases, so that the production limit of the superalloy A and the superalloy B exceeds 10 tons. become unable. The weight of the VHT turbine rotor in the present invention A1 is a marginal weight that does not exceed the production limit of the superalloy B, and is a VHT turbine rotor having an integral structure. In this case, the total Ni equivalent is 4, which is significantly lower than those of Conventional A and Conventional B. Compared with the conventional A, the Ni equivalent is reduced by 50 tons or more, and there is much to compensate for the cost disadvantage of increasing one small turbine and one small generator, which is superior in cost to the conventional A, Since the rotating part does not include the welded part, the reliability is high.

図2は、本発明A1よりもVHTタービン12の出口温度を高くした場合であり、本発明A2とする。フェライト鋼は650℃程度まで使用できるとされているが、620℃を超える温度で使用するためには、CoやBを添加する必要があり、これにより、素材コスト、製造コストが上昇する。鋼Bは長時間使用時に強度劣化が生じる傾向が強く、620℃程度での鋼Aの信頼性と、630℃を超える温度での鋼Bの信頼性を比較すると、鋼Aが優れている。   FIG. 2 shows a case where the outlet temperature of the VHT turbine 12 is higher than that of the present invention A1, and is referred to as the present invention A2. It is said that ferritic steel can be used up to about 650 ° C. However, in order to use it at a temperature exceeding 620 ° C., it is necessary to add Co and B, which increases material cost and manufacturing cost. Steel B has a strong tendency to deteriorate in strength when used for a long time. Steel A is superior when the reliability of steel A at about 620 ° C. and the reliability of steel B at a temperature exceeding 630 ° C. are compared.

本発明A2では、VHT出口温度が620℃を超えているため、高圧配管16およびHPタービン17のロータにCoおよびBが添加された鋼Bを用いる。本発明A2では、超合金BをVHTタービン12に用い、出口温度が本発明A1よりも高いためロータ全長が短くなり、ロータ重量が軽くなるため、超合金の使用量が減り、総Ni当量は本発明A1よりも低くなる。   In the present invention A2, since the VHT outlet temperature exceeds 620 ° C., steel B in which Co and B are added to the rotor of the high-pressure pipe 16 and the HP turbine 17 is used. In the present invention A2, the superalloy B is used for the VHT turbine 12, and since the outlet temperature is higher than that of the present invention A1, the total length of the rotor is shortened and the rotor weight is lightened. It becomes lower than the present invention A1.

しかし、重量が大きい高圧配管やHPタービンに、フェライト鋼としてはコストが高く、鋼Aと比較すると長時間信頼性の低いB鋼を用いる必要があるため、本発明A1の方がコストおよび信頼性の点では優れている。   However, for high-pressure pipes and HP turbines that are heavy in weight, the ferritic steel is expensive, and it is necessary to use B steel, which is less reliable for a long time compared to steel A. Therefore, the present invention A1 is more costly and reliable. Is excellent in terms of.

図3は、VHTタービンの入口温度を730℃と高くした場合であり、参考例とする。高圧配管16およびHPタービン17の材質をコストと信頼性を両立する鋼Aおよび鋼Cとするためには、VHTタービンの出口温度を630℃以下にする必要がある。この場合、VHTタービンの全長が長くなり、超合金Bの一体構造とはできない。また、超合金Bは730℃では強度不足となるため、温度の高い部分に超合金Cを溶接接合して、溶接ロータ構造のVHTタービン30とする。この場合の総Ni量は、約14tonとなり、VHTタービン入口温度を700℃とした従来Aおよび従来Bよりも大幅に低い値となっている。   FIG. 3 shows a case where the inlet temperature of the VHT turbine is increased to 730 ° C. and is used as a reference example. In order to make the material of the high-pressure pipe 16 and the HP turbine 17 into steel A and steel C that achieve both cost and reliability, the outlet temperature of the VHT turbine needs to be 630 ° C. or lower. In this case, the total length of the VHT turbine becomes long, and the superalloy B cannot be integrated. Further, since the superalloy B has insufficient strength at 730 ° C., the superalloy C is welded to the high temperature portion to form the VHT turbine 30 having a welded rotor structure. The total amount of Ni in this case is about 14 tons, which is a value significantly lower than those of Conventional A and Conventional B in which the VHT turbine inlet temperature is 700 ° C.

本発明A1および本発明A2と比較すると、Ni当量はやや高い値となっているが、VHTタービン入口温度が30℃上がることによる効率向上を考慮すれば、参考例も十分に有効な構成であると言える。   Compared with the present invention A1 and the present invention A2, the Ni equivalent is a slightly high value, but considering the improvement in efficiency due to a 30 ° C. increase in the VHT turbine inlet temperature, the reference example is also a sufficiently effective configuration. It can be said.

図6に示した比較例1は、VHTタービンの出口温度を675℃とした場合であり、この場合、高圧配管16は超合金、HPタービンは超合金とフェライト鋼の溶接構造とする必要があるため、総Ni当量は従来Aおよび従来Bと同程度となり、小型発電機が増えるコストを考えると、全く効果がない。   Comparative Example 1 shown in FIG. 6 is a case where the outlet temperature of the VHT turbine is 675 ° C. In this case, the high-pressure pipe 16 needs to be a superalloy, and the HP turbine needs to be a welded structure of superalloy and ferritic steel. Therefore, the total Ni equivalent is about the same as that of Conventional A and Conventional B, and there is no effect at all considering the cost of increasing the number of small generators.

図7に示した比較例2は、VHTタービの出口温度を500℃まで下げた場合である。
この場合、VHTタービンロータが大型となり、超合金Aと鋼Aの溶接ロータとなる。フェライト鋼と超合金の溶接構造となるが、総Ni当量は本発明A1、本発明A2と比べて、高い値となりメリットがない。また、VHTタービンの総重量が増すことから、ボイラ上部に設置するには補強等のコストが伴うこととなる。このような理由から、VHTタービンの出口温度は550℃以上としなくてはならない。
Comparative Example 2 shown in FIG. 7 is a case where the outlet temperature of the VHT turbine is lowered to 500 ° C.
In this case, the VHT turbine rotor becomes large and becomes a welded rotor of superalloy A and steel A. Although a welded structure of ferritic steel and superalloy is formed, the total Ni equivalent is higher than that of the present invention A1 and the present invention A2, and there is no merit. In addition, since the total weight of the VHT turbine increases, the installation of the boiler on the top of the boiler involves costs such as reinforcement. For this reason, the VHT turbine outlet temperature must be 550 ° C. or higher.

図8に示した比較例3は、HPタービンを全てボイラ上に上げた場合であるが、HPタービンは150tonを超す重量の構造物であることから、ボイラ上部に設置するのは不可能であり、現実的でない。   Although the comparative example 3 shown in FIG. 8 is a case where all HP turbines are raised on the boiler, since the HP turbine is a structure having a weight exceeding 150 tons, it cannot be installed on the upper part of the boiler. Is not realistic.

以上の結果から、本発明の有効性が明らかである。   From the above results, the effectiveness of the present invention is clear.

本発明によれば、信頼性とコストを両立し、燃焼効率に優れた縦型ボイラから構成される主蒸気温度675℃以上、出力100MW以上の高温蒸気タービン発電プラントを構成することができるので、今後の高温、高出力発電プラントに適用される可能性が高い。   According to the present invention, a high-temperature steam turbine power plant having a main steam temperature of 675 ° C. or more and an output of 100 MW or more, which is composed of a vertical boiler having both reliability and cost and excellent combustion efficiency, can be configured. It is likely to be applied to future high-temperature, high-output power plants.

11…縦型ボイラ、12…VHTタービン、13…発電機、14…ボイラ建屋、15…タービン建屋、16…高圧配管、17…HPタービン、30…溶接ロータ構造のVHTタービン。   DESCRIPTION OF SYMBOLS 11 ... Vertical boiler, 12 ... VHT turbine, 13 ... Generator, 14 ... Boiler building, 15 ... Turbine building, 16 ... High pressure piping, 17 ... HP turbine, 30 ... VHT turbine of welding rotor structure.

Claims (3)

上部にVHTタービンが設置された縦型ボイラを含むボイラ建屋と、地面を基礎として設置され、前記VHTタービンで仕事をした蒸気を第1の蒸気配管を介して得る第1タービンと、該第1タービンで仕事をした蒸気を前記ボイラ建屋内の縦型ボイラで再加熱した後第2の蒸気配管を介して得る第2タービンと、第1タービンと第2タービンにより駆動される第1の発電機を含むタービン建屋とを備え、前記VHTタービンの入口温度が675℃以上、出口温度が550℃以上650℃以下であり、前記縦型ボイラの上部に前記VHTタービンおよびこのVHTタービンと連結された第2の発電機が設置され、
前記VHTタービンと、前記ボイラ建屋と前記タービン建屋間の高圧配管とを合わせた総Ni当量が4トン以下であることを特徴とする高温蒸気タービンプラント。
A boiler building including a vertical boiler with a VHT turbine installed on the top, a first turbine installed on the ground and working with the VHT turbine through a first steam pipe, the first turbine; A first turbine driven by the first turbine and the second turbine, which is obtained by reheating the steam worked in the turbine through a second steam pipe after being reheated by the vertical boiler in the boiler building; The VHT turbine has an inlet temperature of 675 ° C. or higher, an outlet temperature of 550 ° C. or higher and 650 ° C. or lower, and is connected to the VHT turbine and the VHT turbine at an upper portion of the vertical boiler . 2 generators are installed,
A high-temperature steam turbine plant characterized in that a total Ni equivalent of the VHT turbine and the boiler building and the high-pressure piping between the turbine building is 4 tons or less.
前記VHTタービンが、蒸気流路に溶接接合部を含まない一体型のNi基超合金製ロータから構成され、入口温度が690℃〜720℃、出口温度が600〜620℃である請求項1記載の高温蒸気タービンプラント。   The said VHT turbine is comprised from the rotor made from an integrated Ni base superalloy which does not include a welding joint part in a steam flow path, The inlet_port | entrance temperature is 690 to 720 degreeC, and outlet temperature is 600 to 620 degreeC. High temperature steam turbine plant. 前記縦型ボイラと前記VHTタービン間の蒸気流路が外径300mm以下の複数の配管からなり、その材質が析出強化型Ni基超合金である、主蒸気温度が700℃以上の請求項1記載の高温蒸気タービンプラント。   2. The main steam temperature of 700 ° C. or more, wherein a steam flow path between the vertical boiler and the VHT turbine is composed of a plurality of pipes having an outer diameter of 300 mm or less, and a material thereof is a precipitation strengthened Ni-base superalloy. High temperature steam turbine plant.
JP2010116013A 2010-05-20 2010-05-20 High temperature steam turbine plant Expired - Fee Related JP4934738B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010116013A JP4934738B2 (en) 2010-05-20 2010-05-20 High temperature steam turbine plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010116013A JP4934738B2 (en) 2010-05-20 2010-05-20 High temperature steam turbine plant

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2007106019A Division JP4520481B2 (en) 2007-04-13 2007-04-13 High temperature steam turbine plant

Publications (2)

Publication Number Publication Date
JP2010174904A JP2010174904A (en) 2010-08-12
JP4934738B2 true JP4934738B2 (en) 2012-05-16

Family

ID=42706082

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010116013A Expired - Fee Related JP4934738B2 (en) 2010-05-20 2010-05-20 High temperature steam turbine plant

Country Status (1)

Country Link
JP (1) JP4934738B2 (en)

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4928728A (en) * 1972-07-13 1974-03-14
JPS6149788A (en) * 1984-08-15 1986-03-11 Hitachi Ltd Steam turbine
US5002839A (en) * 1989-10-16 1991-03-26 Westinghouse Electric Corp. Hardfacing processes for valve components
JP3582848B2 (en) * 1994-03-14 2004-10-27 株式会社東芝 Steam turbine power plant
JPH11335786A (en) * 1998-05-20 1999-12-07 Nkk Corp Clad steel pipe
JP3898847B2 (en) * 1998-12-01 2007-03-28 株式会社竹中工務店 Thermal power plant
JP3628201B2 (en) * 1999-01-28 2005-03-09 株式会社日立製作所 Thermal power plant
JP2000288738A (en) * 1999-04-06 2000-10-17 Babcock Hitachi Kk Structure in welded joint of high chrominum ferrite steel
JP3095745B1 (en) * 1999-09-09 2000-10-10 三菱重工業株式会社 Ultra high temperature power generation system
JP3733884B2 (en) * 2001-08-29 2006-01-11 住友金属工業株式会社 High chromium ferritic heat resistant steel pipe and method for producing the same
JP2003106110A (en) * 2001-09-28 2003-04-09 Hitachi Ltd Power generating plant
JP4123064B2 (en) * 2003-06-13 2008-07-23 株式会社日立製作所 Steam turbine rotor and steam turbine plant
JP4509664B2 (en) * 2003-07-30 2010-07-21 株式会社東芝 Steam turbine power generation equipment
JP2005315122A (en) * 2004-04-27 2005-11-10 Toshiba Corp Steam turbine
JP4607736B2 (en) * 2004-11-05 2011-01-05 株式会社日立製作所 Boiling water reactor
JP4783053B2 (en) * 2005-04-28 2011-09-28 株式会社東芝 Steam turbine power generation equipment

Also Published As

Publication number Publication date
JP2010174904A (en) 2010-08-12

Similar Documents

Publication Publication Date Title
JP4520481B2 (en) High temperature steam turbine plant
US8911880B2 (en) Rotor of rotating machine and method of manufacturing the rotor
KR101207147B1 (en) Ni-BASE ALLOY-HIGH CHROMIUM STEEL STRUCTURE AND PROCESS FOR PRODUCING THE Ni-BASE ALLOY-HIGH CHROMIUM STEEL STRUCTURE
CN105066096A (en) Header of ultra supercritical boiler unit at 700 DEG C
CN105066098A (en) Header of 620-DEG C steam parameter ultra supercritical unit boiler
CN105066099A (en) Collecting box of ultra 620-DEG C steam parameter ultra supercritical unit boiler
CN105003902A (en) Header of ultra supercritical unit boiler in above 620 DEG C
Liu et al. The Chinese 700° C A-USC development program
Wright et al. Materials issues for turbines for operation in ultra-supercritical steam
JP5610445B2 (en) Turbine blade, turbine rotor and steam turbine using the same
JP4934738B2 (en) High temperature steam turbine plant
CN101802349B (en) Steam turbine equipment
Blum et al. Development of a PF fired high efficiency power plant (AD700)
CN101809252B (en) Steam turbine equipment
Susta et al. Supercritical and ultra-supercritical power plants-SEA’s vision or reality
EP2698215A1 (en) Method for manufacturing high temperature steam pipes
JP4995317B2 (en) Rotor for low pressure turbine
CN104481618B (en) High-parameter ultra-supercritical steam turbine generator unit
JP2010249050A (en) Steam turbine and steam turbine installation
CN105736069A (en) Method for efficiency improvement and renovation of coal-fired thermal power generating unit
CN202756028U (en) Ultra-supercritical 1300-millon-watt (MW) steam turbine
CN105066104A (en) Boiler header tube base of 620-DEG C steam parameter unit
JP4745129B2 (en) Steam turbine and steam turbine plant
Ashmore Supercritical technology.
Marriott Future materials requirements for high temperature power engineering components

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110621

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110803

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120124

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120220

R150 Certificate of patent or registration of utility model

Ref document number: 4934738

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150224

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees