JP4932774B2 - Proton conductor and method for producing proton conductor - Google Patents

Proton conductor and method for producing proton conductor Download PDF

Info

Publication number
JP4932774B2
JP4932774B2 JP2008100251A JP2008100251A JP4932774B2 JP 4932774 B2 JP4932774 B2 JP 4932774B2 JP 2008100251 A JP2008100251 A JP 2008100251A JP 2008100251 A JP2008100251 A JP 2008100251A JP 4932774 B2 JP4932774 B2 JP 4932774B2
Authority
JP
Japan
Prior art keywords
proton conductor
transition metal
amorphous
hydrogen phosphate
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008100251A
Other languages
Japanese (ja)
Other versions
JP2009252582A (en
Inventor
宏 福岡
雄之 窪田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hiroshima University NUC
Original Assignee
Hiroshima University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hiroshima University NUC filed Critical Hiroshima University NUC
Priority to JP2008100251A priority Critical patent/JP4932774B2/en
Publication of JP2009252582A publication Critical patent/JP2009252582A/en
Application granted granted Critical
Publication of JP4932774B2 publication Critical patent/JP4932774B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Conductive Materials (AREA)
  • Fuel Cell (AREA)

Description

本発明は、燃料電池の電解質などに利用可能なプロトン伝導体に関し、特に100〜350℃の中温度領域で高いプロトン伝導度を示すリン酸塩系のプロトン伝導体に関する。   The present invention relates to a proton conductor that can be used for an electrolyte of a fuel cell, and more particularly, to a phosphate proton conductor that exhibits high proton conductivity in an intermediate temperature range of 100 to 350 ° C.

次世代エネルギー貯蔵システムとしての燃料電池の開発において、安定で高性能な電解質材料の開発が非常に大きな比重を占めている。既にこれまでに500℃以上の高温や、100℃以下の低温で高いプロトン伝導度を有する電解質材料が開発されている。100℃以下の温度で使用される電解質材料としては、固体高分子形燃料電池に使用されるフッ素樹脂系イオン交換膜がよく知られている。500℃以上の高温で使用される固体電解質としては、BaCe0.80.23−aのようなプロベスカイト型金属酸化物が500℃よりも高い温度で高いイオン伝導度を示す。しかしながら、最もエネルギー効率が高く、想定される使用環境に近い100〜350℃の中温度領域で高いプロトン伝導度を示す固体電解質材料は、まだほとんどなく、現在高性能な固体電解質材料の開発が精力的に続けられている。 In the development of a fuel cell as a next-generation energy storage system, the development of a stable and high-performance electrolyte material occupies a very large proportion. So far, electrolyte materials having high proton conductivity at high temperatures of 500 ° C. or higher and low temperatures of 100 ° C. or lower have been developed. As an electrolyte material used at a temperature of 100 ° C. or less, a fluororesin-based ion exchange membrane used for a polymer electrolyte fuel cell is well known. As a solid electrolyte used at a high temperature of 500 ° C. or higher, a probeskite-type metal oxide such as BaCe 0.8 Y 0.2 0 3-a exhibits high ionic conductivity at a temperature higher than 500 ° C. However, there are few solid electrolyte materials that have the highest energy efficiency and high proton conductivity in the medium temperature range of 100 to 350 ° C., which is close to the assumed usage environment, and the development of high-performance solid electrolyte materials is currently active. Has been continued.

例えば100℃以上の乾燥雰囲気中においても高いプロトン伝導性を示すプロトン伝導性材料として、ホスホシリケートゲル又はシリカゲルにリン酸金属塩を添加したプロトン伝導性組成物(例えば特許文献1参照)、結晶性リン酸金属塩をメカニカルミリングにより処理して結晶性の一部を乱すと共にフリーのリン酸を生成させることによってプロトン伝導度を向上させたリン酸金属塩を主成分とするプロトン伝導性材料(例えば特許文献2参照)などのリン酸塩系の材料が開発されている。
特開2004−55181号公報 特許3916139号公報
For example, as a proton conductive material exhibiting high proton conductivity even in a dry atmosphere of 100 ° C. or higher, a proton conductive composition in which a metal phosphate is added to phosphosilicate gel or silica gel (see, for example, Patent Document 1), crystallinity Proton-conducting materials based on metal phosphates that have a metal phosphate as a main component that has been processed by mechanical milling to disturb the crystallinity and generate free phosphoric acid to improve proton conductivity (for example, Phosphate-based materials such as Patent Document 2) have been developed.
JP 2004-55181 A Japanese Patent No. 3916139

従来の固体電解質は、構造中にトンネルや層間といったナノ空間を構築し、そこを伝導パスにするという思想で設計された結晶質化合物が主であるが、このような固体電解質は、大きな空間を創生することの困難さに加え、高温下で合成する必要があることから多くのエネルギーを必要とし、製造コストが高くなる。また従来のリン酸塩系の固体電解質材料においては、リン酸分が溶出しフレームを腐食させる場合もある。このような状況下、簡便な製造方法で安価に製造することが可能な、100〜350℃の中温度領域において高いプロトン伝導度を有するプロトン伝導体の開発が待たれている。   Conventional solid electrolytes are mainly crystalline compounds designed with the idea of constructing nanospaces such as tunnels and interlayers in the structure and using them as conductive paths, but such solid electrolytes have a large space. In addition to the difficulty of creation, since it is necessary to synthesize at a high temperature, a lot of energy is required and the manufacturing cost becomes high. Further, in the conventional phosphate-based solid electrolyte material, the phosphoric acid component may be eluted and corrode the frame. Under such circumstances, development of a proton conductor having high proton conductivity in an intermediate temperature range of 100 to 350 ° C., which can be produced at low cost by a simple production method, is awaited.

本発明の目的は、安価に製造可能で100〜350℃の中温度領域で高いプロトン伝導度を有するプロトン伝導体を提供することである。また簡便な方法で100〜350℃の中温度領域で高いプロトン伝導度を有するプロトン伝導体を製造可能なプロトン伝導体の製造方法を提供する。   An object of the present invention is to provide a proton conductor that can be manufactured at low cost and has high proton conductivity in the intermediate temperature range of 100 to 350 ° C. Moreover, the manufacturing method of the proton conductor which can manufacture the proton conductor which has high proton conductivity in a medium temperature range of 100-350 degreeC by a simple method is provided.

請求項1に記載の本発明は、一般式(1)で示される非晶質又は非晶質を主体とする遷移金属リン酸水素塩を主成分とするプロトン伝導体であり、前記リン酸水素塩が、トリポリリン酸水素塩、ピロリン酸水素塩又は縮合リン酸水素塩であり、前記遷移金属が、ルテニウム又はクロムであることを特徴とするプロトン伝導体。
・・・(1)
(ここで、Mは金属、a,b,c,dは自然数)
The present invention according to claim 1 is a proton conductor mainly composed of an amorphous or amorphous transition metal hydrogen phosphate represented by general formula (1), wherein the hydrogen phosphate salts, tripolyphosphate hydrogen carbonates, hydrogen carbonates or condensed hydrogen phosphate der pyrophosphate is, the transition metal, a proton conductor, which is a ruthenium or chromium.
H a M b P c O d (1)
(Where M is a metal, a, b, c and d are natural numbers)

請求項2に記載の本発明は、請求項1に記載のプロトン伝導体において、前記遷移金属に代え、前記遷移金属が、ルテニウムとクロム及び/又は鉄であることを特徴とする。 According to a second aspect of the present invention, in the proton conductor according to the first aspect, the transition metal is ruthenium and chromium and / or iron instead of the transition metal .

請求項3に記載の本発明は、請求項1又は請求項2に記載のプロトン伝導体において、粒界のないガラス状の材料からなることを特徴とする。 According to a third aspect of the present invention, in the proton conductor according to the first or second aspect, the proton conductor is made of a glass-like material having no grain boundary .

求項に記載の本発明は、請求項1又は請求項2に記載のプロトン伝導体の製造方法であって、水と遷移金属原料とリン酸とを混合、加熱し、脱水、縮合反応により前記プロトン伝導体を得る製造工程を含み、前記遷移金属原料は、遷移金属の硝酸塩、炭酸塩、酢酸塩又はハロゲン化塩であり、前記リン酸は、オルトリン酸、ピロリン酸又は縮合リン酸であり、前記遷移金属とリンとの割合が、モル比で1:2〜1:4であることを特徴とするプロトン伝導体の製造方法である。 The present invention described in Motomeko 4 is a method for producing a proton conductor according to claim 1 or claim 2, the water and the transition metal raw material and phosphoric acid mixture, heated, dehydration condensation reaction includes a manufacturing step of obtaining the protons Den conductors by, the transition metal raw material, nitrates of the transition metals, carbonates, an acid salt or halide salt, the phosphoric acid is orthophosphoric acid, pyrophosphoric acid or condensed phosphoric acid And the ratio of the transition metal to phosphorus is 1: 2 to 1: 4 in molar ratio.

請求項に記載の本発明は、請求項3に記載のプロトン伝導体の製造方法であって、非晶質又は非晶質を主体とする遷移金属リン酸水素塩を主成分とする材料を粉砕した後、粉砕物をバインダーを使用することなく成形し所定の形状を有する成形物を得る第一工程と、前記成形物の形状を維持した状態で水分を加える第二工程と、第二工程後の水分を含む成形物を乾燥させる第三工程と、を含むことを特徴とするプロトン伝導体の製造方法である。 The present invention according to claim 5 is a method for producing the proton conductor according to claim 3, wherein the material is mainly composed of amorphous or transition metal hydrogen phosphate mainly composed of amorphous material. After the pulverization, the first step of forming the pulverized product without using a binder to obtain a molded product having a predetermined shape, the second step of adding moisture while maintaining the shape of the molded product, and the second step And a third step of drying the molded product containing water later, and a method for producing a proton conductor.

請求項に記載の本発明は、請求項に記載のプロトン伝導体の製造方法において、さらに前記第三工程の後、当該プロトン伝導体を使用する温度と同一又は略同一の温度で焼成する第四工程を含むことを特徴とする。 According to a sixth aspect of the present invention, in the method for producing a proton conductor according to the fifth aspect , after the third step, firing is performed at the same or substantially the same temperature as the temperature at which the proton conductor is used. A fourth step is included.

本発明のプロトン伝導体は、非晶質又は非晶質を主体とする遷移金属リン酸水素塩を主成分とするプロトン伝導体であり、100〜350℃の中温度領域で高いプロトン伝導度を有する。また合成温度も低く、製造方法も簡便であり安価に製造することができる。また、本発明のプロトン伝導体は、非晶質ゆえに成形も容易であり、さらに本発明のプロトン伝導体の製造方法を用いることで、簡単に粒界のないガラス状の材料とすることが可能で、これにより更にプロトン伝導性に優れたプロトン伝導体を得ることができる。   The proton conductor of the present invention is a proton conductor mainly composed of amorphous or amorphous transition metal hydrogen phosphate, which has a high proton conductivity in a medium temperature range of 100 to 350 ° C. Have. In addition, the synthesis temperature is low, the production method is simple, and the production can be performed at low cost. Further, since the proton conductor of the present invention is amorphous, it can be easily molded, and by using the method for producing a proton conductor of the present invention, it is possible to easily form a glassy material without grain boundaries. Thus, a proton conductor having further excellent proton conductivity can be obtained.

本発明のプロトン伝導体は、一般式H(ここで、Mは金属、a,b,c,dは自然数)で示される非晶質又は非晶質を主体とする遷移金属リン酸水素塩を主成分とするプロトン伝導体である。 The proton conductor of the present invention is mainly composed of an amorphous or amorphous material represented by the general formula H a M b P c O d (where M is a metal, and a, b, c, and d are natural numbers). It is a proton conductor mainly composed of a transition metal hydrogen phosphate.

本発明のプロトン伝導体は、非晶質又は非晶質を主体とする遷移金属リン酸水素塩であるので、全てが非晶質からなる遷移金属リン酸水素塩のみならず、大部分が非晶質の遷移金属リン酸水素塩であってもよい。一方、一部のみが非晶質の遷移金属リン酸水素塩は含まれない。非晶質のリン酸水素塩は特定のリン酸水素塩に限定されるものではなく、トリポリリン酸水素塩、ピロリン酸水素塩が例示される。トリポリリン酸は、リン酸が3つ縮合した強酸性を示すポリ酸であり、3価の金属と二水素塩を形成しやく、これらトリポリリン酸水素塩は、非晶質構造をとりやすいので、トリポリリン酸水素塩を本発明のプロトン伝導体として好適に使用することができる。また、本発明のプロトン伝導体は、リン酸水素塩とあるように、水素を全く含まないリン酸塩は本発明に含まれない。   Since the proton conductor of the present invention is an amorphous or amorphous transition metal hydrogen phosphate mainly composed of amorphous, not only the transition metal hydrogen phosphate, which is entirely amorphous, but mostly non-crystalline. It may be a crystalline transition metal hydrogen phosphate. On the other hand, transition metal hydrogen phosphates that are only partially amorphous are not included. The amorphous hydrogen phosphate is not limited to a specific hydrogen phosphate, and examples thereof include tripolyhydrogen phosphate and hydrogen pyrophosphate. Tripolyphosphoric acid is a polyacid showing strong acidity with three phosphoric acids condensed, and easily forms a dihydrogen salt with a trivalent metal. These tripolyphosphoric acid salts easily form an amorphous structure. An oxyhydrogen salt can be suitably used as the proton conductor of the present invention. Further, the proton conductor of the present invention does not include a phosphate containing no hydrogen at all, such as hydrogen phosphate.

非晶質のリン酸水素塩が高いプロトン伝導度を示す理由は、次のように推察される。非晶質とは隣接原子との短距離秩序は保ちつつ、長距離秩序の無い状態を言う。非晶質のトリポリリン酸水素塩は、3つのPO4四面体の中距離秩序を持った物質であり、この中距離秩序内ではプロトンは自由に移動することができ、さらに非晶質となることでトリポリリン酸イオン間のパスが形成され、プロトンの拡散が容易に起こると考えられる。プロトンの場合、他のイオンに比べて大きさが極端に小さいため、他のイオン伝導体とは異なり大きなトンネルや層間は必要なく、プロトンが移動するためのパスが繋がっていればよいと考えられる。トンネル構造や層状構造をもつ結晶質の物質では、このパスが特定の方向にのみ繋がっていて、プロトンはそこしか通ることができない。しかしながら非晶質の固体中では、構造中の隙間が多く、プロトンが通るためのパスが無数に存在すると考えられ、これにより高いプロトン伝導度を示すものと推察される。   The reason why amorphous hydrogen phosphate exhibits high proton conductivity is presumed as follows. Amorphous means a state without long-range order while maintaining short-range order with adjacent atoms. Amorphous tripolyphosphate is a substance with three PO4 tetrahedron medium-range order, and protons can move freely within this medium-range order. It is considered that a path between tripolyphosphate ions is formed, and proton diffusion occurs easily. In the case of protons, the size is extremely small compared to other ions, so unlike other ion conductors, there is no need for large tunnels or layers, and it is considered that a path for protons to move is connected. . In a crystalline substance having a tunnel structure or a layered structure, this path is connected only in a specific direction, and protons can pass only there. However, in an amorphous solid, there are many gaps in the structure, and it is considered that there are an infinite number of paths through which protons pass, and it is assumed that this shows high proton conductivity.

遷移金属リン酸水素塩の遷移金属は、2〜4価の酸化状態をとる遷移金属であって、100〜350℃の温度において、そのリン酸水素塩が非晶質又は大部分が非晶質状態で安定的に存在し得る金属であることが好ましい。遷移金属が、白金族に属する金属であることがより好ましく、ルテニウムがさらに好ましい。本発明のプロトン伝導体は、100〜350℃の温度で使用することを予定しているため、この温度領域において、非晶質又は大部分が非晶質状態で安定的に存在し得る遷移金属を使用することで、安定した性能を得ることができる。また、白金族に属する遷移金属のリン酸水素塩は、プロトン伝導性に優れ、特にルテニウムのリン酸水素塩は、非晶質度が高く、プロトン伝導性に優れる。   The transition metal hydrogen phosphate is a transition metal that takes a divalent to tetravalent oxidation state, and at a temperature of 100 to 350 ° C., the hydrogen phosphate is amorphous or mostly amorphous. A metal that can exist stably in a state is preferable. The transition metal is more preferably a metal belonging to the platinum group, and ruthenium is even more preferable. Since the proton conductor of the present invention is intended to be used at a temperature of 100 to 350 ° C., in this temperature region, a transition metal that can stably exist in an amorphous state or mostly in an amorphous state. By using, stable performance can be obtained. In addition, transition metal hydrogen phosphates belonging to the platinum group have excellent proton conductivity, and particularly ruthenium hydrogen phosphate has high amorphousness and excellent proton conductivity.

遷移金属リン酸水素塩の遷移金属は、必ずしも一種類の遷移金属のみからなる必要はなく、2種類以上の遷移金属を含有する遷移金属リン酸水素塩であってもよい。例えば、ルテニムとクロム、ルテニウムと鉄、ルテニムとクロムと鉄とを含む遷移金属リン酸水素塩
が例示される。クロム及び鉄は、ルテニウムに比較して価格も安いので、ルテニウムのほかにクロム、鉄を添加することで安価に製造することができる。
The transition metal of the transition metal hydrogen phosphate is not necessarily composed of only one type of transition metal, and may be a transition metal hydrogen phosphate containing two or more types of transition metals. Examples thereof include transition metal hydrogen phosphates containing ruthenium and chromium, ruthenium and iron, ruthenium, chromium and iron. Since chromium and iron are cheaper than ruthenium, they can be manufactured at low cost by adding chromium and iron in addition to ruthenium.

また本発明のプロトン伝導体は、遷移金属リン酸水素塩のみからなるものに限定されず、遷移金属リン酸水素塩を主成分とすればよく、これらに悪影響を及ぼさないケイ酸塩、ホウ酸塩、硫酸塩、硝酸塩などが含まれていてもよい。   In addition, the proton conductor of the present invention is not limited to those composed only of transition metal hydrogen phosphate, but may be composed mainly of transition metal hydrogen phosphate, and silicates and boric acid that do not adversely affect these. Salts, sulfates, nitrates and the like may be included.

また、本発明のプロトン伝導体は、粒界のないガラス状の形態とすることで、さらにプロトン伝導度が高まる。粒界のないガラス状の形態のプロトン伝導体は、後述の方法で簡単に製造することができる。一般的に本発明のような固体電解質は、合成時、粉体状の形態となることが多い。粉体状のプロトン伝導体を加圧成形しただけでは、粒子間の抵抗が大きく、プロトン伝導度が低下する。また取扱いも不便である。このため一般的にバインダー等を用いて成形するか、高温で焼成して成形する方法が採られるが、バインダーを使用する方法では、別途、使用する温度に適したバインダーが必要となりコスト高となる。さらにバインダーと固体電解質との間に結合不良が発生すると、プロトン伝導度を十分に高くすることができない。また高温で焼成して成形する方法では、割れ等の対策が必要であり、温度が高いため多くの時間、エネルギーを要する。これに対して、本発明のプロトン伝導体は、バインダーを使用することなく、比較的低温で粒界のないガラス状の形態とすることができるので、安価に又短時間に製造することができる。   Moreover, the proton conductor of the present invention is further increased in proton conductivity by adopting a glassy form without grain boundaries. The proton conductor in the form of glass without grain boundaries can be easily produced by the method described below. In general, a solid electrolyte as in the present invention is often in the form of a powder during synthesis. If the powdery proton conductor is simply molded by pressure, the resistance between the particles is large and the proton conductivity is lowered. Moreover, handling is also inconvenient. For this reason, generally a method of molding using a binder or the like, or a method of molding by baking at a high temperature is employed, but a method using a binder requires a binder suitable for the temperature to be used separately, resulting in high cost. . Furthermore, if poor bonding occurs between the binder and the solid electrolyte, the proton conductivity cannot be sufficiently increased. Moreover, in the method of baking and molding at a high temperature, it is necessary to take measures such as cracking, and since the temperature is high, a lot of time and energy are required. On the other hand, the proton conductor of the present invention can be produced in a glassy form without a grain boundary at a relatively low temperature without using a binder, and can be manufactured at a low cost and in a short time. .

次に本発明のプロトン伝導体の製造方法の第一実施形態を示す。
水と遷移金属原料とリン酸と混合し、所定の温度、所定の時間加熱し反応させる。これにより非晶質又は非晶質を主体とする遷移金属リン酸水素塩を主成分とするプロトン伝導体を得ることができる。遷移金属原料としては、遷移金属の硝酸塩、炭酸塩、酢酸塩、ハロゲン化塩を使用することができる。2種以上の遷移金属を含むリン酸水素塩を製造する場合には、該当する2種以上の遷移金属を含む原料を使用すればよい。硫酸塩は、SOが残存しやすいので好ましくない。無水物は反応性が悪いので、水和物が好ましい。粉末状の遷移金属原料を使用する場合は、粒子径が小さいほど好ましい。遷移金属原料は、予め水に溶解させた状態で使用してもよい。リン酸としては、オルトリン酸、ピロリン酸を好適に使用可能であり、縮合リン酸を使用することも可能である。これらリン酸は水に溶解させた水溶液として使用してもよい。水は、イオン交換水、純水を使用することができる。水と遷移金属原料とリン酸とは均一状態にすることが好ましく、粉末状の遷移金属原料にリン酸水溶液を加えることで、簡単に水と遷移金属原料とリン酸とを均一状態とすることができる。
Next, a first embodiment of the method for producing a proton conductor of the present invention is shown.
Water, a transition metal raw material, and phosphoric acid are mixed and reacted by heating at a predetermined temperature for a predetermined time. As a result, it is possible to obtain a proton conductor mainly composed of an amorphous or transition metal hydrogen phosphate mainly composed of amorphous. As the transition metal raw material, nitrates, carbonates, acetates and halides of transition metals can be used. In the case of producing a hydrogen phosphate containing two or more transition metals, a raw material containing two or more corresponding transition metals may be used. Sulfates are not preferred because SO 4 tends to remain. Hydrates are preferred because anhydrides have poor reactivity. When a powdered transition metal raw material is used, the smaller the particle diameter, the better. You may use a transition metal raw material in the state previously dissolved in water. As phosphoric acid, orthophosphoric acid and pyrophosphoric acid can be suitably used, and condensed phosphoric acid can also be used. These phosphoric acids may be used as an aqueous solution dissolved in water. As the water, ion-exchanged water or pure water can be used. It is preferable that water, the transition metal raw material, and phosphoric acid are in a uniform state. By adding a phosphoric acid aqueous solution to the powdered transition metal raw material, water, the transition metal raw material, and phosphoric acid can be easily made uniform. Can do.

遷移金属原料とリン酸との混合割合は、遷移金属とリンとの割合が、モル比1:2〜1:4が好ましい。また水の添加量は、リンに対して0.5〜10当量が好ましい。   As for the mixing ratio of the transition metal raw material and phosphoric acid, the molar ratio of the transition metal and phosphorus is preferably 1: 2 to 1: 4. The amount of water added is preferably 0.5 to 10 equivalents relative to phosphorus.

水と遷移金属原料とリン酸との混合物の加熱は、電気炉等を用いて所定の温度で所定の時間行う。加熱は、不活性ガス雰囲気下で行うことが好ましい。短時間の空気中での加熱、あるいは酸素濃度の低い雰囲気下での加熱も可能であるが、長時間、空気中で加熱を行うと、金属酸化物が増えるので好ましくない。金属酸化物は夾雑物として作用する。   Heating the mixture of water, the transition metal raw material, and phosphoric acid is performed at a predetermined temperature for a predetermined time using an electric furnace or the like. Heating is preferably performed in an inert gas atmosphere. Heating in air for a short time or heating in an atmosphere with a low oxygen concentration is possible, but heating in air for a long time is not preferable because the metal oxide increases. The metal oxide acts as a contaminant.

水と遷移金属原料とリン酸との混合、加熱に伴い脱水、縮合反応が起こり、ガス及び水蒸気が発生する。例えば遷移金属原料に金属塩化物を使用すると塩化水素ガスが発生する。この塩化水素ガスは反応初期段階に多く、反応後半では水蒸気が主となる。加熱温度(反応温度)は重要であり、遷移金属がクロムの場合、200〜350℃の温度が好ましく、280℃がより好ましい。200℃以下では、脱水、縮合反応が十分に進行せず、遷移金属リン酸水素塩の形成が不十分となる。一方、350℃を越えると結晶化が進むので好ましくない。遷移金属がルテニウムの場合、180〜350℃の温度が好ましく、350℃がより好ましい。ルテニウムは、反応速度が遅く、温度を高くしても結晶化しにくいので、高い温度で加熱することが好ましい。   Mixing and heating of water, transition metal raw material, and phosphoric acid cause dehydration and condensation reactions to generate gas and water vapor. For example, when a metal chloride is used as a transition metal raw material, hydrogen chloride gas is generated. This hydrogen chloride gas is abundant in the initial stage of the reaction, and steam is mainly used in the second half of the reaction. The heating temperature (reaction temperature) is important. When the transition metal is chromium, a temperature of 200 to 350 ° C is preferable, and 280 ° C is more preferable. Below 200 ° C., dehydration and condensation reactions do not proceed sufficiently and the formation of transition metal hydrogen phosphate is insufficient. On the other hand, if it exceeds 350 ° C., crystallization proceeds, which is not preferable. When the transition metal is ruthenium, a temperature of 180 to 350 ° C is preferable, and 350 ° C is more preferable. Since ruthenium has a slow reaction rate and is difficult to crystallize even at a high temperature, it is preferably heated at a high temperature.

加熱時間は、適宜、遷移金属リン酸水素塩が形成されるに必要な時間加熱すればよい。例えば、遷移金属がルテニウムの場合、所定の温度に到達した時点から0〜350時間加熱することで、非晶質のルテニウムリン酸水素塩を得ることができる。加熱時間が短いとフリーのリン酸及び水が残存しやすい。遷移金属がクロムの場合、所定の温度に到達した後8〜10時間の加熱で非晶質のクロムリン酸水素塩を得ることができる。遷移金属が鉄の場合、例えば1時間で450℃程度まで加熱した後、急冷することで非晶質の鉄リン酸水素塩を得ることができる。なお、ルテニウム、クロムの場合には、加熱操作終了後、必ずしも急冷する必要はなく徐冷してもよい。   The heating time may be appropriately heated as long as necessary to form the transition metal hydrogen phosphate. For example, when the transition metal is ruthenium, an amorphous ruthenium hydrogen phosphate can be obtained by heating for 0 to 350 hours after reaching a predetermined temperature. If the heating time is short, free phosphoric acid and water tend to remain. When the transition metal is chromium, an amorphous chromium hydrogen phosphate can be obtained by heating for 8 to 10 hours after reaching a predetermined temperature. In the case where the transition metal is iron, for example, amorphous iron hydrogen phosphate can be obtained by heating to about 450 ° C. in one hour and then rapidly cooling. In the case of ruthenium or chromium, it is not always necessary to rapidly cool after the heating operation, and may be gradually cooled.

水と遷移金属原料とリン酸とを金ボートなどの容器に入れ、混合、加熱した場合、粒界を有する多孔質状の非晶質又は非晶質を主体とする遷移金属リン酸水素塩を主成分とする生成物が得られる。これらを燃料電池のプロトン伝導体等として使用する場合には、必要に応じて粉砕し、所定の形状に加圧成形などして使用すればよい。   When water, a transition metal raw material, and phosphoric acid are put into a container such as a gold boat, mixed, and heated, the porous amorphous metal having a grain boundary or a transition metal hydrogen phosphate mainly composed of amorphous is obtained. A product with the main component is obtained. When these are used as a proton conductor or the like of a fuel cell, they may be used by pulverizing as necessary and pressing them into a predetermined shape.

次に本発明のプロトン伝導体の製造方法の第二実施形態として、粒界のない所定の形状を有するガラス状のプロトン伝導体の第一の製造方法を示す。
図1は、粒界のない所定の形状を有するガラス状のプロトン伝導体の製造方法を示すフローチャートである。第一ステップ(S1)として、非晶質又は非晶質を主体とする遷移金属リン酸水素塩を主成分とする材料を粉砕した後、バインダーを使用することなく所定の形状に成形し、成形物を得る。非晶質又は非晶質を主体とする遷移金属リン酸水素塩を主成分とする材料は、例えば第一実施形態に示した製造方法で製造することが可能であり、当該材料は、後に粉砕するため粒界、割れ、気泡を有するものであってもよい。成形物の成形は、例えば、粉砕物を型に入れ、これを加圧成形することで得ることができる。
Next, as a second embodiment of the method for producing a proton conductor of the present invention, a first method for producing a glassy proton conductor having a predetermined shape without grain boundaries is shown.
FIG. 1 is a flowchart showing a method for producing a glassy proton conductor having a predetermined shape without grain boundaries. As the first step (S1), after pulverizing the material mainly composed of amorphous or transition metal hydrogen phosphate mainly composed of amorphous material, the material is molded into a predetermined shape without using a binder, and molded. Get things. The material mainly composed of amorphous or transition metal hydrogen phosphate mainly composed of amorphous material can be manufactured by the manufacturing method shown in the first embodiment, for example, and the material is pulverized later. Therefore, it may have grain boundaries, cracks, and bubbles. The molded product can be obtained, for example, by placing a pulverized product in a mold and press-molding it.

第二ステップ(S2)として、第一ステップ(S1)で加圧成形した成形物に、成形物の形状を維持した状態で水分を与える。成形物の形状を維持した状態で成形物に水分を与えることができれば、特定の方法に限定されない。例えば成形物を、水蒸気雰囲気下に置けばよい。この場合、高温多湿状態とすることが好ましい。これにより成形物は、形状を維持したまま水分を吸着する。この他、成形物を所定の容器に入れた状態で水を噴霧してもよい。さらに、第一ステップ(S1)で得られる粉砕物に水を加え、ペースト状とし、これを加圧成形してよい。成形物に与える水分量は少量でよく、成形物を、水蒸気雰囲気下に置いたとき、成形物の表面が潮解する程度の量でよい。さらに水分量が多くてもよいけれども、第三ステップ(S3)で乾燥処理すること、成形物の形状の維持を考えれば必要以上に多くする必要はない。   As the second step (S2), moisture is given to the molded product pressure-molded in the first step (S1) while maintaining the shape of the molded product. The present invention is not limited to a specific method as long as moisture can be given to the molded product while maintaining the shape of the molded product. For example, the molded product may be placed in a steam atmosphere. In this case, it is preferable to be in a hot and humid state. As a result, the molded article adsorbs moisture while maintaining its shape. In addition, you may spray water in the state which put the molding in the predetermined container. Furthermore, water may be added to the pulverized product obtained in the first step (S1) to form a paste, which may be pressure-molded. The amount of water given to the molded product may be small, and may be such an amount that the surface of the molded product can be deliquescent when placed in a steam atmosphere. Although the amount of moisture may be larger, it is not necessary to increase it more than necessary in consideration of the drying process in the third step (S3) and the maintenance of the shape of the molded product.

第三ステップ(S3)では、第二ステップ(S2)で得られた水分を含む成形物を形状を維持した状態で加熱乾燥させる。これにより所定の形状を有し、粒界のないガラス状の非晶質又は非晶質を主体とする遷移金属リン酸水素塩を主成分とするプロトン伝導体を得ることができる。これは第二ステップ(S2)で水を加えることにより、非晶質又は大部分が非晶質の遷移金属リン酸水素塩が部分的に加水分解を起こし、第三ステップ(S3)で脱水、縮合反応が起こり、粒界が消失するものと推察される。乾燥温度、乾燥速度は特に限定されないけれども、必要以上に乾燥速度を高めると、生成物に気泡が残存したり、割れが発生するので好ましくない。また、必要以上に高い温度で乾燥させると、非晶質又は大部分が非晶質の遷移金属リン酸水素塩が結晶化するため好ましくない。第二ステップ(S2)及び第三ステップ(S3)を併せて水蒸気処理工程と言う。   In the third step (S3), the molded product containing the water obtained in the second step (S2) is dried by heating while maintaining the shape. As a result, a proton conductor having a predetermined shape and having a transition metal hydrogen phosphate mainly composed of glassy amorphous or amorphous material having no grain boundary can be obtained. This is because, by adding water in the second step (S2), the amorphous or mostly amorphous transition metal hydrogen phosphate is partially hydrolyzed, and dehydrated in the third step (S3). It is presumed that a condensation reaction occurs and the grain boundaries disappear. Although the drying temperature and the drying speed are not particularly limited, it is not preferable to increase the drying speed more than necessary because bubbles remain in the product or cracks are generated. In addition, drying at an unnecessarily high temperature is not preferable because an amorphous or mostly amorphous transition metal hydrogen phosphate crystallizes. The second step (S2) and the third step (S3) are collectively referred to as a steam treatment process.

さらに第四ステップ(S4)として、第三ステップ(S3)で得られたガラス状の非晶質又は非晶質を主体とする遷移金属リン酸水素塩を主成分とするプロトン伝導体を実際に使用する温度、又は実際に使用する温度に近い温度で焼成してもよい。これにより性能が安定したプロトン伝導体を得ることができる。   Further, as the fourth step (S4), the proton conductor obtained by the third step (S3) is mainly composed of a transition metal hydrogen phosphate mainly composed of amorphous glass or amorphous. You may bake at the temperature used, or the temperature close | similar to the temperature actually used. Thereby, a proton conductor with stable performance can be obtained.

次に本発明のプロトン伝導体の製造方法の第三実施形態として、粒界のない所定の形状を有するガラス状のプロトン伝導体の第二の製造方法を示す。
第二実施形態に示す製造方法では、第一ステップ(S1)から第三ステップ(S3)、あるいは第四ステップ(S4)を経て、所定の形状を有するガラス状の非晶質又は非晶質を主体とする遷移金属リン酸水素塩を主成分とするプロトン伝導体の製造方法を示したけれども、ここでは、一つの工程で、所定の形状を有するガラス状の非晶質又は非晶質を主体とする遷移金属リン酸水素塩を主成分とするプロトン伝導体を得る。
Next, as a third embodiment of the method for producing a proton conductor of the present invention, a second method for producing a glassy proton conductor having a predetermined shape without grain boundaries will be described.
In the manufacturing method shown in the second embodiment, the first step (S1) through the third step (S3) or the fourth step (S4) is performed to form a glassy amorphous or amorphous material having a predetermined shape. Although a method for producing a proton conductor mainly composed of a transition metal hydrogen phosphate as a main component has been shown, here, a glassy amorphous or amorphous material having a predetermined shape is mainly formed in one step. To obtain a proton conductor composed mainly of a transition metal hydrogen phosphate.

水と遷移金属原料とリン酸とを混合した後、所定の形状を有する容器に投入し、さらにこれら混合物に、加圧焼結法、ホットプレス法と類似の要領で上部から荷重を加えながら加熱、反応させる。このとき、水と遷移金属原料とリン酸とを混合した初期は、ガスの発生量が多いため、容器上部を開放し、後半にのみ上部から荷重を加えながら加熱してもよい。さらに脱泡、脱水を促進するため、減圧状態で行ってもよい。使用する原料、加熱温度等は、第一実施形態に示した通りである。一つの工程で、所定の形状を有するガラス状の非晶質又は非晶質を主体とする遷移金属リン酸水素塩を主成分とするプロトン伝導体を得るため、気泡の残存、割れが発生しないように急激な加熱等は避けることが望ましい。   After mixing water, transition metal raw material, and phosphoric acid, it is put into a container having a predetermined shape, and further heated while applying a load to the mixture from the top in a manner similar to the pressure sintering method and hot press method. , React. At this time, since the amount of gas generated is large in the initial stage of mixing water, the transition metal raw material, and phosphoric acid, the upper part of the container may be opened and heated while applying a load from the upper part only in the second half. Furthermore, in order to accelerate defoaming and dehydration, the pressure may be reduced. The raw materials to be used, the heating temperature, etc. are as shown in the first embodiment. In one step, a glassy amorphous material having a predetermined shape or a proton conductor mainly composed of a transition metal hydrogen phosphate mainly composed of an amorphous material is obtained, so that bubbles do not remain or crack. Thus, it is desirable to avoid sudden heating.

上記の通り、本発明のプロトン伝導体は、水と遷移金属原料とリン酸とを混合、加熱し反応させることで得ることができる。製造方法も簡単であり、合成温度(反応温度)も低くエネルギー消費量が少ない。また、粒界のないガラス状のプロトン伝導体も、別途バインダーを必要とせず、簡単な操作で得ることができる。特定の形状を有さず、板状で粒界のないガラス状のプロトン伝導体を製造する場合には、非晶質又は非晶質を主体とする遷移金属リン酸水素塩を主成分とする材料を粉砕した後に水分を加え、これをガラス板等で挟込み加熱すればよい。なお、本発明のプロトン伝導体の製造方法は、上記の第一実施形態から第三実施形態に限定されるものではない。   As described above, the proton conductor of the present invention can be obtained by mixing, heating, and reacting water, a transition metal raw material, and phosphoric acid. The production method is simple, the synthesis temperature (reaction temperature) is low, and the energy consumption is small. Further, a glassy proton conductor having no grain boundary can be obtained by a simple operation without requiring a separate binder. When producing a glassy proton conductor that does not have a specific shape and has no grain boundaries, it is mainly composed of an amorphous or amorphous transition metal hydrogen phosphate. Water may be added after the material is pulverized, and this may be sandwiched between glass plates and heated. In addition, the manufacturing method of the proton conductor of this invention is not limited to said 3rd embodiment from said 1st embodiment.

実施例1
金ボート上で粉末状の塩化ルテニウム水和物RuCl・nHO(Ru:39.010重量%、田中貴金属工業)0.354gと85重量%のリン酸水溶液HPO(シグマアルドリッチ、特級試薬)0.476gとを混合した。金ボートを石英管内に設置し、アルゴンガスを供給しながら、電気炉を用いて120℃で一時間加熱し余分な水分を飛ばした。その後1時間かけて温度を350℃まで上げ、さらに温度350℃で336時間保持した。その後石英管を電気炉から取出し、室温下で生成物を急冷した。生成物の同定、非晶質度の測定は、粉末X線回折測定(XRD)、赤外吸収分光分析(FT/IR)により行った。
Example 1
Ruthenium chloride hydrate RuCl 3 .nH 2 O (Ru: 39.010 wt%, Tanaka Kikinzoku Kogyo) 0.354 g and 85 wt% phosphoric acid aqueous solution H 3 PO 4 (Sigma Aldrich, 0.476 g of special grade reagent) was mixed. A gold boat was installed in a quartz tube, and while supplying argon gas, it was heated at 120 ° C. for 1 hour using an electric furnace to remove excess moisture. Thereafter, the temperature was increased to 350 ° C. over 1 hour, and the temperature was further maintained at 350 ° C. for 336 hours. The quartz tube was then removed from the electric furnace and the product was quenched at room temperature. The product was identified and the degree of amorphousness was measured by powder X-ray diffraction measurement (XRD) and infrared absorption spectroscopic analysis (FT / IR).

評価方法
Cole−Coleプロットにより試料の抵抗値を得る複素インピーダンス法を用いて、次の要領で生成物のプロトン伝導度を測定した。インピーダンスアナライザーによって50ヘルツ〜50メガヘルツまでインピーダンスを測定し、室温から350℃までのCole−Coleプロットを得た。使用機器は、HIOKI社製3532−50LCRハイテスタ、測定条件は、測定プログラム:HIOKILCRサンプルプログラムversion4.03、測定周波数(交流):50ヘルツ〜50メガヘルツ、測定温度は、室温(25℃)〜350℃である。
Evaluation Method The proton conductivity of the product was measured in the following manner using the complex impedance method for obtaining the resistance value of the sample by the Cole-Cole plot. Impedance was measured from 50 Hz to 50 MHz with an impedance analyzer, and a Cole-Cole plot from room temperature to 350 ° C. was obtained. The equipment used is a 3532-50 LCR HiTester manufactured by HIOKI, the measurement conditions are measurement program: HIOKILCR sample program version 4.03, measurement frequency (AC): 50 Hz to 50 MHz, and measurement temperature is room temperature (25 ° C.) to 350 ° C. It is.

生成物を粉砕後、加圧成形し厚さ0.109cm、断面積0.792cmの円盤状の試料を作成した。試料を銅線を接続した2枚の白金電極板で上下から挟み込み、その白金電極板をさらにガラス板で挟み込み、これらを一端が密封されたガラス管に入れ、さらにこのガラス管を電気炉内にセットした。まず、室温下からプロトン伝導度を測定しながら150℃まで温度を上げ、150℃の温度を保持したままガラス管内を減圧(圧力約0.1torr)とし、減圧状態のまま温度を室温まで低下させた。減圧状態を保持したまま再度温度を350℃まで上昇させながらプロトン伝導度を測定した。 The product was pulverized and pressure-molded to prepare a disk-shaped sample having a thickness of 0.109 cm and a cross-sectional area of 0.792 cm 2 . The sample is sandwiched from above and below by two platinum electrode plates connected with copper wire, the platinum electrode plate is further sandwiched between glass plates, these are put into a glass tube sealed at one end, and this glass tube is further placed in an electric furnace. I set it. First, the temperature is raised to 150 ° C. while measuring the proton conductivity from room temperature, the pressure inside the glass tube is reduced (pressure is about 0.1 torr) while maintaining the temperature of 150 ° C., and the temperature is lowered to room temperature while maintaining the reduced pressure. It was. While maintaining the reduced pressure state, the proton conductivity was measured while the temperature was raised again to 350 ° C.

製造条件、結果を表1に示した。表1中、反応時間とは、所定の温度に到達した後、その温度に保持する時間を言う。生成物は、多孔質状の固体であり、主成分は、非晶質のルテニウムトリポリリン水素塩HRuP10であった。減圧状態を保持しつつ、再度温度を室温下から350℃まで上昇させながらプロトン伝導度を測定した結果を図2に示した。温度350℃でプロトン伝導度は1.11×10−4Scm−1であった。 Production conditions and results are shown in Table 1. In Table 1, the reaction time refers to the time for holding at a predetermined temperature after reaching the predetermined temperature. The product was a porous solid, and the main component was amorphous ruthenium tripolyphosphorus hydrogen salt H 2 RuP 3 O 10 . FIG. 2 shows the results of measuring proton conductivity while maintaining the reduced pressure state and again raising the temperature from room temperature to 350 ° C. The proton conductivity was 1.11 × 10 −4 Scm −1 at a temperature of 350 ° C.

Figure 0004932774
Figure 0004932774

実施例2
蒸発皿(セラミックス製容器)内で粉末状の塩化ルテニウム水和物RuCl・nHO(Ru:39.010重量%、田中貴金属工業)4.68gと85重量%のリン酸水溶液HPO(シグマアルドリッチ、特急試薬)6.681gとを混合した。その後、大気中で蒸発皿の下からバーナーを用いて、温度180℃で40分間加熱した。生成物は、アスファルト状の粘着性を有する多孔質の固体であり、主成分は、非晶質ルテニウムリン酸水素塩であった。プロトン伝導度の測定は、生成物をスパチュラで丸め、白金電極板で押しつぶして測定した。他の測定要領は、実施例1と同じである。結果を表1、図2に示した。温度350℃でプロトン伝導度は4.24×10−2Scm−1であった。なお、測定中の加熱によって粒界が繋がり、ガラス状となっていた。
Example 2
Ruthenium chloride hydrate RuCl 3 .nH 2 O (Ru: 39.010 wt%, Tanaka Kikinzoku Kogyo) 4.68 g and 85 wt% phosphoric acid aqueous solution H 3 PO in an evaporating dish (ceramic container) 4 (Sigma Aldrich, express reagent) 6.681 g was mixed. Then, it heated for 40 minutes at the temperature of 180 degreeC using the burner from under the evaporating dish in air | atmosphere. The product was an asphalt-like porous solid having stickiness, and the main component was amorphous ruthenium hydrogen phosphate. The proton conductivity was measured by rolling the product with a spatula and crushing it with a platinum electrode plate. Other measurement procedures are the same as those in the first embodiment. The results are shown in Table 1 and FIG. The proton conductivity was 4.24 × 10 −2 Scm −1 at a temperature of 350 ° C. In addition, the grain boundary was connected by the heating during measurement, and it was glassy.

実施例3
反応温度を250℃、反応時間を240時間とした以外、基本的な製造条件は実施例1と同じである。生成物は、多孔質状の固体であり、主成分は、非晶質のルテニウムトリポリリン酸水素塩HRuP10であった。
Example 3
The basic production conditions are the same as in Example 1 except that the reaction temperature is 250 ° C. and the reaction time is 240 hours. The product was a porous solid, and the main component was amorphous ruthenium hydrogen tripolyphosphate H 2 RuP 3 O 10 .

実施例4
金属原料を塩化クロムとし、280℃の反応温度で8時間反応させ生成物を得た。生成物は、緑色の多孔質状の固体あり、主成分は、非晶質のクロムトリポリリン酸水素塩HCrP10であった。
Example 4
The metal raw material was chromium chloride and reacted at a reaction temperature of 280 ° C. for 8 hours to obtain a product. The product was a green porous solid, and the main component was amorphous chromium tripolyphosphate H 2 CrP 3 O 10 .

実施例5、6
実施例4と同様の方法で製造した生成物を粉砕し、粉体を加圧成形し円盤形状の成形物(試料)を得た。これを次ぎの要領で水蒸気処理した。試料を約30分間、110℃水蒸気雰囲気下に置き、水分を吸着させた。このとき、試料は形状を保持した状態で、表面が潮解していた。その後、試料をアルゴンガス気流下110℃で2時間乾燥させた。乾燥後の試料の破断面を電子顕微鏡で、表面を光学顕微鏡で観察したところ、粒界は消失しており、粒界のないガラス状の固体であり、主成分は、非晶質のクロムトリポリリン酸水素塩HCrP10のままであった。乾燥後の試料をさらに、200℃、300℃まで加熱した後、プロトン伝導度を測定した。製造条件を表2に、プロトン伝導度の測定結果を図2に示した。プロトン伝導度の測定要領は、実施例1と同じである。水蒸気処理後200℃まで加熱した試料のプロトン伝導度は、測定温度350℃で1.35×10−4Scm−1、水蒸気処理後300℃まで加熱した試料のプロトン伝導度は、測定温度350℃で1.18×10−5Scm−1であった。非晶質度を示すIRスペクトルの800cm−1付近の吸収幅は、水蒸気処理後200℃焼成の試料においては、水蒸気処理前と水蒸気処理後200℃焼成とでほぼ同じであり、水蒸気処理後300℃焼成の試料においては、水蒸気処理前に比べ小さかった。
Examples 5 and 6
The product produced by the same method as in Example 4 was pulverized, and the powder was pressure-molded to obtain a disk-shaped molded product (sample). This was steamed in the following manner. The sample was placed in a steam atmosphere at 110 ° C. for about 30 minutes to adsorb moisture. At this time, the surface of the sample was deliquescent with its shape maintained. Thereafter, the sample was dried at 110 ° C. under an argon gas stream for 2 hours. When the fracture surface of the sample after drying was observed with an electron microscope and the surface was observed with an optical microscope, the grain boundary disappeared, it was a glassy solid without grain boundary, and the main component was amorphous chromium tripolyphosphorus. The oxyhydrogen salt H 2 CrP 3 O 10 remained. The dried sample was further heated to 200 ° C. and 300 ° C., and then proton conductivity was measured. The production conditions are shown in Table 2, and the measurement results of proton conductivity are shown in FIG. The procedure for measuring proton conductivity is the same as in Example 1. The proton conductivity of the sample heated to 200 ° C. after the steam treatment is 1.35 × 10 −4 Scm −1 at a measurement temperature of 350 ° C., and the proton conductivity of the sample heated to 300 ° C. after the steam treatment is a measurement temperature of 350 ° C. It was 1.18 × 10 −5 Scm −1 . The absorption width in the vicinity of 800 cm −1 of the IR spectrum indicating the degree of amorphousness is almost the same before and after steam treatment at 200 ° C. in the sample fired at 200 ° C. and 300 ° C. after steam treatment. The sample fired at 0 ° C. was smaller than before the steam treatment.

Figure 0004932774
Figure 0004932774

本発明のプロトン伝導体の製造方法の第二実施形態であって、粒界のない所定の形状を有するガラス状のプロトン伝導体の第一の製造方法を示すフローチャートである。It is 2nd embodiment of the manufacturing method of the proton conductor of this invention, Comprising: It is a flowchart which shows the 1st manufacturing method of the glass-like proton conductor which has a predetermined shape without a grain boundary. 本発明のプロトン伝導体のプロトン伝導度測定結果を示す図である。It is a figure which shows the proton conductivity measurement result of the proton conductor of this invention.

Claims (6)

一般式(1)で示される非晶質又は非晶質を主体とする遷移金属リン酸水素塩を主成分とするプロトン伝導体であり、
前記リン酸水素塩が、トリポリリン酸水素塩、ピロリン酸水素塩又は縮合リン酸水素塩であり、前記遷移金属が、ルテニウム又はクロムであることを特徴とするプロトン伝導体。
・・・(1)
(ここで、Mは金属、a,b,c,dは自然数)
A proton conductor mainly composed of a transition metal hydrogen phosphate mainly composed of an amorphous or amorphous material represented by the general formula (1),
The hydrogen phosphate salt, tripolyphosphate hydrogen carbonates, hydrogen carbonates or condensed hydrogen phosphate der pyrophosphate is, the transition metal, a proton conductor, which is a ruthenium or chromium.
H a M b P c O d (1)
(Where M is a metal, a, b, c and d are natural numbers)
前記遷移金属に代え、前記遷移金属が、ルテニウムとクロム及び/又は鉄であることを特徴とする請求項に記載のプロトン伝導体。 The place of the transition metal, the transition metal is, the proton conductor according to claim 1, wherein the ruthenium and chromium and / or iron. 粒界のないガラス状の材料からなることを特徴とする請求項1又は請求項に記載のプロトン伝導体。 The proton conductor according to claim 1 or 2 , wherein the proton conductor is made of a glass-like material having no grain boundary. 請求項1又は請求項2に記載のプロトン伝導体の製造方法であって、
水と遷移金属原料とリン酸とを混合、加熱し、脱水、縮合反応により前記プロトン伝導体を得る製造工程を含み、
前記遷移金属原料は、遷移金属の硝酸塩、炭酸塩、酢酸塩又はハロゲン化塩であり、
前記リン酸は、オルトリン酸、ピロリン酸又は縮合リン酸であり、
前記遷移金属とリンとの割合が、モル比で1:2〜1:4であることを特徴とするプロトン伝導体の製造方法。
A method for producing a proton conductor according to claim 1 or 2 , wherein
Mixing the water with a transition metal source and phosphoric acid, and heated, comprising dehydrating, a manufacturing step of obtaining the protons Den conductor by a condensation reaction,
The transition metal raw material is a transition metal nitrate, carbonate, acetate or halide,
The phosphoric acid is orthophosphoric acid, pyrophosphoric acid or condensed phosphoric acid,
The method for producing a proton conductor, wherein a ratio of the transition metal and phosphorus is 1: 2 to 1: 4 in molar ratio.
請求項3に記載のプロトン伝導体の製造方法であって、
晶質又は非晶質を主体とする遷移金属リン酸水素塩を主成分とする材料を粉砕した後、粉砕物をバインダーを使用することなく成形し所定の形状を有する成形物を得る第一工程と、
前記成形物の形状を維持した状態で水分を加える第二工程と、
第二工程後の水分を含む成形物を乾燥させる第三工程と、
を含むことを特徴とするプロトン伝導体の製造方法。
It is a manufacturing method of the proton conductor according to claim 3,
After grinding the amorphous or material mainly composed of a transition metal hydrogen phosphate salt mainly composed of amorphous, first to obtain a molded product having a shaped desired shape without using a binder ground product Process,
A second step of adding moisture while maintaining the shape of the molded product,
A third step of drying the molded product containing moisture after the second step;
A method for producing a proton conductor, comprising:
さらに前記第三工程の後、当該プロトン伝導体を使用する温度と同一又は略同一の温度で焼成する第四工程を含むことを特徴とする請求項に記載のプロトン伝導体の製造方法。 6. The method for producing a proton conductor according to claim 5 , further comprising a fourth step of firing at the same or substantially the same temperature as the temperature at which the proton conductor is used after the third step.
JP2008100251A 2008-04-08 2008-04-08 Proton conductor and method for producing proton conductor Expired - Fee Related JP4932774B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008100251A JP4932774B2 (en) 2008-04-08 2008-04-08 Proton conductor and method for producing proton conductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008100251A JP4932774B2 (en) 2008-04-08 2008-04-08 Proton conductor and method for producing proton conductor

Publications (2)

Publication Number Publication Date
JP2009252582A JP2009252582A (en) 2009-10-29
JP4932774B2 true JP4932774B2 (en) 2012-05-16

Family

ID=41313090

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008100251A Expired - Fee Related JP4932774B2 (en) 2008-04-08 2008-04-08 Proton conductor and method for producing proton conductor

Country Status (1)

Country Link
JP (1) JP4932774B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108084452A (en) * 2018-01-09 2018-05-29 武汉理工大学 A kind of metal-organic framework type proton conductor material being applicable under high temperature, low humidity conditions and preparation method thereof

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5366131B2 (en) * 2009-03-17 2013-12-11 国立大学法人北海道大学 PROTON CONDUCTIVE MEMBRANE, PROCESS FOR PRODUCING THE SAME, ELECTROCHEMICAL CELL
JP6674204B2 (en) 2015-07-30 2020-04-01 株式会社デンソー Proton conductor, method for producing proton conductor, and fuel cell
JP6998586B2 (en) * 2017-11-08 2022-02-10 国立大学法人広島大学 Proton conductor and its manufacturing method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003095763A (en) * 2001-09-25 2003-04-03 Techno Network Shikoku Co Ltd Porous glass and method of manufacturing the same
JP4150255B2 (en) * 2002-12-27 2008-09-17 本田技研工業株式会社 Proton conductor and method for producing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108084452A (en) * 2018-01-09 2018-05-29 武汉理工大学 A kind of metal-organic framework type proton conductor material being applicable under high temperature, low humidity conditions and preparation method thereof
CN108084452B (en) * 2018-01-09 2021-03-16 武汉理工大学 Metal-organic framework type proton conductor material applicable under high-temperature and low-humidity conditions and preparation method thereof

Also Published As

Publication number Publication date
JP2009252582A (en) 2009-10-29

Similar Documents

Publication Publication Date Title
Wang et al. Doping strategy and mechanism for oxide and sulfide solid electrolytes with high ionic conductivity
Matsuda et al. Proton conductivities of sol–gel derived phosphosilicate gels in medium temperature range with low humidity
Rousse et al. Sulfate-based polyanionic compounds for Li-ion batteries: synthesis, crystal chemistry, and electrochemistry aspects
Girish et al. Advances in high-capacity Li 2 MSiO 4 (M= Mn, Fe, Co, Ni,…) cathode materials for lithium-ion batteries
Matsuda et al. Medium temperature range characterization as a proton conductor for phosphosilicate dry gels containing large amounts of phosphorus
JP4932774B2 (en) Proton conductor and method for producing proton conductor
CN101734674A (en) Preparation method of ferrous silicate lithium doped anode material
JP6767209B2 (en) Manufacturing method of all-solid-state battery
JP2020506148A (en) Liquid method for making vanadium phosphate-carbon composites
Zakharchuk et al. Electrical properties and thermal expansion of strontium aluminates
Matsuda et al. Comparison of structure and proton conductivity of phosphosilicate gels derived from several kinds of phosphorus-containing compounds
CN101928137A (en) Ca[4(1+x)/5]Mg[(1+x)/5]Zr4Si2xP(6-2x)O24 phosphate negative-expansion ceramic material and preparation method thereof
JP5574881B2 (en) Air electrode material powder for solid oxide fuel cell and method for producing the same
WO2018088424A1 (en) Lithium-containing zirconium phosphate, calcined powder of same, and method for producing sintered body
JP5800464B2 (en) Ion conductive inorganic compound, method for synthesizing the same, and method for producing alkali metal ion secondary battery
Anfimova et al. The effect of preparation method on the proton conductivity of indium doped tin pyrophosphates
JP5543297B2 (en) Air electrode material powder for solid oxide fuel cell and method for producing the same
CA2783581C (en) Silicon phosphate and membrane comprising the same
Vojisavljević et al. Characterization of the Alkoxide-based Sol-gel Derived La 9.33 Si 6 O 26 Powder and Ceramic.
JP7022616B2 (en) Manufacturing method of positive electrode active material
JPH02162605A (en) Lithium ion conductive solid electrolyte and manufacture thereof
CN111763081B (en) Pyrophosphate composite electrolyte and preparation method thereof
EP3678990B1 (en) Process for producing particulate carbon-coated lithium iron phosphate, carbon coated lithiumiron phosphate and its uses
Shimanouchi et al. Preparation and electric conductivity of Na3Al2 (PO4) 3 ceramic from a hydrothermally synthesized precursor
Zhang et al. Phosphate induced formation of core-shell tin pyrophosphate via an acid method for proton conduction at elevated temperatures

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100608

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111021

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120214

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120215

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150224

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees