JP4931684B2 - Refrigeration cycle equipment - Google Patents

Refrigeration cycle equipment Download PDF

Info

Publication number
JP4931684B2
JP4931684B2 JP2007115969A JP2007115969A JP4931684B2 JP 4931684 B2 JP4931684 B2 JP 4931684B2 JP 2007115969 A JP2007115969 A JP 2007115969A JP 2007115969 A JP2007115969 A JP 2007115969A JP 4931684 B2 JP4931684 B2 JP 4931684B2
Authority
JP
Japan
Prior art keywords
refrigerant
pulsation
compressor
reducer
path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007115969A
Other languages
Japanese (ja)
Other versions
JP2008275194A (en
Inventor
康雄 ▲ひろ▼中
和英 月居
敦史 枝吉
厚 小谷田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2007115969A priority Critical patent/JP4931684B2/en
Publication of JP2008275194A publication Critical patent/JP2008275194A/en
Application granted granted Critical
Publication of JP4931684B2 publication Critical patent/JP4931684B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Applications Or Details Of Rotary Compressors (AREA)

Description

この発明は、例えば空気調和装置や冷凍装置等に用いられ、圧縮機の駆動に伴う冷媒の流体圧力脈動を低減させる機能を有する冷凍サイクル装置に関するものである。   The present invention relates to a refrigeration cycle apparatus which is used in, for example, an air conditioner, a refrigeration apparatus, and the like and has a function of reducing fluid pressure pulsation of refrigerant accompanying driving of a compressor.

従来の冷凍サイクル装置では、冷媒回路における圧縮機の吐出側に脈動低減器(流体圧力脈動吸収器)が取り付けられており、その脈動低減器によって圧縮機の駆動に伴う冷媒の流体圧力脈動が低減される(例えば、特許文献1参照)。   In the conventional refrigeration cycle apparatus, a pulsation reducer (fluid pressure pulsation absorber) is attached to the discharge side of the compressor in the refrigerant circuit, and the pulsation reducer reduces the fluid pressure pulsation of the refrigerant accompanying the drive of the compressor. (See, for example, Patent Document 1).

特開平6−101794号公報JP-A-6-101794

ここで、一般的な冷媒回路において、外気温度及び冷媒流量により冷媒温度及び冷媒圧力が変化すると、これらの変化に伴って冷媒中の音速(冷媒中を伝わる音の速さ)が変化する。これによって、脈動低減器固有の流体圧力脈動の低減特性が変化してしまう。この低減特性は、冷媒回路における圧縮機から脈動低減器までの距離と、流体圧力脈動の低減量とに関わる特性である。つまり、音速が変化した場合に、脈動低減器による流体圧力脈動の低減量が変化してしまう。
これに対して、上記のような従来の冷凍サイクル装置では、冷媒回路における圧縮機から脈動低減器までの距離が一定となっているため、音速が変化することによって、脈動低減器による流体圧力脈動の低減作用を充分に得られないことがあり、その流体圧力脈動によって、冷媒回路における脈動低減器の冷媒流出側に配置された熱交換器が加振(共振)され、その熱交換器から騒音が放射されてしまう。
Here, in a general refrigerant circuit, when the refrigerant temperature and the refrigerant pressure change depending on the outside air temperature and the refrigerant flow rate, the speed of sound in the refrigerant (the speed of sound transmitted through the refrigerant) changes with these changes. As a result, the fluid pressure pulsation reduction characteristic unique to the pulsation reducer changes. This reduction characteristic is a characteristic related to the distance from the compressor to the pulsation reducer in the refrigerant circuit and the reduction amount of the fluid pressure pulsation. That is, when the sound speed changes, the amount of fluid pressure pulsation reduced by the pulsation reducer changes.
On the other hand, in the conventional refrigeration cycle apparatus as described above, since the distance from the compressor to the pulsation reducer in the refrigerant circuit is constant, the fluid pressure pulsation by the pulsation reducer is caused by the change in sound speed. The fluid pressure pulsation may cause vibration (resonance) of the heat exchanger located on the refrigerant outflow side of the pulsation reducer in the refrigerant circuit, and noise from the heat exchanger may not be obtained. Will be emitted.

この発明は、上記のような課題を解決するためになされたものであり、冷媒中の音速の変化に伴って脈動低減器の流体圧力脈動の低減特性が変化した場合であっても、安定して冷媒の流体圧力脈動を低減することができる冷凍サイクル装置を得ることを目的とする。   The present invention has been made to solve the above-described problems, and is stable even when the fluid pressure pulsation reduction characteristic of the pulsation reducer changes in accordance with the change in the speed of sound in the refrigerant. An object of the present invention is to obtain a refrigeration cycle apparatus capable of reducing fluid pressure pulsation of refrigerant.

この発明に係る冷凍サイクル装置は、冷媒を圧縮し、冷媒を吐出するとともに、冷媒を吸入する圧縮機、圧縮機に接続され、圧縮機の外側で、冷媒が流れる循環式の冷媒回路を形成する冷媒配管、及び冷媒回路に設けられ、冷媒回路を流れる冷媒の流体圧力脈動を低減する拡張室を有する脈動低減器を備え、冷媒回路は、圧縮機の吐出側と脈動低減器との間で、冷媒回路の経路の長さを変える経路長変化部を有しているものである。   A refrigeration cycle apparatus according to the present invention compresses refrigerant, discharges refrigerant, is connected to a compressor that sucks refrigerant, and a compressor, and forms a circulating refrigerant circuit through which refrigerant flows outside the compressor. The refrigerant circuit includes a pulsation reducer that is provided in the refrigerant pipe and the refrigerant circuit and has an expansion chamber that reduces fluid pressure pulsation of the refrigerant flowing through the refrigerant circuit, and the refrigerant circuit is between the discharge side of the compressor and the pulsation reducer. It has a path length changing part that changes the length of the path of the refrigerant circuit.

この発明の冷凍サイクル装置は、経路長変化部によって、圧縮機の吐出側と脈動低減器との間で冷媒回路の経路の長さが変わるので、冷媒中の音速の変化に伴って脈動低減器の流体圧力脈動の低減特性が変化した場合であっても、脈動低減器による脈動低減量が最大となる経路の長さに、圧縮機と拡張室との間の経路の長さを調整可能となることにより、安定して流体圧力脈動を低減することができる。   In the refrigeration cycle apparatus according to the present invention, the path length of the refrigerant circuit is changed between the discharge side of the compressor and the pulsation reducer by the path length changing unit, so that the pulsation reducer is accompanied by a change in the speed of sound in the refrigerant. Even when the fluid pressure pulsation reduction characteristics of the cylinder change, the length of the path between the compressor and the expansion chamber can be adjusted to the length of the path where the pulsation reduction amount by the pulsation reducer is maximized. As a result, fluid pressure pulsation can be stably reduced.

以下、この発明を実施するための最良の形態について、図面を参照して説明する。
実施の形態1.
図1は、この発明の実施の形態1による空気調和装置を示す構成図である。図2は、図1の脈動低減器3を拡大して示す斜視図である。
図において、圧縮機1は、吐出部1a及び吸入部1bを有している。また、圧縮機1は、冷媒(図示せず)を圧縮し、吐出部1aから冷媒を吐出するとともに、吸入部1bから冷媒を吸入する。さらに、圧縮機1には、冷媒配管2が接続されている。
The best mode for carrying out the present invention will be described below with reference to the drawings.
Embodiment 1 FIG.
1 is a block diagram showing an air conditioner according to Embodiment 1 of the present invention. FIG. 2 is an enlarged perspective view showing the pulsation reducer 3 of FIG.
In the figure, the compressor 1 has a discharge part 1a and a suction part 1b. The compressor 1 compresses a refrigerant (not shown), discharges the refrigerant from the discharge unit 1a, and sucks the refrigerant from the suction unit 1b. Further, a refrigerant pipe 2 is connected to the compressor 1.

冷媒配管2は、吐出部1aから吸入部1bまでの循環式の冷媒回路2aを圧縮機1の外側で形成している。冷媒回路2aには、脈動低減器3、冷媒回路2aの経路を切り換える四方弁4、建物内の温度管理区画に配置された室内熱交換器5、冷暖房の運転状態に応じて冷媒の流量を制御する絞り弁6、及び温度管理区画外に配置された室外熱交換器7が設けられている。また、冷媒回路2aは、圧縮機1の吐出部1aと脈動低減器3との間に配置された経路長変化部8を有している。   The refrigerant pipe 2 forms a circulation type refrigerant circuit 2 a from the discharge part 1 a to the suction part 1 b outside the compressor 1. The refrigerant circuit 2a includes a pulsation reducer 3, a four-way valve 4 for switching the path of the refrigerant circuit 2a, an indoor heat exchanger 5 arranged in a temperature management section in the building, and a refrigerant flow rate controlled according to the operating state of the air conditioning. A throttle valve 6 and an outdoor heat exchanger 7 disposed outside the temperature management section are provided. Further, the refrigerant circuit 2 a has a path length changing portion 8 disposed between the discharge portion 1 a of the compressor 1 and the pulsation reducer 3.

脈動低減器3は、冷媒回路2aを流れる冷媒の流体圧力脈動を低減する拡張室3aを有している。また、脈動低減器3は、一対のテーパ面部3b,3cを有している。各テーパ面部3b,3cの中央部間の長さ寸法(L1)と、拡張室3aの径寸法とは、低減したい周波数成分(脈動周波数成分(圧縮機1の回転数に依存する周波数成分))で最適化されて、予め設定されている。四方弁4は、冷暖房に応じて、冷媒の経路を切り換える。即ち、四方弁4は、冷媒の経路を切り換えることによって、脈動低減器3側から室内熱交換器5側への冷媒の経路を形成するか(図1中実線で示す)、脈動低減器3側から室外熱交換器7側への冷媒の経路を形成する(図1中破線で示す)。   The pulsation reducer 3 has an expansion chamber 3a that reduces fluid pressure pulsation of the refrigerant flowing through the refrigerant circuit 2a. The pulsation reducer 3 has a pair of tapered surface portions 3b and 3c. The length dimension (L1) between the center portions of the respective tapered surface portions 3b and 3c and the diameter dimension of the expansion chamber 3a are a frequency component to be reduced (pulsation frequency component (frequency component depending on the rotational speed of the compressor 1)). Optimized in advance and preset. The four-way valve 4 switches the path of the refrigerant according to cooling and heating. That is, the four-way valve 4 forms a refrigerant path from the pulsation reducer 3 side to the indoor heat exchanger 5 side by switching the refrigerant path (shown by a solid line in FIG. 1), or the pulsation reducer 3 side. A refrigerant path from the outside to the outdoor heat exchanger 7 is formed (indicated by a broken line in FIG. 1).

室内熱交換器5は、暖房運転時に凝縮器となり、脈動低減器3から四方弁4を介して受けた冷媒を凝縮させる。また、室内熱交換器5は、冷房運転時に蒸発器となり、室外熱交換器7側から受けた冷媒を蒸発させる。室外熱交換器7は、暖房運転時に蒸発器となり、室内熱交換器5側から受けた冷媒を蒸発させる。また、室外熱交換器7は、冷房運転時に凝縮器となり、脈動低減器3から四方弁4を介して受けた冷媒を凝縮させる。即ち、室内熱交換器5及び室外熱交換器7は、冷媒の熱交換を行う。さらに、室外熱交換器7は、ハウジング(筐体;図示せず)を有している。圧縮機1、冷媒配管2の一部(室内熱交換器5の近傍を除く箇所)、脈動低減器3、四方弁4、絞り弁6及び経路長変化部8は、室外熱交換器7のハウジングに収容されている。なお、各機器の駆動、及び冷暖房の運転は、運転制御部(図示せず)によって制御される。   The indoor heat exchanger 5 becomes a condenser during heating operation, and condenses the refrigerant received from the pulsation reducer 3 via the four-way valve 4. Moreover, the indoor heat exchanger 5 becomes an evaporator at the time of cooling operation, and evaporates the refrigerant received from the outdoor heat exchanger 7 side. The outdoor heat exchanger 7 becomes an evaporator during heating operation, and evaporates the refrigerant received from the indoor heat exchanger 5 side. Further, the outdoor heat exchanger 7 becomes a condenser during the cooling operation, and condenses the refrigerant received from the pulsation reducer 3 via the four-way valve 4. That is, the indoor heat exchanger 5 and the outdoor heat exchanger 7 perform heat exchange of the refrigerant. Furthermore, the outdoor heat exchanger 7 has a housing (housing; not shown). The compressor 1, a part of the refrigerant pipe 2 (a place excluding the vicinity of the indoor heat exchanger 5), the pulsation reducer 3, the four-way valve 4, the throttle valve 6, and the path length changing unit 8 are the housing of the outdoor heat exchanger 7. Is housed in. The driving of each device and the operation of air conditioning are controlled by an operation control unit (not shown).

運転制御部は、暖房運転時に、脈動低減器3側から室内熱交換器5側への冷媒の経路を四方弁4に形成させて、圧縮機1の吐出部1aから吐出された冷媒は、図1の実線で矢示するように、脈動低減器3、室内熱交換器5、絞り弁6及び室外熱交換器7の順に流され、圧縮機1の吸入部1bに吸入される。一方、運転制御部は、冷房運転時に、脈動低減器3側から室外熱交換器7側への冷媒の経路を四方弁4に形成させて、圧縮機1の吐出部1aから吐出された冷媒は、図1の破線で矢示するように、脈動低減器3、室内熱交換器5、絞り弁6及び室外熱交換器7の順に流され、圧縮機1の吸入部1bに吸入される。   The operation control unit causes the four-way valve 4 to form a refrigerant path from the pulsation reducer 3 side to the indoor heat exchanger 5 side during the heating operation, and the refrigerant discharged from the discharge unit 1a of the compressor 1 is As indicated by the solid line 1, the pulsation reducer 3, the indoor heat exchanger 5, the throttle valve 6, and the outdoor heat exchanger 7 are flowed in this order and sucked into the suction portion 1 b of the compressor 1. On the other hand, during the cooling operation, the operation control unit causes the four-way valve 4 to form a refrigerant path from the pulsation reducer 3 side to the outdoor heat exchanger 7 side, and the refrigerant discharged from the discharge unit 1a of the compressor 1 is As indicated by the broken line in FIG. 1, the pulsation reducer 3, the indoor heat exchanger 5, the throttle valve 6, and the outdoor heat exchanger 7 are flowed in this order and sucked into the suction portion 1 b of the compressor 1.

図3は、図1の経路長変化部8を拡大して示す斜視図である。経路長変化部8は、圧縮機1の吐出部1a側に配置された経路切換手段としての経路分岐部9と、脈動低減器3側に配置された経路集合部10と、経路分岐部9と経路集合部10との間で冷媒の経路を形成する第1〜3枝管11〜13とによって構成されている。経路分岐部9は、冷媒の経路を各枝管11〜13のうちの1つの枝管に択一的に切り換える切換弁と、切換弁を駆動する経路切換駆動手段とを有している(ともに図示せず)。経路切換駆動手段は、例えばモータ、ソレノイド、及び作業員操作用の操作子等である。   FIG. 3 is an enlarged perspective view showing the path length changing portion 8 of FIG. The path length changing unit 8 includes a path branching unit 9 as a path switching unit disposed on the discharge unit 1a side of the compressor 1, a path collecting unit 10 disposed on the pulsation reducer 3 side, a path branching unit 9, It is comprised by the 1st-3rd branch pipes 11-13 which form the path | route of a refrigerant | coolant between the path | route assembly parts 10. FIG. The path branching section 9 has a switching valve that selectively switches the refrigerant path to one of the branch pipes 11 to 13 and path switching drive means that drives the switching valve (both Not shown). The path switching drive means is, for example, a motor, a solenoid, and an operator for operating a worker.

各枝管11〜13の両端部は、互いに平行になっている。第1枝管11の形状は、直線状である。また、第1枝管11による冷媒の経路の長さは、他の枝管12,13による冷媒の経路の長さよりも短くなっている。また、第2枝管12の中間部は、第1枝管11の中間部の外周面を囲んで、螺旋状に径方向へ1周巻かれて曲げられている。第2枝管12の曲げられた箇所は、第2枝管螺旋状部12a(図中1点鎖線)となっている。第3枝管13の中間部は、第1枝管11の中間部の外周面を囲んで、螺旋状に径方向へ2周巻かれて曲げられている。第3枝管13の曲げられた箇所は、第3枝管螺旋状部13aとなっている(図中2点鎖線)。また、第3枝管13による冷媒の経路の長さは、他の枝管11,12による冷媒の経路の長さよりも長くなっている。第2及び第3枝管螺旋状部12a,13aは、互いに平行であり、かつ互いに隣接している。   The both ends of each branch pipe 11-13 are mutually parallel. The shape of the first branch pipe 11 is linear. Further, the length of the refrigerant path by the first branch pipe 11 is shorter than the length of the refrigerant path by the other branch pipes 12 and 13. Further, the intermediate portion of the second branch pipe 12 surrounds the outer peripheral surface of the intermediate portion of the first branch pipe 11 and is wound and bent in a spiral shape in the radial direction. The bent portion of the second branch pipe 12 is a second branch pipe spiral portion 12a (one-dot chain line in the figure). The intermediate portion of the third branch pipe 13 surrounds the outer peripheral surface of the intermediate portion of the first branch pipe 11 and is bent by being wound twice in the radial direction spirally. A bent portion of the third branch pipe 13 is a third branch pipe spiral portion 13a (two-dot chain line in the figure). Further, the length of the refrigerant path by the third branch pipe 13 is longer than the length of the refrigerant path by the other branch pipes 11 and 12. The second and third branch pipe spiral portions 12a and 13a are parallel to each other and adjacent to each other.

次に、脈動低減器3の低減特性について具体的に説明する。図4は、図1の脈動低減器3の低減特性の一例を示すグラフである。図4では、拡張室3aの径寸法が40mmであり、拡張室3aの長さ寸法が150mmである場合で、冷媒回路2aにおける圧縮機1の吐出部1aから7mの位置(図1における点A)を観測点とし、流体圧力脈動に含まれる周波数200Hzの成分の低減特性を示す。また、図4の横軸は、圧縮機1の吐出部1aと脈動低減器3との間の距離(m)を示し、図4の縦軸は、測定点での脈動低減量(dB)を示す。さらに、図4では、冷媒中の音速が基準音速の場合(1.0C;C=約158.2m/s)の流体圧力脈動の低減特性を実線で示し、冷媒中の音速が基準音速から1割低下した場合(0.9C)の流体圧力脈動の低減特性を一点鎖線で示し、冷媒中の音速が基準音速から1割上昇した場合(1.1C)の流体圧力脈動の低減特性を破線で示す。   Next, the reduction characteristics of the pulsation reducer 3 will be specifically described. FIG. 4 is a graph showing an example of the reduction characteristics of the pulsation reducer 3 of FIG. In FIG. 4, in the case where the diameter dimension of the expansion chamber 3a is 40 mm and the length dimension of the expansion chamber 3a is 150 mm, the position 7 m from the discharge portion 1a of the compressor 1 in the refrigerant circuit 2a (point A in FIG. 1). ) As an observation point, and shows a reduction characteristic of a component having a frequency of 200 Hz included in the fluid pressure pulsation. 4 represents the distance (m) between the discharge part 1a of the compressor 1 and the pulsation reducer 3, and the vertical axis in FIG. 4 represents the pulsation reduction amount (dB) at the measurement point. Show. Further, in FIG. 4, the fluid pressure pulsation reduction characteristic when the sound speed in the refrigerant is the reference sound speed (1.0 C; C = about 158.2 m / s) is indicated by a solid line, and the sound speed in the refrigerant is 1 from the reference sound speed. The reduction characteristic of fluid pressure pulsation when reduced (0.9C) is indicated by a one-dot chain line, and the reduction characteristic of fluid pressure pulsation when the sound speed in the refrigerant is increased by 10% from the reference sound speed (1.1C) is indicated by a broken line. Show.

まず、冷媒中の音速が基準音速の場合、圧縮機1の吐出部1aと脈動低減器3との間の距離(図1に示すL2)が0.4m、0.8mのときに、脈動低減量が15dBと最大となり、圧縮機1の吐出部1aと脈動低減器3との間の距離が0.2m、0.6mのときに脈動低減量が0dB以下となって小さくなる。また、冷媒中の音速が基準音速から1割低下した場合、圧縮機1の吐出部1aと脈動低減器3との間の距離が0.37mのときに脈動低減量が最大となる。さらに、冷媒中の音速が基準音速から1割上昇した場合、圧縮機1の吐出部1aと脈動低減器3との間の距離が0.43mのときに低減量が最大となる。つまり、冷媒中の音速が基準音速の1割低下した状態と、冷媒中の音速が基準音速から1割上昇した状態とでは、低減量が最大となる脈動低減器3の位置が60mm変化する。   First, when the sound speed in the refrigerant is the reference sound speed, the pulsation is reduced when the distance (L2 shown in FIG. 1) between the discharge unit 1a of the compressor 1 and the pulsation reducer 3 is 0.4 m and 0.8 m. When the distance between the discharge part 1a of the compressor 1 and the pulsation reducer 3 is 0.2 m and 0.6 m, the pulsation reduction amount becomes 0 dB or less and becomes small. Further, when the sound speed in the refrigerant is reduced by 10% from the reference sound speed, the pulsation reduction amount becomes maximum when the distance between the discharge unit 1a of the compressor 1 and the pulsation reducer 3 is 0.37 m. Further, when the sound speed in the refrigerant rises 10% from the reference sound speed, the amount of reduction becomes maximum when the distance between the discharge unit 1a of the compressor 1 and the pulsation reducer 3 is 0.43 m. That is, the position of the pulsation reducer 3 at which the reduction amount is maximum changes by 60 mm between the state where the sound speed in the refrigerant is 10% lower than the reference sound speed and the state where the sound speed in the refrigerant is 10% higher than the reference sound speed.

ここで、第1枝管11の長さ寸法は、音速が基準音速から1割低下した状態で、脈動低減器3による流体圧力脈動の低減量が最大となる寸法(例えばL2=0.37mm)に設定されている。また、第2枝管12の長さ寸法は、音速が基準音速のときの状態で、脈動低減器3による流体圧力脈動の低減量が最大となる寸法(例えばL2=0.40mm)に設定されている。さらに、第3枝管13の長さ寸法は、音速が基準音速から1割上昇した状態で、脈動低減器3による流体圧力脈動の低減量が最大となる寸法(例えばL2=0.43mm)に設定されている。即ち、各枝管11〜13の長さ寸法は、それぞれ異なる音速に対応する寸法に設定されており、各枝管11〜13と経路分岐部9とによって、圧縮機1の吐出部1aと脈動低減器3との間で冷媒回路2aの経路の長さが変化する。   Here, the length dimension of the first branch pipe 11 is the dimension (for example, L2 = 0.37 mm) at which the reduction amount of the fluid pressure pulsation by the pulsation reducer 3 is maximized in a state where the sound speed is 10% lower than the reference sound speed. Is set to In addition, the length of the second branch pipe 12 is set to a dimension (for example, L2 = 0.40 mm) that maximizes the reduction amount of the fluid pressure pulsation by the pulsation reducer 3 when the sound speed is the reference sound speed. ing. Further, the length of the third branch pipe 13 is set to a dimension (for example, L2 = 0.43 mm) that maximizes the reduction amount of the fluid pressure pulsation by the pulsation reducer 3 in a state where the sound speed is increased by 10% from the reference sound speed. Is set. That is, the length dimension of each branch pipe 11-13 is set to the dimension corresponding to a different sound velocity, respectively, and the discharge part 1a of the compressor 1 and pulsation by each branch pipe 11-13 and the path | route branch part 9. The length of the path of the refrigerant circuit 2a changes with the reducer 3.

上記のような冷凍サイクル装置では、経路長変化部8によって、圧縮機1の吐出部1aと脈動低減器3との間で冷媒回路2aの経路の長さが変わるので、冷媒中の音速の変化に伴って脈動低減器3の流体圧力脈動の低減特性が変化した場合であっても、脈動低減器3による脈動低減量が最大となる経路の長さに、圧縮機1の吐出部1aと脈動低減器3との間の経路の長さを調整可能となることにより、安定して流体圧力脈動を低減することができる。また、設置環境及び使用環境に応じて経路の長さを容易に切り換えることができ、室内熱交換器5からの騒音の放射を抑えることができる。   In the refrigeration cycle apparatus as described above, the path length changing unit 8 changes the path length of the refrigerant circuit 2a between the discharge unit 1a of the compressor 1 and the pulsation reducer 3, so that the speed of sound in the refrigerant changes. Even when the reduction characteristic of the fluid pressure pulsation of the pulsation reducer 3 is changed along with the discharge portion 1a of the compressor 1 and the pulsation, the length of the path where the pulsation reduction amount by the pulsation reducer 3 is maximized. Since the length of the path to the reducer 3 can be adjusted, the fluid pressure pulsation can be stably reduced. Further, the length of the path can be easily switched according to the installation environment and the use environment, and noise emission from the indoor heat exchanger 5 can be suppressed.

さらに、第2及び第3枝管12,13の中間部が第1枝管11の中心部の外周面を囲んで螺旋状に巻かれて、互いに隣接して平行に曲げ形成されているので、スペース効率の低下を抑えることができる。   Furthermore, the intermediate part of the second and third branch pipes 12 and 13 is spirally wound around the outer peripheral surface of the central part of the first branch pipe 11, and is formed in parallel and adjacent to each other. A decrease in space efficiency can be suppressed.

実施の形態2.
次に、この発明の実施の形態2について説明する。図5は、実施の形態2による経路長変化部8を示す斜視図である。実施の形態1では、枝管として第1〜第3枝管11〜13を用いたが、実施の形態2では、枝管として第1〜第3枝管21〜23を用いる。各枝管21〜23の両端部は、互いに平行になっている。第1枝管21の形状は、直線状になっている。第2枝管22の中間部は、径方向外側(図の上下方向)に湾曲して曲げられており、この箇所は、第2枝管湾曲部22aとなっている(図中1点鎖線)。第3枝管23の中間部は、径方向外側に湾曲し、圧縮機1の吐出部1a側から下流側へ向けて1周巻かれて曲げられており、この箇所は、第3枝管湾曲部23aとなっている(図中2点鎖線)。各枝管21〜23の長さ寸法は、実施の形態1の各枝管11〜13と同様に、脈動低減器3による流体圧力脈動の低減量が最大となる寸法に設定されている。他の構成は、実施の形態1と同様である。
Embodiment 2. FIG.
Next, a second embodiment of the present invention will be described. FIG. 5 is a perspective view showing the path length changing unit 8 according to the second embodiment. In the first embodiment, the first to third branch pipes 11 to 13 are used as the branch pipes. However, in the second embodiment, the first to third branch pipes 21 to 23 are used as the branch pipes. Both end portions of the branch pipes 21 to 23 are parallel to each other. The shape of the first branch pipe 21 is linear. The middle portion of the second branch pipe 22 is bent and bent radially outward (up and down in the drawing), and this portion is a second branch pipe bending portion 22a (one-dot chain line in the figure). . The middle part of the third branch pipe 23 is curved outward in the radial direction, and is bent by being wound around the discharge part 1a side of the compressor 1 from the downstream side to the downstream side. It is part 23a (two-dot chain line in the figure). Similar to the branch pipes 11 to 13 of the first embodiment, the length dimensions of the branch pipes 21 to 23 are set to dimensions that maximize the amount of fluid pressure pulsation reduction by the pulsation reducer 3. Other configurations are the same as those in the first embodiment.

上記のような空気調和装置では、第2及び第3枝管22,23がそれぞれ第2及び第3枝管湾曲部22a,23aを有している場合であっても、実施の形態1と同様の効果を得ることができる。   In the air conditioner as described above, even if the second and third branch pipes 22 and 23 have the second and third branch pipe curved portions 22a and 23a, respectively, the same as in the first embodiment The effect of can be obtained.

なお、実施の形態1,2では、3本の枝管11〜13,21〜23を用いたが、3本に限るものではなく、2本又は4本以上の枝管を用いてもよい。   In the first and second embodiments, the three branch pipes 11 to 13 and 21 to 23 are used. However, the number is not limited to three, and two or four or more branch pipes may be used.

実施の形態3.
次に、この発明の実施の形態3について説明する。図6は、実施の形態3による経路長変化部8を示す側面図である。まず、実施の形態1,2では、複数の枝管11〜13,21〜23による冷媒の経路が択一的に切り換わることによって、圧縮機1の吐出部1aと脈動低減器3との間で冷媒の経路の長さが変化していたが、実施の形態3では、冷媒流入・流出方向(図中左右方向)へ脈動低減器3が直線状に変位することによって、圧縮機1の吐出部1aと脈動低減器3との間で冷媒回路2aの経路の長さが変化する。
Embodiment 3 FIG.
Next, a third embodiment of the present invention will be described. FIG. 6 is a side view showing the path length changing unit 8 according to the third embodiment. First, in the first and second embodiments, the refrigerant path by the plurality of branch pipes 11 to 13 and 21 to 23 is selectively switched, so that the gap between the discharge unit 1a of the compressor 1 and the pulsation reducer 3 is changed. However, in the third embodiment, the pulsation reducer 3 is linearly displaced in the refrigerant inflow / outflow direction (left-right direction in the figure), so that the discharge of the compressor 1 is performed. The length of the path of the refrigerant circuit 2a changes between the part 1a and the pulsation reducer 3.

また、実施の形態3の経路長変化部8は、脈動低減器3の変位方向へ伸縮可能な一対のフレキシブル管31と、脈動低減器3に取り付けられ、脈動低減器3の変位を案内する変位案内機構32とにより構成されている。各フレキシブル管31は、それぞれ脈動低減器3の冷媒流入・流出方向の両側に配置されている。また、フレキシブル管31は、例えば蛇腹管である。   The path length changing unit 8 according to the third embodiment is attached to the pulsation reducer 3 and a pair of flexible pipes 31 that can be expanded and contracted in the displacement direction of the pulsation reducer 3. The guide mechanism 32 is comprised. Each flexible tube 31 is arranged on both sides of the pulsation reducer 3 in the refrigerant inflow / outflow direction. The flexible tube 31 is, for example, a bellows tube.

変位案内機構32は、冷媒の方向(脈動低減器3の長手方向)に沿って配置されたレール33と、一端部及び中間部が脈動低減器3に取り付けられ、他端部がレール33の側面に対向する低減器取付板34と、低減器取付板34の他端部に設けられレール33の案内面上を走行可能な走行部35と、脈動低減器3に駆動力を与える低減器駆動手段(図示せず)と、脈動低減器3の位置を固定する固定手段(図示せず)を有している。低減器駆動手段は、実施の形態1の経路切換駆動手段と同様に、例えばモータ、ソレノイド、及び作業員操作用の操作子等である。つまり、変位案内機構32によって、脈動低減器3は、冷媒流入・流出方向への変位を案内され、脈動低減器3が変位することによって、圧縮機1の吐出部1aと脈動低減器3との間で冷媒回路2aの経路の長さが変化する。脈動低減器3の変位幅は、例えば100mm程度である。他の構成及び動作は実施の形態1と同様である。   The displacement guide mechanism 32 includes a rail 33 arranged along the direction of the refrigerant (longitudinal direction of the pulsation reducer 3), one end and an intermediate part attached to the pulsation reducer 3, and the other end being a side surface of the rail 33. Reducer mounting plate 34, a travel unit 35 provided on the other end of the reducer mounting plate 34 and capable of traveling on the guide surface of the rail 33, and a reducer driving means for applying a driving force to the pulsation reducer 3. (Not shown) and fixing means (not shown) for fixing the position of the pulsation reducer 3. The reducer driving means is, for example, a motor, a solenoid, an operator for operating a worker, and the like, similarly to the path switching driving means of the first embodiment. That is, the displacement guide mechanism 32 guides the pulsation reducer 3 in the refrigerant inflow / outflow direction, and the pulsation reducer 3 is displaced, whereby the discharge portion 1a of the compressor 1 and the pulsation reducer 3 are displaced. The length of the path of the refrigerant circuit 2a changes between the two. The displacement width of the pulsation reducer 3 is, for example, about 100 mm. Other configurations and operations are the same as those in the first embodiment.

上記のような空気調和装置では、脈動低減器3が冷媒流入・流出方向へ変位することによって、圧縮機1の吐出部1aと脈動低減器3との間で冷媒回路2aの経路の長さが変化するので、実施の形態1と同様の効果を得ることができる。   In the air conditioning apparatus as described above, the pulsation reducer 3 is displaced in the refrigerant inflow / outflow direction, whereby the length of the path of the refrigerant circuit 2a between the discharge unit 1a of the compressor 1 and the pulsation reducer 3 is reduced. Since it changes, the same effect as Embodiment 1 can be acquired.

また、冷媒の経路の長さを脈動低減器3の変位の範囲内で任意に設定可能となるので、設置環境及び使用環境が変化した場合に、冷媒の経路の長さを、脈動低減器3による流体圧力脈動の最大低減量を確保できる長さに調整可能となり、実施の形態1,2の空気調和装置よりも調整の精度を高めることができる。   Further, since the length of the refrigerant path can be arbitrarily set within the range of displacement of the pulsation reducer 3, the length of the refrigerant path can be changed when the installation environment and the use environment change. Therefore, the length can be adjusted to a length that can secure the maximum reduction amount of the fluid pressure pulsation, and the adjustment accuracy can be improved as compared with the air conditioners of the first and second embodiments.

実施の形態4.
次に、この発明の実施の形態4について説明する。図7は、実施の形態4による空気調和装置を示す構成図である。室内熱交換器5の暖房運転時における冷媒流入側(冷房運転時における冷媒流出側)には、所定の測定点が設定され、かつ冷媒の脈動状況を把握(測定)するためのセンサ41が設けられている。センサ41は、冷媒の圧力、流速、流量、温度、冷媒配管2の管壁面の圧力、管壁の振動、歪み、及び室内熱交換器5近傍の騒音のいずれかに応じた電気信号を生成する。また、センサ41には、経路長制御部としての演算処理装置42が電気的に接続されている。
Embodiment 4 FIG.
Next, a fourth embodiment of the present invention will be described. FIG. 7 is a configuration diagram illustrating an air-conditioning apparatus according to Embodiment 4. In FIG. A predetermined measurement point is set on the refrigerant inflow side (the refrigerant outflow side during the cooling operation) of the indoor heat exchanger 5 during the heating operation, and a sensor 41 is provided for grasping (measuring) the pulsation state of the refrigerant. It has been. The sensor 41 generates an electrical signal corresponding to any of the pressure, flow velocity, flow rate, temperature of the refrigerant, the pressure on the wall surface of the refrigerant pipe 2, the vibration and distortion of the pipe wall, and the noise near the indoor heat exchanger 5. . The sensor 41 is electrically connected to an arithmetic processing unit 42 as a path length control unit.

センサ41により生成された電気信号は、演算処理装置42に送られる。演算処理装置42は、センサ41からの電気信号に基づいて、冷媒の脈動状況を監視する。また、演算処理装置42は、冷媒回路2aの経路の長さを制御する。さらに、演算処理装置42は、経路長変化部8の経路切換駆動手段(モータ又はソレノイド等)に電気的に接続されている。さらにまた、演算処理装置42は、監視している冷媒の脈動状況に応じて、経路長変化部8の経路切換駆動手段に切換指令を送り、経路長変化部8による経路切換を実行させる。   The electric signal generated by the sensor 41 is sent to the arithmetic processing unit 42. The arithmetic processing unit 42 monitors the pulsation state of the refrigerant based on the electrical signal from the sensor 41. Moreover, the arithmetic processing unit 42 controls the length of the path of the refrigerant circuit 2a. Further, the arithmetic processing unit 42 is electrically connected to path switching drive means (motor or solenoid) of the path length changing unit 8. Further, the arithmetic processing unit 42 sends a switching command to the path switching drive means of the path length changing unit 8 according to the pulsation state of the refrigerant being monitored, and causes the path length changing unit 8 to execute the path switching.

さらにまた、演算処理装置42は、演算処理部(CPU)、記憶部(ROM、RAM及びハードディスク等)、及び信号入出力部を有している(いずれも図示せず)。演算処理装置42の記憶部には、演算処理装置42の機能を実現するためのプログラムが格納されている。   Furthermore, the arithmetic processing unit 42 includes an arithmetic processing unit (CPU), a storage unit (ROM, RAM, hard disk, etc.), and a signal input / output unit (all not shown). The storage unit of the arithmetic processing device 42 stores a program for realizing the functions of the arithmetic processing device 42.

ここで、演算処理装置42による監視対象が冷媒の圧力、流速、流量又は温度の場合、センサ41は、冷媒に直接接するように、冷媒配管2の管内部に取り付けられる。また、演算処理装置42による監視対象が冷媒配管2の管壁面の圧力、管壁の振動又は歪みの場合、センサ41には、圧力センサ、振動加速度センサ、又は歪みセンサが用いられ、センサ41は、冷媒配管2の管壁の表面に取り付けられる。さらに、演算処理装置42による監視対象が室内熱交換器5近傍の騒音の場合、センサ41は、冷媒配管2外部の室内熱交換器5の近傍に設けられる。他の構成は、実施の形態1又は実施の形態2と同様である。   Here, when the monitoring target by the arithmetic processing unit 42 is the pressure, flow velocity, flow rate, or temperature of the refrigerant, the sensor 41 is attached inside the refrigerant pipe 2 so as to be in direct contact with the refrigerant. When the monitoring target by the arithmetic processing unit 42 is pressure on the wall surface of the refrigerant pipe 2, vibration or distortion of the tube wall, the sensor 41 is a pressure sensor, a vibration acceleration sensor, or a distortion sensor. It is attached to the surface of the pipe wall of the refrigerant pipe 2. Furthermore, when the monitoring target by the arithmetic processing unit 42 is noise in the vicinity of the indoor heat exchanger 5, the sensor 41 is provided in the vicinity of the indoor heat exchanger 5 outside the refrigerant pipe 2. Other configurations are the same as those in the first embodiment or the second embodiment.

次に、演算処理装置42による経路長制御について、より具体的に説明する。演算処理装置42は、センサ41で得られた信号をフーリエ変換し、パワースペクトルを算出する。そして、演算処理装置42は、パワースペクトルに基づいて、変動エネルギーレベルを算出し、低減対象としている周波数又は周波数帯域(脈動周波数)の変動エネルギーレベルが規定値以上か、規定値未満かどうかを判別する。このときに、変動エネルギーレベルが規定値以上の場合、演算処理装置42は、冷媒回路2aの経路の切り換えを実行するように、経路長変化部8に切換指令を送る。経路長変化部8は、切換指令に基づいて、冷媒回路2aの経路の長さを切り換える。   Next, the path length control by the arithmetic processing unit 42 will be described more specifically. The arithmetic processing unit 42 performs a Fourier transform on the signal obtained by the sensor 41 to calculate a power spectrum. Then, the arithmetic processing unit 42 calculates the fluctuation energy level based on the power spectrum, and determines whether the fluctuation energy level of the frequency or frequency band (pulsation frequency) to be reduced is equal to or higher than the specified value or less than the specified value. To do. At this time, if the fluctuating energy level is equal to or higher than the specified value, the arithmetic processing unit 42 sends a switching command to the path length changing unit 8 so as to execute switching of the path of the refrigerant circuit 2a. The path length changing unit 8 switches the path length of the refrigerant circuit 2a based on the switching command.

また、演算処理装置42は、予め設定された一定時間おき、又は動作変更時に、(変動エネルーレベルが規定値以上かどうかに関わらずに、)経路長変化部8に切換指令を出して、冷媒回路3aの経路の長さ毎に、パワースペクトル、脈動低減量及び変動エネルギーレベル等を算出し、流体圧力脈動が最小近傍になるように、冷媒回路2aの長さを調整する(チューニングする)。   In addition, the arithmetic processing unit 42 issues a switching command to the path length changing unit 8 (regardless of whether or not the fluctuation energy level is equal to or higher than a specified value) at predetermined time intervals or when the operation is changed. For each path length of the circuit 3a, a power spectrum, a pulsation reduction amount, a fluctuating energy level, and the like are calculated, and the length of the refrigerant circuit 2a is adjusted (tuned) so that the fluid pressure pulsation is near the minimum.

上記のような空気調和装置では、演算処理装置42によって監視されている冷媒の流体圧力脈動状況に応じて、圧縮機1の吐出部1aと脈動低減器3との間で冷媒回路2aの経路の長さが変化されるので、圧縮機1の吐出部1aと脈動低減器3との間の距離を自動的に変化させることができ、さらに安定して流体圧力脈動を低減することができる。   In the air conditioner as described above, the path of the refrigerant circuit 2a is arranged between the discharge unit 1a of the compressor 1 and the pulsation reducer 3 in accordance with the fluid pressure pulsation state of the refrigerant monitored by the arithmetic processing unit 42. Since the length is changed, the distance between the discharge part 1a of the compressor 1 and the pulsation reducer 3 can be automatically changed, and the fluid pressure pulsation can be reduced more stably.

また、冷媒回路2aの室内熱交換器5の暖房運転時における上流側(冷房運転時における下流側)で冷媒の流体圧力脈動が監視されるので、流体圧力脈動によって室内熱交換器5及びそのハウジングが加振されることを効率よく防ぐことができる。   Further, since the fluid pressure pulsation of the refrigerant is monitored on the upstream side (downstream side during the cooling operation) of the indoor heat exchanger 5 of the refrigerant circuit 2a, the indoor heat exchanger 5 and its housing are monitored by the fluid pressure pulsation. Can be efficiently prevented from being vibrated.

なお、実施の形態4では、所定の測定点が室内熱交換器5の暖房運転時における冷媒流入側に設定されていたが、所定の測定点は、この例に限るものではなく、脈動低減器の冷媒流出側に設定されればよい。例えば、所定の測定点が室内熱交換器の暖房運転時における冷媒流出側に設定されてもよい。また、所定の測定点が室外熱交換器の暖房運転時における冷媒流出側に設定されてもよい。さらに、複数の測定点を冷媒回路に設けてもよい。複数の測定点を冷媒回路に設けた場合、冷暖房の運転状況に応じて測定点を切り換えて、冷媒の流体圧力脈動を監視してもよい。   In the fourth embodiment, the predetermined measurement point is set on the refrigerant inflow side during the heating operation of the indoor heat exchanger 5. However, the predetermined measurement point is not limited to this example, and the pulsation reducer. May be set on the refrigerant outflow side. For example, the predetermined measurement point may be set on the refrigerant outflow side during the heating operation of the indoor heat exchanger. Further, the predetermined measurement point may be set on the refrigerant outflow side during the heating operation of the outdoor heat exchanger. Furthermore, a plurality of measurement points may be provided in the refrigerant circuit. In the case where a plurality of measurement points are provided in the refrigerant circuit, the measurement points may be switched according to the operation status of the air conditioning to monitor the fluid pressure pulsation of the refrigerant.

さらにまた、実施の形態4では、実施の形態1又は実施の形態2の経路長変化部8を介して、冷媒回路2aの経路の長さを変化させていたが、実施の形態3の経路長変化部8を介して冷媒回路の経路の長さを変化させてもよい。   Furthermore, in the fourth embodiment, the path length of the refrigerant circuit 2a is changed via the path length changing unit 8 of the first or second embodiment, but the path length of the third embodiment is changed. The path length of the refrigerant circuit may be changed via the changing unit 8.

また、実施の形態1〜4では、空調調和装置について説明したが、この発明は、冷蔵庫、冷凍庫、及びヒートポンプ式給湯器室外熱交換器等の冷凍装置にも適用することができる。この場合、例えば図1における四方弁4を削除し、室内熱交換器5を凝縮器とし、室外熱交換器7を蒸発器とすることによって実現可能となる。   Moreover, although Embodiment 1-4 demonstrated the air-conditioning harmony apparatus, this invention is applicable also to refrigeration apparatuses, such as a refrigerator, a freezer, and a heat pump type hot water heater outdoor heat exchanger. In this case, for example, the four-way valve 4 in FIG. 1 can be deleted, the indoor heat exchanger 5 can be a condenser, and the outdoor heat exchanger 7 can be an evaporator.

さらに、実施の形態1〜4では、室外熱交換器7のハウジング内に脈動低減器3及び経路長変化部8が収容されていたが、脈動低減器は、外部に配置されてもよい。これによって、既設の室外熱交換器のハウジング内に脈動低減器及び経路長変化部を収容できない場合であっても、脈動低減器及び経路長変化部を既設の製品に追加することが可能となり、既設の室内熱交換器からの騒音の放射を抑えることができる。   Further, in Embodiments 1 to 4, the pulsation reducer 3 and the path length changing unit 8 are accommodated in the housing of the outdoor heat exchanger 7, but the pulsation reducer may be disposed outside. As a result, even if the pulsation reducer and the path length changing part cannot be accommodated in the housing of the existing outdoor heat exchanger, it becomes possible to add the pulsation reducer and the path length changing part to the existing product. Noise emission from the existing indoor heat exchanger can be suppressed.

この発明の実施の形態1による空気調和装置を示す構成図である。It is a block diagram which shows the air conditioning apparatus by Embodiment 1 of this invention. 図1の脈動低減器を拡大して示す斜視図である。It is a perspective view which expands and shows the pulsation reducer of FIG. 図1の経路長変化部を拡大して示す斜視図である。It is a perspective view which expands and shows the path | route length change part of FIG. 図1の脈動低減器の低減特性の一例を示すグラフである。It is a graph which shows an example of the reduction characteristic of the pulsation reducer of FIG. この発明の実施の形態2による経路長変化部を拡大して示す斜視図である。It is a perspective view which expands and shows the path length change part by Embodiment 2 of this invention. この発明の実施の形態3による経路長変化部を拡大して示す側面図である。It is a side view which expands and shows the path length change part by Embodiment 3 of this invention. この発明の実施の形態4による空気調和装置を示す構成図である。It is a block diagram which shows the air conditioning apparatus by Embodiment 4 of this invention.

符号の説明Explanation of symbols

1 圧縮機、1a 吐出部、1b 吸入部、2 冷媒配管、2a 冷媒回路、3 脈動低減器、3a 拡張室、5 室内熱交換器、7 室外熱交換器、8 経路長変化部、9 経路分岐部(経路切換手段)、11,21 第1枝管、12,22 第2枝管、13,23 第3枝管、31 フレキシブル管、32 変位案内機構、41 センサ、42 演算処理装置(経路長制御部)。   DESCRIPTION OF SYMBOLS 1 Compressor, 1a Discharge part, 1b Suction part, 2 Refrigerant piping, 2a Refrigerant circuit, 3 Pulsation reducer, 3a Expansion room, 5 Indoor heat exchanger, 7 Outdoor heat exchanger, 8 Path length change part, 9 Path branch Part (path switching means), 11, 21 1st branch pipe, 12, 22 2nd branch pipe, 13, 23 3rd branch pipe, 31 flexible pipe, 32 displacement guide mechanism, 41 sensor, 42 arithmetic processing unit (path length) Control unit).

Claims (5)

冷媒を圧縮し、上記冷媒を吐出するとともに、上記冷媒を吸入する圧縮機、
上記圧縮機に接続され、上記圧縮機の外側で、上記冷媒が流れる循環式の冷媒回路を形成する冷媒配管、及び
上記冷媒回路に設けられ、上記冷媒回路を流れる上記冷媒の流体圧力脈動を低減する拡張室を有する脈動低減器
を備え、
上記冷媒回路は、上記圧縮機の吐出側と上記脈動低減器との間で、上記冷媒回路の経路の長さを変える経路長変化部を有しており、
上記経路長変化部は、上記圧縮機の吐出側と上記脈動低減器との間に配置されかつ経路の長さが互いに異なる複数の枝管と、上記圧縮機の吐出側と上記脈動低減器との間の上記冷媒回路の経路を、上記各枝管のうちの1つの経路に択一的に切り換える経路切換手段とにより構成されていることを特徴とする冷凍サイクル装置。
A compressor that compresses the refrigerant, discharges the refrigerant, and sucks the refrigerant;
Refrigerant piping connected to the compressor and forming a circulating refrigerant circuit through which the refrigerant flows outside the compressor, and fluid pressure pulsation of the refrigerant flowing in the refrigerant circuit provided in the refrigerant circuit is reduced. A pulsation reducer with an expansion chamber
The refrigerant circuit has a path length changing unit that changes the length of the path of the refrigerant circuit between the discharge side of the compressor and the pulsation reducer ,
The path length changing unit is disposed between the discharge side of the compressor and the pulsation reducer, and has a plurality of branch pipes having different path lengths, the discharge side of the compressor, and the pulsation reducer. A refrigeration cycle apparatus comprising: a path switching unit that selectively switches a path of the refrigerant circuit between the two to one of the branch pipes .
冷媒を圧縮し、上記冷媒を吐出するとともに、上記冷媒を吸入する圧縮機、A compressor that compresses the refrigerant, discharges the refrigerant, and sucks the refrigerant;
上記圧縮機に接続され、上記圧縮機の外側で、上記冷媒が流れる循環式の冷媒回路を形成する冷媒配管、及びA refrigerant pipe connected to the compressor and forming a circulation type refrigerant circuit through which the refrigerant flows outside the compressor; and
上記冷媒回路に設けられ、上記冷媒回路を流れる上記冷媒の流体圧力脈動を低減する拡張室を有する脈動低減器A pulsation reducer having an expansion chamber that is provided in the refrigerant circuit and reduces fluid pressure pulsation of the refrigerant flowing through the refrigerant circuit.
を備え、With
上記冷媒回路は、上記圧縮機の吐出側と上記脈動低減器との間で、上記冷媒回路の経路の長さを変える経路長変化部を有しており、The refrigerant circuit has a path length changing unit that changes the length of the path of the refrigerant circuit between the discharge side of the compressor and the pulsation reducer,
上記脈動低減器は、上記冷媒の流動方向両側へ変位可能となっており、The pulsation reducer is displaceable on both sides of the flow direction of the refrigerant,
上記経路長変化部は、上記脈動低減器の変位方向へ伸縮可能な一対のフレキシブル管と、上記脈動低減器の変位を案内する変位案内機構とにより構成されており、The path length changing unit is composed of a pair of flexible tubes that can be expanded and contracted in the displacement direction of the pulsation reducer, and a displacement guide mechanism that guides the displacement of the pulsation reducer.
上記一対のフレキシブル管は、それぞれ上記脈動低減器の上記冷媒の流動方向両側に配置されていることを特徴とする冷凍サイクル装置。The pair of flexible tubes are respectively disposed on both sides of the flow direction of the refrigerant of the pulsation reducer.
上記冷媒回路の上記脈動低減器の冷媒流出側には、ハウジングを有し建物の温度管理区画の外部に設置され上記冷媒の凝縮及び蒸発のいずれか一方を行う室外熱交換器と、上記建物の温度管理区画内に設置され上記冷媒の凝縮及び蒸発の他方を行う室内熱交換器とが接続されており、
上記圧縮機及び上記脈動低減器は、上記ハウジングの内部に収容されていることを特徴とする請求項1又は2項に記載の冷凍サイクル装置。
On the refrigerant outflow side of the pulsation reducer of the refrigerant circuit, an outdoor heat exchanger that has a housing and is installed outside the temperature management section of the building and performs either one of condensation or evaporation of the refrigerant, and An indoor heat exchanger that is installed in the temperature control section and performs the other of the condensation and evaporation of the refrigerant is connected,
The refrigeration cycle apparatus according to claim 1 or 2, wherein the compressor and the pulsation reducer are accommodated in the housing.
上記冷媒回路の上記脈動低減器の冷媒流出側には、ハウジングを有し建物の温度管理区画の外部に設置され上記冷媒の凝縮及び蒸発のいずれか一方を行う室外熱交換器と、上記建物の温度管理区画内に設置され上記冷媒の凝縮及び蒸発の他方を行う室内熱交換器とが接続されており、
上記脈動低減器は、上記ハウジングの外部に配置されていることを特徴とする請求項1又は2項に記載の冷凍サイクル装置。
On the refrigerant outflow side of the pulsation reducer of the refrigerant circuit, an outdoor heat exchanger that has a housing and is installed outside the temperature management section of the building and performs either one of condensation or evaporation of the refrigerant, and An indoor heat exchanger that is installed in the temperature control section and performs the other of the condensation and evaporation of the refrigerant is connected,
The refrigeration cycle apparatus according to claim 1 or 2 , wherein the pulsation reducer is disposed outside the housing.
上記脈動低減器の冷媒流出側に設けられた所定の測定点で上記冷媒の脈動状況を把握するためのセンサと、
上記センサに電気的に接続され、上記センサを介して上記冷媒の脈動状況を監視するとともに、上記経路長変化部の駆動を制御する経路長制御部と
をさらに備えていることを特徴とする請求項1から請求項4までのいずれか1項に記載の冷凍サイクル装置。
A sensor for grasping the pulsation state of the refrigerant at a predetermined measurement point provided on the refrigerant outflow side of the pulsation reducer;
And a path length control unit that is electrically connected to the sensor, monitors a pulsation state of the refrigerant via the sensor, and controls driving of the path length changing unit. refrigeration cycle apparatus according to any one of the claims 4 or from claim 1.
JP2007115969A 2007-04-25 2007-04-25 Refrigeration cycle equipment Expired - Fee Related JP4931684B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007115969A JP4931684B2 (en) 2007-04-25 2007-04-25 Refrigeration cycle equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007115969A JP4931684B2 (en) 2007-04-25 2007-04-25 Refrigeration cycle equipment

Publications (2)

Publication Number Publication Date
JP2008275194A JP2008275194A (en) 2008-11-13
JP4931684B2 true JP4931684B2 (en) 2012-05-16

Family

ID=40053357

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007115969A Expired - Fee Related JP4931684B2 (en) 2007-04-25 2007-04-25 Refrigeration cycle equipment

Country Status (1)

Country Link
JP (1) JP4931684B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61252462A (en) * 1985-04-30 1986-11-10 三菱電機株式会社 Refrigeration cycle
JPS62102882A (en) * 1985-10-31 1987-05-13 古河電気工業株式会社 Dusting method of film, paper, etc.
JPH0433371Y2 (en) * 1985-11-28 1992-08-11
JPH11325655A (en) * 1998-05-14 1999-11-26 Matsushita Seiko Co Ltd Silencer and air conditioner
JP2004003636A (en) * 2002-04-26 2004-01-08 Gac Corp Flexible joint
JP4651334B2 (en) * 2004-09-09 2011-03-16 三洋電機株式会社 Air conditioner

Also Published As

Publication number Publication date
JP2008275194A (en) 2008-11-13

Similar Documents

Publication Publication Date Title
JP2005226987A (en) Piping structure for outdoor unit of air conditioner
JP4396753B2 (en) Silencer for refrigeration cycle
US11073145B2 (en) Pressure pulsation traps
JP6444526B2 (en) Operation control device
JP5972018B2 (en) Air conditioner
JP2005241236A (en) Piping structure of outdoor unit of air-conditioner
JP2018128180A (en) Refrigerant piping and refrigeration cycle device
US10480869B2 (en) Heat exchanger and refrigeration cycle apparatus including the same
US20140039687A1 (en) Field custom frequency skipping
JP4715797B2 (en) Ejector refrigeration cycle
US20200348057A1 (en) Refrigeration machine
JP4931684B2 (en) Refrigeration cycle equipment
JP2005083732A (en) Piping device for air conditioner
US11536499B2 (en) Refrigeration machine
KR100758910B1 (en) Outdoor Unit of Air Conditioner
EP3165849B1 (en) Heat source device and heat source system provided with heat source device
KR20100078065A (en) Multiple muffler and air-conditioning apparatus including it
JP4889747B2 (en) Heat exchanger and air conditioner equipped with the same
JP2018100641A (en) Compressor unit and outdoor unit including the same
EP4317830A1 (en) A heating assembly having an active silencer
JP2012207643A (en) Fan guard, outdoor unit, and refrigeration cycle device
JPWO2017094117A1 (en) Air conditioner
CN112611142A (en) Method for controlling refrigeration cycle, thermal management system and vehicle
US10323869B2 (en) Combined suction header and accumulator unit
JP2009047355A (en) Ejector type cycle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110711

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110726

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110926

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120117

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120214

R150 Certificate of patent or registration of utility model

Ref document number: 4931684

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150224

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees