JP4931192B2 - Static eliminator - Google Patents

Static eliminator Download PDF

Info

Publication number
JP4931192B2
JP4931192B2 JP2006185179A JP2006185179A JP4931192B2 JP 4931192 B2 JP4931192 B2 JP 4931192B2 JP 2006185179 A JP2006185179 A JP 2006185179A JP 2006185179 A JP2006185179 A JP 2006185179A JP 4931192 B2 JP4931192 B2 JP 4931192B2
Authority
JP
Japan
Prior art keywords
discharge
application circuit
positive
voltage
negative
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006185179A
Other languages
Japanese (ja)
Other versions
JP2008016274A (en
Inventor
忍 鬼頭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Industrial Devices SUNX Co Ltd
Original Assignee
Panasonic Electric Works SUNX Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Electric Works SUNX Co Ltd filed Critical Panasonic Electric Works SUNX Co Ltd
Priority to JP2006185179A priority Critical patent/JP4931192B2/en
Publication of JP2008016274A publication Critical patent/JP2008016274A/en
Application granted granted Critical
Publication of JP4931192B2 publication Critical patent/JP4931192B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Elimination Of Static Electricity (AREA)

Description

本発明は、1対の放電電極それぞれに電圧を印加してコロナ放電させることで正負イオンを生成する除電装置に関する。   The present invention relates to a static eliminator that generates positive and negative ions by applying a voltage to each of a pair of discharge electrodes to cause corona discharge.

下記特許文献1には、1対の放電電極を備え、一方の放電電極に負極性の電圧を印加してコロナ放電により負イオンを発生させつつ、他方の放電電極に正極性の電圧を印加してコロナ放電により正イオンを発生させて、その正負イオンを帯電体に吹き付けて中和させるものが開示されている。   In the following Patent Document 1, a pair of discharge electrodes is provided, a negative voltage is applied to one discharge electrode to generate negative ions by corona discharge, and a positive voltage is applied to the other discharge electrode. In this method, positive ions are generated by corona discharge and neutralized by spraying the positive and negative ions onto a charged body.

この種の除電装置では、例えば放電電極に周囲空気中の埃等が付着したり、長期使用により放電電極の先端が磨耗したりすることによって、放電電極からイオンの放電量が低下してしまい、十分な除電効果を得ることができない異常状態(除電不良)になることがある。また、周囲温度等の影響により正イオンと負イオンとの間のイオンバランスが崩れてしまい、やはり十分な除電効果が得られないことがある。従って、正イオン及び負イオンの各放電量(イオン生成量)を監視する必要がある。   In this type of static eliminator, for example, dust in the surrounding air adheres to the discharge electrode, or the tip of the discharge electrode wears out due to long-term use, so that the discharge amount of ions from the discharge electrode decreases, There may be an abnormal state where the sufficient charge removal effect cannot be obtained (charge removal failure). In addition, the ion balance between positive ions and negative ions is lost due to the influence of the ambient temperature or the like, and a sufficient static elimination effect may not be obtained. Therefore, it is necessary to monitor each discharge amount (ion generation amount) of positive ions and negative ions.

そこで、下記特許文献1の除電装置では、正イオンを発生させる正の放電電極に対して正イオン検出電極が設けられると共に、負イオンを発生させる負の放電電極に対して負イオン検出電極が設けられている。そして、負イオン検出電極とグランドラインとの間に設けた電流測定用の抵抗の負荷電圧レベルに基づき負イオンのイオン量を監視し、正イオン検出電極とグランドラインとの間に設けた電流測定用の抵抗の負荷電圧レベルに基づき正イオンの放電量を監視するようにしている。
特開2001−217094公報
Therefore, in the static eliminator of Patent Document 1 below, a positive ion detection electrode is provided for a positive discharge electrode that generates positive ions, and a negative ion detection electrode is provided for a negative discharge electrode that generates negative ions. It has been. Then, the amount of negative ions is monitored based on the load voltage level of the current measurement resistor provided between the negative ion detection electrode and the ground line, and the current measurement provided between the positive ion detection electrode and the ground line is measured. The discharge amount of positive ions is monitored based on the load voltage level of the resistor for use.
JP 2001-217094 A

ところが、上記特許文献1の技術では、各放電電極それぞれに対応した複数のイオン検出電極(対向電極)が必要となり、除電装置における対向電極の配置構成や配線が複雑になるという問題があった。   However, the technique disclosed in Patent Document 1 requires a plurality of ion detection electrodes (counter electrodes) corresponding to the respective discharge electrodes, and there is a problem that the arrangement and wiring of the counter electrodes in the static eliminator are complicated.

本発明は上記のような事情に基づいて完成されたものであって、その目的は、対向電極の配置構成や配線の複雑化を抑制しつつイオンの放電量の監視が可能な除電装置を提供するところにある。   The present invention has been completed based on the above-described circumstances, and an object thereof is to provide a static eliminator capable of monitoring the discharge amount of ions while suppressing the arrangement configuration of the counter electrode and the complexity of the wiring. There is a place to do.

上記の目的を達成するための手段として、請求項1の発明に係る除電装置は、1対の放電電極と、前記1対の放電電極のうちの一方の放電電極に負極性の電圧を印加して負イオンを生成させる負極性電圧印加回路と、他方の放電電極に正極性の電圧を印加して正イオンを生成させる正極性電圧印加回路と、前記1対の放電電極に対応して設けられる共通の対向電極と、前記対向電極に流れる電流に応じた測定信号を出力する電流測定部と、常には、前記負極性電圧印加回路及び前記正極性電圧印加回路の両方を駆動して前記1対の放電電極から正負イオンを生成する直流方式の除電動作を実行させる一方で、所定の測定タイミングが到来したときに、当該除電動作の各連続実行期間よりも短い期間で前記負極性電圧印加回路及び正極性電圧印加回路のうちのいずれか一方の印加回路の駆動を選択的に停止する制御部と、前記測定タイミングで前記電流測定部から出力された前記測定信号に基づき他方の印加回路による放電電極の放電状態の変化を監視する放電監視部と、を備える。
As a means for achieving the above object, a static eliminator according to claim 1 applies a negative voltage to a pair of discharge electrodes and one of the pair of discharge electrodes. A negative voltage application circuit for generating negative ions, a positive voltage application circuit for generating positive ions by applying a positive voltage to the other discharge electrode, and the pair of discharge electrodes. A common counter electrode, a current measurement unit that outputs a measurement signal corresponding to the current flowing through the counter electrode, and always drives both the negative voltage application circuit and the positive voltage application circuit to drive the pair The negative voltage application circuit and the negative voltage application circuit in a period shorter than each continuous execution period of the neutralization operation when a predetermined measurement timing arrives while performing a neutralization operation of a direct current method that generates positive and negative ions from the discharge electrodes of Positive voltage sign A control unit that selectively stops driving of one of the application circuits, and a discharge state of a discharge electrode by the other application circuit based on the measurement signal output from the current measurement unit at the measurement timing. A discharge monitoring unit that monitors the change.

請求項2の発明は、請求項1に記載の除電装置において、前記測定タイミングを、所定時間間隔ごとに生成するタイミング生成部を備え、前記制御部は、前記各測定タイミングごとに前記負極性電圧印加回路の駆動停止と前記正極性電圧印加回路の駆動停止とを交互に行う。   According to a second aspect of the present invention, in the static eliminator according to the first aspect of the present invention, the static neutralizer includes a timing generation unit that generates the measurement timing at predetermined time intervals, and the control unit is configured to generate the negative voltage at each measurement timing. The driving of the application circuit is stopped and the driving of the positive voltage application circuit is alternately stopped.

請求項3の発明は、請求項1または請求項2に記載の除電装置において、前記放電監視部で監視された放電状態の変化に基づき前記放電電極の放電異常の有無を判断する判断部を備える。   According to a third aspect of the present invention, the static eliminator according to the first or second aspect includes a determination unit that determines whether or not there is a discharge abnormality in the discharge electrode based on a change in a discharge state monitored by the discharge monitoring unit. .

請求項4の発明は、請求項1から請求項3のいずれかに記載の除電装置において、前記放電監視部で監視された正イオンの放電状態の変化と、負イオンの放電状態の変化とに基づき両イオン間の放電バランスをとるように前記負極性電圧印加回路及び前記正極性電圧印加回路のうち少なくともいずれか一方の印加電圧を調整する電圧調整部を備える。   According to a fourth aspect of the present invention, in the static eliminator according to any one of the first to third aspects, the change in the discharge state of positive ions and the change in the discharge state of negative ions monitored by the discharge monitoring unit. And a voltage adjusting unit that adjusts an applied voltage of at least one of the negative voltage applying circuit and the positive voltage applying circuit so as to balance discharge between both ions.

<請求項1の発明>
本構成によれば、常には負極性電圧印加回路及び正極性電圧印加回路の両方を駆動して1対の放電電極から正負イオンを生成する除電動作を実行する一方で、所定の測定タイミングで上記両印加回路の一方の印加回路を停止し、このときに電流測定部から出力された測定信号に基づき他方の印加回路の駆動による放電電極の放電状態の変化(駆動中の印加回路によって電圧が印加される放電電極の放電状態の変化)を監視する。従って、1対の放電電極に対して共通の対向電極を設けるだけで済み、各放電電極ごとに対向電極を設けた従来のものに比べて、対向電極の配置構成や配線の簡略化を図ることができる。
<Invention of Claim 1>
According to this configuration, the negative voltage application circuit and the positive voltage application circuit are always driven to perform the static elimination operation for generating positive and negative ions from the pair of discharge electrodes, while the above measurement is performed at a predetermined measurement timing. Change the discharge state of the discharge electrode by driving the other application circuit based on the measurement signal output from the current measurement unit at this time (the voltage is applied by the driving application circuit during driving). Change in the discharge state of the discharge electrode). Therefore, it is only necessary to provide a common counter electrode for a pair of discharge electrodes, and the arrangement and wiring of the counter electrodes and the wiring can be simplified as compared with the conventional one in which a counter electrode is provided for each discharge electrode. Can do.

<請求項2の発明>
本構成によれば、正イオンの放電状態の変化を監視するための負極性電圧印加回路の駆動停止と、負イオンの放電状態の変化を監視するための正極性電圧印加回路の駆動停止とを交互に同じ時間間隔で行うことで、イオンバランスがとれた除電を行うことができる。
<Invention of Claim 2>
According to this configuration, the driving of the negative voltage application circuit for monitoring changes in the discharge state of positive ions and the driving stop of the positive voltage application circuit for monitoring changes in the discharge state of negative ions are performed. By performing alternately at the same time interval, it is possible to perform static elimination with balanced ions.

<請求項3の発明>
本構成によれば、例えば周囲空気中の埃等が放電電極に付着することによりイオンの放電量が低下する放電異常を検出することができる。
<Invention of Claim 3>
According to this configuration, for example, it is possible to detect a discharge abnormality in which the discharge amount of ions decreases due to dust or the like in the surrounding air adhering to the discharge electrode.

<請求項4の発明>
本構成によれば、放電監視部での監視に基づき正イオンと負イオンとの放電バランス状態が認識され、このバランスがとれる(例えば正イオンと負イオンとの放電量が同量になる)ように印加回路の印加電圧が調整される。
<Invention of Claim 4>
According to this configuration, the discharge balance state of positive ions and negative ions is recognized based on monitoring by the discharge monitoring unit, and this balance is achieved (for example, the discharge amount of positive ions and negative ions is the same amount). The applied voltage of the application circuit is adjusted.

本発明の一実施形態を図1、図2を参照しつつ説明する。
1.除電装置の全体構成
本実施形態の除電装置は直流方式のもので、正負のイオンをそれぞれ発生する放電針1,2(「1対の放電電極」の一例)を備えている。
An embodiment of the present invention will be described with reference to FIGS.
1. Overall configuration of the static eliminator The static eliminator of the present embodiment is of a direct current type and includes discharge needles 1 and 2 (an example of “a pair of discharge electrodes”) that generate positive and negative ions, respectively.

商用の交流電源3には、第1スイッチ素子4を介してトランス5の一次側が接続されるとともに、第2スイッチ素子6を介してトランス7の一次側が接続されている。トランス5の二次側には、第1コンデンサ8及び第2コンデンサ9を備えたコッククロフト型の倍電圧整流回路10(「負極性電圧印加回路」の一例)が接続されており、第2コンデンサ9の負極側に出力端子14を介して放電針1が接続されている。   The commercial AC power supply 3 is connected to the primary side of the transformer 5 via the first switch element 4 and to the primary side of the transformer 7 via the second switch element 6. A secondary side of the transformer 5 is connected to a cockcroft type voltage doubler rectifier circuit 10 (an example of a “negative voltage application circuit”) including a first capacitor 8 and a second capacitor 9. The discharge needle 1 is connected to the negative electrode side via the output terminal 14.

トランス7の二次側には、第1コンデンサ11及び第2コンデンサ12を備えたコッククロフト型の倍電圧整流回路13(「正極性電圧印加回路」の一例)が接続されており、第2コンデンサ12の正極側に出力端子15を介して放電針2が接続されている。なお、各倍電圧整流回路10,13の他方の出力端子(図示せず)はグランドラインGNDに接続されている。   The secondary side of the transformer 7 is connected to a cockcroft type voltage doubler rectifier circuit 13 (an example of a “positive voltage application circuit”) including a first capacitor 11 and a second capacitor 12. The discharge needle 2 is connected to the positive electrode side via the output terminal 15. The other output terminal (not shown) of each voltage doubler rectifier circuit 10, 13 is connected to the ground line GND.

倍電圧整流回路10,13のうちの一方(本実施形態では、倍電圧整流回路13)の出力端子15とグランドラインとの間には、抵抗20と可変電圧源21を備えるNチャネル型のパワーMOSFET(以下、「FET22」という)との直列回路が設けられると共に、上記FET22に並列接続した抵抗23からなる放電回路24が設けられている。これは、可変電圧源21によりFET22のゲート電圧を変化させてその抵抗値を変えることにより、放電回路24に流れる第2コンデンサ12の充電電流を調整するようになっている。尚、FET22は非飽和領域で動作させるようになっている。   An N-channel power having a resistor 20 and a variable voltage source 21 between the output terminal 15 of one of the voltage doubler rectifier circuits 10 and 13 (in this embodiment, the voltage doubler rectifier circuit 13) and the ground line. A series circuit with a MOSFET (hereinafter referred to as “FET 22”) is provided, and a discharge circuit 24 including a resistor 23 connected in parallel to the FET 22 is provided. The variable voltage source 21 changes the gate voltage of the FET 22 to change its resistance value, thereby adjusting the charging current of the second capacitor 12 flowing in the discharge circuit 24. The FET 22 is operated in a non-saturated region.

2.制御回路の動作
さて、両放電針1,2から等距離の位置には電極板30(「対向電極」の一例)が備えられると共に、これに抵抗31(「電流測定部」の一例)が接続されており、イオン電流に応じて抵抗31に発生した電圧(サンプリング電圧Vs 「測定信号」の一例)が制御回路40に取り込まれるようになっている。
2. Operation of Control Circuit Now, an electrode plate 30 (an example of a “counter electrode”) is provided at a position equidistant from both discharge needles 1 and 2, and a resistor 31 (an example of a “current measurement unit”) is connected thereto. The voltage generated in the resistor 31 according to the ion current (an example of the sampling voltage Vs “measurement signal”) is taken into the control circuit 40.

また、制御回路40は、上記第1スイッチ素子4及び第2スイッチ素子6に制御信号S1,S2をそれぞれ与えてオンオフ制御する。具体的には、図2に示すように、制御回路40は、第1スイッチ素子4及び第2スイッチ素子6の一方のスイッチ素子のみを第1時間間隔T1だけオフ(図2の(2)または(2)の期間参照)し、次に第2時間間隔T2(「除電動作の連続実行期間」の一例)だけ第1スイッチ素子4及び第2スイッチ素子6の両方をオン(図2の(1)の期間参照)し、その後、他方のスイッチ素子のみをオフ(図2の(2)または(3)の期間参照)する動作を繰り返す。要するに、制御回路40は、上記第2時間間隔T2ごとに第1スイッチ素子4のオフ動作と第2スイッチ素子6のオフ動作とを交互に繰り返す。   The control circuit 40 gives control signals S1 and S2 to the first switch element 4 and the second switch element 6 to perform on / off control. Specifically, as shown in FIG. 2, the control circuit 40 turns off only one switch element of the first switch element 4 and the second switch element 6 for a first time interval T1 ((2) in FIG. 2 or Next, turn on both the first switch element 4 and the second switch element 6 for the second time interval T2 (an example of the “continuous execution period of static elimination operation”) (see (1) in FIG. 2). Then, the operation of turning off only the other switch element (see the period (2) or (3) in FIG. 2) is repeated. In short, the control circuit 40 alternately repeats the off operation of the first switch element 4 and the off operation of the second switch element 6 at each second time interval T2.

第1スイッチ素子4及び第2スイッチ素子6の両方がオンされる(1)期間では、両倍電圧整流回路10,13が駆動し、両放電針1,2に高圧電圧が印加されコロナ放電により正負イオンが発生する除電動作が実行される。第1スイッチ素子4のみがオフされる(2)期間では、負極性電圧を出力する倍電圧整流回路10が停止し、正極性電圧を出力する倍電圧整流回路13だけが駆動する。従って、上記抵抗31におけるサンプリング電圧Vsは、放電針2から発生する正イオンのうち電極板30に流れる電流(正イオン電流)に応じた値となる。従って、このときのサンプリング電圧Vsに基づき正イオンの放電状態(イオン生成量)の変化を監視することができる。   In the period (1) in which both the first switch element 4 and the second switch element 6 are turned on, the double voltage rectifier circuits 10 and 13 are driven, and a high voltage is applied to both discharge needles 1 and 2 by corona discharge. Static elimination operation in which positive and negative ions are generated is executed. In the period (2) in which only the first switch element 4 is turned off, the voltage doubler rectifier circuit 10 that outputs the negative voltage is stopped, and only the voltage doubler rectifier circuit 13 that outputs the positive voltage is driven. Therefore, the sampling voltage Vs in the resistor 31 has a value corresponding to the current (positive ion current) flowing through the electrode plate 30 among the positive ions generated from the discharge needle 2. Therefore, it is possible to monitor a change in the discharge state (ion generation amount) of positive ions based on the sampling voltage Vs at this time.

一方、第2スイッチ素子6のみがオフされる(3)期間では、正極性電圧を出力する倍電圧整流回路13が停止し、負極性電圧を出力する倍電圧整流回路10だけが駆動する。従って、上記抵抗31におけるサンプリング電圧Vsは、放電針1から発生する負イオンのうち電極板30に流れる電流(負イオン電流)に応じた値となる。従って、このときのサンプリング電圧Vsに基づき負イオンの放電状態(イオン生成量)の変化を監視を監視することができる。   On the other hand, in the period (3) in which only the second switch element 6 is turned off, the voltage doubler rectifier circuit 13 that outputs the positive voltage is stopped and only the voltage doubler rectifier circuit 10 that outputs the negative voltage is driven. Therefore, the sampling voltage Vs in the resistor 31 has a value corresponding to the current (negative ion current) flowing through the electrode plate 30 among the negative ions generated from the discharge needle 1. Accordingly, it is possible to monitor the change in the discharge state (ion generation amount) of negative ions based on the sampling voltage Vs at this time.

なお、上記第1時間間隔T1は、第2時間間隔T2に比べて短く、より具体的には、第1時間間隔T1は、第2時間間隔T2に対して10%以下に設定されている。このように設定すれば、除電装置の除電性能に影響を及ぼすほどイオンバランスが崩れることはない。なお、本実施形態では、例えば第1時間間隔T1が30msで、第2時間間隔T2が300msに設定されている。   The first time interval T1 is shorter than the second time interval T2, and more specifically, the first time interval T1 is set to 10% or less with respect to the second time interval T2. If set in this way, the ion balance will not be destroyed so as to affect the charge removal performance of the charge removal apparatus. In the present embodiment, for example, the first time interval T1 is set to 30 ms, and the second time interval T2 is set to 300 ms.

以上のように、除電装置は、(1)期間で正負イオンを発生させて図示しない帯電体の除電動作を行い、(2)期間で倍電圧整流回路13のみを駆動させて上記サンプリング電圧Vsに基づき正イオンの放電状態の変化を監視し、(3)期間で倍電圧整流回路10のみを駆動させて上記サンプリング電圧Vsに基づき負イオンの放電状態の変化を監視する。   As described above, the static eliminator generates positive and negative ions in the period (1) to perform the static elimination operation of a not-shown charged body, and (2) drives only the voltage doubler rectifier circuit 13 in the period to obtain the sampling voltage Vs. Based on this, the change in the discharge state of positive ions is monitored, and during the period (3), only the voltage doubler rectifier circuit 10 is driven and the change in the discharge state of negative ions is monitored based on the sampling voltage Vs.

そして、制御回路40は、例えば(2)期間及び(3)期間それぞれで検出される正イオンの放電量(イオン生成量)と、負イオンの放電量(イオン生成量)とを随時比較し、これらに差が生じた場合には、その差を相殺するように、上記可変電圧源21の電圧を調整する。具体的には、例えば正イオンの放電量が負イオンの放電量よりも多いときには、制御回路40は可変電圧源21の電圧を引き上げるように制御して、FET22のゲート電圧を上昇させることによりその抵抗値を下げる。すると、第2コンデンサ12への充電電流が放電回路24に流れることにより、第2コンデンサ12の充電電圧が低下して、正イオンの放電量が負イオンの放電量に近づく。   Then, for example, the control circuit 40 compares the discharge amount of positive ions (ion generation amount) detected in each of the periods (2) and (3) with the discharge amount of negative ions (ion generation amount) as needed, If there is a difference between them, the voltage of the variable voltage source 21 is adjusted so as to cancel the difference. Specifically, for example, when the discharge amount of positive ions is larger than the discharge amount of negative ions, the control circuit 40 controls to raise the voltage of the variable voltage source 21 and raises the gate voltage of the FET 22 to thereby increase the voltage. Decrease the resistance value. Then, when the charging current to the second capacitor 12 flows to the discharge circuit 24, the charging voltage of the second capacitor 12 decreases, and the discharge amount of positive ions approaches the discharge amount of negative ions.

また、正の放電量が負の放電量よりも少なくなることにより、サンプリング電圧Vsが基準電圧Vrefよりも低くなると、制御回路40は可変電圧源21の電圧を引き下げるように制御して、FET22のゲート電圧を低下させることによりその抵抗値を上げる。すると、放電回路24に流れる第2コンデンサ12の充電電流が制限されることにより、第2コンデンサ12の充電電圧が上昇して、やはり正イオンの放電量が負イオンの放電量に近づく。
このようにすることで、放電針1,2から生成される正負イオンのイオンバランスが保たれる。
When the sampling voltage Vs becomes lower than the reference voltage Vref due to the positive discharge amount being smaller than the negative discharge amount, the control circuit 40 controls the FET 22 to reduce the voltage of the variable voltage source 21, thereby controlling the FET 22. The resistance value is increased by lowering the gate voltage. Then, the charging current of the second capacitor 12 flowing through the discharge circuit 24 is limited, so that the charging voltage of the second capacitor 12 increases, and the discharge amount of positive ions approaches the discharge amount of negative ions.
By doing in this way, the ion balance of the positive / negative ion produced | generated from the discharge needles 1 and 2 is maintained.

また、例えば放電針1,2に周囲空気中の埃等が付着したり、長期使用により放電針1,2の先端が磨耗したりすることによって、放電針1,2から生成される放電量が所定レベルよりも下回り、除電効果に影響を及ぼすことがあり得る。そこで、本実施形態では、制御回路40は、(2)期間、(3)期間におけるサンプリング電圧Vsと所定の閾値と比較し、当該サンプリング電圧Vsが上記所定の閾値を下回るほどに正イオンまたは負イオンのうち少なくともいずれか一方の放電量が低下したときには、放電異常が発生したと判断し、例えば外部に異常信号を出力する。また、除電装置に備えられた表示灯を点灯させる構成であってもよい。更に、放電針1,2で生成した正負イオンを帯電体に吹き付けるためのファン(図示せず)の駆動を停止させる構成であってもよい。   Further, for example, when dust or the like in the surrounding air adheres to the discharge needles 1 or 2 or the tips of the discharge needles 1 or 2 are worn due to long-term use, the amount of discharge generated from the discharge needles 1 and 2 is reduced. It may be less than a predetermined level and affect the static elimination effect. Therefore, in the present embodiment, the control circuit 40 compares the sampling voltage Vs in the (2) period and (3) period with a predetermined threshold value, and the positive ion or negative voltage is so low that the sampling voltage Vs falls below the predetermined threshold value. When the discharge amount of at least one of the ions decreases, it is determined that a discharge abnormality has occurred, and an abnormality signal is output to the outside, for example. Moreover, the structure which lights the indicator lamp with which the static elimination apparatus was equipped may be sufficient. Furthermore, the structure which stops the drive of the fan (not shown) for spraying the positive / negative ion produced | generated with the discharge needles 1 and 2 to a charging body may be sufficient.

3.本実施形態の効果
以上のように、本実施形態によれば、常には両倍電圧整流回路10,13の両方を駆動して1対の放電針1,2から正負イオンを生成する除電動作を実行する一方で、所定の測定タイミング((2)、(3)の期間)で上記両倍電圧整流回路10,13の一方だけを駆動し、このとき生成される正イオンまたは負イオンの放電量を監視するようになっている。従って、1対の放電針1,2に対して共通の電極板30を設けるだけで済み、各放電電極ごとに対向電極を設けた従来のものに比べて、対向電極の配置構成や配線の簡略化を図ることができる。
3. Advantages of the present embodiment As described above, according to the present embodiment, the static elimination operation that always drives both the voltage doubler rectifier circuits 10 and 13 to generate positive and negative ions from the pair of discharge needles 1 and 2 is performed. On the other hand, only one of the double voltage rectifier circuits 10 and 13 is driven at a predetermined measurement timing (periods (2) and (3)), and the discharge amount of positive ions or negative ions generated at this time To monitor. Therefore, it is only necessary to provide a common electrode plate 30 for the pair of discharge needles 1 and 2, and the arrangement and wiring of the counter electrode and the wiring are simplified compared to the conventional one in which a counter electrode is provided for each discharge electrode. Can be achieved.

また、正イオンの放電量を監視するための倍電圧整流回路10の駆動停止と、負イオンの放電量を監視するための倍電圧整流回路13の駆動停止とを交互に同じ時間間隔T1で行うことで、イオンバランスがとれた除電を行うことができる。   Further, the drive stop of the voltage doubler rectifier circuit 10 for monitoring the discharge amount of positive ions and the drive stop of the voltage doubler rectifier circuit 13 for monitoring the discharge amount of negative ions are alternately performed at the same time interval T1. In this way, it is possible to perform static elimination with an ion balance.

また、図2に示すように、一方のイオン(例えば正イオン)の測定タイミングは、その前後における他方のイオン(例えば負イオン)の2つの測定タイミングの中間に位置する。つまり、一方のイオンの測定タイミングを、他方のイオンの測定タイミングからなるべく遠ざけるようにしている。これにより、倍電圧整流回路10,13の追従遅れにより、例えば正イオンの測定タイミングにおいて、倍電圧整流回路10が未だ完全に停止しておらず、正イオンの放電量を正確に監視できないという事態を回避できる。   Further, as shown in FIG. 2, the measurement timing of one ion (for example, positive ion) is located in the middle of the two measurement timings of the other ion (for example, negative ion) before and after that. That is, the measurement timing of one ion is set as far as possible from the measurement timing of the other ion. Thereby, due to the tracking delay of the voltage doubler rectifier circuits 10 and 13, for example, at the measurement timing of positive ions, the voltage doubler rectifier circuit 10 is not yet completely stopped, and the discharge amount of positive ions cannot be monitored accurately. Can be avoided.

なお、除電動作において倍電圧整流回路10,13を交互に駆動させるようにすれば、対向電極を1つにすることができるが、これでは、除電動作において正負イオンが同時に生成されることがなく、除電効果が低下するという欠点がある。これに対して、本実施形態の除電装置は、倍電圧整流回路10,13を同時に駆動して正負イオンを同時に発生させる構成であるから、十分な除電効果を期待できる。   If the voltage doubler rectifier circuits 10 and 13 are alternately driven in the static elimination operation, the counter electrode can be made one. However, in this case, positive and negative ions are not generated simultaneously in the static elimination operation. There is a drawback that the charge removal effect is reduced. On the other hand, since the static elimination apparatus of this embodiment is the structure which drives the voltage doubler rectifier circuits 10 and 13 simultaneously and produces | generates positive / negative ion simultaneously, it can anticipate sufficient static elimination effect.

<他の実施形態>
本発明は上記記述及び図面によって説明した実施形態に限定されるものではなく、例えば次のような実施形態も本発明の技術的範囲に含まれる。
<Other embodiments>
The present invention is not limited to the embodiments described with reference to the above description and drawings. For example, the following embodiments are also included in the technical scope of the present invention.

(1)上記実施形態では、倍電圧整流回路13側に電圧調整手段を設けて、正負イオンのイオンバランスが崩れたときに、上記電圧調整手段によって倍電圧整流回路13の出力電圧を調整する構成としたが、これに限らず、倍電圧整流回路10,13の両方に電圧両性手段を設けて、正イオンと負イオンのそれぞれの放電量が所定レベルになるように各電圧調整手段を個別に駆動させる構成であってもよい。また、電圧調整手段を有しない構成であってもよい。   (1) In the above embodiment, the voltage adjusting means is provided on the voltage doubler rectifier circuit 13 side, and when the ion balance of positive and negative ions is lost, the voltage adjusting means adjusts the output voltage of the voltage doubler rectifier circuit 13. However, the present invention is not limited to this, and voltage amphoteric means is provided in both voltage doubler rectifier circuits 10 and 13 so that each voltage adjusting means is individually set so that the discharge amount of each of positive ions and negative ions becomes a predetermined level. The structure to drive may be sufficient. Moreover, the structure which does not have a voltage adjustment means may be sufficient.

本発明の一実施形態に係る除電装置の電気的構成を示す回路図The circuit diagram which shows the electrical constitution of the static elimination apparatus which concerns on one Embodiment of this invention. 制御回路の動作を説明するためのタイムチャートTime chart for explaining the operation of the control circuit

符号の説明Explanation of symbols

1,2…放電針(放電電極)
10…倍電圧整流回路(負極性電圧印加回路)
13…倍電圧整流回路(正極性電圧印加回路)
30…電極板(対向電極)
31…抵抗(電流測定部)
40…制御回路(制御部、判断部、放電監視部、タイミング生成部)
T2…第2時間間隔(除電動作の実行期間、所定時間間隔)
Vs…サンプリング電圧(測定信号)
T1…第1時間間隔(連続実行時間)
1, 2, ... Discharge needle (discharge electrode)
10 ... Voltage doubler rectifier circuit (negative voltage application circuit)
13 ... Voltage doubler rectifier circuit (positive voltage application circuit)
30 ... Electrode plate (counter electrode)
31 ... Resistance (current measuring part)
40... Control circuit (control unit, determination unit, discharge monitoring unit, timing generation unit)
T2 ... 2nd time interval (Execution period of static elimination operation, predetermined time interval)
Vs: Sampling voltage (measurement signal)
T1 ... 1st time interval (continuous execution time)

Claims (4)

1対の放電電極と、
前記1対の放電電極のうちの一方の放電電極に負極性の電圧を印加して負イオンを生成させる負極性電圧印加回路と、
他方の放電電極に正極性の電圧を印加して正イオンを生成させる正極性電圧印加回路と、
前記1対の放電電極に対応して設けられる共通の対向電極と、
前記対向電極に流れる電流に応じた測定信号を出力する電流測定部と、
常には、前記負極性電圧印加回路及び前記正極性電圧印加回路の両方を駆動して前記1対の放電電極から正負イオンを生成する直流方式の除電動作を実行させる一方で、所定の測定タイミングが到来したときに、当該除電動作の各連続実行期間よりも短い期間で前記負極性電圧印加回路及び正極性電圧印加回路のうちのいずれか一方の印加回路の駆動を選択的に停止する制御部と、
前記測定タイミングで前記電流測定部から出力された前記測定信号に基づき他方の印加回路による放電電極の放電状態の変化を監視する放電監視部と、を備える除電装置。
A pair of discharge electrodes;
A negative voltage application circuit for generating negative ions by applying a negative voltage to one discharge electrode of the pair of discharge electrodes;
A positive voltage application circuit for generating positive ions by applying a positive voltage to the other discharge electrode;
A common counter electrode provided corresponding to the pair of discharge electrodes;
A current measurement unit that outputs a measurement signal corresponding to the current flowing through the counter electrode;
Usually, both the negative voltage application circuit and the positive voltage application circuit are driven to perform a direct current neutralization operation for generating positive and negative ions from the pair of discharge electrodes, while a predetermined measurement timing is A controller that selectively stops driving of the application circuit of either the negative voltage application circuit or the positive voltage application circuit in a period shorter than each continuous execution period of the static elimination operation when it arrives; ,
A discharge monitoring unit that monitors a change in a discharge state of the discharge electrode by the other application circuit based on the measurement signal output from the current measurement unit at the measurement timing.
前記測定タイミングを、所定時間間隔ごとに生成するタイミング生成部を備え、
前記制御部は、前記各測定タイミングごとに前記負極性電圧印加回路の駆動停止と前記正極性電圧印加回路の駆動停止とを交互に行う請求項1に記載の除電装置。
A timing generation unit that generates the measurement timing every predetermined time interval;
The static eliminator according to claim 1, wherein the controller alternately stops driving the negative voltage application circuit and stopping driving the positive voltage application circuit at each measurement timing.
前記放電監視部で監視された放電状態の変化に基づき前記放電電極の放電異常の有無を判断する判断部を備える請求項1または請求項2に記載の除電装置。 The static elimination apparatus of Claim 1 or Claim 2 provided with the judgment part which judges the presence or absence of the discharge abnormality of the said discharge electrode based on the change of the discharge state monitored by the said discharge monitoring part. 前記放電監視部で監視された正イオンの放電状態の変化と、負イオンの放電状態の変化とに基づき両イオン間の放電バランスをとるように前記負極性電圧印加回路及び前記正極性電圧印加回路のうち少なくともいずれか一方の印加電圧を調整する電圧調整部を備える請求項1から請求項3のいずれかに記載の除電装置。 The negative voltage application circuit and the positive voltage application circuit so as to balance the discharge between both ions based on the change in the discharge state of positive ions and the change in the discharge state of negative ions monitored by the discharge monitoring unit. The static elimination apparatus in any one of Claims 1-3 provided with the voltage adjustment part which adjusts at least any one applied voltage among these.
JP2006185179A 2006-07-05 2006-07-05 Static eliminator Expired - Fee Related JP4931192B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006185179A JP4931192B2 (en) 2006-07-05 2006-07-05 Static eliminator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006185179A JP4931192B2 (en) 2006-07-05 2006-07-05 Static eliminator

Publications (2)

Publication Number Publication Date
JP2008016274A JP2008016274A (en) 2008-01-24
JP4931192B2 true JP4931192B2 (en) 2012-05-16

Family

ID=39073097

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006185179A Expired - Fee Related JP4931192B2 (en) 2006-07-05 2006-07-05 Static eliminator

Country Status (1)

Country Link
JP (1) JP4931192B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5212787B2 (en) 2008-02-28 2013-06-19 Smc株式会社 Ionizer
JP4610657B2 (en) * 2009-03-25 2011-01-12 シャープ株式会社 Ion generator and method for determining presence / absence of ions
JP5808568B2 (en) * 2011-04-20 2015-11-10 シャープ株式会社 Ion generator and ion generation method
JP5734924B2 (en) * 2012-07-11 2015-06-17 シシド静電気株式会社 Ion generator and discharge electrode mounting state monitoring method
JP5805027B2 (en) * 2012-07-11 2015-11-04 シシド静電気株式会社 Ion generator and abnormal discharge detection method
CN107615887A (en) * 2015-05-26 2018-01-19 株式会社村田制作所 Supply unit and except electrical equipment

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0612718B2 (en) * 1990-03-14 1994-02-16 春日電機株式会社 Ion balance control device for static eliminator
JP2002216995A (en) * 2001-01-15 2002-08-02 Keyence Corp Static eliminator and high-voltage generating circuit assembled in this
JP2003068497A (en) * 2001-08-29 2003-03-07 Kasuga Electric Works Ltd Control method and control device of direct current antistatic device
JP2004063427A (en) * 2002-07-31 2004-02-26 Sunx Ltd Static eliminator

Also Published As

Publication number Publication date
JP2008016274A (en) 2008-01-24

Similar Documents

Publication Publication Date Title
JP4931192B2 (en) Static eliminator
CN101361407B (en) Static elimination apparatus
US7586731B2 (en) Ion balance adjusting method and method of removing charges from workpiece by using the same
JP6486139B2 (en) Dead time adjustment circuit
EP2940867B1 (en) Electromagnetic inductive load control device
JP5462046B2 (en) Battery state monitoring circuit and battery device
EP1441441A3 (en) Gate driving circuit
WO2013005652A1 (en) Light-emitting element breakdown detector and method for detecting light-emitting element breakdown
JP2008124035A (en) Static eliminator
KR20080071123A (en) Dc ionizer
JP6202970B2 (en) Inrush current prevention circuit and power supply device
EP1705794A3 (en) Power generation control system for vehicle generator
JP2015045553A (en) Secondary battery charge/discharge device equipped with switching power supply
US9658274B2 (en) Light-emitting element failure detector and method for detecting light-emitting element failure
JP2014117045A (en) Charge pump circuit
JP5002842B2 (en) How to adjust the ion balance
JP5350097B2 (en) Pulse control power supply for static eliminator
JP2002216995A (en) Static eliminator and high-voltage generating circuit assembled in this
JP5605263B2 (en) Load drive device
JP2008015463A (en) Limited current circuit of digital inverter for liquid crystal display backlight
JP2013257952A (en) Static eliminator
JP5299989B2 (en) Ionizer
JP5786577B2 (en) Static eliminator
JP2004127858A (en) Static eliminator
JP6353405B2 (en) Power supply device and ion generator using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090610

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090925

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090925

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110620

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110705

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110905

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120209

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120213

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150224

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150224

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150224

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees