JP4926018B2 - Body front structure - Google Patents

Body front structure Download PDF

Info

Publication number
JP4926018B2
JP4926018B2 JP2007315842A JP2007315842A JP4926018B2 JP 4926018 B2 JP4926018 B2 JP 4926018B2 JP 2007315842 A JP2007315842 A JP 2007315842A JP 2007315842 A JP2007315842 A JP 2007315842A JP 4926018 B2 JP4926018 B2 JP 4926018B2
Authority
JP
Japan
Prior art keywords
acceleration
impact
absorbing
shock absorbing
shock
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007315842A
Other languages
Japanese (ja)
Other versions
JP2009137435A (en
Inventor
宏二郎 岡部
文俊 加瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2007315842A priority Critical patent/JP4926018B2/en
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to MYPI2010002525A priority patent/MY155636A/en
Priority to AT08858235T priority patent/ATE500999T1/en
Priority to EP08858235A priority patent/EP2195199B1/en
Priority to US12/746,274 priority patent/US8056926B2/en
Priority to DE602008005481T priority patent/DE602008005481D1/en
Priority to CA2703572A priority patent/CA2703572C/en
Priority to PCT/JP2008/071745 priority patent/WO2009072450A1/en
Priority to CN2008801155727A priority patent/CN101855110B/en
Priority to MX2010004536A priority patent/MX2010004536A/en
Priority to TW097145728A priority patent/TWI430905B/en
Publication of JP2009137435A publication Critical patent/JP2009137435A/en
Application granted granted Critical
Publication of JP4926018B2 publication Critical patent/JP4926018B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Air Bags (AREA)
  • Body Structure For Vehicles (AREA)

Description

本発明は、フロントサイドフレームに衝撃吸収部を設け、この衝撃吸収部にエアバッグ用の加速度センサーを設けた車体前部構造に関する。   The present invention relates to a vehicle body front structure in which a shock absorbing portion is provided on a front side frame, and an acceleration sensor for an airbag is provided on the shock absorbing portion.

車体前部構造のなかには、フロントサイドフレームの外側にアッパメンバーを配置し、アッパメンバーおよびフロントサイドフレームの前端部を連結フレームでそれぞれ連結し、連結フレームに加速度(減速度)を検知する加速度センサーを設けたものが知られている。
加速度センサーで検知した加速度に基づいて衝突の有無を判断し、衝突したと判断されたときエアバッグを展開させて乗員を保護する(例えば、特許文献1参照。)。
特許第3930004号明細書
In the front part structure of the vehicle body, an upper member is arranged outside the front side frame, the front member of the upper member and the front side frame are connected by a connecting frame, and an acceleration sensor that detects acceleration (deceleration) is connected to the connecting frame. What is provided is known.
The presence or absence of a collision is determined based on the acceleration detected by the acceleration sensor, and when it is determined that a collision has occurred, the airbag is deployed to protect the occupant (see, for example, Patent Document 1).
Japanese Patent No. 3930004

車体前部構造のなかには、低速衝突による衝撃エネルギーを吸収可能で、かつ、高速衝突による衝撃エネルギーを吸収可能なものが知られている。
低速衝突の衝撃エネルギーを吸収することで、衝突した物体を保護することが可能である。
一方、高速衝突の衝撃エネルギーを吸収することで、乗員を保護することが可能である。
Among vehicle body front structures, those that can absorb impact energy caused by low-speed collisions and that can absorb impact energy caused by high-speed collisions are known.
By absorbing the impact energy of the low-speed collision, it is possible to protect the collision object.
On the other hand, it is possible to protect the passenger by absorbing the impact energy of the high-speed collision.

この車体前部構造に、特許文献1の加速度センサーを備えることで、加速度センサーで検知した加速度がしきい値を超えた場合に、エアバッグを車室内に展開させて乗員を一層良好に保護することが可能である。   By providing the vehicle body front structure with the acceleration sensor disclosed in Patent Document 1, when the acceleration detected by the acceleration sensor exceeds a threshold value, the airbag is deployed in the passenger compartment to better protect the occupant. It is possible.

ところで、エアバッグは、低速衝突時に非展開状態を保ち、高速衝突時にのみ展開するように、しきい値を精度良く検知する必要がある。
ここで、衝撃エネルギーが作用して発生する加速度は、ある程度のばらつきを生じる。このため、しきい値を精度良く検知するためには、加速度のばらつきに影響されないように、加速度が急激に上昇して加速度段差が大きな範囲内(すなわち、「明確な加速度段差」の範囲内)にしきい値を設定することが好ましい。
By the way, the airbag needs to detect the threshold with high accuracy so that the airbag is kept in a non-deployed state at the time of a low-speed collision and is deployed only at the time of a high-speed collision.
Here, the acceleration generated by the action of the impact energy varies to some extent. For this reason, in order to accurately detect the threshold value, the acceleration suddenly increases and the acceleration step is within a large range (that is, within the range of “clear acceleration step”) so as not to be affected by variations in acceleration. It is preferable to set a threshold value for.

しかし、車体前部構造は、低速衝突による衝撃エネルギーを吸収可能な機能を備えているので、高速衝突時に低速衝突用の機能が働いてしまう。
このため、高速衝突時に、加速度を急激に上昇させて加速度段差を大きく確保することが難しく、明確な加速度段差の範囲内にしきい値を設定することは難しいとされていた。
However, since the front structure of the vehicle body has a function capable of absorbing impact energy caused by a low-speed collision, a function for low-speed collision works during a high-speed collision.
For this reason, it has been difficult to ensure a large acceleration step by rapidly increasing the acceleration during a high-speed collision, and it is difficult to set a threshold value within a clear acceleration step range.

本発明は、低速衝突および高速衝突による各衝撃エネルギーを吸収可能で、かつ、明確な加速度段差の範囲内にしきい値を設定することができる車体前部構造を提供することを課題とする。   It is an object of the present invention to provide a vehicle body front structure that can absorb impact energy caused by a low-speed collision and a high-speed collision and that can set a threshold value within a clear range of acceleration steps.

請求項1に係る発明は、車体前後方向にフロントサイドフレームを延ばし、前記フロントサイドフレームの上側後方にフロントピラーを設け、前記フロントピラーから前方に向けてアッパメンバーを延ばすとともに、前記左右のアッパメンバーを前記左右のフロントサイドフレームの外側に配置し、前記フロントサイドフレームの前端部に内側衝撃吸収部を設け、前記アッパメンバーの前端部に外側衝撃吸収部を設け、これらの外側衝撃吸収部及び内側衝撃吸収部に衝撃加重が作用したときにエアバッグを展開させるための加速度を検知する加速度センサーを設けた車体前部構造において、前記外側衝撃吸収部および前記内側衝撃吸収部は、前記外側衝撃吸収部が前記内側衝撃吸収部の突出量に対して短くなるように、前記外側衝撃吸収部及び内側衝撃吸収部のそれぞれの突出量を異ならせることで、前記内側衝撃吸収部のうち、前記外側衝撃吸収部から前方に突出した部位が衝撃エネルギーで変形するときの加速度と、前記内側衝撃吸収部の変形が前記外側衝撃吸収部に達した後、前記外側衝撃吸収部及び内側衝撃吸収部が衝撃エネルギーで共に変形するときの加速度との範囲内に、前記エアバッグを展開させるしきい値を設定可能とし、前記左右の外側衝撃吸収部の前端間に亘ってバンパービームが架け渡されると共に、このバンパービームの両端は、車体側に向け曲げられていると共に、他の部位よりも脆弱となるように前部が切り欠かれている脆弱部とされ、これらの脆弱部の後部に前記外側衝撃吸収部及び内側衝撃吸収部が設けられることにより、前記脆弱部は、前記外側衝撃吸収部及び内側衝撃吸収部の前部に渡って形成されており、前記加速度センサーは、前記アッパメンバーのうち、前記内側衝撃吸収部から離れた部位で、かつ前記外側衝撃吸収部に近い部位に設けられていることを特徴とする。 According to a first aspect of the present invention, a front side frame is extended in the longitudinal direction of the vehicle body, a front pillar is provided on the upper rear side of the front side frame, an upper member is extended forward from the front pillar, and the left and right upper members are was placed on the outside of the front side frame of the left and right, said inner impact absorbing section provided at the front end portion of the front side frame, the only setting the outer impact absorbing section to the front end portion of the upper member, these outer impact absorbing section and In the front structure of the vehicle body provided with an acceleration sensor for detecting an acceleration for deploying the airbag when an impact load is applied to the inner shock absorbing portion, the outer shock absorbing portion and the inner shock absorbing portion are the outer shocks. as absorption portion is shorter than the projecting amount of the inner impact absorbing section, said outer impact absorbing section及 By varying the respective amount of protrusion of the inner impact absorbing section, of the inner impact absorbing section, and the acceleration when the sites protrudes forward from the outer impact absorbing section is deformed by the impact energy, said inner impact absorbing section After the deformation reaches the outer shock absorbing portion, a threshold value for deploying the airbag is set within the range of acceleration when the outer shock absorbing portion and the inner shock absorbing portion are both deformed by shock energy. The bumper beam is bridged between the front ends of the left and right outer shock absorbers, and both ends of the bumper beam are bent toward the vehicle body and are more fragile than other parts. the front is a cut away by being fragile portion, by Rukoto said outer impact absorbing section and the inner impact absorbing section is provided at a rear portion of the fragile portion, the fragile portion, the outer The acceleration sensor is formed over the front part of the shock absorbing part and the inner shock absorbing part, and the acceleration sensor is a part of the upper member that is away from the inner shock absorbing part and close to the outer shock absorbing part. It is provided in .

請求項1に係る発明では、外側衝撃吸収部が内側衝撃吸収部の突出量に対して短くなるように、内外側の衝撃吸収部の突出量を異ならせた。
これにより、内側衝撃吸収部のうち、外側衝撃吸収部から前方に突出した部位を変形させて低速衝突の衝撃エネルギーを吸収可能で、かつ、内外側の衝撃吸収部を変形させて高速衝突の衝撃エネルギーを吸収可能に構成することができる。
In the invention according to claim 1, the protruding amount of the inner and outer shock absorbing portions is made different so that the outer shock absorbing portion is shorter than the protruding amount of the inner shock absorbing portion.
As a result, it is possible to absorb the impact energy of the low-speed collision by deforming the portion of the inner shock absorption part that protrudes forward from the outer shock absorption part, and the high-speed collision shock by deforming the inner and outer shock absorption parts. The energy can be absorbed.

ここで、「低速衝突」とは、一例として、20km/h未満の速度で衝突する場合をいう。
「低速衝突」の例としては、相手車両が車体に対して左右にずれて衝突する、いわゆる、低速オフセット衝突が考えられる。
また、「高速衝突」とは、一例として、20km/h以上の速度で衝突する場合をいう。
「高速衝突」の例としては、相手車両が車体に対して左右にずれて衝突する、いわゆる、高速オフセット衝突や、相手車両が車体の前面全域(全面)に対して衝突する、いわゆる、高速全面衝突が考えられる。
なお、本明細書においては、発明の理解を容易にするため、「高速衝突」を高速オフセット衝突を例に説明する。
Here, “low-speed collision” refers to a case of collision at a speed of less than 20 km / h as an example.
As an example of the “low-speed collision”, a so-called low-speed offset collision in which the opponent vehicle collides with the vehicle body by shifting from side to side can be considered.
In addition, “high-speed collision” refers to a case of collision at a speed of 20 km / h or more as an example.
Examples of “high-speed collision” include a so-called high-speed offset collision in which the opponent vehicle collides with the vehicle body from side to side and a so-called high-speed entire surface in which the opponent vehicle collides with the entire front surface of the vehicle body (entire surface). A collision is possible.
In this specification, in order to facilitate understanding of the invention, “high-speed collision” will be described by taking high-speed offset collision as an example.

また、内側衝撃吸収部のうち、外側衝撃吸収部から前方に突出した部位が衝撃エネルギーで変形するときの加速度(減速度)と、内側衝撃吸収部の変形が外側衝撃吸収部に達した後、内外側の衝撃吸収部が衝撃エネルギーで変形するときの加速度(減速度)との範囲内に、エアバッグを展開させるしきい値を設定可能とした。   In addition, after the portion of the inner shock absorbing portion that protrudes forward from the outer shock absorbing portion is deformed by impact energy (deceleration) and the deformation of the inner shock absorbing portion reaches the outer shock absorbing portion, The threshold value for deploying the airbag can be set within the range of acceleration (deceleration) when the inner and outer impact absorbing portions are deformed by impact energy.

ここで、外側衝撃吸収部が変形を開始することで、内側衝撃吸収部および外側衝撃吸収部の2部材で衝撃エネルギーを吸収することになり、車両に大きな加速度が発生する(すなわち、加速度が急激に上昇する)。
よって、内側衝撃吸収部のみで衝撃エネルギーを吸収していたときの加速度と、内外側の衝撃吸収部で衝撃エネルギーを吸収するときの加速度との段差(以下、「加速度段差」という)を大きくできる。
Here, when the outer impact absorbing portion starts to deform, the impact energy is absorbed by the two members of the inner impact absorbing portion and the outer impact absorbing portion, and a large acceleration is generated in the vehicle (that is, the acceleration is suddenly increased). To rise).
Therefore, the step (hereinafter referred to as “acceleration step”) between the acceleration when the shock energy is absorbed only by the inner shock absorbing portion and the acceleration when the shock energy is absorbed by the inner and outer shock absorbing portions can be increased. .

そこで、請求項1において、内側衝撃吸収部のみで衝撃エネルギーを吸収していたときの加速度と、内外側の衝撃吸収部で衝撃エネルギーを吸収するときの加速度との範囲内に、エアバッグを展開させるしきい値を設定した。
これにより、加速度が急激に上昇して加速度段差が大きな範囲内(すなわち、「明確な加速度段差」の範囲内)にしきい値を設定することが可能なり、加速度のばらつきに影響を受けることなく、しきい値を精度良く検知することができる。
Therefore, in claim 1, the airbag is deployed within the range of the acceleration when the impact energy is absorbed only by the inner impact absorbing portion and the acceleration when the impact energy is absorbed by the inner and outer impact absorbing portions. The threshold to be set was set.
This makes it possible to set a threshold value within a range where the acceleration suddenly increases and the acceleration step is large (that is, within the range of “clear acceleration step”), without being affected by acceleration variations, The threshold can be detected with high accuracy.

加えて、請求項に係る発明では、加速度センサーを、アッパメンバーのうち、内側衝撃吸収部から離れた部位で、かつ外側衝撃吸収部に近い部位に設けた。
内側衝撃吸収部から離れた部位に加速度センサーを設けることで、内側衝撃吸収部のうち、外側衝撃吸収部から前方に突出した部位の変形中に、加速度センサーに衝撃エネルギーは伝わり難い。
一方、外側衝撃吸収部に近い部位に加速度センサーを設けることで、外側衝撃吸収部の変形中に、加速度センサーに衝撃エネルギーを効率よく伝えることができる。
In addition, in the invention according to claim 1 , the acceleration sensor is provided in a portion of the upper member that is away from the inner impact absorbing portion and close to the outer impact absorbing portion.
By providing the acceleration sensor at a site away from the inner impact absorbing portion, the impact energy is hardly transmitted to the acceleration sensor during deformation of the portion of the inner impact absorbing portion that protrudes forward from the outer impact absorbing portion.
On the other hand, by providing the acceleration sensor near the outer impact absorbing portion, the impact energy can be efficiently transmitted to the acceleration sensor during the deformation of the outer impact absorbing portion.

よって、外側衝撃吸収部の変形が開始するとき、加速度センサーを設けた部位に、大きな加速度を発生させて、明確な加速度段差を生じさせることができる。
このように、アッパメンバーのうち、内側衝撃吸収部から離れた部位で、かつ外側衝撃吸収部に近い部位に加速度センサーを設けることで、加速度センサーでしきい値を一層精度良く検知することができる。
Therefore, when the deformation of the outer impact absorbing portion starts, a large acceleration can be generated at the site where the acceleration sensor is provided, and a clear acceleration step can be generated.
As described above, by providing the acceleration sensor in a portion of the upper member that is away from the inner shock absorbing portion and close to the outer shock absorbing portion, the threshold value can be detected with higher accuracy by the acceleration sensor. .

本発明を実施するための最良の形態を添付図に基づいて以下に説明する。なお、「前」、「後」、「左」、「右」は運転者から見た方向にしたがい、前側をFr、後側をRr、左側をL、右側をRとして示す。   The best mode for carrying out the present invention will be described below with reference to the accompanying drawings. Note that “front”, “rear”, “left”, and “right” indicate the direction viewed from the driver, the front side is Fr, the rear side is Rr, the left side is L, and the right side is R.

図1は本発明に係る車体前部構造を示す斜視図である。
車体前部構造10は、車体前部の左右側に左右のフロントサイドフレーム(フロントサイドフレーム)11,12を備え、左フロントサイドフレーム11の上側後方に左フロントピラー(フロントピラー)13を設け、左フロントピラー13の下端部13aから前方に向けて左アッパメンバー(アッパメンバー)15を延ばすとともに、左アッパメンバー15を左フロントサイドフレーム11の外側に配置し、右フロントサイドフレーム12の上側後方に右フロントピラー(フロントピラー)14を設け、右フロントピラー14の下端部14aから前方に向けて右アッパメンバー(アッパメンバー)16を延ばすとともに、右アッパメンバー16を右フロントサイドフレーム12の外側に配置したものである。
FIG. 1 is a perspective view showing a vehicle body front structure according to the present invention.
The vehicle body front structure 10 includes left and right front side frames (front side frames) 11 and 12 on the left and right sides of the vehicle body front, and a left front pillar (front pillar) 13 on the upper rear side of the left front side frame 11. A left upper member (upper member) 15 extends forward from the lower end portion 13a of the left front pillar 13 and the left upper member 15 is disposed outside the left front side frame 11 so as to be located on the upper rear side of the right front side frame 12. A right front pillar (front pillar) 14 is provided, a right upper member (upper member) 16 extends forward from a lower end portion 14a of the right front pillar 14, and the right upper member 16 is disposed outside the right front side frame 12. It is a thing.

左フロントサイドフレーム11と左アッパメンバー15との間に、左前輪(図示せず)を覆う左ホイールハウス18が設けられている。
右フロントサイドフレーム12と右アッパメンバー16との間に、右前輪(図示せず)を覆う右ホイールハウス19が設けられている。
A left wheel house 18 that covers a left front wheel (not shown) is provided between the left front side frame 11 and the left upper member 15.
A right wheel house 19 that covers a right front wheel (not shown) is provided between the right front side frame 12 and the right upper member 16.

図2は本発明に係る車体前部構造に備えた衝撃吸収構造を示す斜視図である。
車体前部構造10は、左フロントサイドフレーム11の前端部11aと左アッパメンバー15の前端部15aとが車体幅方向に向けて配置されて各前端部11a,15aが互いに連結され、右フロントサイドフレーム12の前端部12aと右アッパメンバー16の前端部16aとが車体幅方向に向けて配置されて各前端部12a,16aが互いに連結され、前端部11a,15aおよび前端部12a,16aに衝撃吸収構造20が備えられ、左右のアッパメンバー15,16に左右の加速度センサー30(右加速度センサーは図示せず)がそれぞれ設けられている。
なお、左加速度センサー30については後で詳しく説明する。
FIG. 2 is a perspective view showing an impact absorbing structure provided in the vehicle body front structure according to the present invention.
The vehicle body front structure 10 includes a front end portion 11a of a left front side frame 11 and a front end portion 15a of a left upper member 15 which are arranged in the vehicle body width direction, and the front end portions 11a and 15a are connected to each other. The front end portion 12a of the frame 12 and the front end portion 16a of the right upper member 16 are arranged in the vehicle body width direction so that the front end portions 12a and 16a are connected to each other, and the front end portions 11a and 15a and the front end portions 12a and 16a are impacted. An absorption structure 20 is provided, and left and right acceleration sensors 30 (right acceleration sensor not shown) are provided on the left and right upper members 15 and 16, respectively.
The left acceleration sensor 30 will be described in detail later.

衝撃吸収構造20は、前端部11a,15aに左取付プレート21を介して左衝撃吸収ユニット25が設けられ、前端部12a,16aに右取付プレート22を介して右衝撃吸収ユニット26が設けられ、左右の衝撃吸収ユニット25,26に亘ってバンパービーム27が架け渡され、バンパービーム27にエネルギー吸収部材28が設けられている。
すなわち、バンパービーム27は、左端部27aが左衝撃吸収ユニット25に取り付けられ、右端部27bが右衝撃吸収ユニット26に取り付けられている。
The shock absorbing structure 20 is provided with a left shock absorbing unit 25 at the front end portions 11a and 15a via the left mounting plate 21, and a right shock absorbing unit 26 at the front end portions 12a and 16a via the right mounting plate 22. A bumper beam 27 is bridged over the left and right shock absorbing units 25, 26, and an energy absorbing member 28 is provided on the bumper beam 27.
That is, the bumper beam 27 has a left end portion 27 a attached to the left shock absorbing unit 25 and a right end portion 27 b attached to the right shock absorbing unit 26.

ここで、左右のフロントサイドフレーム11,12、左右のアッパメンバー15,16は左右対称の部材であり、右フロントサイドフレーム12、右アッパメンバー16の説明を省略する。
また、左右の衝撃吸収ユニット25,26は左右対称の部材であり、右衝撃吸収ユニット26の構成部材に左衝撃吸収ユニット25と同じ符号を付して説明を省略する。
さらに、左右の加速度センサー30(右加速度センサーは図示せず)は左右対称の部材であり、右加速度センサーの説明を省略する。
Here, the left and right front side frames 11 and 12 and the left and right upper members 15 and 16 are symmetrical members, and the description of the right front side frame 12 and the right upper member 16 is omitted.
Further, the left and right shock absorbing units 25 and 26 are symmetrical members, and the same reference numerals as those of the left shock absorbing unit 25 are attached to the constituent members of the right shock absorbing unit 26 and the description thereof is omitted.
Furthermore, the left and right acceleration sensors 30 (the right acceleration sensor is not shown) are symmetrical members, and the description of the right acceleration sensor is omitted.

図3は図2の3部拡大図、図4(a)は図3の4a−4a線断面図、図4(b)は図4(a)の分解図である。
左フロントサイドフレーム11は、車体前後方向に延びるとともに開口部32が車体外側に向けて配置された断面略コ字形のサイドフレーム部材31と、サイドフレーム部材31の開口部32に嵌合した断面略コ字形のサイド外側壁(外壁部)33とを備える。
3 is an enlarged view of part 3 of FIG. 2, FIG. 4 (a) is a sectional view taken along line 4a-4a of FIG. 3, and FIG. 4 (b) is an exploded view of FIG. 4 (a).
The left front side frame 11 extends in the longitudinal direction of the vehicle body and has an approximately U-shaped side frame member 31 in which an opening 32 is disposed toward the outside of the vehicle body, and an approximately cross-sectional shape fitted to the opening 32 of the side frame member 31. A U-shaped side outer wall (outer wall portion) 33 is provided.

サイドフレーム部材31は、水平に配置された上面部34と、上面部34の内側辺から下方に延びた内壁部35と、内壁部35の下辺から車体幅方向外側に向けて延びた下面部36とを備える。
サイド外側壁33は、上下の折曲片33a,33bがサイドフレーム部材31の開口部32に沿って設けられている。
The side frame member 31 includes a horizontally disposed upper surface portion 34, an inner wall portion 35 extending downward from the inner side of the upper surface portion 34, and a lower surface portion 36 extending outward from the lower side of the inner wall portion 35 in the vehicle body width direction. With.
The side outer wall 33 is provided with upper and lower bent pieces 33 a and 33 b along the opening 32 of the side frame member 31.

左アッパメンバー15は、車体前後方向に延びるとともに開口部42が車体内側に向けて配置された断面略コ字形のアッパメンバー部材41と、アッパメンバー部材41の中央開口部42aに嵌合した断面略コ字形のアッパ内側壁43とを備える。
アッパメンバー部材41は、車幅方向に水平に延びた上面部44と、上面部44の外側辺から下方に延びた外壁部45と、外壁部45の下辺から車体幅方向内側に向けて延びた下面部46とを備える。
The left upper member 15 extends in the longitudinal direction of the vehicle body and has an approximately U-shaped cross-section of the upper member member 41 in which the opening 42 is disposed toward the inside of the vehicle body, and a cross-sectional shape that is fitted to the central opening 42a of the upper member member 41. A U-shaped upper inner side wall 43.
The upper member member 41 has an upper surface portion 44 that extends horizontally in the vehicle width direction, an outer wall portion 45 that extends downward from the outer side of the upper surface portion 44, and an inner side in the vehicle body width direction that extends from the lower side of the outer wall portion 45. And a lower surface portion 46.

アッパ内側壁43は、上下の折曲片43a,43bがアッパメンバー部材41の中央開口部42aに沿って設けられている。
上面部44は、前端部に車体中心に向けて張り出す上張出部51が設けられている。上張出部51は先端部51aがサイドフレーム部材31の上面部34に溶接で接合されている。
The upper inner side wall 43 is provided with upper and lower bent pieces 43 a and 43 b along the central opening 42 a of the upper member member 41.
The upper surface part 44 is provided with an upper projecting part 51 that projects toward the center of the vehicle body at the front end part. The tip 51a of the upper overhang 51 is joined to the upper surface 34 of the side frame member 31 by welding.

下面部46は、上面部44と同様に、前端部に車体中心に向けて張り出す下張出部52が設けられている。
下張出部52は先端部52aがサイドフレーム部材31の下面部36に溶接で接合されている。
Similarly to the upper surface portion 44, the lower surface portion 46 is provided with a lower projecting portion 52 that projects toward the center of the vehicle body at the front end portion.
The lower overhang 52 has a tip 52 a joined to the lower surface 36 of the side frame member 31 by welding.

これにより、左フロントサイドフレーム11の前端部11aおよび左アッパメンバー15の前端部15aは、車体幅方向に向けて配置されて互いに連結されている。
左フロントサイドフレーム11の前端部11aには、取付片37が張り出されている。また、左アッパメンバー15の前端部15aには、取付片47が張り出されている。
Thus, the front end portion 11a of the left front side frame 11 and the front end portion 15a of the left upper member 15 are arranged in the vehicle body width direction and connected to each other.
A mounting piece 37 projects from the front end portion 11 a of the left front side frame 11. A mounting piece 47 projects from the front end 15 a of the left upper member 15.

図5は本発明に係る車体前部構造を示す平面図である。
左フロントサイドフレーム11は、上面部34は、左フロントサイドフレーム11の略中央部11bから前端部11aに向けて外側辺34aが徐々に車体外側(左アッパメンバー15側)に移動するように傾斜角θ1で傾斜状に形成されている。
FIG. 5 is a plan view showing a vehicle body front structure according to the present invention.
The upper surface 34 of the left front side frame 11 is inclined so that the outer side 34a gradually moves outward (to the left upper member 15 side) from the substantially central portion 11b of the left front side frame 11 toward the front end portion 11a. Inclined at an angle θ1.

よって、上面部34は、略中央部11bから前端部11aに向けて横幅が徐々に広がるように形成されている。
図4に示す下面部36も、上面部34と同様に、略中央部から前端部に向けて外側辺が徐々に車体外側に移動するように傾斜角θ1で傾斜状に形成されている。
Therefore, the upper surface portion 34 is formed so that the lateral width gradually increases from the substantially central portion 11b toward the front end portion 11a.
Similarly to the upper surface portion 34, the lower surface portion 36 shown in FIG. 4 is also formed in an inclined shape with an inclination angle θ1 so that the outer side gradually moves outward from the vehicle body toward the front end portion.

サイド外側壁33は、略中央部11bから前端部11aに向けて外側辺34aに沿って徐々に車体外側(左アッパメンバー15側)に移動するように傾斜角θ1で傾斜状に設けられている。
以下、左フロントサイドフレーム11のうち、略中央部11bから前端部11aまでの部位をサイド前半部54として説明する。
The side outer wall 33 is provided with an inclination at an inclination angle θ1 so as to gradually move toward the outer side of the vehicle body (on the left upper member 15 side) along the outer side 34a from the substantially central portion 11b toward the front end portion 11a. .
Hereinafter, a portion from the substantially central portion 11 b to the front end portion 11 a in the left front side frame 11 will be described as the side front half portion 54.

左アッパメンバー15は、略中央部15bから前端部15aまで車体前方に向けて車体中心側に徐々に移動するように傾斜角θ2で傾斜状に形成されている。
以下、左アッパメンバー15のうち、略中央部15bから前端部15aまでの部位をアッパ前半部55として説明する。
The left upper member 15 is formed in an inclined shape with an inclination angle θ2 so as to gradually move from the substantially central portion 15b to the front end portion 15a toward the front of the vehicle body toward the vehicle body center side.
Hereinafter, the part from the substantially center part 15b to the front-end part 15a among the left upper members 15 is demonstrated as the upper front half part 55. FIG.

左フロントサイドフレーム11のサイド外側壁33を、サイド前半部54において傾斜角θ1で傾斜状に設けるとともに、左アッパメンバー15のアッパ前半部55を、傾斜角θ2で傾斜状に設けた。
これにより、サイドフレーム前端部11aおよびアッパメンバー前端部15aが近接された状態に配置される。
The side outer wall 33 of the left front side frame 11 is provided with an inclination at an inclination angle θ1 in the side front half 54, and the upper front half 55 of the left upper member 15 is provided with an inclination at an inclination angle θ2.
As a result, the side frame front end portion 11a and the upper member front end portion 15a are arranged close to each other.

ここで、前述したように、左アッパメンバー15は、前端部15aのうち、上面部44に上張出部51が設けられるとともに、下面部46に下張出部52(図4参照)が設けられている。   Here, as described above, the left upper member 15 includes the upper projecting portion 51 on the upper surface portion 44 of the front end portion 15a and the lower projecting portion 52 (see FIG. 4) on the lower surface portion 46. It has been.

上張出部51は先端部51aがサイドフレーム部材31の上面部34に溶接で接合されている。また、下張出部52は先端部52aがサイドフレーム部材31の下面部36に溶接で接合されている。
これにより、左フロントサイドフレーム11の前端部11aおよび左アッパメンバー15の前端部15aが強固に連結されている。
The tip 51a of the upper overhang 51 is joined to the upper surface 34 of the side frame member 31 by welding. In addition, the tip portion 52 a of the lower overhang portion 52 is joined to the lower surface portion 36 of the side frame member 31 by welding.
Thereby, the front end part 11a of the left front side frame 11 and the front end part 15a of the left upper member 15 are firmly connected.

左フロントサイドフレーム11の前端部11aおよび左アッパメンバー15の前端部15aに、左取付プレート21を介して左衝撃吸収ユニット25が設けられている。
左衝撃吸収ユニット25にバンパービーム27の左端部27aが取り付けられている。
A left impact absorbing unit 25 is provided on the front end portion 11 a of the left front side frame 11 and the front end portion 15 a of the left upper member 15 via a left mounting plate 21.
A left end 27 a of a bumper beam 27 is attached to the left impact absorbing unit 25.

左衝撃吸収ユニット25は、左取付プレート21を介して左フロントサイドフレーム11の前端部11aに一体に取り付けられた内側衝撃吸収部62と、左取付プレート21を介して左アッパメンバー15の前端部15aに一体に取り付けられた外側衝撃吸収部63とを備える。   The left shock absorbing unit 25 includes an inner shock absorbing portion 62 integrally attached to the front end portion 11 a of the left front side frame 11 via the left mounting plate 21, and a front end portion of the left upper member 15 via the left mounting plate 21. And an outer shock absorber 63 integrally attached to 15a.

左取付プレート21は、前端部11aに取り付けられた内側取付部21aと、前端部15aに取り付けられた外側取付部21bとを有する。
内側取付部21aは、車幅方向に沿って平行に取り付けられたプレートである。
外側取付部21bは、内側取付部21aに対して角度θ3だけ後方に向けて傾斜させたプレートである。
The left attachment plate 21 has an inner attachment portion 21a attached to the front end portion 11a and an outer attachment portion 21b attached to the front end portion 15a.
The inner attachment portion 21a is a plate attached in parallel along the vehicle width direction.
The outer mounting portion 21b is a plate that is inclined rearward by an angle θ3 with respect to the inner mounting portion 21a.

内側衝撃吸収部62は、略矩形状の内筒体65を備え、後端部に内後フランジ66を備え、前端部に内前取付片67を備える。
内筒体65は、平面視で先細状に形成されている。
この内側衝撃吸収部62は、内後フランジ66が、左取付プレート21の内側取付部21aを介して左フロントサイドフレーム11の取付片37にボルト68…、ナット69…で取り付けられている。
よって、内側衝撃吸収部62は、左フロントサイドフレーム11の前方に設けられている。
内側衝撃吸収部62は、左取付プレート21から車体前方への突出量がL1に設定されている。
The inner impact absorbing portion 62 includes a substantially rectangular inner cylinder 65, a rear end portion including an inner rear flange 66, and a front end portion including an inner front mounting piece 67.
The inner cylinder 65 is formed in a tapered shape in plan view.
The inner shock absorbing portion 62 has an inner rear flange 66 attached to the attachment piece 37 of the left front side frame 11 with bolts 68, nuts 69, ... via the inner attachment portion 21a of the left attachment plate 21.
Therefore, the inner impact absorbing portion 62 is provided in front of the left front side frame 11.
In the inner impact absorbing portion 62, the protruding amount from the left mounting plate 21 to the front of the vehicle body is set to L1.

外側衝撃吸収部63は、略矩形状の外筒体75を備え、後端部に外後フランジ76を備え、前端部に外前取付片77を備える。
この外側衝撃吸収部63は、内側衝撃吸収部62に対して外側に所定間隔離間させて配置され、外後フランジ76が、左取付プレート21の外側取付部21bを介して左アッパメンバー15の取付片47にボルト68…、ナット69…で取り付けられている。
よって、外側衝撃吸収部63は、左アッパメンバー15の前方に設けられている。
外側衝撃吸収部63は、左取付プレート21から車体前方への突出量がL2に設定されている。
The outer impact absorbing portion 63 includes a substantially rectangular outer cylinder 75, a rear end portion including an outer rear flange 76, and a front end portion including an outer front mounting piece 77.
The outer impact absorbing portion 63 is disposed outside the inner impact absorbing portion 62 at a predetermined interval, and the outer rear flange 76 is attached to the left upper member 15 via the outer attaching portion 21b of the left attaching plate 21. The piece 47 is attached with bolts 68... And nuts 69.
Therefore, the outer impact absorbing portion 63 is provided in front of the left upper member 15.
The outer impact absorbing portion 63 has a protrusion amount L2 from the left mounting plate 21 to the front of the vehicle body.

左衝撃吸収ユニット25は、外側衝撃吸収部63の突出量L2が内側衝撃吸収部62の突出量L1に対して短くなるように、内外側の衝撃吸収部62,63の突出量を異ならせている。
さらに、左衝撃吸収ユニット25は、内側衝撃吸収部62のうち、外側衝撃吸収部63から前方に突出した部位62aを変形させて低速衝突の衝撃エネルギーを吸収可能で、かつ、内外側の衝撃吸収部62,63を変形させて高速衝突の衝撃エネルギーを吸収可能に構成されている。
The left shock absorbing unit 25 has different protruding amounts of the inner and outer shock absorbing portions 62 and 63 so that the protruding amount L2 of the outer shock absorbing portion 63 is shorter than the protruding amount L1 of the inner shock absorbing portion 62. Yes.
Further, the left shock absorbing unit 25 can absorb the impact energy of the low-speed collision by deforming the portion 62a protruding forward from the outer shock absorbing portion 63 of the inner shock absorbing portion 62, and can absorb the inner and outer shocks. The parts 62 and 63 are deformed so that the impact energy of the high-speed collision can be absorbed.

ここで、バンパービーム27は、車両の意匠性などを考慮して、左端部27aが後方に向けて湾曲状に形成されている。このため、左端部27aは、左取付プレート21に近づくことになる。
そこで、前述したように、左取付プレート21の外側取付部21bを内側取付部21aに対して角度θ3だけ後方に向けて傾斜させることにした。
Here, the bumper beam 27 is formed in a curved shape with the left end portion 27a facing rearward in consideration of the design of the vehicle and the like. For this reason, the left end portion 27 a approaches the left mounting plate 21.
Therefore, as described above, the outer mounting portion 21b of the left mounting plate 21 is inclined rearward by an angle θ3 with respect to the inner mounting portion 21a.

よって、左端部27aと外側取付部21bとの間隔を略一定に確保することが可能になる。
これにより、外側衝撃吸収部63の内外側の側壁78,79を略同じ長さに確保することが可能になり、外側衝撃吸収部63の潰し代を良好に確保することができる。
Therefore, it is possible to ensure a substantially constant distance between the left end portion 27a and the outer mounting portion 21b.
Thereby, the inner and outer side walls 78 and 79 of the outer shock absorbing portion 63 can be secured to substantially the same length, and the crushing allowance of the outer shock absorbing portion 63 can be secured satisfactorily.

外側衝撃吸収部63の外筒体75は、内側壁78が前端部75aから後端部75bに向けて傾斜角θ4で傾斜状に形成されている。
ここで、傾斜角θ4は、左フロントサイドフレーム11の外側辺34aの傾斜角θ1と略同じ傾斜角に設定されている。すなわち、傾斜角θ4および傾斜角θ1の関係は、θ4≒θ1の関係が成立する。
The outer cylindrical body 75 of the outer impact absorbing portion 63 has an inner wall 78 that is inclined at an inclination angle θ4 from the front end portion 75a toward the rear end portion 75b.
Here, the inclination angle θ4 is set to be substantially the same as the inclination angle θ1 of the outer side 34a of the left front side frame 11. That is, the relationship between the inclination angle θ4 and the inclination angle θ1 is established as θ4≈θ1.

加えて、外筒体75の内側壁78は、左フロントサイドフレーム11のサイド外側壁33に対して車体中心側に配置されている。
これにより、外筒体75の後端部75bおよび左フロントサイドフレーム11の前端部11aで一部重ね合わされた重複部81が形成されている。
In addition, the inner wall 78 of the outer cylinder 75 is disposed on the vehicle body center side with respect to the side outer wall 33 of the left front side frame 11.
As a result, an overlapping portion 81 that is partially overlapped with the rear end portion 75 b of the outer cylindrical body 75 and the front end portion 11 a of the left front side frame 11 is formed.

具体的には、外筒体75の後端部75bのうち内側壁78寄りの部位が、左フロントサイドフレーム11の前端部11aのうちサイド外側壁33寄りの部位に左取付プレート21を介在させた状態で重ね合わされている。
内側壁78寄りの部位とサイド外側壁33寄りの部位との重複幅はWである。
Specifically, the left mounting plate 21 is interposed between the portion of the rear end portion 75b of the outer cylinder 75 near the inner wall 78 and the portion of the front end portion 11a of the left front side frame 11 near the side outer wall 33. It is piled up in the state.
The overlapping width between the portion near the inner wall 78 and the portion near the side outer wall 33 is W.

重複部81の幅Wは、例えば、相手車両が左側にずれてオフセット衝突した場合に、外筒体75の内側壁78に沿って後方に伝わった衝撃エネルギーがサイド外側壁33に効率よく伝達可能に決められている。   The width W of the overlapping portion 81 is such that, for example, when the opponent vehicle is offset to the left and has an offset collision, the impact energy transmitted rearward along the inner wall 78 of the outer cylinder 75 can be efficiently transmitted to the side outer wall 33. It is decided to.

内側衝撃吸収部62の内前取付片67および外側衝撃吸収部63の外前取付片77に、バンパービーム27の左端部27aが溶接されている。
バンパービーム27は、左端部27aが車体側へ向けて後方に曲げられ、左端部27aにおいて、前部を切り欠くことで凹状の脆弱部29が形成されている。
The left end 27 a of the bumper beam 27 is welded to the inner front mounting piece 67 of the inner shock absorbing portion 62 and the outer front mounting piece 77 of the outer shock absorbing portion 63.
The bumper beam 27 has a left end portion 27a bent backward toward the vehicle body, and a concave weak portion 29 is formed by cutting out the front portion of the left end portion 27a.

バンパービーム27の前面27cにエネルギー吸収部材28が設けられている。
エネルギー吸収部材28は、樹脂製のビームであり、バンパービーム27の凹状の前部29に沿って左端部28aが配置されている。
前述したように、バンパービーム27は、左端部27aが車体側へ向けて後方に曲げられ、前部が凹状の脆弱部29に形成されている。
An energy absorbing member 28 is provided on the front surface 27 c of the bumper beam 27.
The energy absorbing member 28 is a resin beam, and a left end portion 28 a is disposed along the concave front portion 29 of the bumper beam 27.
As described above, the bumper beam 27 is formed such that the left end portion 27a is bent rearward toward the vehicle body side, and the front portion is formed into the concave weak portion 29.

バンパービーム27の左端部27aを車体側へ向けて後方に曲げ、かつ、バンパービーム27の左端部27aに脆弱部29を形成することで、バンパービーム27の左端部27aを車体側に一層近づけることが可能になる。   The left end portion 27a of the bumper beam 27 is bent closer to the vehicle body side, and the fragile portion 29 is formed on the left end portion 27a of the bumper beam 27, thereby making the left end portion 27a of the bumper beam 27 closer to the vehicle body side. Is possible.

よって、エネルギー吸収部材28の左端部28aを脆弱部29に沿って配置することで、左端部28aを車体側へ向けて後方に大きく曲げることができる。
これにより、エネルギー吸収部材28の左端部28aの前方に比較的大きな空間70を確保することができる。
Therefore, by disposing the left end portion 28a of the energy absorbing member 28 along the fragile portion 29, the left end portion 28a can be largely bent rearward toward the vehicle body side.
Thereby, a relatively large space 70 can be secured in front of the left end portion 28 a of the energy absorbing member 28.

ここで、バンパービーム27の脆弱部29およびエネルギー吸収部材28の左端部28a間に左蓋部材38が設けられている。
なお、エネルギー吸収部材28の左端部28aの前方に比較的大きな空間70を確保した理由については図8で詳しく説明する。
Here, a left lid member 38 is provided between the fragile portion 29 of the bumper beam 27 and the left end portion 28 a of the energy absorbing member 28.
The reason why a relatively large space 70 is secured in front of the left end portion 28a of the energy absorbing member 28 will be described in detail with reference to FIG.

図6(a)は図2の6a−6a線断面図、図6(b)は図2の6b−6b線断面図である。
(a)に示すように、バンパービーム27は、車幅方向の中央部27d(図2参照)が、鉛直に配置された前壁部91と、前壁部91の上半部に設けられた上コ字状部材92と、前壁部91の下半部に設けられた下コ字状部材93とを備えている。
前壁部91は、上端部近傍に後方に突出した上リブ91aが形成され、下端部近傍に後方に突出した下リブ91bが形成されている。
6A is a cross-sectional view taken along the line 6a-6a in FIG. 2, and FIG. 6B is a cross-sectional view taken along the line 6b-6b in FIG.
As shown to (a), the bumper beam 27 was provided in the center part 27d (refer FIG. 2) of the vehicle width direction in the front wall part 91 arrange | positioned perpendicularly, and the upper half part of the front wall part 91. An upper U-shaped member 92 and a lower U-shaped member 93 provided in the lower half of the front wall portion 91 are provided.
In the front wall portion 91, an upper rib 91a protruding rearward is formed in the vicinity of the upper end portion, and a lower rib 91b protruding rearward is formed in the vicinity of the lower end portion.

上コ字状部材92は、前壁部91の上端部から後方に向けて折り曲げられた上部94と、上部94の後端部から下方に向けて折り曲げられた上後壁部95と、上後壁部95の下端部から前方に向けて折り曲げられた上中央部96と、上中央部96の前端部から下方に折り曲げられて前壁部91の中央部に接合された上接合片97とを備えている。   The upper U-shaped member 92 includes an upper portion 94 bent rearward from the upper end portion of the front wall portion 91, an upper rear wall portion 95 bent downward from the rear end portion of the upper portion 94, and an upper rear portion. An upper central portion 96 bent forward from the lower end portion of the wall portion 95, and an upper joint piece 97 bent downward from the front end portion of the upper central portion 96 and joined to the central portion of the front wall portion 91. I have.

上部94の後端部および上後壁部95の上端部で上稜線部98が形成され、上後壁部95の下端部および上中央部96の後端部で上中央稜線部99が形成されている。
以下、上稜線部98を「上高強度部(高強度部)」と称し、上中央稜線部99を「上中央高強度部(高強度部)」と称す。
An upper ridgeline portion 98 is formed at the rear end portion of the upper portion 94 and the upper end portion of the upper rear wall portion 95, and an upper central ridgeline portion 99 is formed at the lower end portion of the upper rear wall portion 95 and the rear end portion of the upper central portion 96. ing.
Hereinafter, the upper ridge line portion 98 is referred to as “upper high strength portion (high strength portion)”, and the upper central ridge line portion 99 is referred to as “upper central high strength portion (high strength portion)”.

下コ字状部材93は、前壁部91の下端部から後方に向けて折り曲げられた下部101と、下部101の後端部から上方に向けて折り曲げられた下後壁部102と、下後壁部102の上端部から前方に向けて折り曲げられた下中央部103と、下中央部103の前端部から上方に折り曲げられて前壁部91の中央部に接合された下接合片104とを備えている。   The lower U-shaped member 93 includes a lower part 101 bent rearward from the lower end part of the front wall part 91, a lower rear wall part 102 bent upward from the rear end part of the lower part 101, and a lower rear part. A lower center portion 103 bent forward from the upper end portion of the wall portion 102, and a lower joint piece 104 bent upward from the front end portion of the lower center portion 103 and joined to the center portion of the front wall portion 91. I have.

下部101の後端部および下後壁部102の下端部で下稜線部105が形成され、下後壁部102の上端部および下中央部103の後端部で下中央稜線部106が形成されている。
以下、下稜線部105を「下高強度部(高強度部)」と称し、下中央稜線部106を「下中央高強度部(高強度部)」と称す。
よって、バンパービーム27の後半部27eに上高強度部98、上中央高強度部99、下高強度部105および下中央高強度部106が設けられている。
A lower ridge line portion 105 is formed at the rear end portion of the lower portion 101 and the lower end portion of the lower rear wall portion 102, and a lower central ridge line portion 106 is formed at the upper end portion of the lower rear wall portion 102 and the rear end portion of the lower central portion 103. ing.
Hereinafter, the lower ridge line portion 105 is referred to as a “lower high strength portion (high strength portion)”, and the lower central ridge line portion 106 is referred to as a “lower central high strength portion (high strength portion)”.
Therefore, an upper high strength portion 98, an upper central high strength portion 99, a lower high strength portion 105, and a lower central high strength portion 106 are provided in the rear half portion 27e of the bumper beam 27.

(b)に示すように、バンパービーム27の左端部27aは、前半部27f(図6(a)参照)が除去され、除去された部位に脆弱部29が設けられたものである。
よって、後半部27eのうち、左端部27aに対応する端部後半部27gにも上高強度部98、上中央高強度部99、下高強度部105および下中央高強度部106が設けられている。
As shown in FIG. 6B, the left end portion 27a of the bumper beam 27 is obtained by removing the front half portion 27f (see FIG. 6A) and providing the weakened portion 29 at the removed portion.
Therefore, in the rear half portion 27e, the upper half strength portion 98, the upper middle high strength portion 99, the lower high strength portion 105, and the lower middle high strength portion 106 are also provided in the rear half portion 27g corresponding to the left end portion 27a. Yes.

左端部27aの端部後半部27gのうち、図3に示すように、車幅方向の外側に外側衝撃吸収部63の外前取付片77が接合されている。
また、左端部27aの端部後半部27gのうち、図3に示すように、車幅方向の内側に内側衝撃吸収部62の内前取付片67が接合されている。
As shown in FIG. 3, the outer front mounting piece 77 of the outer shock absorbing portion 63 is joined to the outer side in the vehicle width direction in the rear end portion 27 g of the left end portion 27 a.
Further, as shown in FIG. 3, the inner front mounting piece 67 of the inner impact absorbing portion 62 is joined to the inner side in the vehicle width direction in the rear end portion 27 g of the left end portion 27 a.

よって、左端部27aの端部後半部27gが内外側の衝撃吸収部62,63で支持されている。
これにより、内外側の衝撃吸収部62,63を、高強度部98,99,105,106を有する端部後半部27gで強固に一体化させることができる。
Therefore, the rear end portion 27g of the left end portion 27a is supported by the inner and outer shock absorbing portions 62 and 63.
Thereby, the inner and outer shock absorbing portions 62 and 63 can be firmly integrated at the end portion rear half portion 27 g having the high strength portions 98, 99, 105 and 106.

ここで、図2に示すバンパービーム27の右端部27bは左端部27aと左右対称の部位であり、右端部27bの説明を省略する。
また、図2に示すエネルギー吸収部材28の右端部28bは、左端部28aと左右対称の部位であり、右端部28bの説明を省略する。
Here, the right end portion 27b of the bumper beam 27 shown in FIG. 2 is a portion symmetrical to the left end portion 27a, and the description of the right end portion 27b is omitted.
Moreover, the right end part 28b of the energy absorption member 28 shown in FIG. 2 is a site | part symmetrical with the left end part 28a, and description of the right end part 28b is abbreviate | omitted.

図1に戻って、左加速度センサー30は、左アッパメンバー15のうち外壁部45の前端壁部45aに設けられている。外壁部45の前端壁部45aは、左アッパメンバー15のうち、内側衝撃吸収部62から離れた部位で、かつ外側衝撃吸収部63に近い部位である。
左加速度センサー30は、内外側の衝撃吸収部62,63に衝撃加重が作用したときの加速度(減速度)Gを検知する加速度センサーである。
Returning to FIG. 1, the left acceleration sensor 30 is provided on the front end wall 45 a of the outer wall 45 of the left upper member 15. The front end wall portion 45 a of the outer wall portion 45 is a portion of the left upper member 15 that is away from the inner shock absorbing portion 62 and close to the outer shock absorbing portion 63.
The left acceleration sensor 30 is an acceleration sensor that detects acceleration (deceleration) G when an impact load is applied to the inner and outer impact absorbing portions 62 and 63.

左加速度センサー30は、検知した加速度を制御部110に伝えるものである。
制御部110は、左加速度センサー30で検知した加速度が、予め記憶されているしきい値Gsを超えているか否を判断し、検知した加速度がしきい値Gsを超えている場合にエアバッグ装置112に展開信号を伝えるものである。
The left acceleration sensor 30 transmits the detected acceleration to the control unit 110.
The control unit 110 determines whether the acceleration detected by the left acceleration sensor 30 exceeds a threshold Gs stored in advance, and when the detected acceleration exceeds the threshold Gs, the airbag device A development signal is transmitted to 112.

エアバッグ装置112は、制御部110からの展開信号に基づいてエアバッグ113を展開させ、運転者(図示せず)を拘束保護するものである。
このエアバッグ装置112は、ステアリングホイール114にエアバッグ113が折り畳まれた状態で内蔵されるとともにインフレータ(図示せず)が内蔵されている。
制御部110からの展開信号に基づいてインフレータからガスを供給し、ガスをエアバッグ113内に充填することでエアバッグ113を展開させる。
以下、加速度のしきい値Gsを図5、図7に基づいて詳しく説明する。
The airbag device 112 deploys the airbag 113 based on a deployment signal from the control unit 110 and restrains and protects a driver (not shown).
The airbag device 112 is built in the steering wheel 114 in a state in which the airbag 113 is folded and an inflator (not shown).
The airbag 113 is deployed by supplying gas from the inflator based on the deployment signal from the control unit 110 and filling the airbag 113 with the gas.
Hereinafter, the threshold value Gs of acceleration will be described in detail with reference to FIGS.

図7は本発明に係る車体前部構造に衝撃エネルギーが作用したときに発生する加速度を示すグラフである。
相手車両が左側にずれてオフセット衝突(高速衝突)した場合に、エネルギー吸収部材28に衝撃エネルギーが作用して車両に加速度G1が発生する。
エネルギー吸収部材28がストロークS1潰され(変形し)、エネルギー吸収部材28で衝撃エネルギーE1が吸収される。
FIG. 7 is a graph showing acceleration generated when impact energy is applied to the vehicle body front structure according to the present invention.
When the opponent vehicle shifts to the left and makes an offset collision (high-speed collision), impact energy acts on the energy absorbing member 28 to generate acceleration G1 in the vehicle.
The energy absorbing member 28 is crushed (deformed) by the stroke S1, and the impact energy E1 is absorbed by the energy absorbing member 28.

エネルギー吸収部材28が潰れることで、バンパービーム27に残りの衝撃エネルギーが作用して車両に加速度G2が発生する。
バンパービーム27がストロークS2潰され(変形し)、バンパービーム27で衝撃エネルギーE2が吸収される。
When the energy absorbing member 28 is crushed, the remaining impact energy acts on the bumper beam 27 and an acceleration G2 is generated in the vehicle.
The bumper beam 27 is crushed (deformed) by the stroke S2, and the impact energy E2 is absorbed by the bumper beam 27.

ここで、外側衝撃吸収部63の突出量L2が内側衝撃吸収部62の突出量L1に対して短くなるように、内外側の衝撃吸収部62,63の突出量を異ならせている。
よって、バンパービーム27が潰れることで、内側衝撃吸収部62のうち、外側衝撃吸収部63から前方に突出した部位62aに残りの衝撃エネルギーが作用して車両に加速度G3が発生する。
Here, the protruding amounts of the inner and outer shock absorbing portions 62 and 63 are made different so that the protruding amount L2 of the outer shock absorbing portion 63 is shorter than the protruding amount L1 of the inner shock absorbing portion 62.
Therefore, when the bumper beam 27 is crushed, the remaining impact energy acts on a portion 62a of the inner shock absorbing portion 62 that protrudes forward from the outer shock absorbing portion 63, and acceleration G3 is generated in the vehicle.

内側衝撃吸収部62の部位62aがストロークS3潰され(変形し)、内側衝撃吸収部62の部位62aで衝撃エネルギーE3が吸収される。
内側衝撃吸収部62の部位62aが潰れることで、内側衝撃吸収部62の変形が外側衝撃吸収部63に達する。
The portion 62a of the inner impact absorbing portion 62 is crushed (deformed) by the stroke S3, and the impact energy E3 is absorbed by the portion 62a of the inner impact absorbing portion 62.
As the portion 62 a of the inner impact absorbing portion 62 is crushed, the deformation of the inner impact absorbing portion 62 reaches the outer impact absorbing portion 63.

よって、内側衝撃吸収部62の残部62bおよび外側衝撃吸収部63の2部材で残りの衝撃エネルギーを支えることになる。
2部材で残りの衝撃エネルギーを支えることで、大きな衝撃エネルギーが支えられ、車両の加速度G4の増量が大きくなる。
これにより、内側衝撃吸収部62の残部62bおよび外側衝撃吸収部63に残りの衝撃エネルギーが作用して車両に大きな加速度G4が発生する(すなわち、加速度が急激に上昇する)。
Therefore, the remaining impact energy is supported by the two members of the remaining portion 62 b of the inner shock absorbing portion 62 and the outer shock absorbing portion 63.
By supporting the remaining impact energy with the two members, a large impact energy is supported, and the increase in the acceleration G4 of the vehicle is increased.
As a result, the remaining impact energy acts on the remaining portion 62b of the inner shock absorbing portion 62 and the outer shock absorbing portion 63, and a large acceleration G4 is generated in the vehicle (that is, the acceleration rapidly increases).

そこで、加速度G3と加速度G4との間の加速度Gsをしきい値として設定した。
よって、加速度が急激に上昇して加速度段差Gdが大きな範囲内(すなわち、「明確な加速度段差Gd」の範囲内)にしきい値Gsを設定することが可能なる。
このように、加速度G3と加速度G4との段差を明確な加速度段差Gdとすることで、加速度のばらつきに影響を受けることなく、しきい値Gsを制御部110(図1参照)で精度良く検知することができる。
Therefore, the acceleration Gs between the acceleration G3 and the acceleration G4 is set as a threshold value.
Therefore, it is possible to set the threshold value Gs within a range where the acceleration increases rapidly and the acceleration step Gd is large (that is, within the range of “clear acceleration step Gd”).
Thus, by setting the step difference between the acceleration G3 and the acceleration G4 to a clear acceleration step Gd, the threshold value Gs can be accurately detected by the control unit 110 (see FIG. 1) without being affected by variations in acceleration. can do.

なお、「加速度段差Gd」とは、内側衝撃吸収部62のみで衝撃エネルギーを吸収していたときの加速度G3と、内外側の衝撃吸収部62,63で衝撃エネルギーを吸収するときの加速度G4との差をいう。   The “acceleration step Gd” refers to an acceleration G3 when the impact energy is absorbed only by the inner impact absorbing portion 62, and an acceleration G4 when the impact energy is absorbed by the inner and outer impact absorbing portions 62 and 63. The difference between

ここで、左加速度センサー30は、左アッパメンバー15のうち外壁部45の前端壁部45aに設けられている(図3も参照)。
外壁部45の前端壁部45aは、左アッパメンバー15のうち、内側衝撃吸収部62から離れた部位で、かつ外側衝撃吸収部63に近い部位である。
Here, the left acceleration sensor 30 is provided on the front end wall 45a of the outer wall 45 of the left upper member 15 (see also FIG. 3).
The front end wall portion 45 a of the outer wall portion 45 is a portion of the left upper member 15 that is away from the inner shock absorbing portion 62 and close to the outer shock absorbing portion 63.

すなわち、内側衝撃吸収部62は左フロントサイドフレーム11の前端部11aに設けられている。よって、内側衝撃吸収部62は、左アッパメンバー15の前端壁部45aから比較的離れている。
これにより、内側衝撃吸収部62のうち、外側衝撃吸収部63から前方に突出した部位62aの変形中に、左アッパメンバー15の前端壁部45aに衝撃エネルギーは伝わり難い。
左アッパメンバー15の前端壁部45aに生じる加速度G3は比較的小さくなる。
That is, the inner impact absorbing portion 62 is provided at the front end portion 11 a of the left front side frame 11. Therefore, the inner impact absorbing portion 62 is relatively far from the front end wall portion 45a of the left upper member 15.
Thereby, during the deformation | transformation of the site | part 62a which protruded ahead from the outer side shock absorption part 63 among the inner side shock absorption parts 62, a shock energy is hard to be transmitted to the front-end wall part 45a of the left upper member 15.
The acceleration G3 generated in the front end wall portion 45a of the left upper member 15 is relatively small.

一方、外側衝撃吸収部63は左アッパメンバー15の前端部15aに設けられている。よって、外側衝撃吸収部63は、左アッパメンバー15の前端壁部45aに近い部位に設けられている。
これにより、外側衝撃吸収部63の変形中に、左アッパメンバー15の前端壁部45aに近い部位に衝撃エネルギーを効率よく伝えることができる。
On the other hand, the outer impact absorbing portion 63 is provided at the front end portion 15 a of the left upper member 15. Therefore, the outer impact absorbing portion 63 is provided in a portion near the front end wall portion 45a of the left upper member 15.
As a result, during the deformation of the outer impact absorbing portion 63, the impact energy can be efficiently transmitted to the portion of the left upper member 15 close to the front end wall portion 45a.

よって、外側衝撃吸収部63が変形を開始したときに、左アッパメンバー15の前端壁部45aに大きな加速度G4を発生させることができる。
大きな加速度G4を発生させることで、加速度G3と加速度G4とに大きな段差(すなわち、明確な加速度段差)Gdを一層確実に生じさせることができる。
これにより、前端壁部45aに加速度センサー30を設けることで、しきい値Gsを一層精度良く検知することができる。
Therefore, when the outer shock absorbing portion 63 starts to deform, a large acceleration G4 can be generated in the front end wall portion 45a of the left upper member 15.
By generating the large acceleration G4, a large step (that is, a clear acceleration step) Gd can be generated more reliably between the acceleration G3 and the acceleration G4.
Thereby, the threshold value Gs can be detected with higher accuracy by providing the acceleration sensor 30 on the front end wall portion 45a.

前述したように、内側衝撃吸収部62の残部62bおよび外側衝撃吸収部63に残りの衝撃エネルギーが作用することで、内側衝撃吸収部62の残部62bおよび外側衝撃吸収部63がストロークS4潰される(変形する)。
よって、内側衝撃吸収部62の残部62bおよび外側衝撃吸収部63で衝撃エネルギーE4が吸収される。
As described above, the remaining impact energy acts on the remaining portion 62b and the outer shock absorbing portion 63 of the inner shock absorbing portion 62, so that the remaining portion 62b and the outer shock absorbing portion 63 of the inner shock absorbing portion 62 are crushed by the stroke S4 ( Deform).
Therefore, the impact energy E4 is absorbed by the remaining portion 62b of the inner impact absorbing portion 62 and the outer impact absorbing portion 63.

内側衝撃吸収部62の残部62bおよび外側衝撃吸収部63が潰れることで、左フロントサイドフレーム11および左アッパメンバー15に残りの衝撃エネルギーが作用して車両に加速度G5が発生する。
左フロントサイドフレーム11および左アッパメンバー15がストロークS5潰され(変形し)、左フロントサイドフレーム11および左アッパメンバー15で衝撃エネルギーE5が吸収される。
これにより、高速衝突で作用した衝撃エネルギーを吸収することができる。
When the remaining portion 62b and the outer impact absorbing portion 63 of the inner impact absorbing portion 62 are crushed, the remaining impact energy acts on the left front side frame 11 and the left upper member 15 to generate acceleration G5 in the vehicle.
The left front side frame 11 and the left upper member 15 are crushed (deformed) by the stroke S5, and the impact energy E5 is absorbed by the left front side frame 11 and the left upper member 15.
Thereby, the impact energy which acted by the high-speed collision can be absorbed.

つぎに、エネルギー吸収部材28の左端部28aの前方に比較的大きな空間70を確保した理由を図8に基づいて説明する。
図8は本発明に係る衝撃吸収構造のエネルギー吸収部材の左端部の前方に比較的大きな空間を確保した状態を示す図である。
外側衝撃吸収部63の突出量L2が内側衝撃吸収部62の突出量L1に対して短くなるように、内外側の衝撃吸収部62,63の突出量を異ならせた。
よって、バンパービーム27の左端部27aを車体側へ向けて曲げることができる。
加えて、左端部27aの前面に脆弱部29が形成されている。
Next, the reason why a relatively large space 70 is secured in front of the left end portion 28a of the energy absorbing member 28 will be described with reference to FIG.
FIG. 8 is a view showing a state in which a relatively large space is secured in front of the left end portion of the energy absorbing member of the shock absorbing structure according to the present invention.
The protruding amounts of the inner and outer shock absorbing portions 62, 63 are made different so that the protruding amount L2 of the outer shock absorbing portion 63 is shorter than the protruding amount L1 of the inner shock absorbing portion 62.
Therefore, the left end portion 27a of the bumper beam 27 can be bent toward the vehicle body side.
In addition, a fragile portion 29 is formed on the front surface of the left end portion 27a.

これにより、エネルギー吸収部材28の左端部28aを車体側へ向けて後方に大きく曲げることができ、エネルギー吸収部材28の左端部28aの前方に比較的大きな空間70を確保することができる。
したがって、車両前部(すなわち、バンパーフェイス)82の左前角部82aを比較的大きな湾曲状に形成することができ、車両の意匠性を一層高めることができる。
Thereby, the left end portion 28a of the energy absorbing member 28 can be largely bent rearward toward the vehicle body side, and a relatively large space 70 can be secured in front of the left end portion 28a of the energy absorbing member 28.
Therefore, the left front corner portion 82a of the vehicle front portion (ie, bumper face) 82 can be formed in a relatively large curved shape, and the design of the vehicle can be further enhanced.

つぎに、車体前部構造10に備えた衝撃吸収構造20に相手車両がオフセット状態で低速衝突(軽衝突)する例を図9に基づいて説明する。
図9(a),(b)は本発明に係る衝撃吸収構造でオフセット低速衝突の衝突エネルギーを吸収する例を説明する図である。
(a)において、相手車両85が衝撃吸収構造20に対して左側にずれてエネルギー吸収部材28の左端部28aにオフセット衝突(オフセット軽衝突)する。
Next, an example in which the opponent vehicle collides with the impact absorbing structure 20 provided in the vehicle body front structure 10 in a low-speed collision (light collision) in an offset state will be described with reference to FIG.
FIGS. 9A and 9B are diagrams for explaining an example of absorbing the collision energy of the offset low-speed collision by the shock absorbing structure according to the present invention.
In (a), the opponent vehicle 85 shifts to the left with respect to the shock absorbing structure 20 and causes an offset collision (offset light collision) to the left end portion 28a of the energy absorbing member 28.

軽衝突(低速衝突)により生じた衝撃エネルギーElowは、エネルギー吸収部材28の左端部28aおよびバンパービーム27の左端部27aを経て左衝撃吸収ユニット25に伝わる。
具体的には、内側衝撃吸収部62に矢印Aの如く衝撃エネルギーが伝わるとともに、外側衝撃吸収部63に矢印Bの如く衝撃エネルギーが伝わる。
The impact energy Elow generated by the light collision (low speed collision) is transmitted to the left impact absorbing unit 25 through the left end portion 28a of the energy absorbing member 28 and the left end portion 27a of the bumper beam 27.
Specifically, impact energy is transmitted to the inner impact absorbing portion 62 as indicated by an arrow A, and impact energy is transmitted to the outer impact absorbing portion 63 as indicated by an arrow B.

ここで、内側衝撃吸収部62は、部位62aが外側衝撃吸収部63から車体前方に突出している。
内側衝撃吸収部62の部位62aが突出しているので、内側衝撃吸収部62に作用する衝撃エネルギーは、外側衝撃吸収部63に作用する衝撃エネルギーより大きい。
よって、内側衝撃吸収部62の部位62aは外側衝撃吸収部63と比較して潰れやすくなる。
ところで、低速衝突の場合、左加速度センサー30で検知する加速度は、しきい値Gsより小さいので、エアバッグ113を展開しない状態に保つことができる。
Here, the inner shock absorbing portion 62 has a portion 62a protruding from the outer shock absorbing portion 63 forward of the vehicle body.
Since the portion 62 a of the inner impact absorbing portion 62 protrudes, the impact energy acting on the inner impact absorbing portion 62 is larger than the impact energy acting on the outer impact absorbing portion 63.
Therefore, the part 62 a of the inner shock absorbing part 62 is easily crushed as compared with the outer shock absorbing part 63.
By the way, in the case of a low-speed collision, the acceleration detected by the left acceleration sensor 30 is smaller than the threshold value Gs, so that the airbag 113 can be kept in a state where it is not deployed.

(b)において、エネルギー吸収部材28の左端部28aおよびバンパービーム27の左端部27aを潰すことで衝撃エネルギーElowの一部を吸収する。
残りの衝撃エネルギーを、内側衝撃吸収部62のうち、外側衝撃吸収部63から前方に突出した部位62aを潰す(変形する)ことで吸収する。
なお、内側衝撃吸収部62の変形にともなって、外側衝撃吸収部63が僅かに潰れる(変形する)ことが考えられる。
In (b), a part of the impact energy Elow is absorbed by crushing the left end portion 28a of the energy absorbing member 28 and the left end portion 27a of the bumper beam 27.
The remaining impact energy is absorbed by crushing (deforming) the portion 62a of the inner impact absorbing portion 62 that protrudes forward from the outer impact absorbing portion 63.
Note that it is conceivable that the outer impact absorbing portion 63 is slightly crushed (deformed) with the deformation of the inner impact absorbing portion 62.

このように低速衝突の場合、左フロントサイドフレーム11や左アッパメンバー15に変形を生じさせることなく、衝撃エネルギーElowを吸収することができる。
よって、オフセット軽衝突後に、エネルギー吸収部材28、バンパービーム27および左衝撃吸収ユニット25をボルト68…を外して交換するという簡単な修理で対応することができる。
Thus, in the case of a low-speed collision, the impact energy Elow can be absorbed without causing the left front side frame 11 or the left upper member 15 to be deformed.
Therefore, after the offset light collision, the energy absorbing member 28, the bumper beam 27, and the left impact absorbing unit 25 can be dealt with by a simple repair in which the bolts 68 are removed and replaced.

つぎに、車体前部構造10に備えた衝撃吸収構造20に相手車両がオフセット状態で高速衝突する例を図10〜図11に基づいて説明する。
図10(a),(b)は本発明に係る衝撃吸収構造にオフセット高速衝突する例を説明する図である。
(a)において、相手車両85が衝撃吸収構造20に対して左側にずれてエネルギー吸収部材28の左端部28aにオフセット衝突(オフセット高速衝突)する。
高速衝突により生じた衝撃エネルギーEhighは、エネルギー吸収部材28の左端部28aおよびバンパービーム27の左端部27aを経て左衝撃吸収ユニット25に伝わる。
具体的には、内側衝撃吸収部62に矢印Cの如く衝撃エネルギーが伝わるとともに、外側衝撃吸収部63に矢印Dの如く衝撃エネルギーが伝わる。
Next, an example in which the opponent vehicle collides at high speed with the shock absorbing structure 20 provided in the vehicle body front structure 10 in an offset state will be described with reference to FIGS.
10 (a) and 10 (b) are diagrams for explaining an example of an offset high-speed collision with the shock absorbing structure according to the present invention.
In (a), the opponent vehicle 85 shifts to the left with respect to the shock absorbing structure 20 and makes an offset collision (offset high-speed collision) with the left end portion 28a of the energy absorbing member 28.
The impact energy Ehigh generated by the high-speed collision is transmitted to the left impact absorbing unit 25 through the left end portion 28a of the energy absorbing member 28 and the left end portion 27a of the bumper beam 27.
Specifically, impact energy is transmitted to the inner impact absorbing portion 62 as indicated by an arrow C, and impact energy is transmitted to the outer impact absorbing portion 63 as indicated by an arrow D.

ここで、内側衝撃吸収部62は、部位62aが外側衝撃吸収部63から車体前方に突出している。
内側衝撃吸収部62の部位62aが突出しているので、内側衝撃吸収部62に作用する衝撃エネルギーは、外側衝撃吸収部63に作用する衝撃エネルギーより大きい。
よって、内側衝撃吸収部62の部位62aは外側衝撃吸収部63と比較して潰れやすい。
Here, the inner shock absorbing portion 62 has a portion 62a protruding from the outer shock absorbing portion 63 forward of the vehicle body.
Since the portion 62 a of the inner impact absorbing portion 62 protrudes, the impact energy acting on the inner impact absorbing portion 62 is larger than the impact energy acting on the outer impact absorbing portion 63.
Therefore, the portion 62 a of the inner impact absorbing portion 62 is easily crushed as compared with the outer impact absorbing portion 63.

(b)において、相手車両85がオフセット衝突(高速衝突)することで、エネルギー吸収部材28の左端部28aおよびバンパービーム27の左端部27aを潰す(変形する)ことで衝撃エネルギーEhighの一部(E1、E2(図7参照))を吸収する。
残りの衝撃エネルギーの一部(E3(図7参照))を、内側衝撃吸収部62のうち、外側衝撃吸収部63から前方に突出した部位62aを潰す(変形する)ことで吸収する。
In (b), when the counterpart vehicle 85 has an offset collision (high-speed collision), the left end portion 28a of the energy absorbing member 28 and the left end portion 27a of the bumper beam 27 are crushed (deformed), and a part of the impact energy Ehigh ( E1, E2 (see FIG. 7)) are absorbed.
Part of the remaining impact energy (E3 (see FIG. 7)) is absorbed by crushing (deforming) a portion 62a of the inner impact absorbing portion 62 that protrudes forward from the outer impact absorbing portion 63.

ここで、左加速度センサー30は内側衝撃吸収部62から離れた部位(すなわち、外壁部45の前端壁部45a)に設けられている。
このため、内側衝撃吸収部62に伝わった衝撃エネルギーを、左加速度センサー30に伝わり難い状態に保つことができる。
よって、左アッパメンバー15の前端壁部45aに生じる加速度G3(図7参照)は比較的小さくなる。
Here, the left acceleration sensor 30 is provided in a part away from the inner impact absorbing part 62 (that is, the front end wall part 45a of the outer wall part 45).
For this reason, it is possible to keep the impact energy transmitted to the inner impact absorbing portion 62 from being easily transmitted to the left acceleration sensor 30.
Therefore, the acceleration G3 (see FIG. 7) generated in the front end wall portion 45a of the left upper member 15 is relatively small.

内側衝撃吸収部62の部位62aを潰す(変形する)ことで、内側衝撃吸収部62の変形が外側衝撃吸収部63に達する。
よって、残りの衝撃エネルギーを内側衝撃吸収部62および外側衝撃吸収部63の2部材で支えることになり車両の加速度が増す。
By crushing (deforming) the portion 62 a of the inner shock absorbing portion 62, the deformation of the inner shock absorbing portion 62 reaches the outer shock absorbing portion 63.
Therefore, the remaining impact energy is supported by the two members of the inner impact absorbing portion 62 and the outer impact absorbing portion 63, and the acceleration of the vehicle is increased.

加えて、左加速度センサー30は、左アッパメンバー15のうち外壁部45の前端壁部45a(すなわち、外側衝撃吸収部63に近い部位)に設けられている。
よって、左アッパメンバー15の前端壁部45aに大きな加速度G4(図7参照)を発生させることができる。
In addition, the left acceleration sensor 30 is provided in the front end wall portion 45 a of the outer wall portion 45 of the left upper member 15 (that is, a portion close to the outer shock absorbing portion 63).
Therefore, a large acceleration G4 (see FIG. 7) can be generated in the front end wall portion 45a of the left upper member 15.

大きな加速度G4を発生させることで、加速度G3と加速度G4とに大きな段差(すなわち、明確な加速度段差Gd(図7参照)を生じさせることができる。
これにより、車両の加速度のばらつきに影響を受けることなく、車両の加速度の増加を左加速度センサー30で確実に検知することができる。
By generating a large acceleration G4, a large step (that is, a clear acceleration step Gd (see FIG. 7)) can be generated between the acceleration G3 and the acceleration G4.
Thus, the left acceleration sensor 30 can reliably detect an increase in vehicle acceleration without being affected by variations in vehicle acceleration.

左加速度センサー30で検知した加速度が制御部110に伝えられる。制御部110は、伝えられた加速度が、予め記憶されているしきい値Gsを超えていることを確認し、エアバッグ装置112(図1も参照)に展開信号を伝える。
制御部110からの展開信号に基づいて、エアバッグ装置112のエアバッグ113が展開して運転者(図示せず)を拘束保護する。
The acceleration detected by the left acceleration sensor 30 is transmitted to the control unit 110. The control unit 110 confirms that the transmitted acceleration exceeds a threshold Gs stored in advance, and transmits a deployment signal to the airbag device 112 (see also FIG. 1).
Based on the deployment signal from the control unit 110, the airbag 113 of the airbag device 112 is deployed to restrain and protect the driver (not shown).

図11(a),(b)は本発明に係る衝撃吸収構造でオフセット高速衝突の衝突エネルギーを吸収する例を説明する図である。
(a)において、内側衝撃吸収部62および外側衝撃吸収部63を潰す(変形する)ことで、残りの衝撃エネルギーの一部を吸収する。
(b)において、左フロントサイドフレーム11を変形(すなわち、潰すように変形)する。
これにより、左フロントサイドフレーム11の略中央部11bを略く字状に変形させて衝撃エネルギーE5(図7参照)を良好に吸収することができる。
FIGS. 11A and 11B are diagrams for explaining an example of absorbing the collision energy of the offset high-speed collision by the shock absorbing structure according to the present invention.
In (a), the inner impact absorbing portion 62 and the outer impact absorbing portion 63 are crushed (deformed) to absorb a part of the remaining impact energy.
In (b), the left front side frame 11 is deformed (that is, deformed so as to be crushed).
As a result, the substantially central portion 11b of the left front side frame 11 can be deformed into a substantially square shape and the impact energy E5 (see FIG. 7) can be favorably absorbed.

このように、左フロントサイドフレーム11を略く字状に変形させることで、エンジンルーム86を有効に潰すクラッシャブルゾーンとすることが可能になる。
これにより、左フロントサイドフレーム11の変形量を十分に確保して、エンジンルーム86の後方の車室内が変形することを抑えることができる。
In this way, by deforming the left front side frame 11 into a substantially square shape, it becomes possible to provide a crushable zone that effectively crushes the engine room 86.
As a result, a sufficient amount of deformation of the left front side frame 11 can be secured, and deformation of the vehicle interior behind the engine room 86 can be suppressed.

以上説明したように、外側衝撃吸収部63の突出量L2を内側衝撃吸収部62の突出量L1に対して短くすることで、衝撃エネルギーを内側衝撃吸収部62のみで吸収したときの加速度G3(図7参照)と、内外側の衝撃吸収部62,63で吸収したときの加速度G4(図7参照)との加速度段差Gdを明確にした。   As described above, by reducing the protrusion amount L2 of the outer shock absorbing portion 63 with respect to the protrusion amount L1 of the inner shock absorbing portion 62, the acceleration G3 when the shock energy is absorbed only by the inner shock absorbing portion 62 ( The acceleration step Gd between the acceleration G4 (see FIG. 7) and the acceleration G4 (see FIG. 7) when absorbed by the inner and outer shock absorbing portions 62 and 63 is clarified.

この明確な加速度段差Gdの範囲内にしきい値Gsを設定することで、しきい値Gsを精度良く検知するようにした。
よって、図8に示すように、車両前部(バンパーフェイス)82の左前角部82aを比較的大きな湾曲状に形成した車両に、明確な加速度段差Gdを発生させて、エアバッグ113の展開操作を適正化することができる。
The threshold value Gs is accurately detected by setting the threshold value Gs within the range of the clear acceleration step Gd.
Therefore, as shown in FIG. 8, a clear acceleration step Gd is generated in the vehicle in which the left front corner portion 82a of the vehicle front portion (bumper face) 82 is formed in a relatively large curved shape, and the airbag 113 is deployed. Can be optimized.

なお、前記実施の形態では、加速度センサー30で検知した加速度に基づいて展開するエアバッグ装置112をステアリングホイール114に設けた例について説明したが、これに限らないで、インストルメントパネルやシートなどの他の部位に設けたエアバッグ装置を展開させるようにすることも可能である。   In the above-described embodiment, the example in which the airbag device 112 that is deployed based on the acceleration detected by the acceleration sensor 30 is provided on the steering wheel 114 has been described. However, the present invention is not limited to this, and an instrument panel, a seat, or the like It is also possible to deploy an airbag device provided in another part.

本発明の車体前部構造は、フロントサイドフレームに衝撃吸収部を設けた自動車への適用に好適である。   The vehicle body front part structure of the present invention is suitable for application to an automobile having a front side frame provided with an impact absorbing part.

本発明に係る車体前部構造を示す斜視図である。It is a perspective view which shows the vehicle body front part structure which concerns on this invention. 本発明に係る車体前部構造に備えた衝撃吸収構造を示す斜視図である。It is a perspective view which shows the shock absorption structure with which the vehicle body front part structure which concerns on this invention was equipped. 図2の3部拡大図である。FIG. 3 is a three-part enlarged view of FIG. 2. (a)は図3の4a−4a線断面図、(b)は(a)の分解図である。(A) is the sectional view on the 4a-4a line of FIG. 3, (b) is the exploded view of (a). 本発明に係る車体前部構造を示す平面図である。It is a top view which shows the vehicle body front part structure which concerns on this invention. (a)は図2の6a−6a線断面図、(b)は図2の6b−6b線断面図である。(A) is the sectional view on the 6a-6a line of FIG. 2, (b) is the sectional view on the 6b-6b line of FIG. 本発明に係る車体前部構造に衝撃エネルギーが作用したときに発生する加速度を示すグラフである。It is a graph which shows the acceleration which generate | occur | produces when impact energy acts on the vehicle body front part structure which concerns on this invention. 本発明に係る衝撃吸収構造のエネルギー吸収部材の左端部の前方に比較的大きな空間を確保した状態を示す図である。It is a figure which shows the state which ensured the comparatively big space ahead of the left end part of the energy absorption member of the impact-absorbing structure which concerns on this invention. 本発明に係る衝撃吸収構造でオフセット低速衝突の衝突エネルギーを吸収する例を説明する図である。It is a figure explaining the example which absorbs the collision energy of an offset low speed collision with the shock absorption structure which concerns on this invention. 本発明に係る衝撃吸収構造にオフセット高速衝突する例を説明する図である。It is a figure explaining the example which carries out an offset high-speed collision with the impact-absorbing structure which concerns on this invention. 本発明に係る衝撃吸収構造でオフセット高速衝突の衝突エネルギーを吸収する例を説明する図である。It is a figure explaining the example which absorbs the collision energy of an offset high-speed collision with the shock absorption structure which concerns on this invention.

符号の説明Explanation of symbols

10…車体前部構造、11…左フロントサイドフレーム(フロントサイドフレーム)、11a,12a…左右のフロントサイドフレームの前端部、12…右フロントサイドフレーム(フロントサイドフレーム)、13…左フロントピラー(フロントピラー)、14…右フロントピラー(フロントピラー)、15…左アッパメンバー(アッパメンバー)、15a,16a…左右のアッパメンバーの前端部、16…右アッパメンバー(アッパメンバー)、27…バンパービーム、29…脆弱部、30…加速度センサー、45a…左アッパメンバーのうち外壁部の前端壁部(アッパメンバーのうち前記外側衝撃吸収部に近い部位)、62…内側衝撃吸収部、62a…内側衝撃吸収部のうち外側衝撃吸収部から前方に突出した部位、62b…内側衝撃吸収部の残部、63…外側衝撃吸収部、113…エアバッグ、G1〜G5…加速度、Gs…しきい値、L1…内側衝撃吸収部の突出量、L2…外側衝撃吸収部の突出量。 DESCRIPTION OF SYMBOLS 10 ... Vehicle body front part structure, 11 ... Left front side frame (front side frame), 11a, 12a ... Front end part of right and left front side frame, 12 ... Right front side frame (front side frame), 13 ... Left front pillar ( Front pillar), 14 ... Right front pillar (front pillar), 15 ... Left upper member (upper member), 15a, 16a ... Front end of left and right upper members, 16 ... Right upper member (upper member), 27 ... Bumper beam 29 ... Fragile part, 30 ... Acceleration sensor, 45a ... Front end wall part of the outer wall part of the left upper member (part of the upper member close to the outer shock absorbing part), 62 ... Inner shock absorbing part, 62a ... Inner shock A portion of the absorbing portion that protrudes forward from the outer shock absorbing portion, 62b. The remainder of the absorbent portion, 63 ... outer impact absorbing section, 113 ... airbag, G1 to G5 ... acceleration, Gs ... threshold, L1 ... protruding amount of the inner impact absorbing section, L2 ... protruding amount of outer impact absorbing section.

Claims (1)

車体前後方向に左右のフロントサイドフレームを延ばし、前記フロントサイドフレームの上側後方に左右のフロントピラーを設け、前記フロントピラーから前方に向けて左右のアッパメンバーを延ばすとともに、前記左右のアッパメンバーを前記左右のフロントサイドフレームの外側に配置し、前記左右のフロントサイドフレームの前端部に内側衝撃吸収部を設け、前記左右のアッパメンバーの前端部に外側衝撃吸収部を設け、これらの外側衝撃吸収部及び内側衝撃吸収部に衝撃荷重が作用したときにエアバッグを展開させるための加速度を検知する加速度センサーを設けた車体前部構造において、
前記外側衝撃吸収部および前記内側衝撃吸収部は、
前記外側衝撃吸収部が前記内側衝撃吸収部の突出量に対して短くなるように、前記外側衝撃吸収部及び内側衝撃吸収部のそれぞれの突出量を異ならせることで、
前記内側衝撃吸収部のうち、前記外側衝撃吸収部から前方に突出した部位が衝撃エネルギーで変形するときの加速度と、前記内側衝撃吸収部の変形が前記外側衝撃吸収部に達した後、前記外側衝撃吸収部及び内側衝撃吸収部が衝撃エネルギーで共に変形するときの加速度との範囲内に、前記エアバッグを展開させるしきい値を設定可能とし、
前記左右の外側衝撃吸収部の前端間に亘ってバンパービームが架け渡されると共に、
このバンパービームの両端は、車体側に向け曲げられていると共に、他の部位よりも脆弱となるように前部が切り欠かれている脆弱部とされ、
これらの脆弱部の後部に前記外側衝撃吸収部及び内側衝撃吸収部が設けられることにより、前記脆弱部は、前記外側衝撃吸収部及び内側衝撃吸収部の前部に渡って形成されており、
前記加速度センサーは、前記アッパメンバーのうち、前記内側衝撃吸収部から離れた部位で、かつ前記外側衝撃吸収部に近い部位に設けられていることを特徴とする車体前部構造。
Left and right front side frames are extended in the longitudinal direction of the vehicle body, left and right front pillars are provided on the upper rear side of the front side frame, left and right upper members are extended forward from the front pillars, and the left and right upper members are arranged outside the left and right front side frames, the right and left inner impact absorbing portion is provided at the front end portion of the front side frames, only setting the outer impact absorbing section before the end of the left and right upper members, these outer impact In the vehicle body front part structure provided with an acceleration sensor for detecting acceleration for deploying the airbag when an impact load is applied to the absorption part and the inner shock absorption part,
The outer shock absorber and the inner shock absorber are
By making each protrusion amount of the outer shock absorption part and the inner shock absorption part different so that the outer shock absorption part becomes shorter than the protrusion amount of the inner shock absorption part,
Among the inner shock absorbing parts, the acceleration when a portion protruding forward from the outer shock absorbing part is deformed by shock energy, and after the deformation of the inner shock absorbing part reaches the outer shock absorbing part, the outer side In the range of the acceleration when the impact absorbing portion and the inner impact absorbing portion are deformed together by impact energy, a threshold value for deploying the airbag can be set.
A bumper beam is bridged between the front ends of the left and right outer shock absorbers,
Both ends of this bumper beam are bent toward the vehicle body side, and the front part is notched so as to be weaker than other parts.
The Rukoto said outer impact absorbing section and the inner impact absorbing section to the rear of these fragile part is provided, wherein the weakened portion is formed over the front portion of the outer impact absorbing portion and the inner impact absorbing section,
The vehicle body front structure according to claim 1, wherein the acceleration sensor is provided in a portion of the upper member that is away from the inner shock absorbing portion and close to the outer shock absorbing portion .
JP2007315842A 2007-12-04 2007-12-06 Body front structure Expired - Fee Related JP4926018B2 (en)

Priority Applications (11)

Application Number Priority Date Filing Date Title
JP2007315842A JP4926018B2 (en) 2007-12-06 2007-12-06 Body front structure
CN2008801155727A CN101855110B (en) 2007-12-04 2008-11-21 Vehicle front body structure
EP08858235A EP2195199B1 (en) 2007-12-04 2008-11-21 Vehicle front body structure
US12/746,274 US8056926B2 (en) 2007-12-04 2008-11-21 Vehicle front body structure
DE602008005481T DE602008005481D1 (en) 2007-12-04 2008-11-21 FRONT VEHICLE BODY STRUCTURE
CA2703572A CA2703572C (en) 2007-12-04 2008-11-21 Vehicle front body structure
MYPI2010002525A MY155636A (en) 2007-12-04 2008-11-21 Vehicle front body structure
AT08858235T ATE500999T1 (en) 2007-12-04 2008-11-21 FRONT VEHICLE BODY STRUCTURE
MX2010004536A MX2010004536A (en) 2007-12-04 2008-11-21 Vehicle front body structure.
PCT/JP2008/071745 WO2009072450A1 (en) 2007-12-04 2008-11-21 Vehicle front body structure
TW097145728A TWI430905B (en) 2007-12-04 2008-11-26 Vehicle front body structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007315842A JP4926018B2 (en) 2007-12-06 2007-12-06 Body front structure

Publications (2)

Publication Number Publication Date
JP2009137435A JP2009137435A (en) 2009-06-25
JP4926018B2 true JP4926018B2 (en) 2012-05-09

Family

ID=40868520

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007315842A Expired - Fee Related JP4926018B2 (en) 2007-12-04 2007-12-06 Body front structure

Country Status (1)

Country Link
JP (1) JP4926018B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8919835B1 (en) 2013-09-27 2014-12-30 Hyundai Motor Company Structure for absorbing frontal collision energy of vehicle
US9045100B2 (en) 2013-01-24 2015-06-02 Aisin Seiki Kabushiki Kaisha Shock absorbing member

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5144702B2 (en) * 2010-03-18 2013-02-13 本田技研工業株式会社 Mounting structure for vehicle collision detection sensor
JP5432840B2 (en) * 2010-06-30 2014-03-05 本田技研工業株式会社 Auto body front structure
KR101316876B1 (en) 2012-07-03 2013-10-08 기아자동차주식회사 Bumper assembly for vehicle
KR101826540B1 (en) 2012-09-03 2018-02-07 현대자동차 주식회사 Impact absorbing device for vehicle
JP5969417B2 (en) * 2013-03-25 2016-08-17 富士重工業株式会社 Body front structure
JP6344424B2 (en) * 2016-04-19 2018-06-20 トヨタ自動車株式会社 Peripheral information detection sensor mounting structure
JP7181329B2 (en) * 2021-03-17 2022-11-30 本田技研工業株式会社 Body front structure

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11263244A (en) * 1998-03-19 1999-09-28 Toyota Motor Corp Front part structure of front side member
JP4306229B2 (en) * 2002-04-03 2009-07-29 タカタ株式会社 Collision detection device and safety device
JP4032018B2 (en) * 2003-10-08 2008-01-16 本田技研工業株式会社 Front body structure of automobile
JP3974567B2 (en) * 2003-10-08 2007-09-12 本田技研工業株式会社 Front body structure of automobile
JP3930004B2 (en) * 2004-08-27 2007-06-13 本田技研工業株式会社 Sensor arrangement structure
JP4894270B2 (en) * 2006-01-10 2012-03-14 マツダ株式会社 Front body structure of automobile
JP4680784B2 (en) * 2006-01-17 2011-05-11 本田技研工業株式会社 Front body structure of automobile

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9045100B2 (en) 2013-01-24 2015-06-02 Aisin Seiki Kabushiki Kaisha Shock absorbing member
US8919835B1 (en) 2013-09-27 2014-12-30 Hyundai Motor Company Structure for absorbing frontal collision energy of vehicle

Also Published As

Publication number Publication date
JP2009137435A (en) 2009-06-25

Similar Documents

Publication Publication Date Title
JP4926018B2 (en) Body front structure
US8056926B2 (en) Vehicle front body structure
JP4484920B2 (en) Body front structure
JP3974567B2 (en) Front body structure of automobile
US7762619B2 (en) Sequential crash hinges in automotive frame rails
JP5494229B2 (en) Pedestrian collision detection device
JP5867599B2 (en) Body front structure
JP4692565B2 (en) Rear impact sensor mounting structure for vehicles
JP4492823B2 (en) Vehicle collision detection device
JP6296067B2 (en) Body front variable structure
JP4775587B2 (en) Vehicle shock absorption structure
JP5163876B2 (en) Pedestrian protection device
US9033367B2 (en) Vehicle collision damage mitigation system
JP2006036184A (en) Air bag device for preventing trapping
WO2016136165A1 (en) Collision detection device for vehicle
JP5136433B2 (en) Vehicle collision detection device
RU2634742C1 (en) Construction of vehicle side door
JP6028740B2 (en) Bumper structure for vehicles
JP5062157B2 (en) Vehicle pedal retraction control structure
JP2015077826A (en) Vehicle collision determination device
JP4089723B2 (en) Hood airbag device for vehicle
JP2017119479A (en) Vehicle body front portion variable structure
JP5967025B2 (en) Vehicle collision damage reduction system
JP6978337B2 (en) Skeletal structure for vehicles
JP7020949B2 (en) Skeletal structure for vehicles

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111101

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120131

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120207

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150217

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees