JP4925970B2 - Pavement surface temperature prediction system - Google Patents

Pavement surface temperature prediction system Download PDF

Info

Publication number
JP4925970B2
JP4925970B2 JP2007213069A JP2007213069A JP4925970B2 JP 4925970 B2 JP4925970 B2 JP 4925970B2 JP 2007213069 A JP2007213069 A JP 2007213069A JP 2007213069 A JP2007213069 A JP 2007213069A JP 4925970 B2 JP4925970 B2 JP 4925970B2
Authority
JP
Japan
Prior art keywords
solar radiation
value
radiation intensity
temperature
road surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007213069A
Other languages
Japanese (ja)
Other versions
JP2009047515A (en
Inventor
博 芹川
直人 西谷
達雄 中源
平和 関
Original Assignee
中日本高速道路株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中日本高速道路株式会社 filed Critical 中日本高速道路株式会社
Priority to JP2007213069A priority Critical patent/JP4925970B2/en
Publication of JP2009047515A publication Critical patent/JP2009047515A/en
Application granted granted Critical
Publication of JP4925970B2 publication Critical patent/JP4925970B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、舗装路面の凍結を予測するための舗装路面温度予測システムに関するものである。   The present invention relates to a pavement surface temperature prediction system for predicting freezing of a pavement surface.

積雪寒冷地では、路面凍結による交通事故を防止するにあたり、いわゆる凍結防止剤を路面に散布して路面の凍結を防ぐ方法が広く採用されている。   In snowy cold regions, in order to prevent traffic accidents due to road surface freezing, a method of preventing freezing of the road surface by spreading a so-called antifreezing agent on the road surface is widely adopted.

凍結防止剤は、路上に存在する薄い氷版や薄雪を融解するために散布(事後散布)されることもあるが、路面温度が氷点以下になる前に散布(事前散布)すれば、その凝固点降下作用により、路上水分の凍結温度を降下させ、路面温度が氷点以下となった場合にも路面凍結の発生を防ぐことができる。交通事故防止の観点からは、路面を凍結状態としない事前散布がより好ましいといえるが、事前散布の場合、路面温度が氷点以下の状態となる時刻を事前に予測する必要がある。そこで、凍結防止剤の事前散布にあたり、路面温度の推移を予測する試みがなされている。   Anti-freezing agents are sometimes sprayed (post-spreading) to melt thin ice plates and snow on the road, but if sprayed before the road surface temperature falls below the freezing point (pre-spraying), Due to the freezing point lowering action, the freezing temperature of the water on the road is lowered, and even when the road surface temperature becomes below the freezing point, the occurrence of road surface freezing can be prevented. From the viewpoint of preventing traffic accidents, it can be said that pre-spreading in which the road surface is not frozen is more preferable. However, in the case of pre-spraying, it is necessary to predict in advance the time at which the road surface temperature is below the freezing point. Therefore, an attempt has been made to predict the transition of the road surface temperature in the prior application of the antifreeze agent.

そのような路面温度推移の予測には統計学的手法が、すなわち、予測地点の路面温度を目的変数とし、その地点での過去の気象履歴データを説明変数とする回帰分析を行い、路面温度に関する回帰式を求め、この回帰式により路面温度を予測する手法が用いられることも多い。この手法は、介在が不明確な自然法則を比較的簡単に関連付けることができるという利点があるが、次のような欠点がある。   Statistical methods are used to predict such changes in road surface temperature, that is, regression analysis using the road surface temperature at the predicted point as an objective variable and past weather history data at that point as an explanatory variable, In many cases, a method is used in which a regression equation is obtained and the road surface temperature is predicted by the regression equation. This method has the advantage that it is possible to associate a natural law with unclear intervention relatively easily, but has the following drawbacks.

まず、説明変数を不適切に選んだ場合や、目的変数、説明変数の設定が困難である時間的な要素を推定する場合には、予測精度が低くなるという欠点がある。また、予測地点で得られた回帰式は、他の場所に利用できず、汎用性がないという欠点もある。更に、回帰分析を行うためには、ある一定量のデータ蓄積が必要であり、制約が多いという欠点もある。更にまた、出現気象事象の大きな変化や、算出基礎データの変動が、時点、時点での推定精度に大きな影響を及ぼすという欠点もある。そして、これら欠点により、路面凍結発生の有無や凍結時間の予測に、看過できない不確実性が内包される場合があり、対応の遅れ(路面凍結)を招く結果や、逆に凍結防止剤を過剰に散布する結果となることがある。   First, when an explanatory variable is selected improperly, or when a temporal element in which setting of an objective variable and an explanatory variable is difficult is estimated, there is a drawback that prediction accuracy is lowered. In addition, the regression equation obtained at the predicted point cannot be used in other places, and there is a disadvantage that it is not versatile. Furthermore, in order to perform regression analysis, a certain amount of data needs to be accumulated, and there is a drawback that there are many restrictions. Furthermore, there is a drawback that a large change in the appearance weather event or a change in the calculation basic data greatly affects the estimation accuracy at the time. In addition, due to these drawbacks, there are cases where uncertainties that cannot be overlooked are included in the prediction of the occurrence of freezing of the road surface and the freezing time, resulting in response delays (road surface freezing) and conversely excessive antifreezing agents. May result in spraying.

そこで、このような統計学的手法の欠点を解消し、路面温度をより高い精度で予測できる手法が必要となるが、統計処理によらず路面温度を予測する手法としては、路面における熱収支のシミユレーション結果を利用する方法がある。すなわち、路面近傍における熱放射等の熱エネルギーの収支を算出し、その結果を利用して路面温度を予測する手法である。そして、このような熱収支のシミユレーション結果を利用する手法を用いた路温予知装置として、例えば、特公昭49−6239号、特公昭49−7379号、実公昭49−10871号に開示されたものがある。
特公昭49−6239号公報 特公昭49−7379号公報 実公昭49−10871号公報
Therefore, there is a need for a method that can eliminate the disadvantages of statistical methods and predict road surface temperature with higher accuracy.However, as a method for predicting road surface temperature regardless of statistical processing, the heat balance on the road surface is required. There is a method of using the simulation result. In other words, this is a technique for calculating a balance of thermal energy such as thermal radiation in the vicinity of the road surface and predicting the road surface temperature using the result. Further, as a road temperature prediction device using a method using the simulation result of such heat balance, for example, disclosed in Japanese Patent Publication Nos. 49-6239, 49-7379, and 49-10871. There is something.
Japanese Patent Publication No.49-6239 Japanese Patent Publication No.49-7379 Japanese Utility Model Publication No. 49-10871

しかしながら、熱収支のシミュレーション結果を利用する従来の路温予知装置は、路面からの放射熱量の仮定が現実と異なっていたり、熱収支全体がコンデサやコイルで置き換えられていたりするなどの理由により、その計算精度は高くなく、実際の利用に必要な予測精度を備えるものとはいえなかった。   However, the conventional road temperature prediction device using the simulation result of the heat balance is different from the actual assumption of the amount of radiant heat from the road surface, or because the entire heat balance is replaced with a condenser or a coil, etc. The calculation accuracy was not high, and it could not be said to have the prediction accuracy necessary for actual use.

一方、コンピューターの性能が進歩した昨今では、電子計算機によるシミュレーション精度は向上し、電子計算機で数値解を求める手法が採用されているが、数値解を得るには、初期から予測したい時点までの繰り返し計算を常に続けなければならないという根本的な問題があった。また、熱の出入りを規定する境界条件の係数が既知でなければ計算できないという問題や、路面温度の予測のように境界条件が時間的に変動する場合は、係数を定数的に扱うと誤差が発生するという問題があった。   On the other hand, with recent advances in computer performance, the accuracy of computer-based simulation has improved, and a method for obtaining a numerical solution with an electronic computer has been adopted. There was a fundamental problem that the calculation had to continue all the time. In addition, if the boundary condition coefficient that regulates the entry and exit of heat cannot be calculated unless it is known, or if the boundary condition fluctuates over time, such as when predicting the road surface temperature, the error will occur if the coefficient is treated constant. There was a problem that occurred.

そこで、本発明は、統計処理によることなく、また、数値解によることなく、実際の利用に必要な精度で路温の予測を行うことができる舗装路面温度予測システムを提供することを目的とする。   Therefore, an object of the present invention is to provide a pavement surface temperature prediction system capable of predicting a road temperature with accuracy required for actual use without using statistical processing and without using a numerical solution. .

本発明に係る舗装路面温度予測システムでは、舗装体の熱移動基礎式

Figure 0004925970
の路面(z=0)の境界条件(以下、「路面境界条件」という)を
Figure 0004925970
とし、該日射強度を
Figure 0004925970
として雲量の将来予測値に基づいて予測値を算出し、該伝熱係数、該アルベド、該天空の見掛けの放射率を予測地点における計測された影響因子に基づいて決定し、Green関数法を適用して路面温度を算出する。 In the pavement surface temperature prediction system according to the present invention, the heat transfer basic formula of the pavement
Figure 0004925970
The boundary condition of the road surface (z = 0) (hereinafter referred to as “road surface boundary condition”)
Figure 0004925970
And the solar radiation intensity
Figure 0004925970
Calculate the predicted value based on the future predicted value of cloud cover, determine the heat transfer coefficient, the albedo, and the apparent emissivity of the sky based on the measured influence factors at the predicted point, and apply the Green function method To calculate the road surface temperature.

路面の境界条件は、対象とする舗装体表面(路面)での熱の収支を式で表したものである。路面では、まず、舗装体表面に到達した日射(日射強度qrに同じ)の一部(A・qr:Aはアルベド)が反射し、残りが路面に吸収される。次に、吸収された熱の一部は、舗装体内部で熱伝導により伝播し、対流伝熱により外気へ天空に向かって長波放射として路面から放出される。これらの関係を式で表すと、次のようになる。

Figure 0004925970
なお、右辺第1項は熱伝導を、第2項は対流伝熱を、第3項は長波放射をそれぞれ意味する。この式(以下、熱伝モデル式という)は、温度Tの4乗の項を含む非線形となっているため、解析解を得ることができない。ところが、路面温度の予測が必要となる環境での路面温度Tと外気温Taの値は、270Kから280K程度で大差がない。そこで、TとTaの比の4乗を1の周りにTaylor展開し、第1項に比べ無視できる程小さい第2項以降を無視することにより、Tの4乗は、Tの一次関数で近似することができる。すなわち、Taylor展開
Figure 0004925970
において、(T/Ta−1)<<1であることから、第1項のみを残して整理すると、
Figure 0004925970
となり、Tの4乗をTの一次関数で近似することができる。
一方、天空温度Tskyの4乗は、経験式である天空の見掛けの射出率fpw(以下、補正係数という)を用いることにより、
Figure 0004925970
と表すことができるので、これらの関係式を熱伝モデル式に代入し整理すると、本発明の路面境界条件を得ることができる。 The boundary condition of the road surface expresses the heat balance on the target pavement surface (road surface) by a formula. On the road surface, first, a part of solar radiation (same as solar radiation intensity qr) reaching the pavement surface (A · qr: A is albedo) is reflected and the rest is absorbed by the road surface. Next, a part of the absorbed heat propagates by heat conduction inside the pavement, and is released from the road surface as long wave radiation toward the sky by convective heat transfer toward the sky. These relationships are expressed as follows.
Figure 0004925970
The first term on the right side means heat conduction, the second term means convective heat transfer, and the third term means long wave radiation. Since this equation (hereinafter referred to as a heat transfer model equation) is nonlinear including the fourth power term of the temperature T, an analytical solution cannot be obtained. However, the values of the road surface temperature T and the outside air temperature Ta in an environment where the road surface temperature needs to be predicted are about 270K to 280K, which is not significantly different. Therefore, the fourth power of the ratio of T and Ta is expanded to 1 around Taylor, and the second and subsequent terms that are negligibly smaller than the first term are ignored, so that the fourth power of T is approximated by a linear function of T. can do. That is, Taylor expansion
Figure 0004925970
In (T / Ta-1) << 1, when only the first term is arranged,
Figure 0004925970
Thus, the fourth power of T can be approximated by a linear function of T.
On the other hand, the fourth power of the sky temperature Tsky is obtained by using an apparent injection rate fpw (hereinafter referred to as a correction coefficient) of the sky as an empirical formula.
Figure 0004925970
Therefore, when these relational expressions are substituted into the heat transfer model expression and rearranged, the road boundary condition of the present invention can be obtained.

路面境界条件におけるhとTaは厳密にいえば時間の関数である。しかしながら、まず、Taについていえば、その変更範囲は273K±10K程度と小さく、また、舗装体内温度を計算するに当たっては、外気の乱流に伴う温度の微小変動に対する舗装体温度の反応は、時定数が大きく感度が極めて鈍いことから、伝熱工学的にhを長時間にわたる平均値で一定とみなしてもほとんど誤差を生じないものと考えられる。従って、路面境界条件は、Uを一定値とみなすことにより線形となり、時間的、場所的に変動する変数を含む境界条件を持つ熱伝導問題に回帰することになる。   Strictly speaking, h and Ta in the road boundary condition are functions of time. However, as for Ta, the change range is as small as 273K ± 10K, and when calculating the temperature inside the pavement, the reaction of the pavement temperature to the minute change in temperature due to the turbulence of the outside air is Since the constant is large and the sensitivity is extremely dull, even if h is regarded as a constant average value over a long period of time in terms of heat transfer engineering, it is considered that almost no error occurs. Therefore, the road surface boundary condition becomes linear by regarding U as a constant value, and returns to a heat conduction problem having a boundary condition including a variable that varies in time and place.

Green関数法を適用するには、路面境界条件式を以下のように変形すればよい。

Figure 0004925970
この式の意味するところは、Ta(t)+F(t)/Uなる温度で流れる仮想の空気への対流伝熱によって、舗装表面が冷やされる場合の条件とみなすことができ、この場合、Green関数をG(z,z’,t−τ)とすると、路温Tの解析解はGreen関数法の公式により次のように求めることができる。
Figure 0004925970
In order to apply the Green function method, the road boundary condition formula may be modified as follows.
Figure 0004925970
The meaning of this equation can be regarded as a condition when the pavement surface is cooled by convective heat transfer to virtual air flowing at a temperature of Ta (t) + F (t) / U. In this case, Green Assuming that the function is G (z, z ′, t−τ), the analytical solution of the road temperature T can be obtained as follows by the formula of the Green function method.
Figure 0004925970

日射強度は路温に大きな影響を及ぼし、雲量と密接な関係がある。雲量とは、気象台の観測官が目視で雲の占める割合を決め、快晴を0、全天雲を10とする11段階で示す値である。この雲量の現地観測は困難であるが、日射強度は雲量を基にすることにより簡便に算出できる。そこで、本発明においては、気象協会の雲量予測データ(雲量C)と実日射強度qrとの関係を定式化することにより、予測値を算出している。   Solar radiation intensity has a large effect on road temperature and is closely related to cloud cover. The cloud cover is a value shown in 11 steps, where the observer of the weather station visually determines the proportion of the cloud, 0 is clear and 10 is the total sky. Although it is difficult to observe this cloud amount in the field, the solar radiation intensity can be easily calculated based on the cloud amount. Therefore, in the present invention, the predicted value is calculated by formulating the relationship between the cloud forecast data (cloud cover C) of the Meteorological Association and the actual solar radiation intensity qr.

本発明における日射強度の定式、すなわち前記数式6は、日射強度の実測値を理論全天日射強度で正規化した値の雲量実測値Cに対する相関実験式から得ることができる。なお、理論全天日射強度は、次の式に示すように、水平面直達日射強度と水平面天空日射強度の和として求めることができる。

Figure 0004925970
この式において、右辺第1項が水平面直達日射強度、第2項が水平面天空日射強度であるが、これらの値は、以下の式(Bouguerの式)で求めることができるため、結局、理論全天日射強度は予測地点における物性値と太陽の高度から算出できることになる。
Figure 0004925970
The formula of the solar radiation intensity in the present invention, that is, the mathematical formula 6, can be obtained from a correlation experimental formula for the cloud amount actual measurement value C obtained by normalizing the actual solar radiation intensity measurement value with the theoretical global solar radiation intensity. The theoretical global solar radiation intensity can be obtained as the sum of the horizontal direct solar radiation intensity and the horizontal solar radiation intensity as shown in the following equation.
Figure 0004925970
In this equation, the first term on the right side is the horizontal solar radiation intensity, and the second term is the horizontal sky solar radiation intensity, but these values can be obtained by the following equation (Bouguer equation). The solar radiation intensity can be calculated from the physical property value at the predicted point and the altitude of the sun.
Figure 0004925970

伝熱係数、アルベド、天空の見掛けの放射率(以下、これらの総称をシステムパラメータという)を決定するにあたり、予測地点で計測される影響因子として、全天日射強度、反射日射強度、舗装体からの長波放射量、天空からの長波放射量、風速そして気温が挙げられる。ただし、その他に有効な因子があれば、それらをパラメータ算出に用いてもよい。   In determining the heat transfer coefficient, the albedo, and the apparent emissivity of the sky (hereinafter collectively referred to as system parameters), the influence factors measured at the predicted location are the total solar radiation intensity, reflected solar radiation intensity, and pavement. Longwave radiation, longwave radiation from the sky, wind speed and temperature. However, if there are other effective factors, they may be used for parameter calculation.

システムパラメータの算出に関し、まず、伝熱係数については、次の式(Campbellの予測式)を利用し、風速、気温に基づいて決定することができる。

Figure 0004925970
なお、この式において、空気の密度や比熱は、気温に基づいて決定される。また、舗装表面(アスファルト面)の粗度パラメータzmは、「Panofsky, H. A. and Dutton, J. A., 1983:Atmospheric Turbulence ; Models and Methods for Engineering Applications」より引用し、空港の滑走路の値と同一値とみなした。更に、大気の安定度補正量については以下の式で表される。
Figure 0004925970
そして、Gauss−Zeidel法などの繰り返し計算により、顕熱の伝熱抵抗、摩擦速度、大気の安定度を表すパラメータとともに算出することができる。 Regarding the calculation of system parameters, first, the heat transfer coefficient can be determined based on the wind speed and temperature using the following formula (Campbell's prediction formula).
Figure 0004925970
In this equation, the density and specific heat of air are determined based on the temperature. The roughness parameter z m of the pavement surface (asphalt surface) is quoted from “Panofsky, HA and Dutton, JA, 1983: Atmospheric Turbulence; Models and Methods for Engineering Applications” and is the same value as the airport runway value. Considered. Furthermore, the atmospheric stability correction amount is expressed by the following equation.
Figure 0004925970
It can be calculated together with parameters representing sensible heat transfer resistance, friction speed, and atmospheric stability by repeated calculation such as Gauss-Zeidel method.

伝熱係数は、既述のように、厳密にいえば時間の関数である。しかしながら、舗装体内温度を計算するに当たっては、外気の乱流に伴う温度の微小変動に対する舗装体温度の反応は、時定数が大きく感度が極めて鈍いことから、伝熱工学的には、この伝熱係数を長時間にわたる平均値で一定とみなしてもほとんど誤差を生じないものと考えられる。そこで、本発明においては、伝熱係数をパラメータ、すなわち時間変化に対し一定として扱うものとする。   Strictly speaking, the heat transfer coefficient is a function of time as described above. However, when calculating the temperature inside the pavement, the response of the pavement temperature to the minute fluctuations in temperature due to the turbulence of the outside air has a large time constant and is extremely insensitive. Even if the coefficient is considered to be constant over an average value over a long period of time, it is considered that almost no error occurs. Therefore, in the present invention, the heat transfer coefficient is treated as a parameter, that is, constant with time.

また、補正係数については、次の式を利用し、全天日射強度、反射日射強度、舗装体からの長波放射量、天空からの長波放射量及び気温に基づいて決定することができる。

Figure 0004925970
なお、アルベドは、計測された全天日射強度と反射日射強度の比として決定することができる。 The correction coefficient can be determined based on the total solar radiation intensity, the reflected solar radiation intensity, the long wave radiation amount from the pavement, the long wave radiation amount from the sky, and the temperature using the following formula.
Figure 0004925970
The albedo can be determined as a ratio of the measured global solar radiation intensity and reflected solar radiation intensity.

本発明に係る舗装路面温度予測システムによれば、境界条件を線形近似すると共に、所定のパラメータを予測地点における観測結果に基づいて決定し、解析数学の手法であるGreen関数法を適用することにより、路面温度の解析解を求めることができる。そのため、統計処理によることなく、また、数値解によることなく、実際の利用に必要な精度で路温の予測を行うことが可能となる。   According to the pavement surface temperature prediction system according to the present invention, the boundary condition is linearly approximated, the predetermined parameter is determined based on the observation result at the prediction point, and the Green function method which is a method of analytical mathematics is applied. An analytical solution for the road surface temperature can be obtained. Therefore, it is possible to predict the road temperature with accuracy required for actual use without using statistical processing and without using a numerical solution.

また、熱収支計算に関わる特定の影響因子を現地観測機器で入力値として捉えることで、温度の将来値の推定において必要となるデータの補正・推定を行うため、解析解による温度の計算理論値と現地観測値の整合を図ることができる。なお、本発明において現地観測機器による入力値とされている影響因子、すなわち、全天日射強度、反射日射強度、舗装体からの長波放射量、天空からの長波放射量、風速及び気温は、試行錯誤により特定されたものであり、計算理論値と現地観測値の整合を図るためのこれら影響因子を特定したことも本発明の特徴の一つである。   In addition, the specific influencing factors related to the heat balance calculation are regarded as input values by the field observation equipment, so that the data necessary for estimation of the future value of temperature can be corrected and estimated. And field observation values can be matched. It should be noted that influencing factors that are input values by field observation equipment in the present invention, that is, total solar radiation intensity, reflected solar radiation intensity, long wave radiation from the pavement, long wave radiation from the sky, wind speed and temperature are trials. One of the features of the present invention is that these influential factors for identifying the calculation theoretical values and the field observation values are identified by mistakes.

図1及び図2に、本発明に係る舗装路面温度予測システムの実施例を示す。図1は、同システムの概略を示すブロック図、図2は予測地点に設置される計測機器の概要図である。   1 and 2 show an embodiment of a pavement surface temperature prediction system according to the present invention. FIG. 1 is a block diagram showing an outline of the system, and FIG. 2 is a schematic diagram of a measuring device installed at a predicted point.

このシステムの構成には、予測地点に設置された測定機器が含まれており、そのような測定機器として、まず、放射収支計1及びアルベドメーター2が、予測地点の路面3の脇に設けられた照明柱4に取り付けられている。また、風向風速計及び気温計が、予測地点に設けられた気象観測局5に配置されている。そして、熱収支計算に関わる影響因子が、これら測定機器で計測されることになる。なお、図2に示す路面3には、このシステムの検証に必要となる路温計6及び熱流計7が埋設されているが、全予測地点に埋設しておく必要はない。   The configuration of this system includes a measuring device installed at a predicted point. As such a measuring device, first, a radiation balance meter 1 and an albedometer 2 are provided beside the road surface 3 of the predicted point. It is attached to the lighting column 4. In addition, an anemometer and a thermometer are arranged at the meteorological observation station 5 provided at the predicted point. And the influence factor in connection with heat balance calculation will be measured with these measuring instruments. In addition, although the road thermometer 6 and the heat flow meter 7 which are required for the verification of this system are embed | buried in the road surface 3 shown in FIG. 2, it is not necessary to embed | buy in all the prediction points.

影響因子、すなわち、予測地点における各種計測値を得たら、次に、それらに基づいてシステムパラメータを決定する。なお、システムパラメータ、すなわち、アルベド、補正係数及び伝熱係数は、それぞれ、以下のように算出する。   Once the influencing factors, i.e., various measured values at the predicted location, are obtained, system parameters are then determined based on them. The system parameters, that is, the albedo, the correction coefficient, and the heat transfer coefficient are each calculated as follows.

<アルベド>
全天日射強度に対する反射日射強度の比として、すなわち、A=(反射日射強度/全天日射強度)として求めることができる。ただし、実際には、アルベドメーターから直接出力される。
<Albedo>
It can be determined as the ratio of the reflected solar radiation intensity to the total solar radiation intensity, that is, A = (reflected solar radiation intensity / global solar radiation intensity). However, it is actually output directly from the albedometer.

<伝熱係数>
伝熱係数は、次の式(Campbellの予測式)を利用し、風速、気温に基づいて決定することができる。

Figure 0004925970
なお、この式において、空気の密度や比熱は、気温に基づいて決定される。また、舗装表面(アスファルト面)の粗度パラメータzmは、「Panofsky, H. A. and Dutton, J. A., 1983:Atmospheric Turbulence ; Models and Methods for Engineering Applications」より引用し、空港の滑走路の値と同一値とみなした。更に、大気の安定度補正量は以下の式で表される。
Figure 0004925970
そして、Gauss−Zeidel法などの繰り返し計算により、顕熱の伝熱抵抗、摩擦速度、大気の安定度を表すパラメータとともに算出することができる。 <Heat transfer coefficient>
The heat transfer coefficient can be determined based on wind speed and temperature using the following formula (Campbell's prediction formula).
Figure 0004925970
In this equation, the density and specific heat of air are determined based on the temperature. The roughness parameter z m of the pavement surface (asphalt surface) is quoted from “Panofsky, HA and Dutton, JA, 1983: Atmospheric Turbulence; Models and Methods for Engineering Applications” and is the same value as the airport runway value. Considered. Furthermore, the atmospheric stability correction amount is expressed by the following equation.
Figure 0004925970
It can be calculated together with parameters representing sensible heat transfer resistance, friction speed, and atmospheric stability by repeated calculation such as Gauss-Zeidel method.

ただし、この伝熱係数は、後述する路温の解析解の算出に直接使用されるのではなく、その算出に必要となる複合伝熱係数の決定用として間接的に使用されることになる。そして、複合伝熱係数は、次の式で表される。

Figure 0004925970
この式に含まれる外気温及び伝熱係数は、厳密にいえば時間の関数である。しかしながら、まず、Taについていえば、その変更範囲は273K±10K程度と小さい。一方、伝熱係数についていえば、舗装体内温度を計算するに当たり、外気の乱流に伴う温度の微小変動に対する舗装体温度の反応は、時定数が大きく感度が極めて鈍いことから、伝熱工学的に、長時間にわたる平均値で一定とみなしてもほとんど誤差を生じないものと考えられる。そこで、このシステムにおいては、伝熱係数及び複合伝熱係数をパラメータ、すなわち時間変化に対し一定として扱うものとする。 However, this heat transfer coefficient is not directly used for calculation of an analytical solution for the path temperature, which will be described later, but indirectly for determining a composite heat transfer coefficient necessary for the calculation. The composite heat transfer coefficient is expressed by the following equation.
Figure 0004925970
Strictly speaking, the outside air temperature and the heat transfer coefficient included in this equation are functions of time. However, first, regarding Ta, the change range is as small as about 273K ± 10K. On the other hand, regarding the heat transfer coefficient, in calculating the temperature inside the pavement, the response of the pavement temperature to minute fluctuations in temperature due to turbulent outside air has a large time constant and is extremely insensitive. In addition, it is considered that there is almost no error even if the average value over a long time is regarded as constant. Therefore, in this system, the heat transfer coefficient and the composite heat transfer coefficient are treated as parameters, that is, constant with respect to time.

上記の算出法により得られた伝熱係数及び複合伝熱係数の一例を以下に示す。
例えば、舗装表面温度が274K(ケルビン温度)、外気温が273K、風速が7200m/h(=2m/秒)の場合、得られる伝熱係数は66.1kJ/(mhK)となった。一方、複合伝熱係数に及ぼす長波放射の寄与(数式20の右辺第2項)の値を計算すると16.6kJ/(mhK)となった。そして、これら伝熱係数と長波放射の寄与の和で得られる複合伝熱係数は、82.7kJ/(mhK)となった。また、舗装表面温度が278Kで、外気温と風速が上記と同じ場合、得られる伝熱係数は93.5kJ/(mhK)と、長波放射の寄与は17.5kJ/(mhK)となった。そして、複合伝熱係数は、111.0kJ/(mhK)となった。これらの値は、逆解析で試行錯誤により求めた値と酷似しており、風速と観測値が与えられれば理論的に伝熱係数を算出できることが確認されている。
An example of the heat transfer coefficient and the composite heat transfer coefficient obtained by the above calculation method is shown below.
For example, when the pavement surface temperature is 274 K (Kelvin temperature), the outside air temperature is 273 K, and the wind speed is 7200 m / h (= 2 m / sec), the heat transfer coefficient obtained is 66.1 kJ / (m 2 hK). On the other hand, when the value of the contribution of long wave radiation to the composite heat transfer coefficient (the second term on the right side of Equation 20) was calculated, it was 16.6 kJ / (m 2 hK). And the composite heat transfer coefficient obtained by the sum of the contribution of these heat transfer coefficients and long wave radiation was 82.7 kJ / (m 2 hK). When the pavement surface temperature is 278K and the outside air temperature and wind speed are the same as above, the heat transfer coefficient obtained is 93.5 kJ / (m 2 hK), and the contribution of long wave radiation is 17.5 kJ / (m 2 hK). It became. The composite heat transfer coefficient was 111.0 kJ / (m 2 hK). These values are very similar to the values obtained by trial and error in the inverse analysis, and it has been confirmed that the heat transfer coefficient can be calculated theoretically given the wind speed and the observed values.

<補正係数>
次の式を利用し、全天日射強度、反射日射強度、舗装体からの長波放射量、天空からの長波放射量及び気温に基づいて決定することができる。

Figure 0004925970
なお、外気温は、既述の通り、厳密にいえば時間の関数であるが、その変更範囲は273K±10K程度と小さいことから、長時間にわたる平均値で一定とみなしてもほとんど誤差を生じないものと考えられる。そこで、このシステムにおいては、補正係数もまたパラメータとして扱うものとする。 <Correction factor>
Using the following equation, it can be determined based on the total solar radiation intensity, reflected solar radiation intensity, long wave radiation from the pavement, long wave radiation from the sky, and temperature.
Figure 0004925970
As described above, the outside air temperature is strictly a function of time. However, since the change range is as small as about 273K ± 10K, there is almost no error even if it is regarded as a constant average value over a long period of time. It is thought that there is nothing. Therefore, in this system, the correction coefficient is also handled as a parameter.

一方、パラメータの決定とは別に、気象予報業務実施者が求めた外気温及び雲量の将来予測値とから、日射強度の予測値、及び外気温の将来予測値を以下のように算出する。   On the other hand, separately from the parameter determination, the predicted value of solar radiation intensity and the predicted value of the outside temperature are calculated as follows from the estimated value of the outside temperature and the cloud amount obtained by the weather forecaster.

<日射強度の予測値>
気象協会の雲量予測データ(雲量C)を使用し、次の式により算出する。

Figure 0004925970
<Predicted value of solar radiation intensity>
Using cloud forecast data (cloud cover C) of the Japan Meteorological Association, the following formula is used.
Figure 0004925970

なお、雲量Cの係数は、日射強度の実測値を理論全天日射強度で正規化した値の雲量実測値Cに対する相関実験式から得たものである。当該実験式を図3に示す。理論全天日射強度は、次の式に示すように、水平面直達日射強度と水平面天空日射強度の和として求めることができる。

Figure 0004925970
この式において、右辺第1項が水平面直達日射強度、第2項が水平面天空日射強度であるが、これらの値は、次の式(Bouguerの式)で求めることができるため、結局、理論全天日射強度は予測地点における物性値と太陽の高度から算出できることになる。
Figure 0004925970
The coefficient of cloud amount C is obtained from a correlation empirical formula with respect to the cloud amount actual measurement value C obtained by normalizing the actual measurement value of the solar radiation intensity with the theoretical global solar radiation intensity. The empirical formula is shown in FIG. The theoretical global solar radiation intensity can be obtained as the sum of the horizontal solar radiation intensity and the horizontal sky solar radiation intensity as shown in the following equation.
Figure 0004925970
In this equation, the first term on the right side is the horizontal solar radiation intensity and the second term is the horizontal sky solar radiation intensity, but these values can be obtained by the following equation (Bouguer's equation). The solar radiation intensity can be calculated from the physical property value at the predicted point and the altitude of the sun.
Figure 0004925970

また、雲量Cの係数は、全天日射強度の実測値を理論全天日射強度で正規化した値を、雲量実測値に対しプロットした結果により算出したものである。図3に、そのプロット結果を示す。   The coefficient of cloud amount C is calculated by plotting a value obtained by normalizing the actual measurement value of the global solar radiation intensity with the theoretical global solar radiation intensity with respect to the actual cloud amount measurement value. FIG. 3 shows the plot results.

ただし、上記定式によっても、実測値との乖離があるため、実際の利用に際しては次のような補正を行う。まず、所定時刻(t=t)における全天日射強度実測値と、その時点での雲量予測値を上記式に代入して得られる全天日射強度計算値との差を求める。そして、その差を、将来時刻(t=t+η)における雲量予測値を同式に代入して得られる全天日射強度予測値に加算することにより、将来時刻(t=t+η)における全天日射強度予測値を算出する。また、時間区間t〜t+ηにおける全天日射強度には、次の式により得られる、この時間区間における時間平均値を用いた。

Figure 0004925970
However, since there is a deviation from the actual measurement value according to the above formula, the following correction is performed in actual use. First, the difference between the global solar radiation intensity measured value at a predetermined time (t = t) and the global solar radiation intensity calculated value obtained by substituting the cloud amount prediction value at that time into the above formula is obtained. Then, by adding the difference to the global solar radiation intensity predicted value obtained by substituting the cloud cover predicted value at the future time (t = t + η) into the same equation, the global solar radiation intensity at the future time (t = t + η). Calculate the predicted value. Moreover, the time average value in this time interval obtained by the following formula was used for the global solar radiation intensity in the time interval t to t + η.
Figure 0004925970

<外気温の予測値>
外気温の予測値は気象協会から発表されている。しかしながら、気象台が予測地点から離れていること等の理由により、その予測値は実測値と乖離している。そこで、気象協会から発表される外気温の予測値に対し次のような補正を行う。まず、所定時刻(t=t)における気象協会予測値と、その時点での予測地点における実測値との差を求める。そして、その差を、将来時刻(t=t+η)における気象協会予測値に加算することにより、将来時刻(t=t+η)における外気温予測値を算出する。また、時間区間t〜t+ηにおける外気温には、次の式により得られる、この時間区間における時間平均値を用いた。

Figure 0004925970
<Predicted outside air temperature>
The forecast of outside temperature is announced by the weather association. However, due to reasons such as the weather station being far from the predicted point, the predicted value is different from the actual measured value. Therefore, the following corrections are made to the predicted outside air temperature announced by the Meteorological Association. First, a difference between a weather association prediction value at a predetermined time (t = t) and an actual measurement value at a prediction point at that time is obtained. Then, the outside air temperature predicted value at the future time (t = t + η) is calculated by adding the difference to the weather association predicted value at the future time (t = t + η). Moreover, the time average value in this time interval obtained by the following formula was used for the outside air temperature in the time interval t to t + η.
Figure 0004925970

パラメータの決定と、将来時刻における日射強度予測値及び外気温予測値の算出が終了したら、次に、将来時刻における路温の解析解を算出する。解析解の算出には、次の式を用いる。

Figure 0004925970
なお、式中Uは複合伝熱係数であり、上記の通り、パラメータとして算出されている。 When the parameter determination and the calculation of the predicted solar radiation intensity and the predicted outside air temperature at the future time are completed, an analytical solution for the road temperature at the future time is calculated. The following formula is used to calculate the analytical solution.
Figure 0004925970
In the equation, U is a composite heat transfer coefficient, and is calculated as a parameter as described above.

このシステムを利用して実際の路面温度を予測し、その予測地点における実測値との比較を行った。予測地点は、北陸自動車道今庄IC〜敦賀IC間の天王川橋観測局(北陸道上り67.2kmポスト付近)である。また、日時は平成19年2月5日0時から24時まで、及び平成19年2月25日0時から24時まである。比較結果を図4及び図5に示す。図4は、平成19年2月5日に実施した路面温度の予測値の推移を、その予測地点における実測値の推移と比較して示し、(a)は0時間後の予測値と実測値を、(b)は1時間後の予測値と実測値を、(c)は2時間後の予測値と実測値を比較して示すグラフである。図5は、平成19年2月25日に実施した路面温度の予測値の推移を、その予測地点における実測値の推移と比較して示し、(a)は0時間後の予測値と実測値を、(b)は1時間後の予測値と実測値を、(c)は2時間後の予測値と実測値を比較して示すグラフである。なお、0時間後の予測値とは、当該手法を用いて時間値をt=tの値とした場合の予測値(予測計算を行った時点の解析値)である。同様に、1時間後の予測値とは、当該手法を用いて時間値をt=t+1hrの値とした場合の予測値、2時間後の予測値とは、当該手法を用いて時間値をt=t+2hrの値とした場合の予測値である。また、図中予測値は実線で、実測値は、実測により得られた値のプロットの集合である点線で表示されている。   Using this system, the actual road surface temperature was predicted and compared with the actual measured value at the predicted point. The predicted location is the Tennogawa Bridge Observatory between Hokuriku Expressway Imajo IC and Tsuruga IC (near the Hokuriku Expressway 67.2 km post). The date and time is from 5:00 to 24:00 on February 5, 2007 and from 0:00 to 24:00 on February 25, 2007. The comparison results are shown in FIGS. FIG. 4 shows the transition of the predicted value of the road surface temperature carried out on February 5, 2007 in comparison with the transition of the measured value at the predicted point. (A) shows the predicted value and the measured value after 0 hours. (B) is a graph showing a predicted value and an actual value after 1 hour, and (c) is a graph showing a comparison between the predicted value and the actual value after 2 hours. FIG. 5 shows the transition of the predicted value of the road surface temperature carried out on February 25, 2007 in comparison with the transition of the measured value at the predicted point, and (a) shows the predicted value and the measured value after 0 hours. (B) is a graph showing a predicted value and an actual value after 1 hour, and (c) is a graph showing a comparison between the predicted value and the actual value after 2 hours. Note that the predicted value after 0 hour is a predicted value (analyzed value at the time when the prediction calculation is performed) when the time value is set to a value of t = t using the method. Similarly, the predicted value after 1 hour is the predicted value when the time value is t = t + 1hr using the method, and the predicted value after 2 hours is the time value t using the method. = T + 2hr is a predicted value. In the figure, the predicted value is indicated by a solid line, and the actual measurement value is indicated by a dotted line which is a set of plots of values obtained by the actual measurement.

図4及び図5より、夜間において、1時間程度先の路面温度を高い精度で予測できることが確認できた。   4 and 5, it was confirmed that the road surface temperature about one hour ahead can be predicted with high accuracy at night.

本発明に係る舗装路面温度予測システムの概略を示すブロック図である。It is a block diagram which shows the outline of the pavement surface temperature prediction system which concerns on this invention. 予測地点に設置される計測機器の概要図である。It is a schematic diagram of the measuring device installed in a prediction point. 日射強度の実測値を理論全天日射強度で正規化した値の雲量実測値Cに対する相関実験式を示すグラフである。It is a graph which shows the correlation experimental formula with respect to the cloud cover measurement value C of the value which normalized the measured value of the solar radiation intensity with the theoretical global solar radiation intensity. 平成19年2月5日に実施した路面温度の予測値の推移を、その予測地点における実測値の推移と比較して示し、(a)は0時間後の予測値と実測値を、(b)は1時間後の予測値と実測値を、(c)は2時間後の予測値と実測値を比較して示すグラフである。The transition of the predicted value of the road surface temperature carried out on February 5, 2007 is shown in comparison with the transition of the measured value at the predicted point, (a) shows the predicted value and the measured value after 0 hours, (b ) Is a graph showing a predicted value and an actual value after one hour, and (c) is a graph showing a comparison between the predicted value and the actual value after two hours. 平成19年2月25日に実施した路面温度の予測値の推移を、その予測地点における実測値の推移と比較して示し、(a)は0時間後の予測値と実測値を、(b)は1時間後の予測値と実測値を、(c)は2時間後の予測値と実測値を比較して示すグラフである。The transition of the predicted value of the road surface temperature carried out on February 25, 2007 is shown in comparison with the transition of the measured value at the predicted point. (A) shows the predicted value and the measured value after 0 hours, (b ) Is a graph showing a predicted value and an actual value after one hour, and (c) is a graph showing a comparison between the predicted value and the actual value after two hours.

符号の説明Explanation of symbols

1 放射収支計
2 アルベドメーター
3 路面
4 照明柱
5 気象観測局
6 路温計
7 熱流計
DESCRIPTION OF SYMBOLS 1 Radiation balance meter 2 Albedometer 3 Road surface 4 Illumination pillar 5 Meteorological observation station 6 Road thermometer 7 Heat flow meter

Claims (2)

舗装体の熱移動基礎式
Figure 0004925970
の路面(z=0)の境界条件を
Figure 0004925970
とし、該日射強度を
Figure 0004925970
として雲量の将来予測値に基づいて予測値を算出し、該伝熱係数、該アルベド、該天空の見掛けの放射率を予測地点において計測された影響因子に基づいて決定し、Green関数法を適用して路面温度を算出することを特徴とする舗装路面温度予測システム。
Pavement heat transfer basic formula
Figure 0004925970
The boundary condition of the road surface (z = 0)
Figure 0004925970
And the solar radiation intensity
Figure 0004925970
Calculate the predicted value based on the future predicted value of cloud cover, determine the heat transfer coefficient, the albedo, and the apparent emissivity of the sky based on the influencing factors measured at the predicted point, and apply the Green function method A pavement surface temperature prediction system characterized by calculating a road surface temperature.
該影響因子は、全天日射強度、反射日射強度、舗装体からの長波放射量、天空からの長波放射量、風速及び気温を含む請求項1に記載の舗装路面温度予測システム。   The pavement surface temperature prediction system according to claim 1, wherein the influencing factors include total solar radiation intensity, reflected solar radiation intensity, long wave radiation amount from the pavement, long wave radiation amount from the sky, wind speed and temperature.
JP2007213069A 2007-08-17 2007-08-17 Pavement surface temperature prediction system Expired - Fee Related JP4925970B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007213069A JP4925970B2 (en) 2007-08-17 2007-08-17 Pavement surface temperature prediction system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007213069A JP4925970B2 (en) 2007-08-17 2007-08-17 Pavement surface temperature prediction system

Publications (2)

Publication Number Publication Date
JP2009047515A JP2009047515A (en) 2009-03-05
JP4925970B2 true JP4925970B2 (en) 2012-05-09

Family

ID=40499878

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007213069A Expired - Fee Related JP4925970B2 (en) 2007-08-17 2007-08-17 Pavement surface temperature prediction system

Country Status (1)

Country Link
JP (1) JP4925970B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013057476A (en) 2011-09-09 2013-03-28 Toshiba Corp Pmv estimating device and program thereof
JP6325331B2 (en) * 2014-04-28 2018-05-16 株式会社東芝 Weather prediction correction device, weather prediction correction method, and program
JP6073970B2 (en) * 2015-06-02 2017-02-01 日本電気通信システム株式会社 Solar radiation amount prediction device, global solar radiation amount prediction method and program
JP2023038435A (en) * 2021-09-07 2023-03-17 株式会社番匠伊藤組 Underground heat accumulation method
CN114139263A (en) * 2021-12-03 2022-03-04 西南交通大学 Bridge wind-temperature coupling numerical simulation method considering bridge deck local wind field
CN115165955B (en) * 2022-06-01 2023-06-16 浙江大学 Ground material albedo testing method and system based on heat change
CN117113515B (en) * 2023-10-23 2024-01-05 湖南大学 Pavement design method, device, equipment and storage medium

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1164536A (en) * 1997-08-21 1999-03-05 Oki Electric Ind Co Ltd Road surface temperature predictive method and device, and recording medium recording road surface temperature prediction program
JP3767478B2 (en) * 2001-12-21 2006-04-19 日立電線株式会社 Road surface temperature estimation method
JP4500602B2 (en) * 2004-06-30 2010-07-14 一般財団法人日本気象協会 Road surface temperature prediction system, road surface temperature prediction method, and road surface temperature prediction program

Also Published As

Publication number Publication date
JP2009047515A (en) 2009-03-05

Similar Documents

Publication Publication Date Title
JP4925970B2 (en) Pavement surface temperature prediction system
Minhoto et al. Predicting asphalt pavement temperature with a three-dimensional finite element method
Zhou et al. Thermal load in large-scale bridges: a state-of-the-art review
Dumais et al. An albedo based model for the calculation of pavement surface temperatures in permafrost regions
Tominaga et al. Development of a system for predicting snow distribution in built-up environments: Combining a mesoscale meteorological model and a CFD model
Ling et al. Enhanced model for thermally induced transverse cracking of asphalt pavements
Chou et al. A study on the effects of double skin façades on the energy management in buildings
Lazarev et al. Method of assessment and prediction of temperature conditions of roadway surfacing as a factor of the road safety
Liu et al. An indirect validation of convective heat transfer coefficients (CHTCs) for external building surfaces in an actual urban environment
Rumbayan et al. Modeling of environmental effects on thermal detection of subsurface damage in concrete
Arangi et al. Review paper on pavement temperature prediction model for Indian climatic condition
Chiarelli et al. Field evaluation of the effects of air convection in energy harvesting asphalt pavements
Bouilloud et al. Road surface condition forecasting in France
Li et al. Heating performance of a novel externally-heated geothermal bridge de-icing system: field tests and numerical simulations
Rigabadi et al. An attempt for development of pavements temperature prediction models based on remote sensing data and artificial neural network
Bouris et al. Thermographic measurement and numerical weather forecast along a highway road surface
Suzuki et al. Monitoring temperatures on a real box-girder bridge and energy budget analysis for basic information on bridge cooling and surface freezing
Li et al. Three-dimensional ice shape detection based on flash pulse infrared thermal wave testing
Hippi et al. A statistical forecast model for road surface friction
Zhang et al. Modeling rail temperature with real-time weather data
Jang Night icing prediction using vehicle-mounted pavement temperature sensor and atmospheric data
JP4742388B2 (en) Road surface condition estimation system at fixed observation points and routes
Hlavčová et al. Changes in the snow water equivalent in mountainous basins in Slovakia over recent decades
Sedivy et al. Innovation in the winter road maintenance and its economic justification
Ortner et al. Climate change impacts on large scale avalanche risk in mountainous regions

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100406

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120207

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120207

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150217

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees