JP4925956B2 - Method for producing catalyst for producing alkenyl acetate - Google Patents

Method for producing catalyst for producing alkenyl acetate Download PDF

Info

Publication number
JP4925956B2
JP4925956B2 JP2007193730A JP2007193730A JP4925956B2 JP 4925956 B2 JP4925956 B2 JP 4925956B2 JP 2007193730 A JP2007193730 A JP 2007193730A JP 2007193730 A JP2007193730 A JP 2007193730A JP 4925956 B2 JP4925956 B2 JP 4925956B2
Authority
JP
Japan
Prior art keywords
carrier
solution
catalyst
palladium
acetate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007193730A
Other languages
Japanese (ja)
Other versions
JP2008080326A (en
Inventor
明子 才畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2007193730A priority Critical patent/JP4925956B2/en
Publication of JP2008080326A publication Critical patent/JP2008080326A/en
Application granted granted Critical
Publication of JP4925956B2 publication Critical patent/JP4925956B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

本発明は、酢酸、低級オレフィンおよび酸素を原料として酢酸アルケニルを合成する際に使用する酢酸アルケニル製造用触媒の製造方法およびその触媒を用いた酢酸アルケニルの製造方法に関する。   The present invention relates to a method for producing a catalyst for producing alkenyl acetate which is used when synthesizing alkenyl acetate using acetic acid, a lower olefin and oxygen as raw materials, and a method for producing alkenyl acetate using the catalyst.

酢酸ビニルは、酢酸ビニル樹脂の原料、ポリビニルアルコールの原料、さらにエチレン、スチレン、アクリレート、メタクリレート等との共重合用モノマーとして、塗料、接着剤、繊維処理剤等の広い分野に用いられている重要な工業材料である。   Vinyl acetate is used as a raw material for vinyl acetate resin, a raw material for polyvinyl alcohol, and a monomer for copolymerization with ethylene, styrene, acrylate, methacrylate, etc. Industrial material.

酢酸、低級オレフィンおよび酸素を原料とする酢酸アルケニル、特に酢酸ビニルの製造触媒として、Pd/Au/KOAc/SiOが広く用いられている。この反応における活性点はパラジウムと考えられ、助触媒の金はパラジウムのシンタリングを抑制したり、炭酸ガス生成反応を低減させ、酢酸アルケニル(例えば、酢酸ビニル)の選択率を向上させる役割があるとされる。また、かかる金の効果が発揮されるためには、パラジウムとの原子レベルでの混合が必要であるとの報告もある。 Pd / Au / KOAc / SiO 2 is widely used as a catalyst for producing alkenyl acetate, particularly vinyl acetate, using acetic acid, lower olefins and oxygen as raw materials. The active site in this reaction is considered to be palladium, and the promoter gold plays a role in suppressing palladium sintering, reducing the carbon dioxide generation reaction, and improving the selectivity of alkenyl acetate (for example, vinyl acetate). It is said. In addition, there is a report that mixing at the atomic level with palladium is necessary in order to exert such gold effects.

酢酸ビニルの製造において、酢酸ビニルの選択率を上げることは非常に重要な技術課題であり、また環境負荷の観点からも炭酸ガスの発生抑制が望まれている。さらに、酢酸ビニルを工業的に製造する場合には、触媒の長寿命化は経済的な観点からも大きな課題であり、パラジウムのシンタリングを抑制する金の働きを高めることは重要と考えられる。   In the production of vinyl acetate, increasing the selectivity of vinyl acetate is a very important technical issue, and suppression of carbon dioxide generation is also desired from the viewpoint of environmental impact. Further, when vinyl acetate is produced industrially, extending the life of the catalyst is a major issue from an economical viewpoint, and it is considered important to enhance the function of gold that suppresses palladium sintering.

また、酢酸ビニル製造用の触媒はパラジウムや金を担体の表面にのみ担持したいわゆるシェル型が反応性に優れると考えられている。シェル型触媒の調製法は特表2004-526553号公報などに開示されている。ここでは、担体に原料金属塩溶液を含浸させた後、固定剤としてアルカリ溶液と接触させることでシェル型触媒を形成している。しかし、この方法ではシェル内でのパラジウムと金の担持位置がずれた触媒が形成され、また特に金の担持率が低いことが難点である。   Further, it is considered that a so-called shell type catalyst in which palladium or gold is supported only on the surface of a carrier is excellent in reactivity for producing vinyl acetate. A method for preparing a shell-type catalyst is disclosed in JP-T-2004-526553. Here, a shell-type catalyst is formed by impregnating a carrier with a raw metal salt solution and then contacting with an alkaline solution as a fixing agent. However, in this method, a catalyst in which the palladium and gold loading positions in the shell are shifted is formed, and in particular, the gold loading ratio is low.

また、イギリス特許第1283737号明細書や特開平8−318159号公報では、担体にアルカリ溶液を含浸した後に原料金属塩溶液を接触させることで、シェル型触媒を形成している。例えば、イギリス特許第1283737号明細書の実施例では、担体にアルカリ溶液を含浸した後に、担体から溶液を加熱除去する工程が用いられている。一方、特開平8−318159号公報では、アルカリ溶液と原料金属塩溶液の総量が、用いる担体の吸水量相当であることが必要とされている。これらの方法では、工程が煩雑であり、調製操作が難しく、パラジウムや金の担持斑ができやすいという欠点があった。   In British Patent No. 1283737 and JP-A-8-318159, a shell-type catalyst is formed by contacting a carrier with a raw metal salt solution after impregnating the carrier with an alkaline solution. For example, in the example of British Patent No. 1283737, a step of heating and removing the solution from the carrier after impregnating the carrier with an alkaline solution is used. On the other hand, Japanese Patent Application Laid-Open No. 8-318159 requires that the total amount of the alkali solution and the starting metal salt solution is equivalent to the water absorption amount of the carrier used. These methods have the disadvantages that the steps are complicated, the preparation operation is difficult, and palladium or gold carrying spots are easily formed.

さらに、特開平10−175917号公報には、原料金属塩溶液を担体に含浸した後に遠心分離器で処理することで、シェル型に金属を担持する方法が開示されているが、この方法は操作が煩雑なため、改良が必要であった。   Furthermore, Japanese Patent Application Laid-Open No. 10-175717 discloses a method of supporting a metal in a shell mold by impregnating a carrier with a raw metal salt solution and then treating with a centrifuge. However, improvement was necessary.

特表2004-526553号公報Special table 2004-526553 イギリス特許第1283737号明細書British Patent No. 1283737 特開平8−318159号公報JP-A-8-318159 特開平10−175917号公報Japanese Patent Laid-Open No. 10-175717

本発明は、活性および選択性が向上した酢酸アルケニル製造用触媒を提供することを目的とする。   An object of the present invention is to provide a catalyst for producing alkenyl acetate having improved activity and selectivity.

本発明者らは上記課題を解決するために鋭意研究を重ねた。その結果、簡便にパラジウムと金を近接担持しうる触媒の調製法を見出した。すなわち、本発明は以下の[1]〜[8]に関する。   The inventors of the present invention have made extensive studies to solve the above problems. As a result, a method for preparing a catalyst capable of easily supporting palladium and gold in proximity was found. That is, the present invention relates to the following [1] to [8].

[1] 少なくとも以下の工程
1.担体にアルカリ溶液を含浸させる工程、
2.担体に少なくとも、パラジウムまたは白金を含む化合物および第11族元素を含む化合物の溶液Aを接触含浸させる工程、
3.還元処理を行う工程および
4.担体に酢酸塩を担持する工程
を含む酢酸アルケニル製造用触媒の製造方法であって、第1の工程において担体に担体の吸水量の0.9質量倍を超え、1.0質量倍以下のアルカリ溶液を含浸させた後、続けて第2の工程で溶液Aと接触させて触媒前駆体とし、かつ、アルカリ溶液および溶液Aの総量を担体の吸水量の1.1質量倍以上10.0質量倍以下とすることを特徴とする、少なくとも(a)担体、(b)パラジウムまたは白金、(c)第11族元素および(d)酢酸塩からなる酢酸アルケニル製造用触媒の製造方法。
[1] At least the following steps 1. Impregnating a carrier with an alkaline solution,
2. A step of impregnating a support with a solution A of a compound containing at least palladium or platinum and a compound containing a Group 11 element;
3. 3. performing a reduction treatment; A method for producing a catalyst for producing alkenyl acetate comprising a step of supporting an acetate on a carrier, wherein the alkali in the first step exceeds 0.9 mass times the amount of water absorption of the carrier and is 1.0 mass times or less. After the impregnation with the solution, the catalyst precursor is subsequently brought into contact with the solution A in the second step, and the total amount of the alkaline solution and the solution A is 1.1 mass times or more and 10.0 masses of the water absorption amount of the carrier. A method for producing a catalyst for alkenyl acetate production comprising at least (a) a support, (b) palladium or platinum, (c) a Group 11 element, and (d) an acetate salt.

[2] 溶液Aがさらに(e)アルカリ土類金属元素を含む化合物を溶解していることを特徴とする、少なくとも(a)担体、(b)パラジウムまたは白金、(c)第11族元素、(d)酢酸塩および(e)アルカリ土類金属元素からなる上記[1]に記載の酢酸アルケニル製造用触媒の製造方法。   [2] The solution A further includes (e) a compound containing an alkaline earth metal element, at least (a) a support, (b) palladium or platinum, (c) a Group 11 element, The method for producing a catalyst for alkenyl acetate production according to the above [1], comprising (d) acetate and (e) an alkaline earth metal element.

[3] (b)パラジウムまたは白金がパラジウムである、上記[1]または[2]に記載の酢酸アルケニル製造用触媒の製造方法。   [3] (b) The method for producing a catalyst for producing alkenyl acetate according to the above [1] or [2], wherein the palladium or platinum is palladium.

[4] (c)第11族元素が金または銅である、上記[1]〜[3]のいずれかに記載の酢酸アルケニル製造用触媒の製造方法。   [4] (c) The method for producing a catalyst for alkenyl acetate production according to any one of the above [1] to [3], wherein the Group 11 element is gold or copper.

[5] (e)アルカリ土類金属元素がバリウム、ストロンチウム、マグネシウム、カルシウムのすくなくとも1種である、上記[1]〜[4]のいずれかに記載の酢酸アルケニル製造用触媒の製造方法。   [5] (e) The method for producing a catalyst for alkenyl acetate production according to any one of the above [1] to [4], wherein the alkaline earth metal element is at least one of barium, strontium, magnesium and calcium.

[6] 上記[1]〜[5]のいずれかに記載の方法で製造された触媒を用いることを特徴とする、低級オレフィン、酸素および酢酸を原料とする酢酸アルケニルの製造方法。   [6] A method for producing alkenyl acetate using a lower olefin, oxygen and acetic acid as raw materials, wherein the catalyst produced by the method according to any one of [1] to [5] is used.

[7] 上記[1]〜[5]のいずれかに記載の方法で製造された触媒を用いることを特徴とする、エチレン、酸素および酢酸を原料とする酢酸ビニルの製造方法。   [7] A method for producing vinyl acetate using ethylene, oxygen and acetic acid as raw materials, wherein the catalyst produced by the method according to any one of [1] to [5] is used.

[8] 上記[1]〜[5]のいずれかに記載の方法で製造された触媒を用いることを特徴とする、プロピレン、酸素および酢酸を原料とする酢酸アリルの製造方法。   [8] A method for producing allyl acetate using propylene, oxygen and acetic acid as raw materials, wherein the catalyst produced by the method according to any one of [1] to [5] is used.

本発明の方法によれば、簡便にパラジウムと金をシェル型担持した触媒を製造することができ、かつ、従来の方法と比較して、得られる触媒の初期活性、選択性を向上させることができる。   According to the method of the present invention, a catalyst in which palladium and gold are supported on a shell type can be easily produced, and the initial activity and selectivity of the resulting catalyst can be improved as compared with the conventional method. it can.

以下に本発明の好ましい実施の形態について説明するが、本発明はこれらの形態のみに限定されるものではなく、本発明の精神とその実施の範囲内において様々な変形が可能であることを理解されたい。   Hereinafter, preferred embodiments of the present invention will be described. However, the present invention is not limited to these embodiments, and it is understood that various modifications can be made within the spirit and scope of the present invention. I want to be.

[触媒の製造工程]
本発明の酢酸アルケニル製造用触媒は以下に示す工程を含む方法によって製造できる。
1.担体に担体の吸水量の0.9質量倍を超え、1.0質量倍以下のアルカリ溶液を含浸させる工程
2.担体にパラジウムまたは白金を含む化合物、第11族元素を含む化合物および、必要に応じて、アルカリ土類金属元素を含む化合物の溶液Aを接触含浸させる工程
3.還元処理を行う工程および
4.担体に酢酸塩を担持する工程
[Catalyst production process]
The catalyst for producing alkenyl acetate of the present invention can be produced by a method including the following steps.
1. 1. impregnating a carrier with an alkali solution that exceeds 0.9 mass times and less than 1.0 mass times the water absorption amount of the carrier 2. Step of impregnating a solution A of a compound containing palladium or platinum, a compound containing a Group 11 element, and, if necessary, a compound containing an alkaline earth metal element on a support; 3. performing a reduction treatment; A process of supporting acetate on a carrier

本発明では1の工程の後、乾燥などの処理をすることなく、続けて2の工程を行うことが重要である。そして、パラジウムまたは白金を含む化合物、第11族元素を含む化合物および、所望により、アルカリ土類金属元素を含む化合物を溶かした溶液Aを担体に接触含浸させて、各化合物が担体に担持されている触媒前駆体とし、かつ、アルカリ溶液と溶液Aの総量を担体の吸水量の1.1質量倍以上10.0質量倍以下とする。   In the present invention, it is important to perform the second step after the first step without performing a treatment such as drying. Then, the support is impregnated with a solution A in which a compound containing palladium or platinum, a compound containing a Group 11 element, and, if desired, a compound containing an alkaline earth metal element is dissolved, and each compound is supported on the support. The total amount of the alkaline solution and the solution A is 1.1 mass times or more and 10.0 mass times or less of the water absorption amount of the carrier.

各工程は上記の順序で行うことが好ましいが、4の酢酸塩を担持する工程は最後でなくともよい。2の工程で担体にアルカリ土類金属元素を担持しない場合は、溶液Aにはアルカリ土類金属元素を含む化合物は含まれない。溶液Aには他の成分が含まれていてもよい。また、本発明の触媒の性能を向上させる目的で他の工程が含まれていてもよい。3の工程の還元処理はパラジウムまたは白金を含む化合物を金属パラジウム、金属白金とするためであるので、2の工程よりも後でなくてはならない。以下、各工程を詳細に説明する。   The steps are preferably performed in the above order, but the step of supporting 4 acetates may not be the last. When no alkaline earth metal element is supported on the support in step 2, the solution A does not contain a compound containing an alkaline earth metal element. The solution A may contain other components. In addition, other steps may be included for the purpose of improving the performance of the catalyst of the present invention. The reduction treatment in the third step is to convert the compound containing palladium or platinum into metallic palladium or metallic platinum, and therefore must be performed after the second step. Hereinafter, each process will be described in detail.

1.担体にアルカリ溶液を含浸させる工程
この工程では担体の吸水量の0.9質量倍を超え、1.0質量倍以下の量のアルカリ溶液を担体に含浸させる。操作は常温で行うことができる。アルカリ溶液が担体に均一に含浸されるようにする。含浸操作が完了したら、乾燥などの操作をせず、次の工程に進む。
1. Step of impregnating carrier with alkaline solution In this step, the carrier is impregnated with an alkaline solution in an amount exceeding 0.9 mass times the amount of water absorption of the carrier and 1.0 mass times or less. The operation can be performed at room temperature. The alkaline solution is uniformly impregnated on the support. When the impregnation operation is completed, the operation proceeds to the next step without performing an operation such as drying.

<(a)担体>
本発明で用いる担体に特に制限はない。一般に触媒用の担体として用いられている多孔質物質であればよい。好ましくはシリカ、アルミナ、シリカ−アルミナ、珪藻土、モンモリロナイトまたはチタニア等が挙げられ、より好ましくはシリカである。担体としてシリカを主成分とするものを用いる場合には、担体のシリカ含量は、担体の重量に対して通常少なくとも50質量%、好適には少なくとも90質量%である。
<(A) Carrier>
There is no restriction | limiting in particular in the support | carrier used by this invention. Any porous material generally used as a carrier for a catalyst may be used. Silica, alumina, silica-alumina, diatomaceous earth, montmorillonite, titania and the like are preferable, and silica is more preferable. When a carrier containing silica as a main component is used as a carrier, the silica content of the carrier is usually at least 50% by weight, preferably at least 90% by weight, based on the weight of the carrier.

担体はB.E.T.法で測定した比表面積が少なくとも0.01m/g、特に10〜1000m/gの範囲、とりわけ100〜500m/gの範囲であることが好ましい。また、吸水率は0.05〜3g/g、特に0.1〜2g/gであることが好ましい。 The carrier is B.I. E. T.A. Law in the measured specific surface area of at least 0.01 m 2 / g, especially 10 to 1000 m 2 / g range, especially is preferably in the range of 100 to 500 m 2 / g. Moreover, it is preferable that a water absorption is 0.05-3 g / g, especially 0.1-2 g / g.

ここで、担体の吸水率は、以下の測定方法で測定した数値をいう。
1.担体約5gを天秤で計量(W1g)し、100ccのビーカーに入れる。
2.担体を完全に覆うように純水(イオン交換水)約15mlをビーカーに加える。
3.30分間放置する。
4.金網上に担体と純水を空けて、純水をきる。
5.担体の表面に付着した水を、表面の光沢がなくなるまで紙タオルで軽く押して、除去する。
6.担体+純水の重さを測定する(W2g)。
7.以下の式から担体の吸水率を算出する。
Here, the water absorption rate of the carrier is a numerical value measured by the following measuring method.
1. About 5 g of the carrier is weighed with a balance (W1 g) and placed in a 100 cc beaker.
2. About 15 ml of pure water (ion exchange water) is added to the beaker so as to completely cover the carrier.
3. Leave for 30 minutes.
4). Empty the carrier and pure water on the wire mesh and drain the pure water.
5. The water adhering to the surface of the carrier is removed by gently pressing with a paper towel until the surface is no longer glossy.
6). The weight of carrier + pure water is measured (W2 g).
7). The water absorption rate of the carrier is calculated from the following formula.

吸水率(g/g−担体)=(W2−W1)/W1
したがって、担体の吸水量(g)は担体の吸水率(g/g)×使用した担体の重量(g)により計算される。
Water absorption rate (g / g-carrier) = (W2-W1) / W1
Therefore, the water absorption amount (g) of the carrier is calculated by the water absorption rate of the carrier (g / g) × the weight (g) of the carrier used.

担体の形状には特に制限はない。具体的には、粉末状、球状、ペレット状等が挙げられるが、これらに限定されるものではない。   There is no restriction | limiting in particular in the shape of a support | carrier. Specific examples include powders, spheres, and pellets, but are not limited thereto.

用いられる担体の粒子直径に特に制限はない。好ましくは、1〜10mmの範囲であるのが好ましく、より好ましくは3〜8mmである。管状反応器に触媒を充填して反応を行う場合、粒子直径が1mmより小さいと、ガスを流通させるときに大きな圧力損失が生じ、有効にガス循環ができなくなる恐れがある。また、粒子直径が10mmより大きいと、管状反応器内へ充填される担持触媒の数が減少し、結果としてトータルの触媒表面積が小さくなり、担体の表面に偏在している触媒成分(Pd、Auなど)が少なくなるため好ましくない。担体の細孔構造は、その細孔直径が1〜1000nmにあることが好ましく、2〜800nmの間がより好ましい。   There is no restriction | limiting in particular in the particle diameter of the support | carrier used. Preferably, it is in the range of 1 to 10 mm, more preferably 3 to 8 mm. When the reaction is carried out by filling the tubular reactor with a catalyst, if the particle diameter is smaller than 1 mm, a large pressure loss occurs when the gas is circulated, and there is a possibility that the gas cannot be effectively circulated. On the other hand, if the particle diameter is larger than 10 mm, the number of supported catalysts charged into the tubular reactor is reduced, resulting in a reduction in the total catalyst surface area, and catalyst components (Pd, Au) unevenly distributed on the surface of the support. Etc.) is not preferable. The pore structure of the carrier preferably has a pore diameter of 1 to 1000 nm, more preferably 2 to 800 nm.

<アルカリ溶液>
本発明に用いるアルカリ溶液は、いかなるアルカリ性の溶液であってもよい。例えば、アルカリ金属やアルカリ土類金属の水酸化物、アルカリ金属やアルカリ土類金属の重炭酸塩、アルカリ金属やアルカリ土類金属の炭酸塩、アルカリ金属やアルカリ土類金属のケイ酸塩といったアルカリ性化合物の溶液が挙げられる。アルカリ金属としては、リチウム、ナトリウムおよびカリウムが用いられる。アルカリ土類金属としては、バリウムやストロンチウムが用いられる。好適には、メタケイ酸ナトリウム、メタケイ酸カリウム、水酸化ナトリウム、水酸化カリウム、水酸化バリウム、水酸化ストロンチウムが用いられる。
<Alkaline solution>
The alkaline solution used in the present invention may be any alkaline solution. For example, alkali metals such as alkali metal or alkaline earth metal hydroxides, alkali metal or alkaline earth metal bicarbonates, alkali metal or alkaline earth metal carbonates, alkali metal or alkaline earth metal silicates A solution of the compound may be mentioned. As the alkali metal, lithium, sodium and potassium are used. Barium or strontium is used as the alkaline earth metal. Preferably, sodium metasilicate, potassium metasilicate, sodium hydroxide, potassium hydroxide, barium hydroxide, or strontium hydroxide is used.

アルカリ性化合物は、後述の(b)パラジウムまたは白金や(c)第11族元素の合計に対して過剰に使用する。例えば、アルカリ性化合物は、(b)パラジウムまたは白金1モル当たり好ましくは1〜3モル、より好ましくは1.2〜2.5モルの量で用いる。また、第11族元素を含む化合物(以下においては、第11族元素前駆物質ということがある)1モル当たり、好ましくは2〜10モル、より好ましくは3〜8モルを使用する。
アルカリ溶液の溶媒は、水、メタノール、エタノールなどが挙げられる。好ましくは水である。
The alkaline compound is used in excess relative to the total of (b) palladium or platinum and (c) Group 11 elements described below. For example, the alkaline compound is used in an amount of (b) 1 to 3 mol, more preferably 1.2 to 2.5 mol, per mol of palladium or platinum. In addition, 2 to 10 moles, more preferably 3 to 8 moles are used per mole of a compound containing a Group 11 element (hereinafter sometimes referred to as a Group 11 element precursor).
Examples of the solvent for the alkaline solution include water, methanol, and ethanol. Preferably it is water.

アルカリ溶液を(a)担体に含浸させる方法は特に制限はないが、例えば、I)大量のアルカリ溶液に担体をしばらく浸漬した後、吸水量分のアルカリ溶液を含浸させた担体を取り出す方法や、II)アルカリ性化合物を溶媒に溶解し、(a)担体の吸水量相当になるようにメスアップしたものを担体に含浸する方法などが挙げられる。廃液処理の観点からはII)の方法が望ましい。   The method for impregnating the alkaline solution into the carrier (a) is not particularly limited. For example, I) After the carrier is immersed in a large amount of alkaline solution for a while, the method of removing the carrier impregnated with the alkaline solution for the amount of water absorption, II) A method in which an alkaline compound is dissolved in a solvent, and (a) the carrier is impregnated with a solution that has been made up so as to correspond to the water absorption amount of the carrier. From the viewpoint of waste liquid treatment, the method II) is desirable.

アルカリ溶液は、(a)担体の吸水量の0.9質量倍を超え、1.0質量倍以下に相当する量で(a)担体に含浸されている必要がある。さらには、(a)担体の吸水量の0.95質量倍以上、1.0質量倍以下であるのが好ましい。アルカリ溶液の量が担体の吸水量の0.9質量倍以下であると担持斑ができる恐れがあるので好ましくない。1.0質量倍を超えると、担体がアルカリ溶液をすべて吸収することができなくなる。なお、担体の吸水量は純水で測定した値であり、厳密にはアルカリ溶液(アルカリ水溶液)に対する値とは異なるが、便宜上そのまま使用する。   The alkaline solution needs to be impregnated in the carrier (a) in an amount corresponding to more than 0.9 times and less than 1.0 times the amount of water absorption of the carrier (a). Furthermore, (a) 0.95 mass times or more and 1.0 mass times or less of the water absorption amount of a support | carrier is preferable. If the amount of the alkaline solution is 0.9 mass times or less of the water absorption amount of the carrier, it is not preferable because there is a possibility that spotted spots are formed. When it exceeds 1.0 mass times, the carrier cannot absorb all the alkaline solution. The water absorption amount of the carrier is a value measured with pure water, and although strictly different from the value for an alkaline solution (alkaline aqueous solution), it is used as it is for convenience.

2.担体に溶液Aを接触含浸させる工程
この工程では、アルカリ溶液を含浸させた担体に少なくともパラジウムまたは白金を含む化合物および第11族元素を含む化合物を溶解した溶液Aを接触含浸させる。アルカリ土類金属元素を担持する場合には、溶液Aにアルカリ土類金属元素を含む化合物をも溶解させる。
2. Step of Contact Impregnating Support with Solution A In this step, the support impregnated with an alkaline solution is contact-impregnated with a solution A in which a compound containing at least palladium or platinum and a compound containing a Group 11 element are dissolved. In the case where an alkaline earth metal element is supported, a compound containing the alkaline earth metal element is also dissolved in the solution A.

<(b)パラジウムまたは白金>
(b)パラジウムまたは白金は主触媒成分であり、特に酢酸ビニル選択性が高いという点からパラジウムが好ましい。以下、パラジウムを例に説明するが、白金についても同様である。
<(B) Palladium or platinum>
(B) Palladium or platinum is the main catalyst component, and palladium is particularly preferred from the viewpoint of high vinyl acetate selectivity. Hereinafter, palladium will be described as an example, but the same applies to platinum.

本発明において、パラジウムはいずれの価数を持つものでも構わないが、好ましくは金属パラジウムである。「金属パラジウム」とは0価の価数を持つものである。金属パラジウムは、通常、2価および/または4価のパラジウムイオンを、還元剤であるヒドラジン、水素等を用いて還元することで得ることができる。この際、全てのパラジウムが、金属状態でなくても構わない。   In the present invention, palladium may have any valence, but is preferably metallic palladium. “Metallic palladium” has a valence of zero. Metallic palladium can be usually obtained by reducing divalent and / or tetravalent palladium ions using hydrazine, hydrogen or the like as a reducing agent. At this time, not all palladium may be in a metal state.

パラジウムの原料すなわちパラジウム元素を含む化合物には特に制限はない。金属パラジウムを用いることはもちろん、還元反応により金属パラジウムに転化可能なパラジウム塩を用いることも可能である。金属パラジウムに転化可能なパラジウム塩の例としては、塩化パラジウム、硝酸パラジウム、硫酸パラジウム、塩化パラジウム酸ナトリウム、塩化パラジウム酸カリウム、塩化パラジウム酸バリウム、酢酸パラジウムなどがあるがこれに限定されるものではない。特に好適には塩化パラジウム酸ナトリウムが用いられる。   There are no particular restrictions on the palladium raw material, that is, the compound containing palladium element. In addition to using metal palladium, it is also possible to use a palladium salt that can be converted to metal palladium by a reduction reaction. Examples of palladium salts that can be converted to metallic palladium include, but are not limited to, palladium chloride, palladium nitrate, palladium sulfate, sodium chloropalladate, potassium chloropalladate, barium chloropalladate, and palladium acetate. Absent. Particularly preferably, sodium chloropalladate is used.

白金の原料すなわち白金元素を含む化合物には特に制限はない。金属白金を用いることはもちろん、還元反応により金属白金に転化可能な白金塩を用いることも可能である。金属白金に転化可能な白金塩の例としては、塩化白金、硝酸白金、硫酸白金、塩化白金酸ナトリウム、塩化白金酸カリウム、塩化白金酸バリウム、酢酸白金などがあるがこれに限定されるものではない。   There is no particular limitation on the raw material of platinum, that is, the compound containing platinum element. In addition to using metal platinum, it is also possible to use a platinum salt that can be converted to metal platinum by a reduction reaction. Examples of platinum salts that can be converted to metallic platinum include, but are not limited to, platinum chloride, platinum nitrate, platinum sulfate, sodium chloroplatinate, potassium chloroplatinate, barium chloroplatinate, and platinum acetate. Absent.

(b)パラジウムまたは白金と(a)担体との質量比は、好ましくは(b):(a)=1:10〜1000であり、より好ましくは1:30〜500である。なお、例えば、パラジウム塩を担持する場合、この塩中のパラジウム元素の質量と担体の質量との比で計算する。   The mass ratio of (b) palladium or platinum to (a) support is preferably (b) :( a) = 1: 10 to 1000, more preferably 1:30 to 500. For example, when a palladium salt is supported, the calculation is performed based on the ratio of the mass of the palladium element in the salt to the mass of the carrier.

<(c)第11族元素>
本発明において、(c)第11族元素とは、IUPAC無機化学命名法改訂版(1989)による周期律表の第11族元素をさす。具体的には金、銀、銅を指し、好ましくは金あるいは銅である。
<(C) Group 11 element>
In the present invention, the (c) Group 11 element refers to a Group 11 element in the periodic table according to the revised IUPAC Inorganic Chemical Nomenclature (1989). Specifically, it refers to gold, silver and copper, preferably gold or copper.

(c)第11族元素は当該元素を含む化合物(第11族元素前駆物質)の形で担体に担持されるが、最終的には「金属金」であることが好ましい。ここで言う「金属金」とは0価の価数を持つものである。金属金は、通常、第11族元素前駆物質由来の1価および/または3価の金イオンを、還元剤であるヒドラジン、水素等を用いて還元することで得ることができる。この際、全ての金が金属状態になくても構わない。   (C) The Group 11 element is supported on the carrier in the form of a compound containing the element (Group 11 element precursor), but it is preferably “metal gold” in the end. The “metal gold” referred to here has a valence of zero. Metallic gold can usually be obtained by reducing monovalent and / or trivalent gold ions derived from a Group 11 element precursor using hydrazine, hydrogen or the like as a reducing agent. At this time, all the gold may not be in a metal state.

金や銀の原料すなわち第11族元素を含む化合物には特に制限はない。金属金を用いることはもちろん、金属金に転化可能な金前駆体を用いることも可能である。金前駆体としては、塩化金酸や塩化金酸ナトリウム、塩化金酸カリウムなどが挙げられるが、好適には塩化金酸が用いられる。   There are no particular limitations on the gold or silver raw material, that is, the compound containing a Group 11 element. It is possible to use a gold precursor that can be converted into metal gold as well as metal gold. Examples of the gold precursor include chloroauric acid, sodium chloroaurate, and potassium chloroaurate. Preferably, chloroauric acid is used.

<(e)アルカリ土類金属元素>
本発明に用いる(e)アルカリ土類金属元素としては、Mg,Ca,Ba,Srなどが挙げられる。特に好適にはBa、Caである。
<(E) Alkaline earth metal element>
Examples of the (e) alkaline earth metal element used in the present invention include Mg, Ca, Ba, Sr and the like. Particularly preferred are Ba and Ca.

アルカリ土類金属元素は当該元素を含む化合物を供給源とするが、これらの化合物には特に制限はない。アルカリ土類金属元素の、塩化物、酢酸塩、硝酸塩、硫酸塩、水酸化物などをそれぞれ調製条件によって選択することができる。特に好適にはBaCl、(CHCOO)Ba、Ba(NO、Ba(OH)、CaCl、(CHCOO)Caが挙げられる。 The alkaline earth metal element is supplied from a compound containing the element, but these compounds are not particularly limited. The alkaline earth metal element chloride, acetate, nitrate, sulfate, hydroxide and the like can be selected depending on the preparation conditions. Particularly preferred are BaCl 2 , (CH 3 COO) 2 Ba, Ba (NO 3 ) 2 , Ba (OH) 2 , CaCl 2 , and (CH 3 COO) 2 Ca.

<溶液(A)>
本発明に用いる溶液(A)は、パラジウムまたは白金を含む化合物および第11族元素を含む化合物の溶液である。アルカリ土類金属元素をも担持する場合には、アルカリ土類金属元素を含む化合物をも溶解したものである。必要に応じて他の成分が溶解されていてもよい。
<Solution (A)>
The solution (A) used in the present invention is a solution of a compound containing palladium or platinum and a compound containing a Group 11 element. When an alkaline earth metal element is also supported, the compound containing the alkaline earth metal element is also dissolved. Other components may be dissolved as necessary.

溶液Aは、塩化パラジウム酸、塩化パラジウム酸ナトリウム、塩化パラジウム酸カリウムから選ばれた少なくとも1種および塩化金酸、塩化金酸ナトリウム、塩化金酸カリウムから選ばれた少なくとも1種を含むことが好ましい。アルカリ土類金属元素をも担持する場合には、さらに塩化バリウム、酢酸バリウム、硝酸バリウム、硫酸バリウム、塩化ストロンチウム、酢酸ストロンチウム、硝酸ストロンチウム、硫酸ストロンチウム、塩化マグネシウム、酢酸マグネシウム、硝酸マグネシウム、硫酸マグネシウム、塩化カルシウム、酢酸カルシウム、硝酸カルシウム、硫酸カルシウムから選ばれた少なくとも1種を含むことが好ましい。   Solution A preferably contains at least one selected from chloropalladic acid, sodium chloropalladate, and potassium chloropalladate and at least one selected from chloroauric acid, sodium chloroaurate, and potassium chloroaurate. . When also carrying alkaline earth metal elements, barium chloride, barium acetate, barium nitrate, barium sulfate, strontium chloride, strontium acetate, strontium nitrate, strontium sulfate, magnesium chloride, magnesium acetate, magnesium nitrate, magnesium sulfate, It is preferable to include at least one selected from calcium chloride, calcium acetate, calcium nitrate, and calcium sulfate.

溶液Aの溶媒としては、水、アルコール、有機酸などが挙げられる。担体へのダメージや、含まれる化合物に対して反応性を有さない点から水が好ましい。   Examples of the solvent of the solution A include water, alcohol, and organic acid. Water is preferable from the viewpoint of damage to the carrier and lack of reactivity with the contained compound.

アルカリ溶液と溶液Aの総量は、(a)担体の吸水量の1.1質量倍以上10.0質量倍以下である。より好ましくは1.5〜8.0質量倍、最も好ましくは2.0〜6.0質量倍である。この総量が1.1質量倍未満では、触媒成分が担体に不均一に担持されることがあるため好ましくない。10.0質量倍を超えると、触媒性能には影響しないが、排水量が増加するなど触媒製造上の問題が発生することがあるため好ましくない。   The total amount of the alkali solution and the solution A is 1.1 mass times or more and 10.0 mass times or less of the water absorption amount of the carrier (a). More preferably, it is 1.5-8.0 mass times, Most preferably, it is 2.0-6.0 mass times. If the total amount is less than 1.1 times by mass, the catalyst component may be unevenly supported on the carrier, which is not preferable. If it exceeds 10.0 mass times, the catalyst performance will not be affected, but it is not preferred because problems in catalyst production such as an increase in the amount of wastewater may occur.

第1の工程では、パラジウムまたは白金を含む化合物の溶液A、第11族元素を含む化合物の溶液A、アルカリ土類金属元素を含む化合物の溶液Aを作製しておき、各溶液を個別に担体に含浸させ、各化合物を担体に担持してもよい。この場合、アルカリ溶液と溶液Aの総量は、アルカリ溶液、溶液A、溶液Aおよび溶液Aの総量になる。また、溶液Aと溶液Aを1つの溶液(溶液A1+2とする)として含浸操作を行ってもよい。この場合は、溶液A1+2、溶液A、アルカリ溶液の和がアルカリ溶液および溶液Aの総量に相当する。その他の溶液の組み合わせについても同様にしてアルカリ溶液および溶液Aとしての総量を計算する。 In the first step, a solution A 1 of a compound containing palladium or platinum, a solution A 2 of a compound containing a Group 11 element, and a solution A 3 of a compound containing an alkaline earth metal element are prepared. It is possible to impregnate the carrier individually and to support each compound on the carrier. In this case, the total amount of the alkaline solution and the solution A is the total amount of the alkaline solution, the solution A 1 , the solution A 2 and the solution A 3 . Further, the impregnation operation may be performed by using the solution A 1 and the solution A 2 as one solution (referred to as a solution A 1 + 2 ). In this case, the sum of the solution A 1 + 2 , the solution A 3 , and the alkali solution corresponds to the total amount of the alkali solution and the solution A. Similarly, the total amount of the alkaline solution and the solution A is calculated for other combinations of solutions.

溶液Aの量は(a)担体の吸水量の1.0〜10.0質量倍が好ましく、さらに好ましくは2.0〜8.0質量倍、もっとも好ましくは、2.0〜5.0質量倍である。   The amount of the solution A is preferably 1.0 to 10.0 times by mass of the amount of water absorption of the carrier (a), more preferably 2.0 to 8.0 times by mass, and most preferably 2.0 to 5.0 mass. Is double.

なお、溶液Aを担体に含浸させ、アルカリ溶液(Bとする)と接触させた後、さらに溶液Aを担体に含浸させ、別のアルカリ溶液(Bとする)と再度接触させる場合は、アルカリ溶液Bと溶液Aの和およびアルカリ溶液Bと溶液Aの和のいずれもが担体吸水量の1.1〜5倍であることが好ましい。溶液Aと溶液Aを1つの溶液(溶液A1+2とする)として含浸操作を行う場合は、アルカリ溶液と溶液A1+2の和が担体吸水量の1.1〜10倍であることが好ましい。その他の溶液の組み合わせについても同様である。そして、アルカリ溶液と溶液Aの総量も、(a)担体の吸水量の1.1質量倍以上10.0質量倍以下の範囲内であるように溶液量を調製する。 In the case where the support is impregnated with the solution A 1 and brought into contact with the alkaline solution (referred to as B 1 ), then the support is further impregnated with the solution A 2 and brought into contact again with another alkaline solution (referred to as B 2 ). preferably, both of the sum of the alkali solution B 1 and the sum of solution a 1 and alkaline solutions B 2 and solution a 2 is 1.1 to 5 times the carrier water absorption. When the impregnation operation is performed using the solution A 1 and the solution A 2 as one solution (referred to as a solution A 1 + 2 ), the sum of the alkaline solution and the solution A 1 + 2 is preferably 1.1 to 10 times the carrier water absorption amount. . The same applies to other combinations of solutions. Then, the amount of the solution is prepared so that the total amount of the alkaline solution and the solution A is also in the range of 1.1 to 10.0 times the water absorption amount of the carrier (a).

本発明では、アルカリ溶液が含浸された担体と溶液Aを接触させることで、原料金属塩を水不溶性物質に変換し、PdやAuなどの金属成分が担体にシェル型に担持された触媒前駆体を形成することができる。その条件には制限はないが、接触時間は0.5〜100時間、好適には3〜50時間が望ましい。0.5時間未満では、触媒成分が所望の量担持されにくく、触媒性能が十分ではないことがある。また、100時間より長時間接触させることで、(a)担体がダメージを受ける可能性があり、好ましくない。   In the present invention, a catalyst precursor in which a raw metal salt is converted into a water-insoluble substance by bringing the support impregnated with an alkaline solution into contact with the solution A, and a metal component such as Pd or Au is supported on the support in a shell shape. Can be formed. The conditions are not limited, but the contact time is preferably 0.5 to 100 hours, preferably 3 to 50 hours. If it is less than 0.5 hour, a desired amount of the catalyst component is hardly supported, and the catalyst performance may not be sufficient. In addition, it is not preferable to contact the substrate for a longer time than 100 hours because (a) the carrier may be damaged.

接触温度は、特に制限はないが、10〜80℃、好適には20〜60℃が望ましい。10℃より低いと変換反応が不十分になる可能性がある。80℃を超えるとパラジウムや金の凝集が進む恐れがある。   The contact temperature is not particularly limited, but is desirably 10 to 80 ° C, preferably 20 to 60 ° C. If it is lower than 10 ° C, the conversion reaction may be insufficient. If it exceeds 80 ° C., the aggregation of palladium and gold may proceed.

3.還元処理を行う工程
パラジウムまたは白金を含む化合物(パラジウム塩等)および第11族元素前駆物質(塩化金酸等)が担持された担体に還元処理を行い、前記化合物を金属パラジウム、金属金とするのが望ましい。還元処理は、液相還元、気相還元のいずれによることもできる。
3. Step of performing reduction treatment A carrier carrying a compound containing palladium or platinum (such as a palladium salt) and a Group 11 element precursor (such as chloroauric acid) is subjected to a reduction treatment, and the compound is converted into metallic palladium or metallic gold. Is desirable. The reduction treatment can be performed by either liquid phase reduction or gas phase reduction.

液相還元は、アルコールや炭化水素類を用いた非水系、水系のいずれで行なわれてもよい。還元剤としてはカルボン酸およびその塩、アルデヒド、過酸化水素、糖類、多価フェノール、ジボラン、アミン、ヒドラジンなどが用いられる。カルボン酸およびその塩としてはシュウ酸、シュウ酸カリウム、ギ酸、ギ酸カリウム、クエン酸アンモニウムが例示され、糖類としてはグルコースが挙げられる。好ましい還元剤としてはヒドラジン、ホルムアルデヒド、アセトアルデヒド、ハイドロキノン、水素化ホウ素ナトリウム、クエン酸カリウムなどが挙げられ、最も好ましい還元剤はヒドラジンである。   The liquid phase reduction may be performed either in a non-aqueous system or an aqueous system using alcohol or hydrocarbons. As the reducing agent, carboxylic acid and its salt, aldehyde, hydrogen peroxide, saccharide, polyhydric phenol, diborane, amine, hydrazine and the like are used. Examples of the carboxylic acid and its salt include oxalic acid, potassium oxalate, formic acid, potassium formate, and ammonium citrate, and examples of the saccharide include glucose. Preferred reducing agents include hydrazine, formaldehyde, acetaldehyde, hydroquinone, sodium borohydride, potassium citrate and the like, and the most preferred reducing agent is hydrazine.

気相還元に用いる還元剤は、水素、一酸化炭素、アルコール、アルデヒド、エチレン、プロペン、イソブテンなどのオレフィンから選択される。好ましくは水素である。気相還元では希釈剤として、不活性ガスを加えてもよい。不活性ガスとしては、例えば、ヘリウム、アルゴン、窒素がある。   The reducing agent used for the gas phase reduction is selected from olefins such as hydrogen, carbon monoxide, alcohol, aldehyde, ethylene, propene and isobutene. Preferably it is hydrogen. In gas phase reduction, an inert gas may be added as a diluent. Examples of the inert gas include helium, argon, and nitrogen.

還元処理された担体には必要に応じて純水等で洗浄を行う。洗浄は連続であるいはバッチで行なわれてもよい。洗浄温度は、好ましくは5〜200℃の範囲、より好ましくは15〜80℃の範囲である。洗浄時間には特に制限はない。残存する好ましくない不純物の除去という目的に対して十分な条件を選択すればよい。好ましくない不純物とはナトリウムや塩素が挙げられる。   The reduced carrier is washed with pure water or the like as necessary. Washing may be performed continuously or batchwise. The washing temperature is preferably in the range of 5 to 200 ° C, more preferably in the range of 15 to 80 ° C. There is no particular limitation on the cleaning time. A sufficient condition may be selected for the purpose of removing the remaining undesirable impurities. Undesirable impurities include sodium and chlorine.

還元処理された担体には必要に応じて酸を接触(「酸処理」という)させてもよい。酸と接触させることで、好ましくない不純物を除去し、特に(e)アルカリ土類金属元素を添加した触媒では過剰の(e)アルカリ土類金属元素をある程度除去することで触媒性能が向上する。酸処理は、これらの物質を除去する目的を達成できればどのような条件で行ってもよい。特に、(e)アルカリ土類金属元素は金属の分散状態を向上させる働きがあるが、触媒中に大量に存在する状態では、好ましくない副反応を引き起こす可能性があるため、余剰分を除去することが必要な場合がある。   The reduced support may be contacted with an acid (referred to as “acid treatment”) as necessary. By contacting with an acid, undesirable impurities are removed. In particular, in the case of a catalyst to which (e) an alkaline earth metal element is added, the catalyst performance is improved by removing the excess (e) alkaline earth metal element to some extent. The acid treatment may be performed under any conditions as long as the purpose of removing these substances can be achieved. In particular, (e) the alkaline earth metal element works to improve the dispersion state of the metal, but in a state where the alkaline earth metal element is present in a large amount in the catalyst, it may cause an undesirable side reaction. Sometimes it is necessary.

酸処理の方法としては、担体を酸溶液に浸漬した後、水洗等によって酸溶液を洗い流す方法が挙げられる。酸処理に使用される酸としては、塩酸、硫酸、硝酸、リン酸、ヘテロポリ酸などの無機酸や、酢酸、シュウ酸、クエン酸などの有機酸が挙げられる。これらの酸は前述の目的を勘案して選択することができ、これらの酸の塩であってもかまわない。   Examples of the acid treatment method include a method of immersing the carrier in an acid solution and then washing off the acid solution by washing with water or the like. Examples of the acid used for the acid treatment include inorganic acids such as hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid, and heteropolyacid, and organic acids such as acetic acid, oxalic acid, and citric acid. These acids can be selected in view of the above-mentioned purpose, and salts of these acids may be used.

4.担体に酢酸塩を担持する工程
(d)酢酸塩は、担体に(d)酢酸塩の必要量を含む担体吸水量の0.9〜1質量倍の溶液を含浸させ、乾燥することで担持する。担持するのは還元処理前でも後でもかまわない。好適には還元処理後である。
4). The step of supporting the acetate on the carrier (d) The acetate is supported by impregnating the carrier with a solution of 0.9 to 1 mass times the amount of water absorption of the carrier including the necessary amount of (d) acetate and drying. . It may be supported before or after the reduction treatment. Preferably after the reduction treatment.

<(d)酢酸塩>
本発明に用いる(d)酢酸塩は、好ましくは、アルカリ金属酢酸塩およびアルカリ土類金属酢酸塩から選ばれる少なくとも1種の化合物である。より好ましくはアルカリ金属酢酸塩である。具体的にはリチウム、ナトリウム、カリウムの酢酸塩などが挙げられる。なかでも酢酸ナトリウム、酢酸カリウムが好ましく、酢酸カリウムが特に好ましい。
<(D) Acetate>
The (d) acetate used in the present invention is preferably at least one compound selected from alkali metal acetates and alkaline earth metal acetates. More preferred is alkali metal acetate. Specific examples include lithium, sodium, and potassium acetate. Of these, sodium acetate and potassium acetate are preferable, and potassium acetate is particularly preferable.

<触媒成分組成>
本発明の酢酸アルケニル製造用触媒における(b)パラジウムまたは白金、(c)第11族元素、(d)酢酸塩、(e)アルカリ土類金属元素の質量比は、好ましくは(b):(c):(d):(e)=1:0.001〜10:0.1〜100:0〜100であり、より好ましくは(b):(c):(d):(e)=1:0.1〜2:0.5〜20:0〜30である。なお、(b)、(c)、(e)成分については当該元素を含む化合物中の当該元素自体の質量(金属自体の場合はその金属の質量)、(d)は酢酸塩の質量での組成比である。また、触媒が(e)成分を含まない場合、(e)成分の比は0である。
<Catalyst component composition>
The mass ratio of (b) palladium or platinum, (c) group 11 element, (d) acetate, (e) alkaline earth metal element in the catalyst for producing alkenyl acetate of the present invention is preferably (b) :( c) :( d) :( e) = 1: 0.001 to 10: 0.1 to 100: 0 to 100, more preferably (b) :( c) :( d) :( e) = It is 1: 0.1-2: 0.5-20: 0-30. For the components (b), (c), and (e), the mass of the element itself in the compound containing the element (in the case of the metal itself, the mass of the metal), and (d) is the mass of the acetate salt. It is a composition ratio. When the catalyst does not contain the component (e), the ratio of the component (e) is 0.

溶液Aに含まれる各触媒成分の原料化合物は所望の触媒組成になるように調整する。各溶液中の触媒成分の原料化合物の濃度は担体へ担持すべき原料化合物の量と溶液量とから計算することができる。実操作上は、まず、担体へ担持すべき原料化合物の所定量(g数)をはかり取り、それを本発明で規定する溶媒量となるように溶媒に溶かせばよい。   The raw material compound of each catalyst component contained in the solution A is adjusted to have a desired catalyst composition. The concentration of the raw material compound of the catalyst component in each solution can be calculated from the amount of the raw material compound to be supported on the carrier and the amount of the solution. In actual operation, first, a predetermined amount (g number) of the raw material compound to be supported on the carrier is weighed and dissolved in a solvent so as to be a solvent amount specified in the present invention.

また、(b)パラジウムまたは白金、(c)第11族元素、(e)アルカリ土類金属元素は、溶液Aに含まれる分とは別に別の溶液として逐次的に同様の工程で触媒前駆体に導入することができる。   In addition, (b) palladium or platinum, (c) Group 11 element, and (e) alkaline earth metal element are sequentially separated in the same process as separate solutions separately from the components contained in Solution A. Can be introduced.

(b)パラジウムまたは白金、(c)第11族元素、(d)酢酸塩、(e)アルカリ土類金属元素の(a)担体への担持量は(a)担体1gあたり、(b)0.001〜0.05g、(c)0.001〜0.05g、(d)0.01〜1g、(e)0〜0.1gであるのが好ましい。   (B) Palladium or platinum, (c) Group 11 element, (d) Acetate, (e) Alkaline earth metal element supported on (a) support is (b) 0 per gram of support (a) 0.001 to 0.05 g, (c) 0.001 to 0.05 g, (d) 0.01 to 1 g, and (e) 0 to 0.1 g are preferable.

本発明の方法により得られる触媒は、担体の表面部分に(b)パラジウム、(c)第11族元素の大部分が担持されたシェル構造(エッグシェル構造ともいう)をなしている。シェル部分の厚みは用いる担体やアルカリ溶液、原料金属塩水溶液の種類によって変化する。直径5mmの球体シリカを担体として使用した場合には、シェル部分は0.05〜2mmの厚みを有することが望ましい。さらに好適には、0.1〜1mmの厚みを有する。この厚みが0.05mm未満では反応の間に担体表面部分のはがれなどによって活性低下が起こることがあるため望ましくない。2mmより厚い場合には、シェル型担持のメリットが得られにくいことがある。   The catalyst obtained by the method of the present invention has a shell structure (also referred to as an egg shell structure) in which most of (b) palladium and (c) Group 11 elements are supported on the surface portion of the support. The thickness of the shell portion varies depending on the type of the carrier used, the alkali solution, and the raw material metal salt aqueous solution. When spherical silica having a diameter of 5 mm is used as the carrier, the shell portion preferably has a thickness of 0.05 to 2 mm. More preferably, it has a thickness of 0.1 to 1 mm. If the thickness is less than 0.05 mm, the activity may decrease due to peeling of the surface portion of the carrier during the reaction, which is not desirable. If it is thicker than 2 mm, it may be difficult to obtain the advantage of carrying the shell type.

本発明の方法で調製した触媒においては、(d)酢酸塩、(e)アルカリ土類金属はシェル型に担持されていてもよく、触媒全体に均一に存在していてもよい。   In the catalyst prepared by the method of the present invention, (d) acetate and (e) alkaline earth metal may be supported in a shell shape or may be present uniformly throughout the catalyst.

<触媒調製法の具体例>
本発明の触媒調製法の例を以下に示す。
工程1 吸水量相当分のアルカリ溶液を(a)担体に含浸する。
工程2 (b)パラジウム、(c)第11族元素、(e)アルカリ土類金属元素の原料金属塩を(a)担体吸水量の2倍まで純水でメスアップした溶液に、(a)担体を浸漬し、触媒前駆体を形成する。
工程3 工程2の溶液に還元剤を投入する。
工程4 還元後の触媒前駆体を純水で洗浄する。
工程5 洗浄後の触媒前駆体を乾燥する。
工程6 (d)酢酸塩を所定量担持する。
工程7 乾燥する。
<Specific example of catalyst preparation method>
An example of the catalyst preparation method of the present invention is shown below.
Step 1 (a) The support is impregnated with an alkali solution equivalent to the amount of water absorption.
Step 2 (b) Palladium, (c) Group 11 element, (e) Raw material metal salt of alkaline earth metal element was made up to (a) pure water up to twice the amount of carrier water absorption, (a) The support is immersed to form a catalyst precursor.
Step 3 A reducing agent is added to the solution of Step 2.
Step 4 The reduced catalyst precursor is washed with pure water.
Step 5 The catalyst precursor after washing is dried.
Step 6 (d) A predetermined amount of acetate is supported.
Step 7 Dry.

[酢酸アルケニルの製造]
以下、本発明で製造された酢酸アルケニル製造用触媒を用いた、酢酸アルケニルの製造法について説明する。本発明における酢酸アルケニルの製造のための反応は、酢酸、低級オレフィン、酸素を反応原料とし、気相で行うことが好ましい。
気相反応は、従来公知のいかなる形態で行ってもよいが、好ましくは固定床流通反応であることが望ましい。
[Production of alkenyl acetate]
Hereinafter, a method for producing alkenyl acetate using the alkenyl acetate production catalyst produced in the present invention will be described. The reaction for producing alkenyl acetate in the present invention is preferably carried out in the gas phase using acetic acid, lower olefin and oxygen as reaction raw materials.
The gas phase reaction may be performed in any conventionally known form, but is preferably a fixed bed flow reaction.

例えば、低級オレフィンがエチレンの場合には、反応式は次式のとおりである。
+CHCOOH+1/2O→CH=CHOCOCH+H
原料の酢酸、低級オレフィン、酸素の比率は、モル比として酢酸:低級オレフィン:酸素=1:0.08〜16:0.01〜4であるのが好ましく、低級オレフィンがエチレンの場合は酢酸:エチレン:酸素=1:0.2〜9:0.07〜2であるのが好適である。また、低級オレフィンがプロピレンの場合は、酢酸:プロピレン: 酸素=1:1〜12:0.5〜2であるのが好ましい。
For example, when the lower olefin is ethylene, the reaction formula is as follows.
C 2 H 4 + CH 3 COOH + 1 / 2O 2 → CH 2 = CHOCOCH 3 + H 2 O
The ratio of acetic acid, lower olefin and oxygen as raw materials is preferably acetic acid: lower olefin: oxygen = 1: 0.08-16: 0.01-4 as a molar ratio. When the lower olefin is ethylene, acetic acid: It is preferred that ethylene: oxygen = 1: 0.2-9: 0.07-2. When the lower olefin is propylene, it is preferable that acetic acid: propylene: oxygen = 1: 1 to 12: 0.5 to 2.

反応原料ガスは、低級オレフィンと酢酸と酸素とを含み、さらに必要に応じて窒素、二酸化炭素または希ガスなどを希釈剤として含んでいてもよい。低級オレフィンと酢酸と酸素とを反応原料とすると、反応原料と希釈剤との比率は、モル比として反応原料:希釈剤=1:0.05〜9であるのが好ましく、より好ましくは反応原料:希釈剤=1:0.1〜3である。   The reaction raw material gas contains a lower olefin, acetic acid, and oxygen, and may further contain nitrogen, carbon dioxide, or a rare gas as a diluent as necessary. When a lower olefin, acetic acid, and oxygen are used as reaction raw materials, the ratio of the reaction raw material to the diluent is preferably a reaction raw material: diluent = 1: 0.05 to 9, more preferably a reaction raw material. : Diluent = 1: 0.1-3.

固定床流通反応で反応を行う場合、反応原料ガスは、標準状態において、空間速度10〜15000hr−1、特に300〜8000hr−1で反応器に通すのが好ましい。空間速度が10hr−1より小さい場合、反応熱の除去が困難となる可能性がある。また、空間速度が15000hr−1より大きい場合、コンプレッサー等の設備が大きくなりすぎて、実用的でなくなることがある。 When the reaction is carried out in a fixed bed flow reaction, the reaction raw material gas, under standard conditions, space velocity 10~15000Hr -1, preferably particularly through the reactor at 300~8000hr -1. When the space velocity is smaller than 10 hr −1 , it may be difficult to remove reaction heat. Moreover, when space velocity is larger than 15000 hr < -1 >, equipment, such as a compressor, will become large and may become impractical.

反応原料ガス中には水を0.5〜20mol%添加することが好ましい。さらに好適には、水を1〜18mol%添加する。系内に水が存在することによって、理由は明かではないが、触媒からの(d)酢酸塩の流出が減少する。一方、水を20mol%より多く添加しても、上記効果は向上しないばかりか、酢酸アルケニルの加水分解が進む恐れがあるため、大量の水が存在するのは好ましくない。   It is preferable to add 0.5 to 20 mol% of water in the reaction raw material gas. More preferably, 1 to 18 mol% of water is added. The presence of water in the system reduces (d) acetate efflux from the catalyst for reasons that are not obvious. On the other hand, adding more than 20 mol% of water not only improves the above effect, but also promotes hydrolysis of alkenyl acetate. Therefore, it is not preferable that a large amount of water is present.

反応器の材質については特に制限はないが、好ましくは耐食性を有する材料で構成された反応器である。   The material of the reactor is not particularly limited, but is preferably a reactor composed of a material having corrosion resistance.

反応温度は、100〜300℃であるのが好ましく、より好ましくは120〜250℃である。反応温度が100℃より低い場合、反応速度が遅くなりすぎる可能性があり、好ましくない。反応温度が300℃よりも高い場合、反応熱の除熱が困難となる可能性があり、好ましくない。   The reaction temperature is preferably 100 to 300 ° C, more preferably 120 to 250 ° C. When the reaction temperature is lower than 100 ° C., the reaction rate may become too slow, which is not preferable. When the reaction temperature is higher than 300 ° C., it may be difficult to remove the heat of reaction, which is not preferable.

反応圧力は、好ましくは0〜3MPaG(ゲージ圧)であり、より好ましくは0.1〜1.5MPaGである。反応圧力が0MPaGより小さい場合、反応速度が低下する恐れがあり、好ましくない。反応圧力が3MPaGより大きい場合、反応管等の設備が高価になり、実用的ではない。   The reaction pressure is preferably 0 to 3 MPaG (gauge pressure), more preferably 0.1 to 1.5 MPaG. If the reaction pressure is less than 0 MPaG, the reaction rate may decrease, which is not preferable. When the reaction pressure is larger than 3 MPaG, equipment such as a reaction tube becomes expensive, which is not practical.

反応原料のエチレン、プロピレン等の低級オレフィンには特に制限はない。一般的には高純度のものを用いることが好ましいが、メタン、エタン、プロパン等の低級飽和炭化水素が混入しても差し支えない。   There are no particular limitations on the lower olefins such as ethylene and propylene as reaction raw materials. In general, it is preferable to use a high-purity one, but it may be mixed with a lower saturated hydrocarbon such as methane, ethane or propane.

また、酸素にも特に制限はない。窒素、炭酸ガス等の不活性ガスで希釈されたもの、例えば、空気の形でも供給できるが、反応ガスを循環させる場合には、一般には高濃度の酸素、好適には99%以上の純度の酸素を用いる方が有利である。   Also, oxygen is not particularly limited. Although diluted with an inert gas such as nitrogen or carbon dioxide, for example, in the form of air, it can be supplied, but when the reaction gas is circulated, it generally has a high concentration of oxygen, preferably a purity of 99% or more. It is advantageous to use oxygen.

酢酸アルケニルとして酢酸ビニルを製造する場合、エチレンと酸素と酢酸とを反応させて、酢酸ビニルを製造する際の反応温度に特に制限はない。好ましくは、100〜300℃であり、さらに好ましくは、120〜250℃である。また、反応圧力は設備の点から0.0〜3.0MPaGであることが実用上有利であるが、特に制限はない。より好ましくは0.1〜1.5MPaGの範囲である。   When vinyl acetate is produced as alkenyl acetate, there is no particular limitation on the reaction temperature for producing vinyl acetate by reacting ethylene, oxygen and acetic acid. Preferably, it is 100-300 degreeC, More preferably, it is 120-250 degreeC. Moreover, although it is practically advantageous that the reaction pressure is 0.0-3.0 MPaG from the point of an installation, there is no restriction | limiting in particular. More preferably, it is the range of 0.1-1.5 MPaG.

反応混合ガスは、標準状態において、空間速度10〜15000hr-1、特に300〜8000hr-1で反応器に通すのが好ましい。 The reaction gas mixture, at standard conditions, space velocity 10~15000Hr -1, preferably particularly through the reactor at 300~8000hr -1.

反応形式としては、特に制限はなく、公知の方法、例えば固定床、流動床などの形式を採り得る。好ましくは、耐蝕性を有する反応管に前述の触媒を充填した固定床を採用することが、実用上有利である。   There is no restriction | limiting in particular as a reaction format, For example, formats, such as a fixed bed and a fluidized bed, can be taken. Preferably, it is practically advantageous to employ a fixed bed in which the above-described catalyst is packed in a reaction tube having corrosion resistance.

以下、実施例により本発明をさらに説明するが、本発明はこれらの実施例のみに限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention further, this invention is not limited only to these Examples.

実施例1 触媒Aの調製(アルカリ溶液+溶液Aが3.0倍)
シリカ球体担体(球体直径5mm、比表面積155m/g、吸水率0.85g/g、上海海源化工科技有限公司のHSV−I)を用いて、触媒を以下の手順で調製した。
Example 1 Preparation of catalyst A (alkaline solution + solution A is 3.0 times)
A catalyst was prepared by the following procedure using a silica sphere carrier (sphere diameter 5 mm, specific surface area 155 m 2 / g, water absorption 0.85 g / g, HSV-I from Shanghai Kaiyuan Chemical Technology Co., Ltd.).

工程1.担体23g(吸水量19.7g)に、NaSiO・9HO2.5gを含む担体吸水量相当(1倍)の量の水溶液を含浸させた。担体と水溶液が入った容器を静かに振り動かし、溶液を完全に含浸させた。なお、吸水量は担体量23g、吸水率0.85g/gより計算した(以下の実施例、比較例でも同じ)。 Step 1. 23 g of carrier (water absorption 19.7 g) was impregnated with an aqueous solution equivalent to (1 times) the amount of water absorption of carrier containing 2.5 g of Na 2 SiO 3 .9H 2 O. The container containing the carrier and the aqueous solution was gently shaken to completely impregnate the solution. The water absorption was calculated from the carrier amount 23 g and the water absorption 0.85 g / g (the same applies to the following examples and comparative examples).

工程2.工程1で得られた担体を56質量%NaPdCl水溶液1.5gおよび17質量%HAuCl1.5gを含む担体吸水量の2倍の水溶液に浸漬し、20時間静置した。
工程3.工程2の水溶液に52質量%ヒドラジン水和物水溶液3.3mlを加え、静かに混合し、室温で4時間静置した。
Step 2. The carrier obtained in step 1 was immersed in an aqueous solution twice as much as the carrier water absorption containing 1.5 g of 56 mass% Na 2 PdCl 4 aqueous solution and 1.5 g of 17 mass% HAuCl 4, and allowed to stand for 20 hours.
Step 3. To the aqueous solution of step 2, 3.3 ml of a 52 mass% hydrazine hydrate aqueous solution was added, gently mixed, and allowed to stand at room temperature for 4 hours.

工程4.前工程で得られたパラジウム/金/担体組成物を水洗し、洗浄後の水中に塩化物イオンが無くなるまで継続した。洗浄したパラジウム/金/担体組成物を、約110℃で4時間乾燥した。
工程5.パラジウム/金/担体組成物に、2gの酢酸カリウムの担体吸水量相当の量の水溶液を含浸させ、110℃で4時間乾燥した。
Step 4. The palladium / gold / carrier composition obtained in the previous step was washed with water and continued until no chloride ions were present in the washed water. The washed palladium / gold / support composition was dried at about 110 ° C. for 4 hours.
Step 5. The palladium / gold / carrier composition was impregnated with an aqueous solution of 2 g of potassium acetate corresponding to the amount of water absorbed by the carrier, and dried at 110 ° C. for 4 hours.

実施例2 触媒Bの調製(アルカリ溶液+溶液Aが3.0倍)
工程2.において、NaPdClおよびHAuClに加えてさらにBaCl・2HO1.9gを加えた担体吸水量の2倍の量の水溶液を用いた以外は実施例1の操作を繰り返した。
Example 2 Preparation of catalyst B (alkaline solution + solution A is 3.0 times)
Step 2. In Example 1, the procedure of Example 1 was repeated except that an aqueous solution having twice the amount of water absorption of the carrier obtained by adding 1.9 g of BaCl 2 .2H 2 O in addition to Na 2 PdCl 4 and HAuCl 4 was used.

比較例1 触媒Cの調製(従来技術の例、アルカリ溶液+溶液Aが3.0倍)
シリカ球体担体(球体直径5mm、比表面積155m/g、吸水率0.85g/g、上海海源化工科技有限公司のHSV−I)を用いて、触媒を以下の手順で調製した。
工程1.担体23g(吸水量19.7g)に、56質量%NaPdCl1.5gおよび17質量%HAuCl1.5gを含む担体吸水量相当(1倍)の量の水溶液を含浸させた。担体と水溶液が入った容器を静かに振り動かし、溶液を完全に含浸させた。
工程2.工程1で得られた担体をNaSiO・9HO2.5gを含む担体吸水量の2倍の量の水溶液に浸漬し、20時間静置した。
工程3.工程2の水溶液に52質量%ヒドラジン水和物水溶液3.3mlを加え、静かに混合し、室温で4時間静置した。
工程4.前工程で得られたパラジウム/金化合物担体組成物を水洗し、洗浄後の水中に塩化物イオンが無くなるまで継続した。洗浄したパラジウム/金/担体組成物を、約110℃で4時間乾燥した。
工程5.パラジウム/金/担体組成物に、2gの酢酸カリウムの担体吸水量相当の量の水溶液を含浸させ、110℃で4時間乾燥した。
Comparative Example 1 Preparation of catalyst C (prior art example, alkali solution + solution A is 3.0 times)
A catalyst was prepared by the following procedure using a silica sphere carrier (sphere diameter 5 mm, specific surface area 155 m 2 / g, water absorption 0.85 g / g, HSV-I from Shanghai Kaiyuan Chemical Technology Co., Ltd.).
Step 1. 23 g of carrier (water absorption 19.7 g) was impregnated with an aqueous solution equivalent to (1 ×) the amount of water absorption of carrier containing 1.5 g of 56 mass% Na 2 PdCl 4 and 1.5 g of 17 mass% HAuCl 4 . The container containing the carrier and the aqueous solution was gently shaken to completely impregnate the solution.
Step 2. The carrier obtained in Step 1 was immersed in an aqueous solution twice as much as the carrier water absorption containing 2.5 g of Na 2 SiO 3 .9H 2 O, and allowed to stand for 20 hours.
Step 3. To the aqueous solution of step 2, 3.3 ml of a 52 mass% hydrazine hydrate aqueous solution was added, gently mixed, and allowed to stand at room temperature for 4 hours.
Step 4. The palladium / gold compound carrier composition obtained in the previous step was washed with water until the chloride ion disappeared in the washed water. The washed palladium / gold / support composition was dried at about 110 ° C. for 4 hours.
Step 5. The palladium / gold / carrier composition was impregnated with an aqueous solution of 2 g of potassium acetate corresponding to the amount of water absorbed by the carrier, and dried at 110 ° C. for 4 hours.

比較例2 触媒Dの調製(従来技術の例、アルカリ溶液+溶液Aが3.0倍)
工程2.において、NaSiO・9HOに加えてさらにBaCl・2HO1.9gを加えた担体吸水量の2倍の量の水溶液を用いた以外は比較例1の操作を繰り返した。
Comparative Example 2 Preparation of Catalyst D (Example of Prior Art, Alkaline Solution + Solution A is 3.0 times)
Step 2. In, except for using 2 times the amount of the aqueous solution of Na 2 SiO 3 · 9H 2 O in addition to further BaCl 2 · 2H 2 O1.9g added carrier water absorption was repeated in Comparative Example 1.

実施例3 触媒Eの調製(アルカリ溶液+溶液Aが3.0倍、酸処理あり)
工程4と工程5の間に以下の工程を加えた以外は実施例2の操作を繰り返した。
工程E−1.工程4で得られたパラジウム/金/バリウム/担体組成物を吸水量の3倍に相当する量の0.45質量%酢酸水溶液に1時間浸漬させた。
工程E−2.工程E−1で得られたパラジウム/金/バリウム/担体組成物の水洗浄を1夜間継続した。
工程E−3.工程E−2で得られたパラジウム/金/バリウム/担体組成物を約110℃で4時間乾燥した。
Example 3 Preparation of catalyst E (alkaline solution + solution A is 3.0 times, with acid treatment)
The operation of Example 2 was repeated except that the following steps were added between Step 4 and Step 5.
Step E-1. The palladium / gold / barium / carrier composition obtained in step 4 was immersed in an aqueous 0.45 mass% acetic acid solution in an amount corresponding to three times the water absorption amount for 1 hour.
Step E-2. Water washing of the palladium / gold / barium / carrier composition obtained in step E-1 was continued for 1 night.
Step E-3. The palladium / gold / barium / support composition obtained in step E-2 was dried at about 110 ° C. for 4 hours.

実施例4 触媒Fの調製(アルカリ溶液+溶液Aが3.0倍)
シリカ球体担体(球体直径5mm、比表面積155m/g、吸水率0.85g/g、上海海源化工科技有限公司のHSV−I)を用いて、触媒を以下の手順で調製した。
工程1.担体23g(吸水量19.7g)に、NaSiO・9HO2.5gを含む担体吸水量の0.95倍量の水溶液を含浸させた。担体と水溶液が入った容器を静かに振り動かし、溶液を完全に含浸させた。
工程2.工程1で得られた担体を56質量%NaPdCl水溶液1.5gおよび17質量%HAuCl1.5g、BaCl・2HO1.9gを含む担体吸水量相当の2倍の量の水溶液に浸漬し、20時間静置した。
工程3.工程2の水溶液にクエン酸カリウム0.5gを加え、静かに混合し、室温で4時間静置した。
工程4.前工程で得られたパラジウム/金/バリウム化合物/担体組成物を水洗し、洗浄後の水中に塩化物イオンが無くなるまで継続した。洗浄したパラジウム/金/担体組成物を、約110℃で4時間乾燥した。
工程5.パラジウム/金/バリウム化合物/担体組成物に、2gの酢酸カリウムの担体吸水量相当の量の水溶液を含浸させ、110℃で4時間乾燥した。
Example 4 Preparation of catalyst F (alkaline solution + solution A is 3.0 times)
A catalyst was prepared by the following procedure using a silica sphere carrier (sphere diameter 5 mm, specific surface area 155 m 2 / g, water absorption 0.85 g / g, HSV-I from Shanghai Kaiyuan Chemical Technology Co., Ltd.).
Step 1. The carrier 23 g (water absorption amount 19.7 g), was impregnated with 0.95 times the amount of the aqueous solution of the carrier water absorption containing Na 2 SiO 3 · 9H 2 O2.5g . The container containing the carrier and the aqueous solution was gently shaken to completely impregnate the solution.
Step 2. The carrier obtained in step 1 is 1.5 g of 56 wt% Na 2 PdCl 4 aqueous solution, 1.5 g of 17 wt% HAuCl 4 , and 1.9 g of BaCl 2 .2H 2 O. And soaked for 20 hours.
Step 3. To the aqueous solution in Step 2, 0.5 g of potassium citrate was added, mixed gently, and allowed to stand at room temperature for 4 hours.
Step 4. The palladium / gold / barium compound / carrier composition obtained in the previous step was washed with water and continued until no chloride ions were present in the washed water. The washed palladium / gold / support composition was dried at about 110 ° C. for 4 hours.
Step 5. The palladium / gold / barium compound / carrier composition was impregnated with an aqueous solution of 2 g of potassium acetate corresponding to the amount of water absorbed by the carrier, and dried at 110 ° C. for 4 hours.

実施例5 触媒Gの調製(アルカリ溶液+溶液Aが3.0倍)
工程2.において、17質量%HAuCl1.5gを17質量%NaAuCl1.6gに変更した以外は実施例1の操作を繰り返した。
Example 5 Preparation of catalyst G (alkaline solution + solution A is 3.0 times)
Step 2. In Example 1, the procedure of Example 1 was repeated except that 1.5 g of 17 mass% HAuCl 4 was changed to 1.6 g of 17 mass% NaAuCl 4 .

実施例6 触媒Hの調製(アルカリ溶液+溶液Aが3.0倍)
シリカ球体担体(球体直径5mm、比表面積155m/g、吸水率0.85g/g、上海海源化工科技有限公司のHSV−I)を用いて、触媒を以下の手順で調製した。
工程1.担体23g(吸水量19.7g)に、水酸化カリウム0.52gを含む担体吸水量相当(1倍)の量の水溶液を含浸させた。担体と水溶液が入った容器を静かに振り動かし、溶液を完全に含浸させた。
工程2.工程1で得られた担体を56質量%NaPdCl水溶液1.5gおよび17質量%HAuCl1.5g、BaCl・2HO1.9gを含む担体吸水量の2倍相当の量の水溶液に浸漬し、20時間静置した。
工程3.工程2の水溶液に52質量%ヒドラジン水和物水溶液3.3mlを加え、静かに混合し、室温で4時間静置した。
工程4.前工程で得られたパラジウム/金/バリウム化合物/担体組成物を水洗し、洗浄後の水中に塩化物イオンが無くなるまで継続した。洗浄したパラジウム/金/担体組成物を、約110℃で4時間乾燥した。
工程5.パラジウム/金/バリウム化合物/担体組成物に、2gの酢酸カリウムの担体吸水量相当の量の水溶液を含浸させ、110℃で4時間乾燥した。
Example 6 Preparation of catalyst H (alkaline solution + solution A is 3.0 times)
A catalyst was prepared by the following procedure using a silica sphere carrier (sphere diameter 5 mm, specific surface area 155 m 2 / g, water absorption 0.85 g / g, HSV-I from Shanghai Kaiyuan Chemical Technology Co., Ltd.).
Step 1. 23 g of carrier (water absorption 19.7 g) was impregnated with an aqueous solution equivalent to (1 times) the amount of water absorption containing 0.52 g of potassium hydroxide. The container containing the carrier and the aqueous solution was gently shaken to completely impregnate the solution.
Step 2. The carrier obtained in step 1 is 1.5 g of 56 wt% Na 2 PdCl 4 aqueous solution, 1.5 g of 17 wt% HAuCl 4 , and 1.9 g of BaCl 2 .2H 2 O. And soaked for 20 hours.
Step 3. To the aqueous solution of step 2, 3.3 ml of a 52 mass% hydrazine hydrate aqueous solution was added, gently mixed, and allowed to stand at room temperature for 4 hours.
Step 4. The palladium / gold / barium compound / carrier composition obtained in the previous step was washed with water and continued until no chloride ions were present in the washed water. The washed palladium / gold / support composition was dried at about 110 ° C. for 4 hours.
Step 5. The palladium / gold / barium compound / carrier composition was impregnated with an aqueous solution of 2 g of potassium acetate corresponding to the amount of water absorbed by the carrier, and dried at 110 ° C. for 4 hours.

比較例3 触媒Iの調製(アルカリ溶液+溶液Aが1.0倍)
シリカ球体担体(球体直径5mm、比表面積155m/g、吸水率0.85g/g、上海海源化工科技有限公司のHSV−I)を用いて、触媒を以下の手順で調製した。
工程1.担体23g(吸水量19.7g)に、NaSiO・9HO2.5gを含む担体吸水量の0.5倍相当の量の水溶液を含浸させた。担体と水溶液が入った容器を静かに振り動かし、溶液を完全に含浸させた。
工程2.工程1で得られた担体を56質量%NaPdCl水溶液1.5gおよび17質量%HAuCl1.5gを含む担体吸水量の0.5倍相当の量の水溶液に浸漬し、20時間静置した。
工程3.工程2の水溶液に52質量%ヒドラジン水和物水溶液3.3mlを加え、静かに混合し、室温で4時間静置した。
工程4.前工程で得られたパラジウム/金/担体組成物を水洗し、洗浄後の水中に塩化物イオンが無くなるまで継続した。洗浄したパラジウム/金/担体組成物を、約110℃で4時間乾燥した。
工程5.パラジウム/金/担体組成物に、2gの酢酸カリウムの担体吸水量相当の量の水溶液を含浸させ、110℃で4時間乾燥した。
Comparative Example 3 Preparation of Catalyst I (Alkaline solution + Solution A is 1.0 times)
A catalyst was prepared by the following procedure using a silica sphere carrier (sphere diameter 5 mm, specific surface area 155 m 2 / g, water absorption 0.85 g / g, HSV-I from Shanghai Kaiyuan Chemical Technology Co., Ltd.).
Step 1. 23 g of carrier (water absorption 19.7 g) was impregnated with an aqueous solution equivalent to 0.5 times the water absorption of carrier containing 2.5 g of Na 2 SiO 3 .9H 2 O. The container containing the carrier and the aqueous solution was gently shaken to completely impregnate the solution.
Step 2. The support obtained in step 1 is immersed in an aqueous solution equivalent to 0.5 times the water absorption amount of the carrier containing 1.5 g of 56 mass% Na 2 PdCl 4 aqueous solution and 1.5 g of 17 mass% HAuCl 4 , I put it.
Step 3. To the aqueous solution of step 2, 3.3 ml of a 52 mass% hydrazine hydrate aqueous solution was added, gently mixed, and allowed to stand at room temperature for 4 hours.
Step 4. The palladium / gold / carrier composition obtained in the previous step was washed with water and continued until no chloride ions were present in the washed water. The washed palladium / gold / support composition was dried at about 110 ° C. for 4 hours.
Step 5. The palladium / gold / carrier composition was impregnated with an aqueous solution of 2 g of potassium acetate corresponding to the amount of water absorbed by the carrier, and dried at 110 ° C. for 4 hours.

比較例4 触媒Jの調製(アルカリ溶液+溶液Aが3.0倍、一旦乾燥)
シリカ球体担体(球体直径5mm、比表面積155m/g、吸水率0.85g/g、上海海源化工科技有限公司のHSV−I)を用いて、触媒を以下の手順で調製した。
工程1.担体23g(吸水量19.7g)に、NaSiO・9HO2.5gを含む担体吸水量相当(1倍)の量の水溶液を含浸させた。担体と水溶液が入った容器を静かに振り動かし、溶液を完全に含浸させた。
工程2.工程1で得られた担体を110℃、4時間空気中で乾燥した。
工程3.工程2で得られた担体を56質量%NaPdCl水溶液1.5gおよび17質量%HAuCl1.5gを含む担体吸水量の2倍相当の量の水溶液に浸漬し、20時間静置した。
工程4.工程3の水溶液に52質量%ヒドラジン水和物水溶液3.3mlを加え、静かに混合し、室温で4時間静置した。
工程5.前工程で得られたパラジウム/金/担体組成物を水洗し、洗浄後の水中に塩化物イオンが無くなるまで継続した。洗浄したパラジウム/金/担体組成物を、約110℃で4時間乾燥した。
工程6.パラジウム/金/担体組成物に、2gの酢酸カリウムの担体吸水量相当の量の水溶液を含浸させ、110℃で4時間乾燥した。
Comparative Example 4 Preparation of catalyst J (alkaline solution + solution A is 3.0 times, once dried)
A catalyst was prepared by the following procedure using a silica sphere carrier (sphere diameter 5 mm, specific surface area 155 m 2 / g, water absorption 0.85 g / g, HSV-I from Shanghai Kaiyuan Chemical Technology Co., Ltd.).
Step 1. 23 g of carrier (water absorption 19.7 g) was impregnated with an aqueous solution equivalent to (1 times) the amount of water absorption of carrier containing 2.5 g of Na 2 SiO 3 .9H 2 O. The container containing the carrier and the aqueous solution was gently shaken to completely impregnate the solution.
Step 2. The support obtained in step 1 was dried in air at 110 ° C. for 4 hours.
Step 3. The carrier obtained in step 2 was immersed in an aqueous solution equivalent to twice the water absorption amount of the carrier containing 1.5 g of 56 mass% Na 2 PdCl 4 aqueous solution and 1.5 g of 17 mass% HAuCl 4 and allowed to stand for 20 hours. .
Step 4. To the aqueous solution in Step 3, 3.3 ml of a 52 mass% hydrazine hydrate aqueous solution was added, gently mixed, and allowed to stand at room temperature for 4 hours.
Step 5. The palladium / gold / carrier composition obtained in the previous step was washed with water and continued until no chloride ions were present in the washed water. The washed palladium / gold / support composition was dried at about 110 ° C. for 4 hours.
Step 6. The palladium / gold / carrier composition was impregnated with an aqueous solution of 2 g of potassium acetate corresponding to the amount of water absorbed by the carrier, and dried at 110 ° C. for 4 hours.

比較例5 触媒Kの調製
工程2.において、さらにCaCl0.50gを加えた担体吸水量の2倍相当の量の水溶液を用いた以外は比較例1の操作を繰り返した。
Comparative Example 5 Preparation of Catalyst K Step 2. In Example 1, the procedure of Comparative Example 1 was repeated, except that an aqueous solution having an amount equivalent to twice the water absorption amount of the carrier added with 0.50 g of CaCl 2 was used.

比較例6 触媒Lの調製
工程2.において、さらにMgCl・6HO0.91gを加えた担体吸水量の2倍相当の量の水溶液を用いた以外は比較例1の操作を繰り返した。
Comparative Example 6 Preparation of Catalyst L Step 2. In Example 1, the operation of Comparative Example 1 was repeated except that an aqueous solution having an amount equivalent to twice the water absorption amount of the carrier added with 0.91 g of MgCl 2 .6H 2 O was used.

実施例7 触媒Mの調製
工程2.において、さらにCaCl0.50gを加えた担体吸水量の2倍相当の量の水溶液を用いた以外は実施例1の操作を繰り返した。
Example 7 Preparation of Catalyst M Step 2. In Example 1, the procedure of Example 1 was repeated except that an aqueous solution having an amount equivalent to twice the water absorption amount of the carrier with 0.50 g of CaCl 2 added was used.

実施例8 触媒Nの調製
工程2.において、さらにMgCl・6HO0.91gを加えた担体吸水量の2倍相当の量の水溶液を用いた以外は実施例1の操作を繰り返した。
Example 8 Preparation of Catalyst N Step 2. In Example 1, the procedure of Example 1 was repeated except that an aqueous solution having an amount equivalent to twice the water absorption amount of the carrier added with 0.91 g of MgCl 2 .6H 2 O was used.

実施例9 触媒Oの調製
工程4と工程5の間に以下の工程を加えた以外は実施例2の操作を繰り返した。
工程O−1.ケイタングステン酸9gを含む吸水量相当の量の水を、工程4で得られたパラジウム/金/バリウム化合物/担体組成物に含浸担持した。
工程O−2.工程O−1で得られたパラジウム/金/バリウム/ケイタングステン酸/担体組成物の水洗浄を1夜間継続した。
工程E−3.工程O−2で得られたパラジウム/金/バリウム/ケイタングステン酸/担体組成物を約110℃で4時間乾燥した。
Example 9 Preparation of Catalyst O The procedure of Example 2 was repeated except that the following steps were added between Step 4 and Step 5.
Step O-1. Water equivalent to the amount of water absorption including 9 g of silicotungstic acid was impregnated and supported on the palladium / gold / barium compound / support composition obtained in Step 4.
Step O-2. Water washing of the palladium / gold / barium / silicotungstic acid / support composition obtained in step O-1 was continued overnight.
Step E-3. The palladium / gold / barium / silicotungstic acid / support composition obtained in Step O-2 was dried at about 110 ° C. for 4 hours.

比較例7 触媒Pの調製
工程4と工程5の間に以下の工程を加えた以外は比較例2の操作を繰り返した。
工程P−1.工程4で得られたパラジウム/金/バリウム/担体組成物を吸水量の3倍相当の量の0.45質量%酢酸水溶液に1時間浸漬した。
工程P−2.工程P−1で得られたパラジウム/金/バリウム/担体組成物の水洗浄を1夜間継続した。
工程P−3.工程P−2で得られたパラジウム/金/バリウム/担体組成物を約110℃で4時間乾燥した。
Comparative Example 7 Preparation of Catalyst P The operation of Comparative Example 2 was repeated except that the following steps were added between Step 4 and Step 5.
Step P-1. The palladium / gold / barium / carrier composition obtained in Step 4 was immersed in an aqueous 0.45 mass% acetic acid solution in an amount equivalent to three times the water absorption amount for 1 hour.
Step P-2. Water washing of the palladium / gold / barium / carrier composition obtained in Step P-1 was continued for 1 night.
Step P-3. The palladium / gold / barium / support composition obtained in Step P-2 was dried at about 110 ° C. for 4 hours.

[触媒の評価]
金属担持量の測定
担持触媒サンプル3gを粉砕し、内径3cmのディスク状にプレスする。このディスクの金属量をフィリップス社製蛍光X線分析装置PW2404を用いて測定した。
金属表面積の測定
大倉理研株式会社製R6015を用いて、COパルス吸着法で測定した。
[Evaluation of catalyst]
Measurement of metal loading 3 g of the supported catalyst sample is pulverized and pressed into a disk shape having an inner diameter of 3 cm. The metal amount of the disk was measured using a fluorescent X-ray analyzer PW2404 manufactured by Philips.
Measurement of metal surface area Using a R6015 manufactured by Okura Riken Co., Ltd., measurement was performed by the CO pulse adsorption method.

初期触媒活性評価試験A
触媒3ccをガラスビーズ75ccで希釈して反応管(SUS316L製、内径22mm、長さ480mm)に充填する。反応温度150℃、反応圧力0.6MPaG、ガス組成C/O/HO/HOAc/N=47.3/6.1/5.6/26.3/14.7(mol%)のガスを流量20nL/hで流通させ、反応を行った。
Initial catalytic activity evaluation test A
3 cc of catalyst is diluted with 75 cc of glass beads and filled into a reaction tube (manufactured by SUS316L, inner diameter 22 mm, length 480 mm). Reaction temperature 150 ° C., reaction pressure 0.6 MPaG, gas composition C 2 H 4 / O 2 / H 2 O / HOAc / N 2 = 47.3 / 6.1 / 5.6 / 26.3 / 14.7 ( mol%) gas was allowed to flow at a flow rate of 20 nL / h to carry out the reaction.

反応器出口ガスの分析を、以下の方法を用いて行った。
1.酸素
絶対検量線法を用い、流出ガスを50ml採取し、ガスクロマトグラフィーに付属する1mlのガスサンプラーに全量流し、以下の条件で分析を行った。
ガスクロマトグラフィー:島津ガスクロマトグラフ用ガスサンプラ−(MGS−4:計量管1ml)付ガスクロマトグラフィー(島津製作所製GC−14(B)
カラム:MS−5A IS 60/80mesh(3mmΦ×3m)
キャリアーガス:ヘリウム(流量20ml/min.)
温度条件:検出器温度、気化室温度が110℃、カラム温度は70℃一定
検出器:TCD(He圧70kPaG、Current100m(A)
The reactor outlet gas was analyzed using the following method.
1. Using an oxygen absolute calibration curve method, 50 ml of the effluent gas was sampled, and the entire amount was flowed to a 1 ml gas sampler attached to gas chromatography, and analysis was performed under the following conditions.
Gas chromatography: Shimadzu gas chromatograph gas sampler (MGS-4: measuring tube 1 ml) with gas chromatography (Shimadzu GC-14 (B)
Column: MS-5A IS 60/80 mesh (3 mmΦ × 3 m)
Carrier gas: helium (flow rate 20 ml / min.)
Temperature conditions: Detector temperature, vaporization chamber temperature is 110 ° C., column temperature is constant 70 ° C. Detector: TCD (He pressure 70 kPaG, Current 100 m (A)

2.酢酸
内部標準法を用い、反応液10mlに対し、内部標準として1,4−ジオキサンを1ml添加したものを分析液として、そのうちの0.2μlを注入して以下の条件で分析を行った。
ガスクロマトグラフィー:島津製作所製GC−14B
カラム:パックドカラムThermon 3000(長さ3m、内径0.3mm)
キャリアーガス:窒素(流量20ml/min.)
温度条件:検出器温度、気化室温度が180℃、カラム温度は分析開始から6分間は50℃保持、その後10℃/minの昇温速度で150℃まで昇温し、150℃で10分間保持
検出器:FID(H2 圧40kPaG、空気圧100kPaG)
2. The acetic acid internal standard method was used, and 10 ml of the reaction solution was added with 1 ml of 1,4-dioxane as an internal standard, and 0.2 μl was injected as an analysis solution, and analysis was performed under the following conditions.
Gas chromatography: Shimadzu GC-14B
Column: Packed column Thermon 3000 (length 3 m, inner diameter 0.3 mm)
Carrier gas: Nitrogen (flow rate 20 ml / min.)
Temperature conditions: Detector temperature, vaporization chamber temperature is 180 ° C, column temperature is kept at 50 ° C for 6 minutes from the start of analysis, then raised to 150 ° C at a rate of 10 ° C / min, and kept at 150 ° C for 10 minutes. Detector: FID (H 2 pressure 40 kPaG, air pressure 100 kPaG)

3.酢酸ビニル
分析は内部標準法を用い、反応液6gに対し、内部標準として酢酸n−プロピルを1g添加したものを分析液として、そのうちの0.3μlを注入して以下の条件で分析した。
ガスクロマトグラフィー:島津製作所製GC−9A
カラム:キャピラリーカラムTC−WAX(長さ30m、内径0.25mm、膜厚0.5μm)
キャリアーガス:窒素(流量30ml/min.)
温度条件:検出器温度、気化室温度が200℃、カラム温度は分析開始から2分間は45℃保持、その後4℃/minの昇温速度で130℃まで昇温し、130℃で15分間保持し、その後25℃/minの昇温速度で200℃まで昇温し、200℃で10分間保持
検出器:FID(H2 圧60kPaG、空気圧100kPaG)
反応開始4時間後にサンプリングを行い、触媒の初期活性を測定した。評価結果を表1に示す。
3. Vinyl acetate was analyzed using an internal standard method. To 6 g of the reaction solution, 1 g of n-propyl acetate as an internal standard was added as an analysis solution, 0.3 μl of the solution was injected, and analysis was performed under the following conditions.
Gas chromatography: Shimadzu GC-9A
Column: Capillary column TC-WAX (length 30 m, inner diameter 0.25 mm, film thickness 0.5 μm)
Carrier gas: Nitrogen (flow rate 30 ml / min.)
Temperature conditions: Detector temperature, vaporization chamber temperature is 200 ° C, column temperature is maintained at 45 ° C for 2 minutes from the start of analysis, then heated to 130 ° C at a temperature increase rate of 4 ° C / min, and maintained at 130 ° C for 15 minutes. Then, the temperature is increased to 200 ° C. at a temperature increase rate of 25 ° C./min and held at 200 ° C. for 10 minutes. Detector: FID (H 2 pressure 60 kPaG, air pressure 100 kPaG)
Sampling was performed 4 hours after the start of the reaction, and the initial activity of the catalyst was measured. The evaluation results are shown in Table 1.

Figure 0004925956
Figure 0004925956

初期触媒活性評価試験B
触媒5ccを酢酸カリウム40g/Lが担持されたシリカ担体20ccで希釈して反応管に充填する。反応温度150℃、反応圧力0.6MPaG、ガス組成C/O/HO/HOAc/N=60/4/1.3/17/17.7(mol%)のガスを流量45nL/hで流通させ、反応を行った。
反応器出口ガスの分析は、初期反応活性評価Aと同様の方法を用いて行った。触媒の初期活性評価結果を表2に示す。
Initial catalytic activity evaluation test B
5 cc of the catalyst is diluted with 20 cc of silica support on which 40 g / L of potassium acetate is supported, and charged into the reaction tube. A gas having a reaction temperature of 150 ° C., a reaction pressure of 0.6 MPaG, and a gas composition of C 2 H 4 / O 2 / H 2 O / HOAc / N 2 = 60/4 / 1.3 / 17 / 17.7 (mol%) The reaction was carried out at a flow rate of 45 nL / h.
The analysis of the reactor outlet gas was performed using the same method as in the initial reaction activity evaluation A. The initial activity evaluation results of the catalyst are shown in Table 2.

Figure 0004925956
Figure 0004925956

初期触媒活性試験C
触媒15ccを酢酸カリウム40g/Lが担持されたシリカ担体60ccで希釈して評価試験Aで用いたのと同様の反応管に充填する。反応温度150℃、反応圧力0.4MPaG、ガス組成C/O/HO/HOAc/N=47.3/6.1/5.6/26.3/14.7(mol%)のガスを流量75nL/hで流通させ、反応を行った。
反応器出口ガスの分析は、初期反応活性評価Aと同様の方法を用いて行った。触媒の初期活性(反応開始4時間後の値)の評価結果を表3に示す。
Initial catalytic activity test C
15 cc of the catalyst is diluted with 60 cc of a silica carrier on which 40 g / L of potassium acetate is supported, and charged in the same reaction tube as used in the evaluation test A. Reaction temperature 150 ° C., reaction pressure 0.4 MPaG, gas composition C 2 H 4 / O 2 / H 2 O / HOAc / N 2 = 47.3 / 6.1 / 5.6 / 26.3 / 14.7 ( mol%) gas was circulated at a flow rate of 75 nL / h to carry out the reaction.
The analysis of the reactor outlet gas was performed using the same method as in the initial reaction activity evaluation A. Table 3 shows the evaluation results of the initial activity of the catalyst (value 4 hours after the start of the reaction).

Figure 0004925956
Figure 0004925956

長時間反応後の触媒活性低下試験
触媒15ccを酢酸カリウム40g/Lが担持されたシリカ担体60ccで希釈して評価試験Aで用いたのと同様の反応管に充填する。反応温度150℃、反応圧力0.4MPaG、ガス組成C/O/HO/HOAc/N=47.3/6.1/5.6/26.3/14.7(mol%)のガスを流量75nL/hで流通させ、反応を行った。反応開始後約700時間後の触媒性能を表4に示す。
Test for reducing catalyst activity after long-time reaction 15 cc of the catalyst is diluted with 60 cc of a silica support on which 40 g / L of potassium acetate is supported, and charged in the same reaction tube as used in the evaluation test A. Reaction temperature 150 ° C., reaction pressure 0.4 MPaG, gas composition C 2 H 4 / O 2 / H 2 O / HOAc / N 2 = 47.3 / 6.1 / 5.6 / 26.3 / 14.7 ( mol%) gas was circulated at a flow rate of 75 nL / h to carry out the reaction. Table 4 shows the catalyst performance after about 700 hours from the start of the reaction.

Figure 0004925956
Figure 0004925956

実施例10 触媒Qの調製(アルカリ溶液+溶液Aが3.0倍)
シリカ球体担体(球体直径5mm、比表面積155m/g、吸水率0.85g/g、上海海源化工科技有限公司のHSV−I)を用いて、触媒を以下の手順で調製した。
工程1.担体23g(吸水量19.6g)に、NaSiO・9HO1.97gを含む担体吸水量相当(1倍)の量の水溶液を含浸させた。担体と水溶液が入った容器を静かに振り動かし、溶液を完全に含浸させた。
工程2.工程1で得られた担体を56質量%NaPdCl水溶液1.5g、BaCl・2HO1.9gおよび17質量%HAuCl1.5gを含む担体吸水量の2倍の水溶液に浸漬し、20時間静置した。
工程3.工程2の水溶液に52質量%ヒドラジン水和物水溶液3.3mlを加え、静かに混合し、室温で4時間静置した。
工程4.パラジウム/金/担体組成物の洗浄を水洗水に塩化物イオンが無くなるまで継続した。洗浄したパラジウム/金/担体組成物を、約110℃で4時間乾燥した。
工程5.パラジウム/金/担体組成物に、2gの酢酸カリウムの担体吸水量相当の量の水溶液を含浸させ、110℃で4時間乾燥した。
Example 10 Preparation of catalyst Q (alkaline solution + solution A is 3.0 times)
A catalyst was prepared by the following procedure using a silica sphere carrier (sphere diameter 5 mm, specific surface area 155 m 2 / g, water absorption 0.85 g / g, HSV-I from Shanghai Kaiyuan Chemical Technology Co., Ltd.).
Step 1. 23 g of carrier (water absorption of 19.6 g) was impregnated with an aqueous solution equivalent to (1 ×) the amount of water absorption of carrier including 1.97 g of Na 2 SiO 3 .9H 2 O. The container containing the carrier and the aqueous solution was gently shaken to completely impregnate the solution.
Step 2. The carrier obtained in step 1 was immersed in an aqueous solution twice as much as the carrier water absorption containing 1.5 g of 56 mass% Na 2 PdCl 4 aqueous solution, 1.9 g of BaCl 2 .2H 2 O and 1.5 g of 17 mass% HAuCl 4. And left for 20 hours.
Step 3. To the aqueous solution of step 2, 3.3 ml of a 52 mass% hydrazine hydrate aqueous solution was added, gently mixed, and allowed to stand at room temperature for 4 hours.
Step 4. Washing of the palladium / gold / carrier composition was continued until the rinse water was free of chloride ions. The washed palladium / gold / support composition was dried at about 110 ° C. for 4 hours.
Step 5. The palladium / gold / carrier composition was impregnated with an aqueous solution of 2 g of potassium acetate corresponding to the amount of water absorbed by the carrier, and dried at 110 ° C. for 4 hours.

比較例8 触媒Rの調製(アルカリ溶液+溶液Aが2.9倍)
工程1.において、NaSiO・9HO1.97gを含む担体吸水量の0.9倍相当の量の水溶液を含浸させた以外は実施例10の操作を繰り返した。
Comparative Example 8 Preparation of catalyst R (alkaline solution + solution A is 2.9 times)
Step 1. In Example 1, the operation of Example 10 was repeated except that an aqueous solution having an amount equivalent to 0.9 times the water absorption amount of the carrier containing 1.97 g of Na 2 SiO 3 .9H 2 O was impregnated.

比較例9 触媒Sの調製(アルカリ溶液+溶液Aが3.0倍、工程1と工程2の間に乾燥工程)
工程1.と工程2.の間に、室温で4.5時間放置し、吸水量を0.9倍になるまで担体を乾燥させた以外は実施例2の操作を繰り返した。
Comparative Example 9 Preparation of catalyst S (alkaline solution + solution A is 3.0 times, drying step between step 1 and step 2)
Step 1. And step 2. In the meantime, the procedure of Example 2 was repeated except that the carrier was left to stand at room temperature for 4.5 hours, and the carrier was dried until the water absorption amount became 0.9 times.

初期触媒活性評価試験D
初期触媒活性評価Aと同様の方法で反応開始4時間後の触媒の初期活性評価を行った。結果を表5に示す。
実施例10と比較例8とではアルカリ溶液量を変えており、アルカリ溶液量が少ない場合には、活性が低下することがわかる。また、実施例2と比較例9を比較すると、アルカリ溶液担持後に乾燥工程を経て、溶液量を低下させることで活性が低下することが示される。
Initial catalytic activity evaluation test D
The initial activity of the catalyst was evaluated 4 hours after the start of the reaction in the same manner as in the initial catalyst activity evaluation A. The results are shown in Table 5.
In Example 10 and Comparative Example 8, the amount of the alkaline solution is changed, and it can be seen that the activity decreases when the amount of the alkaline solution is small. Moreover, when Example 2 and Comparative Example 9 are compared, it is shown that the activity decreases by decreasing the amount of the solution through a drying step after supporting the alkali solution.

Figure 0004925956
Figure 0004925956

本発明は、初期活性および選択性に優れる酢酸アルケニル製造用触媒を提供することができ、産業上有用である。   INDUSTRIAL APPLICABILITY The present invention can provide a catalyst for producing alkenyl acetate having excellent initial activity and selectivity, and is industrially useful.

Claims (8)

少なくとも以下の工程
1.担体にアルカリ溶液を含浸させる工程、
2.担体に少なくとも、パラジウムまたは白金を含む化合物および第11族元素を含む化合物の溶液Aを接触含浸させる工程、
3.還元処理を行う工程および
4.担体に酢酸塩を担持する工程
を含む酢酸アルケニル製造用触媒の製造方法であって、第1の工程において担体に担体の吸水量の0.9質量倍を超え、1.0質量倍以下のアルカリ溶液を含浸させた後、乾燥処理をすることなく続けて第2の工程で溶液Aと接触させて触媒前駆体とし、かつ、アルカリ溶液および溶液Aの総量を担体の吸水量の1.5質量倍以上8.0質量倍以下とすることを特徴とする、少なくとも(a)担体、(b)パラジウムまたは白金、(c)第11族元素および(d)酢酸塩からなる酢酸アルケニル製造用触媒の製造方法。
At least the following steps 1. Impregnating a carrier with an alkaline solution,
2. A step of impregnating a support with a solution A of a compound containing at least palladium or platinum and a compound containing a Group 11 element;
3. 3. performing a reduction treatment; A method for producing a catalyst for producing alkenyl acetate comprising a step of supporting an acetate on a carrier, wherein the alkali in the first step exceeds 0.9 mass times the amount of water absorption of the carrier and is 1.0 mass times or less. After impregnating the solution, the catalyst A is brought into contact with the solution A in the second step without drying , and the total amount of the alkaline solution and the solution A is 1.5 mass of the water absorption amount of the carrier. characterized by more than doubled 8.0 times by mass or less, at least (a) a carrier, (b) palladium or platinum, (c), group 11 element and (d) a catalyst for alkenyl acetate production consisting acetate Production method.
溶液Aがさらに(e)アルカリ土類金属元素を含む化合物を溶解していることを特徴とする、少なくとも(a)担体、(b)パラジウムまたは白金、(c)第11族元素、(d)酢酸塩および(e)アルカリ土類金属元素からなる請求項1に記載の酢酸アルケニル製造用触媒の製造方法。   Solution A further comprises (e) a compound containing an alkaline earth metal element, wherein at least (a) a carrier, (b) palladium or platinum, (c) a Group 11 element, (d) The method for producing a catalyst for alkenyl acetate production according to claim 1, comprising acetate and (e) an alkaline earth metal element. (b)パラジウムまたは白金がパラジウムである、請求項1または2に記載の酢酸アルケニル製造用触媒の製造方法。   (B) The method for producing a catalyst for producing alkenyl acetate according to claim 1 or 2, wherein the palladium or platinum is palladium. (c)第11族元素が金または銅である、請求項1〜3のいずれかに記載の酢酸アルケニル製造用触媒の製造方法。   (C) The manufacturing method of the catalyst for alkenyl acetate manufacture in any one of Claims 1-3 whose group 11 element is gold | metal | money or copper. (e)アルカリ土類金属元素がバリウム、ストロンチウム、マグネシウム、カルシウムのすくなくとも1種である、請求項2〜4のいずれかに記載の酢酸アルケニル製造用触媒の製造方法。   (E) The method for producing a catalyst for producing alkenyl acetate according to any one of claims 2 to 4, wherein the alkaline earth metal element is at least one of barium, strontium, magnesium and calcium. 請求項1〜5のいずれかに記載の方法で製造された触媒を用いることを特徴とする、低級オレフィン、酸素および酢酸を原料とする酢酸アルケニルの製造方法。   A method for producing alkenyl acetate using raw materials of lower olefin, oxygen and acetic acid, wherein the catalyst produced by the method according to claim 1 is used. 請求項1〜5のいずれかに記載の方法で製造された触媒を用いることを特徴とする、エチレン、酸素および酢酸を原料とする酢酸ビニルの製造方法。   A method for producing vinyl acetate using ethylene, oxygen and acetic acid as raw materials, wherein the catalyst produced by the method according to any one of claims 1 to 5 is used. 請求項1〜5のいずれかに記載の方法で製造された触媒を用いることを特徴とする、プロピレン、酸素および酢酸を原料とする酢酸アリルの製造方法。   A method for producing allyl acetate using propylene, oxygen and acetic acid as raw materials, wherein the catalyst produced by the method according to any one of claims 1 to 5 is used.
JP2007193730A 2006-08-30 2007-07-25 Method for producing catalyst for producing alkenyl acetate Active JP4925956B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007193730A JP4925956B2 (en) 2006-08-30 2007-07-25 Method for producing catalyst for producing alkenyl acetate

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006234133 2006-08-30
JP2006234133 2006-08-30
JP2007193730A JP4925956B2 (en) 2006-08-30 2007-07-25 Method for producing catalyst for producing alkenyl acetate

Publications (2)

Publication Number Publication Date
JP2008080326A JP2008080326A (en) 2008-04-10
JP4925956B2 true JP4925956B2 (en) 2012-05-09

Family

ID=39351706

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007193730A Active JP4925956B2 (en) 2006-08-30 2007-07-25 Method for producing catalyst for producing alkenyl acetate

Country Status (1)

Country Link
JP (1) JP4925956B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4963922B2 (en) * 2006-10-04 2012-06-27 昭和電工株式会社 Method for producing catalyst for producing alkenyl acetate
CN116568397A (en) * 2020-11-27 2023-08-08 株式会社力森诺科 Method for producing catalyst for producing vinyl acetate, and method for producing vinyl acetate
WO2024057789A1 (en) * 2022-09-16 2024-03-21 株式会社レゾナック Method for producing catalyst for vinyl acetate production and method for producing vinyl acetate
WO2024057790A1 (en) * 2022-09-16 2024-03-21 株式会社レゾナック Method for manufacturing catalyst for manufacture of vinyl acetate and method for manufacturing vinyl acetate

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH534005A (en) * 1968-02-01 1973-02-28 Bayer Ag Process for the preparation of a catalyst containing palladium and gold
DE19501891C1 (en) * 1995-01-23 1996-09-26 Degussa Process for the preparation of a supported catalyst and its use for the production of vinyl acetate
DE19619961A1 (en) * 1996-05-17 1997-11-20 Degussa Compacts based on pyrogenic silicon dioxide
US6420308B1 (en) * 2000-07-07 2002-07-16 Saudi Basic Industries Corp Highly selective shell impregnated catalyst of improved space time yield for production of vinyl acetate
WO2004078696A1 (en) * 2003-03-07 2004-09-16 Showa Denko K.K. Production processes of lower aliphatic carboxylic acid alkenyl esters and alkenyl alcohol
JP2004339195A (en) * 2003-03-07 2004-12-02 Showa Denko Kk Method for producing lower aliphatic alkenyl carboxylate and alkenyl alcohol and lower aliphatic alkenyl carboxylate and alkenyl alcohol produced by the same

Also Published As

Publication number Publication date
JP2008080326A (en) 2008-04-10

Similar Documents

Publication Publication Date Title
JP4969501B2 (en) Method for producing a catalyst for the production of allyl acetate
JP7517468B2 (en) Method for producing catalyst for producing vinyl acetate and method for producing vinyl acetate
JP6366841B2 (en) Method for producing allyl acetate
JP4925956B2 (en) Method for producing catalyst for producing alkenyl acetate
KR101017904B1 (en) Process for production of catalyst for alkenyl acetate production
US7425647B2 (en) Process for preparing a group V111-metal containing catalyst, use thereof for preparing an alkenyl carboxylate
JP4551109B2 (en) Catalyst production method
JP7314712B2 (en) Method for producing catalyst for producing allyl acetate
JP4964170B2 (en) Method for producing catalyst for producing alkenyl acetate
JP4963922B2 (en) Method for producing catalyst for producing alkenyl acetate
JP2010247104A (en) Method for producing catalyst for producing alkenyl acetate
JP5062993B2 (en) Production of supported catalysts and their use
TWI845399B (en) Method for producing catalyst for producing vinyl acetate and method for producing vinyl acetate
WO2024057789A1 (en) Method for producing catalyst for vinyl acetate production and method for producing vinyl acetate
JP2021037429A (en) Method for selecting catalyst for production of alkenyl acetate
JP2009220099A (en) Method for producing catalyst for production of lower aliphatic carboxylic acid
MXPA99004722A (en) Catalyst and use of the same in the production of vinacetate
JP2008018421A (en) Process for production of supported catalyst for acetic acid production

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100402

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110922

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110927

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120110

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120207

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150217

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4925956

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350