JP4925155B2 - Retinal nerve cell function recovery agent - Google Patents

Retinal nerve cell function recovery agent Download PDF

Info

Publication number
JP4925155B2
JP4925155B2 JP2002169204A JP2002169204A JP4925155B2 JP 4925155 B2 JP4925155 B2 JP 4925155B2 JP 2002169204 A JP2002169204 A JP 2002169204A JP 2002169204 A JP2002169204 A JP 2002169204A JP 4925155 B2 JP4925155 B2 JP 4925155B2
Authority
JP
Japan
Prior art keywords
trx
ngf
cells
retinal
protein
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002169204A
Other languages
Japanese (ja)
Other versions
JP2004010574A (en
Inventor
淳司 淀井
肇 中村
弘 増谷
正樹 谷戸
潔 白
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Redox Bioscience Inc
Original Assignee
Redox Bioscience Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=30435877&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP4925155(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Redox Bioscience Inc filed Critical Redox Bioscience Inc
Priority to JP2002169204A priority Critical patent/JP4925155B2/en
Publication of JP2004010574A publication Critical patent/JP2004010574A/en
Application granted granted Critical
Publication of JP4925155B2 publication Critical patent/JP4925155B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、網膜神経細胞機能回復剤に関する。
【0002】
【従来の技術】
神経の生存及び分化は細胞の酸化還元条件により影響される。TRX はその活性部位配列; -Cys-Gly-Pro-Cys-内にレドックス活性なジスルフィド/ジチオールを有する小さい 12 kDaの多機能タンパク質であり、タンパク質ジスルフィド還元系としてNADPH及びチオレドキシンレダクターゼにも働く(Holmgren, 1985)。いくつかの報告は、TRX-依存性レドックス制御がAP-1、 NF-kB、p53、ASK1及びp38 MAP キナーゼにより介在されるシグナル伝達に密接に関与することを示した( Hirota et al., 1997; Saitoh et al., 1998; Hashimoto et al., 1999; Ueno et al., 1999). TRXは広く分布し、種々のストレスにより誘導される(Nakamura et al., 1997; Masutani, 1999). TRX発現はまた K562 赤白血病細胞の分化誘発剤であるへミン(Kim et al., 2001), 又は網膜色素上皮細胞のサイクリックAMPアナログ(Yamamoto et al., 1997)により上昇する。TRX 遺伝子の制御領域中には、いくつかのSP-1結合モチーフ、抗酸化剤応答エレメント(ARE) 及びサイクリックAMP応答配列(CRE)がある。神経組織において、TRXは虚血後の星状膠細胞(Tomimoto et al., 1993) 及び神経損傷後の運動ニューロン (Mansur et al., 1998) において誘導される。TRX は酸化ストレスに対して細胞保護作用(Nakamura et al., 1994) 及び神経保護活性(Hori et al., 1994)を有することが知られている。さらに、トランスジェニックマウスにおけるTRXの過剰発現は病巣の虚血脳障害を軽減する(Takagi et al., 1999). TRXはまた中枢コリン作動性ニューロンの神経栄養因子として報告され、神経栄養活性を有するが(Endoh et al., 1993), その効果の分子的基礎は解明されていない。
【0003】
神経成長因子(NGF)及び脳由来神経栄養因子のようなニューロトロフィンファミリーの他のメンバーはニューロンに対し生存及び分化の促進を含む絶大な効果を有する(Lo, 1992)。NGFは、アルツハイマー病のような加齢に伴う神経変性疾患において可能性のある治療剤として報告された(Connor and Dragunow, 1998)。これらのメカニズムの現在の理解は、褐色細胞腫細胞株PC12についてのNGF作用の研究に大きく依存している(Greene and Tischler, 1976)。NGFにさらされると、PC12細胞は交感神経ニューロン様細胞に分化する。シグナルは、NGFが細胞膜上のその高活性受容体であるTrkAに結合することにより開始され(Kaplan et al., 1991)、ras及びマイトージェン活性化蛋白質キナーゼ(MAPK)カスケード(Thomas et al., 1992)により導入される。PC12細胞のNGF処理はNGF作用に重要と考えられているc-fosのような遺伝子の活性化をもたらす(Milbrandt, 1986)。NGFは、血清応答エレメント(Treisman, 1986)及びCRE(Ginty et al., 1994; Ahn et al., 1998)を含むいくつかのエレメントによりc-fos遺伝子を活性化する。
【0004】
【発明が解決しようとする課題】
本発明の目的は、網膜神経細胞の機能回復を促進する技術に関する。
【0005】
【課題を解決するための手段】
本発明者は、TRXが網膜神経細胞の機能回復を促進し眼科領域での疾患の治療に有用であることを見出した。
【0006】
本発明は、以下の網膜神経細胞機能回復剤に関する
項1. NGFを含有する、内因性チオレドキシン発現を誘導することにより光損傷を受けた網膜神経細胞の機能を回復させる、網膜神経細胞機能回復剤。
【0015】
【発明の実施の形態】
機能回復される神経としては、視経などが挙げられ、これらの各種幹細胞に神経成長因子(NGF)を作用させることで、TRXの発現を誘導し、これにより網膜神経細胞の機能を回復し、神経の変性ないし神経細胞死に起因する各種神経系疾患を治療することができる。
【0016】
神経に分化し得る各種幹細胞としては、神経幹細胞、網膜幹細胞、間葉系幹細胞、胚性幹細胞などが例示できる。
【0017】
本発明者らは、神経幹細胞にTRXが多く発現していることを見出しており、下記の実施例からも、TRXが網膜神経細胞の機能回復を促進することは明らかである。
【0019】
本発明に係る網膜神経細胞機能回復剤は、網膜神経細胞に適用することにより、TRX発現を誘導し、結果として網膜神経細胞機能回復を促進することができる。
【0021】
投与経路としては、経口(錠剤、カプセル剤、顆粒剤、散剤、液剤、シロップ剤など)及び非経口(注射剤、吸入剤、点鼻剤、坐剤など)のいずれでも投与することができる。
【0022】
【実施例】
以下、本発明を実施例に従いより詳細に説明する。
実施例1
(1)細胞株及び培養
NGF, ポリエチレンイミン(PEI), PD98059及びNACはSigmaから購入した。ラット褐色細胞腫腫瘍細胞株PC12は、5% CO2 を含む湿気のある雰囲気中37℃で、10%熱不活性化ウマ血清及び5%熱不活性化胎仔ウシ血清(FCS)を有し、抗生物質(100 IU/mlのペニシリン及び100 mg/ml のストレプトマイシンを補足したRPMI 1640 (Life Technologies, Grand Island, NY)中で維持した。
・プラスミド:pTrxCAT プラスミドは公知の方法に従い構築した(Taniguchi et al., 1996)。the pTrxCAT ベクターからのHindIII-BamH I インサートは、pBluescriptII KS (+) (pTRXblue ベクターにサブクローニングした。pTRX(-1148)-Luc、pTRX (-1062)-Luc、pTRX (-352)-Luc及びpTRX (-263)-Luc ベクターはpTRXblueベクターのKpnI/BamHI フラグメントをpGL3 ベイシックベクター(Promega, WI)のKpnI/BglII部位にライゲートすることにより構築した。pTRX(-263)-LucベクターのApaI /PvuIIインサートは、切り出され、埋められ、自己ライゲートされてpTRX (-217)-Lucベクターを得た。pGL3-c-fos (-40, +42) 及びpGL3-c-fos (-99, +42) lucベクターは、Fos-40 lucのMluI/HindIIIフラグメント(Masutani et al., 1997)及びthe pFDE-lucベクターをpGL3 ベイシックベクター(Promega)のMluI/HindIII部位にサブクローニングすることにより構築した。pFDE-lucは、FDE-CAT (Trouche et al., 1993) のBamHI/HindIIIフラグメントをpGL2ベイシックベクター(Promega)のBglII-HindIIIにサブクローニングすることにより構築した。pCDSR a(alpha) -TRX及び pCDSRa -TRX(C32S/C35S)ベクターは、既述の方法により構築した(Hirota et al., 1997)。The pcDNA3TRX (32S/35S)ベクターは、既述の方法により構築した(Nishiyama et al., 1999)。pCDSRa -TRX及びpCDSRa-TRXm (Tagaya et al., 1989; Hirota et al., 1997)からのBamHIインサートは、各々pBluescript II KS (pBS-wtTRX, pBS-dmTRX)のBamHI部位にサブクローニングした。pBI-EGFP-wtTRX及びpBI-EGFP-dmTRX(32S/35S)は、各々pBS-wtTRX及びpBS-dmTRX ベクターのEcoRV/XbaIフラグメントをpBI-EGFPベクター(Clontech)のPvuII/NheI部位にライゲートすることにより構築した。すべての構築物は、Thermo Sequenase II ダイ・ターミネーター・サイクルシークエンシングキット(dye terminator cycles equencing kit)(Amersham Pharmacia)を用いた直接ヌクレオチドシークエンシングによりコントロールした。pRL-TKベクターは、Promegaから購入した。pcDNA3はInvitrogenから購入した。
・ウェスタンブロット分析
細胞を集めて氷冷リン酸緩衝生理食塩水(PBS)で2回洗浄し、次いで可溶化溶液(10 mM.Tris-HCI (pH 7.4), 150 mM NaCI, 1% NP-40, 1 mM EDTA, 0.1 mM PMSF, 8 mg/mlアプロチニン及び2mg/mlロイペプチン)で氷上30分間溶解させた。抽出物を遠心分離により清澄にした。細胞可溶化液を95℃で5分間維持し、次いで15% SDS-ポリアクリルアミドゲル電気泳動で分離した。分離したタンパク質をポリビニリデンジフルオライド膜(Millipore Co., Bedford,MA)に移した。該膜をT-PBS (0.05% Tween20を含むPBS)中10% (w/v)スキムミルクで終夜処理し、抗マウスTRX ウサギポリクローナル抗体(Takagi et al., 1998c)と1時間インキュベートし、次いでペルオキシダーゼ複合化抗ウサギIgG(Amershan Pharmacia Biotech)と1時間インキュベートした。エピトープをECLウェスタンブロット検出キット(Amershan Pharmacia Biotech)で可視化した。本発明者は、以前にこの抗マウス抗体がラットTRX と交差反応することを報告した(Takagi et al., 1998b)。
・ノーザンブロット分析
全RNAを製造元の仕様書に従いTRIzol試薬を用いて抽出した(Maruyama et al., 1997)。全RNA20mg を電気泳動にかけMaximum strength Nytran nylon (Schleicher and Schrul, Knee, NH )にTurbo-Blotterシステム(Schleicher andSchrul)を用いて移した。フィルターを、既述のように(Takagi et al., 1998b)ラットTRX mRNAと交差反応するマウスTRXプローブとハイブリダイズさせた。
・トランスフェクション及びルシフェラーゼアッセイ
PC12細胞をトランスフェクション前に35-mm ディッシュに70%コンフルエンスで播種した。血清を含まない培地中の細胞をBoussifら(Boussif et al., 1995)に記載されたようにPEI試薬を用いてトランスフェクトした。24時間後、トランスフェクトした細胞を50 ng/ml のNGF (Sigma)で処理した。 Renillaルシフェラーゼ活性により規格化したルシフェラーゼ遺伝子発現をアッセイキット(Promega, Madison, WI)を用い、ルミノメーターで24時間後に分析した。ルシフェラーゼの相対的フォールド活性化を計算した。同じ実験を3回行った。PC12細胞を、TRXの活性部位が不活性化された二方向性発現ベクターpBI-EGFP, pBI-EGFP-wtTRX又はpBI-EGFP-dmTRXでトランスフェクトした(Ueno et al., 1999)。トランスフェクション後、NGFを培地に加えた。24時間後、細胞発現EGFPをレーザー共焦点顕微鏡により調べた。
・免疫蛍光細胞染色
PC12細胞をポリ-L-リシンでコートした培養スライド中70%コンフルエンスで染色する前に播種した。次いで、細胞を10% FCSを含むPBS中3.7%パラホルムアルデヒドで20分間室温で固定した。これを次にPBS中0.2% (W/V) TritonX-100を用いて10分間膜透過性化し、5% ウシ血清アルブミン及び10% FCSを含むPBSで20分間ブロッキングした。スライドを2mg/mlのマウスTRX抗体(富士レビオより提供)で60分間インキュベートし、次いでPBSで洗浄した。次いでスライドを1mg/mlのフルオレセインイソチオシアネート標識二次抗体と60分間インキュベートし、再度PBSで洗浄した。染色細胞をレーザー共焦点顕微鏡(Bio-Rad)で調べた。
・結果
PC12細胞中でのNGF誘発TRX発現
本発明者は、NGFのPC12細胞中でのTRX発現についての効果を調べた。該タンパク質発現は、NGFによりPC12細胞中で増加した(図1A)。TRX mRNAもまたNGF処理の2時間後に増加した(図1B)。NGF 処理による誘導メカニズムをさらに分析するために、本発明者は、TRX プロモータールシフェラーゼレポーターコンストラクト(TRX-Luc)でPC12細胞をトランスフェクトした。NGF による処理は、TRXプロモーター活性を有意に増強した(図1C)。
TRXプロモーター中のNGF-応答領域の同定
NGFによるTRX遺伝子の活性化のメカニズムを理解するために、TRXプロモーター領域の各種欠失ミュータントを含むルシフェラーゼ・レポーター・コンストラクトを使用した。翻訳開始部位に対し−263位〜−217位の遺伝子領域はNGF応答に必要であった。この領域はコンセンサスCREに似ている配列を含み、活性化におけるCREの関与を示す(図2)。TRX発現はPD98059又はNACにより抑制された。
【0023】
ERK阻害剤であるPD98059及びNAC (Kamata et al., 1996)は NGFによるERK-CRE介在活性化を抑制することが知られている。NGFで2日間処理すると神経突起伸長の出現を伴うPC12細胞のニューロン分化を誘発した。既報告のように、PD98059 (50mM)又はNAC (20 mM)は、PC12 cellsにおける NGF-誘発形態変化を抑制した(図3A)。次いで、本発明者はPD98059またはNACのNGF-介在TRX遺伝子活性化についての効果を試験した。PD98059 またはNACは、TRX遺伝子のNGF-誘発活性化をブロックした(図3B)。PD98059又はNACはまた、TRXタンパク質発現の減少を生じた(図3C)。
TRX のNGF-誘発核輸送は、PD98059またはNACによりブロックされる。
【0024】
ERKは、NGF処理中に細胞質から核に輸送される(Chen et al.,1992). TRXはまた、H2O2又はUV照射にさらされたときにも細胞質から核に輸送される(Hirota et al., 1997)。NGF-誘発シグナリングにおけるTRXの関与を分析するために、本発明者はNGF処理の際のTRXの細胞下局在を研究した。NGFで16時間処理した後、TRXは核に移動した。該移動はPD98059又はNACによりブロックされた(図4)。優性型TRXの過剰発現は、PC12のNGF-誘発分化をブロックした。
【0025】
本発明者は、次いでTRXがPC12細胞のNGF-依存性分化に要求されるのかを調べた。本発明者は、PC12細胞をpBI-EGFP, pBI-EGFP-wtTRX又はpBI-EGFP-dmTRX (32S/35S)を用いて一時的にトランスフェクトし、そこでは、TRXのレドックス活性部位は不活性化された。ミュータントTRXは転写因子のTRX依存性活性化を阻害した(Ueno et al., 1999)。トランスフェクション後、NGFが培地に添加された。NGF処理の24時間後、細胞をレーザー共焦点顕微鏡で調べた。ミュータントTRXベクターでトランスフェクトされた細胞は分化の抑制を示し、一方野生型TRXベクターまたはコントロールベクターでトランスフェクトされた細胞はNGF-誘発分化を示した(図5)。
【0026】
優性なネガティブミュータント型TRXの過剰発現は、NGFによるCRE介在c-fos 誘発をブロックした。TRXは、DNA結合(Hirota et al., 1997) (Ueno et al., 1999) 又はコ−アクチベータ相互作用(Ema et al., 1999)を促進することにより各種の転写因子を制御することが報告された。それゆえ、本発明者はTRXがCREを介したNGF-介在活性化の調節に関与するかについて分析した。4時間の処理後、NGFはpGL3-c-fos (-99, +42)中でルシフェラーゼ活性の40倍の増大を生じさせたが、pGL3-c-fos (-40, +42)は増大しなかった(図6A)。レポーター遺伝子であるpGL3-c-fos (-99,+42)のNGFに対する応答は,TRXの優性なネガティブミュータントのトランスフェクションにより著しく抑制された。トランス活性化はミュータントTRXにより75%抑制された(図6B)
・考察
本研究において、本発明者はNGFがPC12細胞において、タンパク質及びmRNAレベルでTRX発現を誘導することを見出した。本発明者は、ルシフェラーゼアッセイによりTRX遺伝子の−263〜−217 bp に位置するNGF応答領域を同定した。この領域は、CRE をコンセンサスする類似物を保有するCGTCA配列を含んでいた(Montminy et al., 1986)。さらに、本発明者はERK 阻害剤であるPD98059がNGF-誘発TRX発現を抑制することを示した。NGF-誘発CRE活性化は細胞外シグナリング調節蛋白質キナーゼ(ERK) (Impey et al., 1998)により介在される。これらの結果は、TRX遺伝子がERK及びCREカスケードを通してNGFにより誘導されることを示す。さらなる研究が、NGFによるTRX遺伝子誘発メカニズムの分析について進行中である。
【0027】
本発明者はまた、NGFがPMA (Hirota et al., 1997), UV (Ueno et al., 1999)及びへミン(Kim et al., 2001)と同様にTRXの核移動を誘発することを実証した。本発明者は、ERK阻害剤であるPD98059がNGFのこの効果をブロックすることを示し、この結果はERKがTRXのNGF-誘発核移動の調節に関与することを示唆する。該核移動のメカニズム及び生理学的重要性はさらに詳細に研究されるべきである。TRXのNGF-誘発発現及び核移動はPC12細胞のNGF-誘発分化に関連するようであり、なぜならPD98059及びNACは各々NGF-誘発分化及びTRX発現だけでなく核移動を抑制するからである(図3及び4)。より重要なことには、優勢なネガティブミュータントTRXの過剰発現は、分化をほぼ完全に阻害した(図5)。これらの結果は、TRXがNGFにより誘発されるPC12の分化に必要であることを示す。
【0028】
c-fosのような遺伝子はNGFの作用に要求されると考えられた。c-fos遺伝子の上流制御領域において、CREは神経分化を誘発する各種の細胞外刺激に応答するc-fos転写の調節に決定的に重要である(Ahn et al., 1998) (Sheng et al., 1988)。本発明者は、TRXの優勢なネガティブミュータント型の過剰発現がCREを含むpGL3-c-fos (-99, +42)レポーター遺伝子のNGF-誘発活性化ブロックするが、pGL3-c-fos (-40, +42)はブロックしないことを示した。これらの結果は、TRXがc-fos発現をもたらすCREを介したNGFシグナリングに必要であることを実証する。TRXはJun/Fos (AP-1)を含むDNA-結合タンパク質の活性を調節し、核内還元分子であるレドックスファクター1(Ref-1) と相互作用する(Hirota et al., 1997)。AP-1及びRef-1は分化に関与することが報告された(Sheng and Greenberg, 1990) (Chiarini et al., 2000)。最近、本発明者は、TRX及びRef-1が転写因子とコアクチベータ間の相互作用を調節すること(Ema et al., 1999)、及びCREBの活性化がTRXにより調節されることを報告した(Hirota et al., 2000)。従って、TRXはCREBのDNA又はコアクチベータとの相互作用を増大させ、NGFシグナリングを促進するかもしれない。さらなる研究は、NGFシグナリング経路におけるTRXの関連メカニズムに必要である。
【0029】
NGFは、軸索再生を促進することが示された(Hollowell et al., 1990)。Endohらはコリン作動性ニューロンについてのTRXの神経栄養活性を報告した (Endoh et al., 1993)。本結果は、この知見を確認及び発展させ、TRXがニューロンの分化及び再生についてのNGFの効果を増強する神経栄養性コファクターであることを示唆する
NGFはまた、ニューロン生存因子としても働く。NGFは軸索切断した中隔ニューロンの死を予防することが示された(Pallage et al., 1986)。NGFがなくなるとPC12細胞のアポトーシスを生じ、これはp38 MAPK及びアポトーシスシグナリングキナーゼ1 (ASK1)により媒介される (Xia et al., 1995; Kummer et al., 1997; Kanamoto et al., 2000)。TRXはASK1及びp38 MAPKの内因性阻害剤として働くことが報告され(Saitoh et al., 1998; Hashimoto et al., 1999)、NGFの消失はまたPC 12 細胞におけるTRX発現のダウンレギュレーションを生じる(Bai, et al. unpublished observations)。これらの結果は、NGFによるTRXレベルの維持はニューロン死を予防する役割を果たすことを実証する。TRXの神経損傷に対する保護的役割が示された。TRXは虚血後の星状膠細胞で誘導される(Tomimoto et al., 1993)。トランスジェニックマウスにおけるTRXの過剰発現は、病巣の脳虚血障害(Takagi et al., 1999)及び興奮毒性海馬損傷(Takagi et al., 2000)を軽減する。アルツハイマー病患者の脳におけるTRXの減少した発現が報告されている(Lovell et al., 2000)。NGF投与は、アルツハイマー病患者のコリン作動性ニューロンを維持するために提案された(Serrano Sanchez et al., 2001)。これらの結果及び本発明の結果を総合すると、TRXの投与が神経変性疾患のような神経疾患におけるNGFの効果を増強し得ることを示す。神経変性疾患に対するTRXの治療的可能性を明らかにするためのさらなる研究が進行中である。
実施例2(網膜視細胞についてのデータ)
動物
4週齢の雄BALB/c mice (albino) を日本SLC (静岡,日本),から入手し、実験前の2〜5日間本発明者のコロニールームで飼育した。日本SLCと本発明者の実験室における光強度は300 luxであり、実験室のケージ内の光強度は20−40 luxであった。すべてのマウスを12時間 (8:00 A.M.から8:00 P.M.) の明/暗サイクルにおいて、日本SLC及び本発明者のコロニールームで維持した。
光照射
4週齢のマウスを実験前24時間暗所に置いた。瞳孔を1% 塩酸シクロペントレート点眼剤(参天製薬)で拡張した。麻酔していないマウスを8,000 luxの発散する冷白色蛍光(松下電器産業) に2時間反射インテリア(reflective interior)を備えたケージ中でさらした。すべての光照射は午前10時に開始した。光照射中の温度は25±1.5℃に維持した。照射中、両目が.同程度に照射を受けるように特別の配慮をした。
網膜組織切片の調製
ペントバルビタールによる腹腔内注射により深い麻酔を誘導後、マウスをリン酸緩衝生理食塩水(PBS) (pH, 7.4)を用いて左心室を灌流して 固定前に血液を洗い流した。次いで、PBS中0.25%グルタルアルデヒドを含む新たに調製した4%パラホルムアルデヒドで灌流した。次いで、目を取り除いた。すべての組織を既述のものと同じ固定剤で12時間4℃でパラフィン中に埋入して固定し、視神経円板を含む全網膜を有する1μmの矢状切片に切断した。7-0 絹縫合糸を目の側頭側のランドマークとしておいた。組織切片をスライドガラス上に集め、30分間キシレン及び分量を変えた一連のアルコールで処理し、切片のパラフィンを除去した。
形態計測
視神経円板を含む網膜パラフィン切片(1 μm)をヘマトキシリン−エオジン(H-E)で染色し、各切片の4つの位置のデジタル化カラー画像をPDMC le デジタル画像システム(オリンパス)を用いて得た。2つの画像を視神経円板上部100 〜800 μmの上部網膜から、及び2つを視神経円板下部100 〜800 μmの下部網膜から得た。各画像のヘマトキシリン陽性の光受容体細胞核の数をカウントし、ワン−ウェイ(one-way) ANOVA 、次いでBonfferoni/Dunn post hocテストにより比較した。
【0030】
TdT-介在dUTP ニック末端標識(TUNEL)
TUNELを、in situアポトーシス検出キット(宝酒造)を用い、1-μmパラフィン切片上で行った。3',3'-ジアミノベンゼン(Dako, Carpinteria, CA)を発色剤として使用した。TUNEL-陽性核の数を上記のヘマトキシリン陽性細胞カウントについて使用されたのと同様な方法によりカウントした。
抗体
ウサギ 抗マウスTRX 抗体(ポリクローナル)を既報のように調製した19
マウス及びヒトTRXの免疫組織化学
マウスTRXの免疫組織化学分析のために、本発明者はイムノペルオキシダーゼ法19を使用した。簡潔に述べると、内因性ペルオキシダーゼ活性を0.6% H2O2で不活性化した。一次抗体又はコントロール正常ウサギ血清を加え、4℃で終夜インキュベートした。ビオチン化ヤギ抗ウサギ免疫グロブリン(Biomeda, Foster
City, CA)を二次抗体として使用した。アビジン−ビオチン増幅(Biomeda)を行い、次いで基質である0.1% 3',3'-diaminobenzidine (Dako)でインキュベートした。
マウスTRXのウェスタンブロット
網膜サンプル調製法及びウェスタンブロット法は、既報のように行った15。簡潔に述べると、ペントバルビタールの腹腔内注射により深い麻酔に誘導後、氷冷したリン酸緩衝生理食塩水(PBS) (pH, 7.4)を用いてマウスの左心室を灌流して 固定前に血液を洗い流し、次いで目を除去した。角膜及びレンズを目から取り除き、網膜の内層(網膜神経(neural retina))を顕微鏡下にアイカップから分離した。氷冷PBSでの灌流後の目において、光受容体細胞層と網膜色素上皮細胞層の間の接着は弱くなり、それらは容易に分離された。網膜神経(neural retina)除去後のアイカップは、網膜色素上皮細胞フラクションとして分析した。従って、このフラクションは脈絡膜及び強膜を含んでいた。等量の網膜タンパク質(5 μg protein/lane)を12%ドデシル硫酸ナトリウム(SDS)-ポリアクリルアミドゲル上で電気泳動し、次いで電気泳動的にポリビニリデンジフルオライド (PVDF)膜(Millipore, Bedford, MA)に移した。ブロッキング後、膜を最初の抗体とインキュベートし、次いでペルオキシダーゼ連結第二抗体とインキュベートした。化学ルミネセンスをECLウェスタンブロット検出キット(Amersham Pharmacia Biotech, Buckinghamshire, UK)で検出した。
組換えチオレドキシン(rTRX) の硝子体内注入
5μgのrTRXまたはミュータントrTRX (TRXC32S/C35S)20又は3 μlの0.9%NaClを光照射の2時間前に硝子体内注入した。rTRXを10-μl マイクロインジェクションシリンジを備えた30-G 微細使い捨て針(Hamilton, Reno, NV)を用いて右目の側頭縁から硝子体内注入した。
チロシンリン酸化タンパク質の検出
チロシンリン酸化タンパク質はECL チロシンリン酸化検出システム(RPN 2220/1, Amersham Pharmacia Biotech)を用いて検出した。製造業者の推奨に従い、網膜神経(neural retina)のタンパク質サンプルを調製し、12% SDS-ポリアクリルアミドゲル(10 μg タンパク質/レーン)上で電気泳動し、次いで電気泳動的にPVDF膜に移した。ブロッキング後、膜をペルオキシダーゼ連結抗ホスホチロシン抗体(PY-20, Amersham Pharmacia Biotech) とインキュベートし、次いで化学ルミネセンスをECLウェスタンブロット検出キットで検出した。
酸化タンパク質の検出
酸化タンパク質は、酸化タンパク質検出キット(OxyBlot, Intergen, Purchase, NY)を用いて既報のように検出した17。OxyBlotはカルボニル基の感受性免疫検出試薬を提供する。製造業者のプロトコールに従い、網膜神経の2,4-ジニトロフェニル(DNP)-ヒドラゾン誘導体化タンパク質サンプルを調製し、12% SDS-ポリアクリルアミドゲル電気泳動(5 μg タンパク質/レーン)で分離し、次いでPVDF膜に移した。ブロッキング後、膜をタンパク質のDNP部分に特異的な一次抗体とインキュベートした。タンパク質バンドをマウスTRXに関するウェスタンブロットと同じ方法で検出した。
DNA ラダー
ヌクレオソーム間DNA切断をQuick Apoptotic DNA ladder Detection Kit (MBL, 名古屋,日本)を用いて検出した。製造業者のプロトコールに従い、網膜DNAを抽出し、1% アガロースゲルにロードして電気泳動した。ゲルをエチジウムブロミドで染色し、DNAバンドを紫外線トランスルミネーターで可視化した。
統計的分析
全ての統計的分析は、StatView ソフトウェア、 バージョン5.0 (SAS, Cary, NC).を用いるマッキントッシュのパーソナルコンピュータ上で行った。
結果
網膜における内因性TRXの発現
網膜損傷の重篤度を決定するために、網膜切片中のトータル及びTUNEL-陽性 光受容体核(図7)を光照射の前、直後、光照射後12, 24, 48及び96時間でカウントした。光照射されていないマウスの光受容体細胞数と比較して(平均± SD; 248.5 ± 11.4 細胞/ 100μm)、該数は光照射の24時間後(182.0 ± 10.7, P < 0.05)及びその後(178.3 ± 18.3 細胞/ 100μm, P < 0.01 及び 50.0 ± 9.8 細胞/ 100μm, P < 0.01 、各々48時間及び96時間)に有意に減少した。TUNEL-陽性核は光照射の12時間後に観察され(平均±SD; 8.7 ± 2.2 %)、そして光照射の96時間後まで維持された (44.2 ± 6.9 %, 34.5 ± 2.4 %, 及び38.0 ± 11.7 % 各々24, 48, 及び96 時間において)。.
TRXは様々な酸化ストレスに応答してアップレギュレーションされるので、本発明者は免疫組織化学(図8A)及びウェスタンブロット(図8B、C)による光酸化ストレスに網膜が応答する間のTRX発現を分析した。光照射の直後、TRXの核標識が網膜後極の核内層及び核外層において観察された; 標識は虹彩直後の網膜周辺においては有意ではない。核内層中のTRX標識は光照射の24時間後及びそれ以降に消失した。一方、核外層の標識は96時間まで維持された。光照射の24時間後、強力なTRX標識が後極の網膜色素上皮(RPE)で観察され、それは光照射後96時間まで維持された。標識は分析された時間経過を通じ、周辺網膜のRPEにおいて有意ではなかった。TRXのウェスタンブロットの結果は、TRXのアップレギュレーションが網膜神経及びRPEフラクションにおいて光照射の12時間後及び24時間後で示された(図8B及びC)。光照射の12時間後及び24時間後で、光照射前の網膜神経及びRPEフラクションの両方においてクマッシーブルー染色されたゲル中の顕著なバンドの変化はなかった(データは示さない)。
rTRX注射マウスの網膜サンプルにおける酸化及びチロシンリン酸化されたタンパク質の検出
本発明者は、rTRX, ビヒクル又はミュータントrTRX を硝子体内のキャビティに光照射前に注入したマウスの光照射後の酸化ストレスを評価するために、タンパク質の酸化及びチロシンリン酸化を分析した。
【0031】
ビヒクル又はミュータントrTRXマウスにおいて、網膜神経中の酸化されたタンパク質量は光照射直後に増大した(図9A)。ビヒクル又はミュータントrTRX処理マウスと比較して、酸化されたタンパク質の量は、rTRX-処理マウスで減少した。光を照射しないマウス由来の網膜標本では、チロシンリン酸化された2本の強い強度のバンド及び3本の弱いバンドが検出された(図9B)。光照射の直後、強い強度の2つのバンドのうちの1つが増強され、弱い強度の追加の1つのバンドがビヒクル又はミュータントrTRX処理マウスで検出された。ビヒクル又はミュータントrTRX処理マウスと比較して、これらのバンドの増強はrTRX-処理マウスでより顕著ではなかった。
光酸化ストレスに対するrTRXの細胞保護効果
本発明者は、次いで網膜損傷に対するrTRX投与の効果を調べた。rTRX, ビヒクルまたはミュータントrTRXのいずれかを硝子体内のキャビティに光照射前に注入し、生存する光受容体細胞核をこれらの目の間で比較(図10A,B)。光照射の96時間後、光受容体細胞核の数は. ビヒクル(P<0.001)またはミュータント rTRX-処理の目(P<0.001)よりもrTRX-処理の目で有意に高かった。ヌクレオソーム間のDNAラダーはrTRX-, ビヒクル-またはミュータントrTRX-処理の目由来の網膜サンプルで評価した。光照射の36時間後、DNAラダーはビヒクル-及びミュータントrTRX-処理マウス由来の網膜神経サンプルでは検出されたが、rTRX-処理マウス由来の網膜神経サンプルでは検出されなかった(データは示さない)。
【0032】
光照射の96時間後、DNAラダーはビヒクル及びミュータント rTRX-処理マウス由来の網膜神経サンプルで検出された。これに対し、rTRX-処理マウス由来の網膜神経サンプルでは減少した(図10C)。
考察
光照射は光受容体核の有意な損失の原因となる(図7)。TUNEL-陽性光受容体細胞核(図7)及びDNAラダー形成(図10C)は光照射後の網膜で観察されるので、本発明者の現在のデータはアポトーシスが光受容体細胞の細胞死の主要な経路であり、このことは以前の文献10と一致する。免疫組織化学法によると、TRXは網膜神経及びRPEの両方において、光照射後にアップレギュレートされ、虹彩のごく近傍の網膜周辺(peripheral retina)ではアップレギュレートされなかった(図8A)。ウェスタンブロッティングにおいて、TRXは網膜神経及びRPEフラクションの両方においてアップレギュレートされた(図8B及び8C)。これらを合わせると、本発明の結果はTRXが光誘導性の内因性分子であり、TRX が光による網膜神経の再生において重要な役割を果たしていることを示す。タンパク質酸化はフリーラジカル産生により生じ、srcファミリーキナーゼ、ホスファチジルイノシトール3-キナーゼ及びマイトージェン活性化蛋白質キナーゼを含むチロシンキナーゼが酸化ストレスにより活性化される12,22,23。本研究は、酸化及びチロシンリン酸化タンパク質の両方の光照射後の網膜神経における増強がrTRX-処理マウスで減少するが,ミュータント rTRX-処理マウスでは減少せず(図9A,B),このことはrTRXの硝子体内投与が網膜における光酸化ストレスによる網膜神経の損傷を減少し、その保存された活性部位におけるシステイン残基が光酸化ストレスの減少に重要な役割を担うことを示唆する。
【0033】
ビヒクル処理されたマウスと比較すると、光受容体細胞核及びDNAラダー形成の減少は、rTRX-処理マウスにおいて有意に除外され、一方、その効果はミュータントTRX-処理マウスで消失した(図10)。この結果は、TRXが網膜光障害において抗アポトーシス効果を有し、その保存活性部位におけるシステイン残基がこの細胞保護に重要な役割を担うことを示唆する。以前の研究は、外因性rTRXの虚血/再灌流障害の肺16、網膜18及び血管内皮障害24に対する細胞保護効果を示唆する。外因性rTRXが網膜光受容体のダメージを改善するメカニズムは知られていない細胞外空間及び細胞膜における光酸化により誘導される活性酸素種はTRX依存性ペルオキシダーゼ25又は一重項酸素又はヒドロキシラジカルに対するTRXの直接消去作用26により減少される可能性がある。他の可能性は外因性TRXが細胞膜に結合し、細胞内空間に取り込まれることである。
【0034】
以前に、アスコルビン酸27、ジメチルチオウレア28,29及びWR-779138の様な抗酸化剤に対する細胞保護効果が示された。本発明の結果は、網膜光障害に対する抗酸化剤の役割をさらに強調するものである。さらに、チオレドキシンはレドックスレギュレーター、転写因子の調節機能及びストレスシグナリングキナーゼとしての作用を発揮し得12,13、これらの作用メカニズムは網膜光ストレスに対するチオレドキシンの細胞保護効果に重要であるかもしれない。
【0035】
過剰な光はヒトの加齢に関係する黄斑変性及びおそらく網膜色素変性のいくつかの形態1,2の進行及び重篤度を増強し得る。眼科のプラクティスにおいて使用される顕微鏡の操作に由来する広いスペクトル光のハザードは光黄斑症の原因となり得る3,4。本発明は外因性TRX投与により網膜光障害保護の可能性を実証した。さらに本発明は、内因性TRXの誘導が網膜光障害に対する増大した耐性と関連することを示唆する。本発明者は、プロスタグランジンE130,31及びゲラニルゲラニルアセトン32が細胞又は組織において効果的に内因性TRXを誘導することを示した。これらのTRX誘導剤を用いたTRX増強は、ヒトの光酸化ストレス関連網膜疾患の保護のための有用な治療的戦略になり得る
実施例2に関するReferences
1. Cruickshanks KJ, Klein R, Klein BE. Sunlight and age-related macular degeneration. The Beaver Dam Eye Study. Arch Ophthalmol. 1993;111(4):514-518.
2. Cideciyan AV, Hood DC, Huang Y, et al. Disease sequence from mutant rhodopsin allele to rod and cone photoreceptor degeneration in man. Proc Natl Acad Sci U S A. 1998;95(12):7103-7108.
3. Byrnes GA, Chang B, Loose I, Miller SA, Benson WE. Prospective incidence of photic maculopathy after cataract surgery. Am J Ophthalmol. 1995;119(2):231-232.
4. Minckler D. Retinal light damage and eye surgery. Ophthalmology. 1995;102(12):1741-2.
5. Wiegand RD, Giusto NM, Rapp LM, Anderson RE. Evidence for rod outer segment lipid peroxidation following constant illumination of the rat retina. Invest Ophthalmol Vis Sci. 1983;24(10):1433-1435.
6. Penn JS, Naash MI, Anderson RE. Effect of light history on retinal antioxidants and light damage susceptibility in the rat. Exp Eye Res. 1987;44(6):779-788.
7. Organisciak DT, Wang HM, Xie A, Reeves DS, Donoso LA. Intense-light mediated changes in rat rod outer segment lipids and proteins. Prog Clin Biol Res. 1989;314:493-512.
8. Reme CE, Braschler UF, Roberts J, Dillon J. Light damage in the rat retina: effect of a radioprotective agent (WR-77913) on acute rod outer segment disk disruptions. Photochem Photobiol. 1991;54(1):137-142.
9. De La Paz MA, Zhang J, Fridovich I. Antioxidant enzymes of the human retina: effect of age on enzyme activity of macula and periphery. Curr Eye Res. 1996;15(3):273-278.
10. Hafezi F, Steinbach JP, Marti A, et al. The absence of c-fos prevents light-induced apoptotic cell death of photoreceptors in retinal degeneration in vivo. Nat Med. 1997;3(3):346-349.
11. Holmgren A. Thioredoxin. Annu Rev Biochem. 1985;54:237-271.
12. Saitoh M, Nishitoh H, Fujii M, et al. Mammalian thioredoxin is a direct inhibitor of apoptosis signal- regulating kinase (ASK) 1. Embo J. 1998;17(9):2596-2606.
13. Hirota K, Murata M, Sachi Y, et al. Distinct roles of thioredoxin in the cytoplasm and in the nucleus. A two-step mechanism of redox regulation of transcription factor NF- kappaB. J Biol Chem. 1999;274(39):27891-27897.
14. Nakamura H, Nakamura K, Yodoi J. Redox regulation of cellular activation. Annu Rev Immunol. 1997;15:351-369.
15. Ohira A, Honda O, Gauntt CD, et al. Oxidative stress induces adult T cell leukemia derived factor/thioredoxin in the rat retina. Lab Invest. 1994;70(2):279-285.
16. Okubo K, Kosaka S, Isowa N, et al. Amelioration of ischemia-reperfusion injury by human thioredoxin in rabbit lung. J Thorac Cardiovasc Surg. 1997;113(1):1-9.
17. Takagi Y, Mitsui A, Nishiyama A, et al. Overexpression of thioredoxin in transgenic mice attenuates focal ischemic brain damage. Proc Natl Acad Sci U S A. 1999;96(7):4131-4136.
18. Shibuki H, Katai N, Kuroiwa S, Kurokawa T, Yodoi J, Yoshimura N. Protective effect of adult T-cell leukemia-derived factor on retinal ischemia-reperfusion injury in the rat. Invest Ophthalmol Vis Sci. 1998;39(8):1470-1477.
19. Takagi Y, Gon Y, Todaka T, et al. Expression of thioredoxin is enhanced in atherosclerotic plaques and during neointima formation in rat arteries. Lab Invest. 1998;78(8):957-966.
20. Hirota K, Matsui M, Iwata S, Nishiyama A, Mori K, Yodoi J. AP-1 transcriptional activity is regulated by a direct association between thioredoxin and Ref-1. Proc Natl Acad Sci U S A. 1997;94(8):3633-3638.
21. Oliver CN, Starke-Reed PE, Stadtman ER, Liu GJ, Carney JM, Floyd RA. Oxidative damage to brain proteins, loss of glutamine synthetase activity, and production of free radicals during ischemia/reperfusion- induced injury to gerbil brain. Proc Natl Acad Sci U S A. 1990;87(13):5144-5147.
22. Nakamura K, Hori T, Sato N, Sugie K, Kawakami T, Yodoi J. Redox regulation of a src family protein tyrosine kinase p56lck in T cells. Oncogene. 1993;8(11):3133-3139.
23. Nakamura K, Hori T, Yodoi J. Alternative binding of p56lck and phosphatidylinositol 3-kinase in T cells by sulfhydryl oxidation: implication of aberrant signaling due to oxidative stress in T lymphocytes. Mol Immunol. 1996;33(10):855-865.
24. Nakamura H, Matsuda M, Furuke K, et al. Adult T cell leukemia-derived factor/human thioredoxin protects endothelial F-2 cell injury caused by activated neutrophils or hydrogen peroxide [published erratum appears in Immunol Lett 1994 Oct;42(3):213]. Immunol Lett. 1994;42(1-2):75-80.
25. Chae HZ, Chung SJ, Rhee SG. Thioredoxin-dependent peroxide reductase from yeast. J Biol Chem. 1994;269(44):27670-27678.
26. Das KC, Das CK. Thioredoxin, a singlet oxygenquencher and hydroxyl redical scavenger: redox independent functions. Biochem Biophys Res Commun.2000; 277(2): 443-447.
27. Organisciak DT, Wang HM, Li ZY, et al. The protective effect of ascorbate in retinal light damage of rats. Invest Ophthalmol Vis Sci 1985;26(11): 1580-1588.
28. Lam S, Tso MO, Gurne DH. Amelioration of retinal photic injury in albino rats by dimethylthiourea. Arch Ophthalmol 1990; 108(12): 1751-1757.
29. Organisciak DT, Darrow RM, Jiang YI, et al. Protection by dimethylthiourea against retinal light damage in rats. Invest Ophthalmol Vis Sci 1992; 33(5): 1599-1609.
30. Yamamoto M, Ohira A, Honda O, et al. Analysis of localization of adult T-cell leukemia-derived factor in the transient ischemic rat retina after treatment with OP-1206 alpha-CD, a prostaglandin E1 analogue. J Histochem Cytochem. 1997;45(1):63-70.
31. Yamamoto M, Sato N, Tajima H, et al. Induction of human thioredoxin in cultured human retinal pigment epithelial cells through cyclic AMP-dependent pathway; involvement in the cytoprotective activity of prostaglandin E1. Exp Eye Res. 1997;65(5):645-652.
32. Hirota K, Nakamura H, Arai T, et al. Geranylgeranylacetone enhances expression of thioredoxin and suppresses ethanol-induced cytotoxicity in cultured hepatocytes. Biochem Biophys Res Commun. 2000;275(3):825-830.
実施例3
PC12細胞を10%ウシ血清(HS)及び5%ウシ胎児血清(FCS)、100μg/mlストレプトマイシン及び100U/mlペニシリンを含むRPMI1640培地中でインキュベートした。細胞を5%CO2下の湿潤雰囲気で37℃でインキュベートした。0,0.3,1mM MPP+(1−メチル−4−フェニルピリジニウムイオン)とともに3時間インキュベーション後、PC12細胞を回収し、細胞ライゼートを調製した。TRX発現をPC12細胞中ウェスタンブロットにより検出した。簡潔に述べると、細胞ライゼートは95℃で5分間維持し、次に12%ドデシル硫酸アクリルアミドゲルにアプライし、電気泳動し(5μg/レーン)、次にトランスファーメンブラン(Millipore, Bedford, MA)に移した。0.5%Tween20を含むリン酸緩衝生理食塩水(PBS)中5%スキムミルクでブロッキング後、該メンブランを1時間、ラットTRXと交叉反応する抗マウスTRX抗体(Y.Takagi et al. J.Cereb.Blood Flow Metab. 18(1998) pp.206-214)とインキュベートした。次いで、該メンブランをペルオキシダーゼ−複合化抗ウサギイムノグロブリン抗体とインキュベートした。結合したペルオキシダーゼを製造業者の仕様書に従い化学発光(ECLTM(RPN2106, Amersham Pharmacia Biotech)ウェスタンブロット検出キット)で促進した。各サンプルにおけるTRX量をコンピュータ化されたデンシトメータ、NIHイメージを用いて各バンドの密度を分析することにより評価した。MPP+処理条件下、TRX発現はPC12細胞で減少した(図11)。類似の実験を3回行った。
【0036】
次に、本発明者は、乳酸デヒドロゲナーゼ(LDH)放出アッセイによりPC12細胞の生存度に関するMPP+の効果を詳細に検討した。損傷細胞から放出されたLDHは細胞培養物のアリコートで測定された。残存する細胞性LDHをPBS中0.2%Tween20で細胞を溶解することにより得た。細胞培養物又は細胞ライゼートの50μlサンプル中のLDHは、製造業者の方法に従いLDHアッセイキット(kyokuto, Tokyo)を用いて測定した。細胞溶解パーセントを(培地中のLDH/ウェル当たりの総LDH)のLDH比として測定した。ここで、総LDHは培地+細胞ライゼートのLDHを指す。MPP+とともに培養すると、細胞生存度は用量依存的に減少した(図12)。類似の実験を3回繰り返した。
【0037】
TRXの過剰発現がMPP+誘発損傷からのPC12細胞を保護するかどうかを測定するために、PC12細胞(1×107/ml)10%HS及び5%FCSを補足したRPMI1640培地で終夜培養した。細胞を組織ディッシュから機械的に脱着させ、血清を含まないRPMI1640培地で3回洗浄し、次いで細胞を10μgのpBI-EGFP-wtTRXと混合した。pBI-EGFP-wtTRXは、pBI-EGFPコントロールベクター(Clontech)にTRX cDNA断片(Y.Tagaya et al. EMBO J. 8 (1989), pp.757-764)を連結することにより構築した。その後、細胞を5分間氷上でインキュベートし、適当な単回電気パルスにさらした。一時的なTRX過剰発現及び組換えヒトTRXの投与は、PC12細胞がMPP+と24時間インキュベートしたときのMPP+誘発損傷を抑制した(図13A、B)。
【0038】
上記の結果は、TRXが神経細胞の保護効果を有し、それによりMPP+の損傷誘発作用を抑制したことを示す。
実施例4
チオレドキシントランスジェニック(trx-tg)マウスは、β−アクチンプロモーターの制御下にヒトTRXトランスジーンを保有し、脳を含む全身でヒトTRXを発現するC57BL/6マウス(野生型)である(Takagi Y. et al., Proc.Natl.Acad.Sci. USA, 96(1999) 4131-4136)。本発明者は、ヒトTRXがtrx-tgの網膜全体で発現されていることを確認した(図14A、B)。網膜サンプルの調製法、免疫組織化学、及びウェスタンブロッティングは、既述のように行った(Takagi Y. et al., Proc.Natl.Acad.Sci. USA, 96(1999) 4131-4136; Ohira A. et al., Lab. Invest., 70 (1994) 279-285)。従って、本発明者は、trx-tgマウスが強い光で誘発される網膜損傷により抵抗性であるかについて評価した。本研究の全ての方法は、Use of Animals in Ophthalmic and Vision Researchに関するARVOステートメントに従った。
【0039】
第1に、本発明者は、抗マウスTRX抗体を用いたウェスタンブロッティングによりtrx-tg及び野生型マウスの網膜への光曝露の前後における内因性マウスTRXを分析した(Takagi Y. et al., Proc.Natl.Acad.Sci. USA, 96(1999) 4131-4136; Ohira A. et al., Lab. Invest., 70 (1994) 279-285)。光曝露前、3−4週齢の雄マウスを暗所で48時間順応させ、その瞳孔を0.5%トロピカミド及び0.5%塩酸フェニレフリン点眼剤(参天製薬)を用いて拡張させた。麻酔していないマウスを、2時間反射型インテリアを備えたケージ中で8000 luxの拡散性の昼白色蛍光線(松下電器産業)に曝した(Wenzel A. et al., J. Neurosci., 20 (2000) 81-88)。照明中、眼が同レベルの光を受けるように注意した。光曝露前、trx-tgマウスの網膜における内因性マウスTRXの発現を野生型マウスのものと比較できた。光曝露の全24時間後、内因性マウスTRXの2倍のアップレギュレーションがtrx-tg及び野生型マウスの両方において観察され、そこでは両方のマウスにおいて顕著な相違はなかった(データは示さない)。trx-tgマウスの各組織におけるヒトTRXタンパク質の量は内因性マウスTRXタンパク質より3−6倍大きいことが報告されている(Takagi Y. et al., Proc.Natl.Acad.Sci. USA, 96(1999) 4131-4136)。さらに、β−アクチンプロモーターの活性は内因性マウスTRXプロモーターの活性と比較して十分高いと考えられる。結果として、網膜における全TRXタンパク質の量は、光曝露の前後において野生型マウスよりもtrx-tgマウスにおいて相当多いと考えられる。
【0040】
次に、本発明者は、trx-tg及び野生型マウスの光曝露後の酸化ストレスを評価するためにタンパク質の酸化及びチロシンリン酸化を分析した。酸化されたタンパク質は、既述のように(Takagi Y. et al., Proc.Natl.Acad.Sci. USA, 96(1999) 4131-4136)酸化タンパク質検出キット(OxyBlot, Intergen, Purchase, NY)を用いて検出した。該キットはカルボニル基の敏感な免疫検出のための試薬を提供する。製造業者のプロトコールに従い、2,4-ジニトロフェニル(DNP)ヒドラゾン誘導体化網膜タンパク質サンプルを調製し、12%ドデシル硫酸ナトリウム(SDS)ポリアクリルアミドゲル電気泳動(10μgタンパク質/レーン)で分離し、ポリビニリデンフルオライド(PVDF)膜に移した。ブロッキング後、膜をタンパク質のDNP部分に特異的な1次抗体とインキュベートした。次いで、タンパク質バンドをヒトTRXと同じウェスタンブロッティング法により検出した。チロシンリン酸化タンパク質をECLチロシンリン酸化検出システム(RPN 2220/l, Amersham Biosciences)を用いて検出した。製造業者の推奨に従い、網膜タンパク質サンプルを調製し、12%SDSポリアクリルアミドゲル(10μgタンパク質/レーン)で電気泳動し、次に電気泳動的にPVDF膜に移した。ブロッキング後、膜をペルオキシダーゼ連結抗ホスホチロシン抗体(PY-20, Amersham Biosciences)とインキュベートし、化学発光をECLウェスタンブロット検出キットで検出した。野生型マウスにおいて、網膜神経における酸化蛋白量は光曝露前と比較して光曝露直後に増大した(図15A、レーン2)。野生型マウスと比較して、酸化蛋白量はtrx-tgマウスで減少した(図15A、レーン4)。野生型マウスの網膜標本において、チロシンリン酸化タンパク質の3つの強いバンド(矢印)が光曝露前に検出された(図15B、レーン1)。光曝露直後、これらのバンドは増強され、少なくとも2つの追加のバンド(矢頭)が検出された(図15B、レーン2)。野生型マウスと比較して、これらのバンドの増大はtrx-tgマウスではあまり顕著ではなかった(図15B、レーン4)。タンパク質酸化はフリーラジカル産生の結果であり(Oliver C.N. et al., Proc.Natl.Acad.Sci. USA, 87(1990) 5144-5147)、srcファミリーキナーゼ、ホスファチジルイノシトール3−キナーゼ及びマイトジェン活性化蛋白質キナーゼを含むチロシンキナーゼが酸化ストレスにより活性化される(Nakamura K. et al., Mol. Immunol., 33(1996) 855-865; Saitoh, M. et al., EMBO J., 17(1998) 2596-2606)。従って、この結果は、TRXの過剰発現が網膜における光酸化ストレスを減少させることを示す。
【0041】
強力な光は視細胞のDNA損傷を引き起こす(Organisciak D.T. et al., Photochem Photobiol., 70 (1999) 261-268)。光誘発DNA損傷に対する過剰発現されたTRXの細胞保護効果を評価するために、本発明者は、8-ヒドロキシ-2-デオキシグアノシンについての定量的免疫組織化学(8OhdG指数)を用いた。パラフィン処理網膜サンプルの調製法、アルカリホスファターゼ法を用いた8OhdGのための免疫組織化学及び8OhdG免疫染色の定量法は、既知である(Ohira A., et al., Lab. Invest., 70(1994) 279-285; Toyokuni S. et al., Lab. Invest., 76(1997) 365-374)。抗8OhdGモノクローナル抗体をNOF Corporationから購入した。8OhdG指数を計算するために、各マウスの2つの位置(上部及び下部網膜、視神経円板から約100μm)でのデジタル化されたカラー画像をデジタルイメージングシステム(PDMC le, オリンパス)を用いてPICTファイルとして得、マッキントッシュパーソナルコンピュータ上のNational Institutes of Health image version 1.61ソフトウェアを用いて分析した。光曝露前マウス系統間での視細胞の核(外顆粒層)における8OhdG指数の有意な差異はなかった(図16B、−2h)。光曝露の12時間後及び24時間後、8OhdG指数はtrx-tgマウスよりも野生型マウスで有意に高かった(各々、P<0.01及びP<0.01)(図16B、12h及び24h)。野生型マウスにおいて、強い染色が光曝露24時間後で維持された(図16A、左パネル)。一方、trx-tgマウスの外顆粒層の染色は光曝露24時間後に減少した(図16A、右パネル)。主要なDNA塩基改変産物である8OhdGはヒドロキシラジカル、一重項酸素、または光動力作用のいずれかにより誘導され、酸化的ストレス誘発DNA損傷の確立したマーカーである(Toyokuni S. et al., Lab. Invest., 76(1997) 365-374)。従って、この結果は、過剰発現したTRXが光酸化ストレスにより生じる視細胞のDNA損傷を防止することを示す。
【0042】
網膜電図記録法(ERG)は、視細胞により生じる作用電位(a−波)及びMullerグリア細胞と相互作用する内顆粒層の二次ニューロンにより生じる作用電位(b−波)の記録である。従って、a−およびb−波の振幅はこれらの最初の2つの網膜ニューロンの機能的状態を反映する。網膜機能に関する過剰発現したTRXでの効果をテストするために、本発明者は、両方のマウス系統間でa−波及びb−波を比較した。フラッシュERGはPE-3000(Tomey, Nagoya)を用いて記録した。金のコンタクトレンズ電極(直径3mm、1.5-mmベースカーブ、京都コンタクトレンズ)を左目上に置き、同一の参照電極を口内に、外側電極を左脚パッド上に置いた。光曝露前、a−波およびb−波の振幅はこれらの系統間で異ならなかった(図17,−2h)。光曝露後、a−波およびb−波の振幅は、6時間(各々、P<0.01及びP<0.05)及び12時間(各々、P<0.01及びP<0.05)で、野生型マウスと比較してtrx-tgマウスで有意に高かった(図17,6h及び12h)。従って、この結果は、過剰発現したTRXが光損傷を受けた網膜神経を再生することを示す。
参考文献
Ahn S, Olive M, Aggarwal S, Krylov D, Ginty DD, Vinson C (1998) A dominant-negative inhibitor of CREB reveals that it is a general mediator of stimulus-dependent transcription of c-fos. Mol Cell Biol 18:967-977.
Boussif O, Lezoualc'h F, Zanta MA, Mergny MD, Scherman D, Demeneix B, Behr JP (1995) A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc Natl Acad Sci U S A 92:7297-7301.
Chen RH, Sarnecki C, Blenis J (1992) Nuclear localization and regulation of erk- and rsk-encoded protein kinases. Mol Cell Biol 12:915-927.
Chiarini LB, Freitas FG, Petrs-Silva H, Linden R (2000) Evidence that the bifunctional redox factor / AP endonuclease Ref-1 is an anti-apoptotic protein associated with differentiation in the developing retina. Cell Death Differ 7:272-281.
Connor B, Dragunow M (1998) The role of neuronal growth factors in neurodegenerative disorders of the human brain. Brain Res Rev 27:1-39.
Ema M, Hirota K, Mimura J, Abe H, Yodoi J, Sogawa K, Poellinger L, Fujii-Kuriyama Y (1999) Molecular mechanisms of transcription activation by HLF and HIF1alpha in response to hypoxia: their stabilization and redox signal-induced interaction with CBP/p300. EMBO J 18:1905-1914.
Endoh M, Kunishita T, Tabira T (1993) Thioredoxin from activated macrophages as a trophic factor for central cholinergic neurons in vitro. Biochem Biophys Res Commun 192:760-765.
Ginty DD, Bonni A, Greenberg ME (1994) Nerve growth factor activates a Ras-dependent protein kinase that stimulates c-fos transcription viaphosphorylation of CREB. Cell 77:713-725.
Greene LA, Tischler AS (1976) Establishment of a noradrenergic clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor. Proc Natl Acad Sci U S A 73:2424-2428.
Hashimoto S, Matsumoto K, Gon Y, Furuichi S, Maruoka S, Takeshita I, Hirota K, Yodoi J, Horie T (1999) Thioredoxin negatively regulates p38 MAP kinase activation and IL-6 production by tumor necrosis factor-alpha. Biochem Biophys Res Commun 258:443-447.
Hirota K, Matsui M, Iwata S, Nishiyama A, Mori K, Yodoi J (1997) AP-1 transcriptional activity is regulated by a direct association between thioredoxin and Ref-1. Proc Natl Acad Sci U S A 94:3633-3638.
Hirota K, Matsui M, Murata M, Takashima Y, Cheng FS, Itoh T, Fukuda K, Yodoi J (2000) Nucleoredoxin, glutaredoxin, and thioredoxin differentially regulate NF-kappaB, AP-1, and CREB activation in HEK293 cells. Biochem
Biophys Res Commun 274:177-182.
Hollowell JP, Villadiego A, Rich KM (1990) Sciatic nerve regeneration across gaps within silicone chambers: long-term effects of NGF and consideration of
axonal branching. Exp Neurol 110:45-51.Holmgren A (1985) Thioredoxin. Annu Rev Biochem 54:237-271. Hori K, Katayama M, Sato N, Ishii K, Waga S, Yodoi J (1994) Neuroprotection by glial cells through adult T cell leukemia-derived factor/human thioredoxin (ADF/TRX). Brain Res 652:304-310.
Impey S, Obrietan K, Wong ST, Poser S, Yano S, Wayman G, Deloulme JC, Chan G, Storm DR (1998) Cross talk between ERK and PKA is required for Ca2+ stimulation of CREB-dependent transcription and ERK nuclear translocation. Neuron 21:869-883.
Kamata H, Tanaka C, Yagisawa H, Matsuda S, Gotoh Y, Nishida E, Hirata H (1996) Suppression of nerve growth factor-induced neuronal differentiation of PC12 cells. N-acetylcysteine uncouples the signal transduction from ras to the mitogen-activated protein kinase cascade. J Biol Chem 271:33018-33025.
Kanamoto T, Mota M, Takeda K, Rubin LL, Miyazono K, Ichijo H, Bazenet CE (2000) Role of apoptosis signal-regulating kinase in regulation of the c-Jun N-terminal kinase pathway and apoptosis in sympathetic neurons. Mol Cell Biol 20:196-204.
Kane DJ, Sarafian TA, Anton R, Hahn H, Gralla EB, Valentine JS, Ord T, Bredesen DE (1993) Bcl-2 inhibition of neural death: decreased generation of reactive oxygen species. Science 262:1274-1277..Kaplan DR, Martin-Zanca D, Parada LF (1991) Tyrosine phosphorylation and tyrosine kinase activity of the trk proto-oncogene product induced by NGF. Nature 350:158-160.
Kim YC, Masutani H, Yamaguchi Y, Itoh K, Yamamoto M, Yodoi J (2001) Hemin-induced activation of the thioredoxin gene by Nrf2. A differential regulation of the antioxidant responsive element by a switch of its binding factors. J Biol Chem 276:18399-18406.
Kummer JL, Rao PK, Heidenreich KA (1997) Apoptosis induced by withdrawal of trophic factors is mediated by p38 mitogen-activated protein kinase.
J Biol
Chem 272:20490-20494.
Lo DC (1992) Signal transduction and regulation of neurotrophins. Curr Opin Neurobiol 2:336-340.
Lovell MA, Xie C, Gabbita SP, Markesbery WR (2000) Decreased thioredoxin and increased thioredoxin reductase levels in Alzheimer's disease brain. Free Radic Biol Med 28:418-427.
Mansur K, Iwahashi Y, Kiryu-Seo S, Su Q, Namikawa K, Yodoi J, Kiyama H (1998) Up-regulation of thioredoxin expression in motor neurons after nerve injury. Brain Res Mol Brain Res 62:86-91.
Maruyama T, Kitaoka Y, Sachi Y, Nakanoin K, Hirota K, Shiozawa T, Yoshimura Y, Fujii S, Yodoi J (1997) Thioredoxin expression in the human endometrium during the menstrual cycle. Mol Hum Reprod 3:989-993.
Masutani H, Magnaghi-Jaulin L, Ait-Si-Ali S, Groisman R, Robin P, Harel-Bellan A.(1997) Activation of the c-fos SRE through SAP-1a. Oncogene 15:1661-1669.
Masutani H, Ueno M, Ueda S and Yodoi J (1999) in Antioxidant and redox regulation of genes (Sen, C.K., Sies, H., Baeuerle, P.A.,eds), pp.297-311, Academic Press, San Diego
Milbrandt J (1986) Nerve growth factor rapidly induces c-fos mRNA in PC12 Rat pheochromocytoma cells. Proc Natl Acad Sci U S A 83:4789-4793.
Montminy MR, Sevarino KA, Wagner JA, Mandel G, Goodman RH (1986) Identification of a cyclic-AMP-responsive element within the rat somatostatin gene. Proc Natl Acad Sci U S A 83:6682-6686.
Nakamura H, Matsuda M, Furuke K, Kitaoka Y, Iwata S, Toda K, Inamoto T, Yamaoka Y, Ozawa K, Yodoi J (1994) Adult T cell leukemia-derived factor/human thioredoxin protects endothelial F-2 cell injury caused by activated neutrophils or hydrogen peroxide. Immunol Lett 42:75-80.
Nakamura H, Nakamura K, Yodoi J (1997) Redox regulation of cellular activation. Annu Rev Immunol 15:351-369.
Nishiyama A, Matsui M, Iwata S, Hirota K, Masutani H, Nakamura H, Takagi Y, Sono H, Gon Y, Yodoi J (1999) Identification of thioredoxin-binding protein-2/ vitamin D(3) up-regulated protein 1 as a negative regulator of thioredoxin function and expression. J Biol Chem 274:21645-21650.
Pallage V, Toniolo G, Will B, Hefti F (1986) Long-term effects of nerve growth factor and neural transplants on behavior of rats with medial septal lesions. Brain Res 386:197-208.
Saitoh M, Nishitoh H, Fujii M, Takeda K, Tobiume K, Sawada Y, Kawabata M, Miyazono K, Ichijo H (1998) Mammalian thioredoxin is a direct inhibitor of apoptosis signal-regulating kinase (ASK) 1. EMBO J 17:2596-2606.
Serrano Sanchez T, Robinson Agramonte Md M, Lorigados Pedre L, Diaz Armesto I, Gonzalez Fraguela ME, Dorta-Contreras AJ (2001) Endogenous nerve growth factor in patients with Alzheimer s disease. Rev Neurol 32:825-828.
Sheng M, Dougan ST, McFadden G, Greenberg ME (1988) Calcium and growth factor pathways of c-fos transcriptional activation require distinct upstream regulatory sequences. Mol Cell Biol 8:2787-2796.
Sheng M, Greenberg ME (1990) The regulation and function of c-fos and other immediate early genes in the nervous system. Neuron 4:477-485.
Tagaya Y, Maeda Y, Mitsui A, Kondo N, Matsui H, Hamuro J, Brown N, Arai K, Yokota T, Wakasugi H, Yodoi J. (1989) ATL-derived factor (ADF), an IL-2 receptor/Tac inducer homologous to thioredoxin; possible involvement of dithiol-reduction in the IL-2 receptor induction. EMBO J 8:757-764.
Takagi Y, Horikawa F, Nozaki K, Sugino T, Hashimoto N, Yodoi J (1998a) Expression and distribution of redox regulatory protein, thioredoxin during transient focal brain ischemia in the rat. Neurosci Lett 251:25-28..Takagi Y, Tokime T, Nozaki K, Gon Y, Kikuchi H, Yodoi J (1998b) Redox control of neuronal damage during brain ischemia after middle cerebral artery occlusion in the rat: immunohistochemical and hybridization studies of thioredoxin. J Cereb Blood Flow Metab 18:206-214.
Takagi Y, Gon Y, Todaka T, Nozaki K, Nishiyama A, Sono H, Hashimoto N, Kikuchi H, Yodoi J (1998c) Expression of thioredoxin is enhanced in atherosclerotic plaques and during neointima formation in rat arteries. Lab Invest 78:957-966.
Takagi Y, Mitsui A, Nishiyama A, Nozaki K, Sono H, Gon Y, Hashimoto N, Yodoi J (1999) Overexpression of thioredoxin in transgenic mice attenuates focal ischemic brain damage. Proc Natl Acad Sci U S A 96:4131-4136Takagi Y, Hattori I, Nozaki K, Mitsui A, Ishikawa M, Hashimoto N, Yodoi J (2000) Excitotoxic hippocampal injury is attenuated in thioredoxin transgenic mice. J Cereb Blood Flow Metab 20:829-833.
Taniguchi Y, Taniguchi-Ueda Y, Mori K, Yodoi J (1996) A novel promoter sequence is involved in the oxidative stress-induced expression of the adult T-cell leukemia-derived factor (ADF)/human thioredoxin (Trx) gene. Nucleic Acids Res 24:2746-2752.
Thomas SM, DeMarco M, D'Arcangelo G, Halegoua S, Brugge JS (1992) Ras is essential for nerve growth factor- and phorbol ester-induced tyrosine phosphorylation of MAP kinases. Cell 68:1031-1040..Tomimoto H, Akiguchi I, Wakita H, Kimura J, Hori K, Yodoi J (1993) Astroglial expression of ATL-derived factor, a human thioredoxin homologue, in the gerbil brain after transient global ischemia. Brain Res 625:1-8.
Treisman R (1986) Identification of a protein-binding site that mediates transcriptional response of the c-fos gene to serum factors. Cell 46:567-574.
Trouche D, Grigoriev M, Lenormand JL, Robin P, Leibovitch SA, Sassone-Corsi P, Harel-Bellan A (1993) Repression of c-fos promoter by MyoD on muscle cell differentiation. Nature 363:79-82.
Ueno M, Masutani H, Arai RJ, Yamauchi A, Hirota K, Sakai T, Inamoto T, Yamaoka Y, Yodoi J, Nikaido T (1999) Thioredoxin-dependent redox regulation of p53-mediated p21 activation. J Biol Chem 274:35809-35815.
Xia Z, Dickens M, Raingeaud J, Davis RJ, Greenberg ME (1995) Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis. Science 270:1326-1331.
Yamamoto M, Sato N, Tajima H, Furuke K, Ohira A, Honda Y, Yodoi J (1997) Induction of human thioredoxin in cultured human retinal pigment. Exp Eye Res 65:645-652.
【図面の簡単な説明】
【図1A】NGF誘発TRX発現。
図1Aは、NGFにより生じるTRXタンパク質の増加を示す。NGF (50 ng/ml) で24時間及び48時間処理されたPC12細胞を収穫し、ウェスタンブロッティングにかけて検出した。
【図1B】NGF誘発TRX発現。
図1Bは、NGFにより誘発されたTRX mRNAの増大した発現を示す。NGF処理されたPC12細胞は、示された各時間で収穫され、次いでノーザンブロッティングにより分析した。
【図1C】NGF誘発TRX発現。
図1Cは、NGFによるTRX遺伝子の活性化である。PC12細胞はpTRX-Luc ベクターpTRX (−1148)とpRL-TKでトランスフェクトされ、次いでNGFの存在下又は非存在下に処理された。
【図2】TRXプロモータ中でNGFに応答する領域の同定
PC12細胞は、左パネルに示されるようにpTRX-LucベクターとpRL-TKでトランスフェクトされ、示された値は未処理細胞に対するNGF(50 ng/ml)-処理細胞のルシフェラーゼ活性の比を示す。この結果は、3つの独立した実験の代表例である。
【図3A】PD98059またはNACによるTRX発現の抑制。
図3Aは、PD98059またはNACによるPC12の分化の遮断を示す。PC12細胞はNGF (50 ng/ml)の存在下又は非存在下で2日間培養し、次いでPD98059 (50 mM)またはNAC (20 mM)の存在下にNGF (50 ng/ml)と培養した。
【図3B】PD98059またはNACによるTRX発現の抑制。
図3Bは、PD98059またはNACの添加によるNGF-誘発トランス活性化の阻害である。PC12細胞はpTRX (−263)-LucベクターとpRL-TKでトランスフェクトされ、次いでNGF(50 ng/ml)及びPD98059(50 mM)またはNAC (20 mM)で処理された。示された値は、NGF 50 (ng/ml)及びPD98059またはNACで処理された細胞の未処理細胞に対するルシフェラーゼ活性の比である。該結果は、3つの独立した実験の代表例である。
【図3C】PD98059またはNACによるTRX発現の抑制。
図3Cは、PD98059またはNACによるTRXタンパク質発現の抑制を示す。 PC12細胞は図3Aと同様に処理され、タンパク質サンプルは分画され、抗−TRX抗体でスクリーニングされた。
【図4】NGF-誘発TRX核移動の抑制
図4(A)は、NGFなしで培養したPC12細胞を示し、図4(B)はNGFで処理したPC12細胞を示し、図4(C)及び図4(D)は、NGF及びPD98059(図4C)またはNAC (図4D)で処理されたPC12細胞を示す。
これらの細胞は、抗-TRX mAbで染色された。
【図5】ミュータントTRX過剰発現によるNGF誘発分化の阻害。
PC12細胞はpBI-EGFP, pBI-EGFP-wtTRXまたはpBI-EGFP-dmTRX (32S/35S)ベクターでトランスフェクトされ、次いでNGF 50 (ng/ml)で処理された。24時間後、これらの細胞をレーザー共焦点顕微鏡で調べた。
【図6A】優性ネガティブミュータント型のTRXによるCRE-介在c-fos誘発の抑制。
図6Aは、NGFがCREを通してc-fosを誘導することを示す。PC12細胞は、pRL-TK とともに上部パネルで示されたようにpGL3-c-fos (-40, +42)またはpGL3-c-fos (-99, +42)でトランスフェクトされ、次いでNGFで4時間処理された。示された値は未処理細胞に対するNGF処理細胞のルシフェラーゼ活性の比である。
【図6B】優性ネガティブミュータント型のTRXによるCRE-介在c-fos誘発の抑制。
図6Bは、NGFによるc-fosの活性化のミュータント型TRXによる抑制を示す。PC12細胞は、上部パネルに示されるように、pRL-TKとともに、pGL3-c-fos (-99, +42)及びpcDNA3 (1g)またはpcDNA3-TRX (32S/35S) (1g)ベクターで共トランスフェクトされた。トランスフェクトされたPC12細胞はNGFで4時間処理された。示された値は、未処理細胞に対するNGF処理細胞のルシフェラーゼ活性の比である。
【図7】光照射された網膜のH-E及びTUNEL染色。網膜標本における代表的なH-E及びTUNEL染色が示される。光受容体細胞核の有意な減少が24時間後及びその後に観察された。TUNEL-陽性細胞は12時間後及びその後に観察された(矢印)。INLは核内層であり、ONLは核外層である。
【図8】網膜サンプルのTRX発現についての免疫組織化学及びウェスタンブロット。TRXについての代表的免疫組織化学が(A)に示される。TRXの核標識は光照射直後に核内層 (INL) で観察されるが(短い矢) ,24時間後或いはその後に消失した。核外層(ONL)の核標識は、光照射直後に観察され(長い矢)96時間後まで維持された。免疫標識は光照射直後(0時間)では毛様体近傍の周辺網膜(peripheral retina) では顕著ではない。TRX標識は24時間後或いはその後にRPEで観察されるが(矢印)、網膜周辺では顕著ではない(白い矢印、12時間後及び24時間後)。網膜神経及びRPEフラクションにおけるTRXについての代表的なウェスタンブロット(B), 及びバンド強度の半定量的分析(C)が示される。光照射の12時間後及び24時間後のバンド強度は光照射されていないマウスのそれと比較した誘導倍率により表される。
【図9】ビヒクル, rTRX (5 μg)またはミュータント rTRX (5 μg)で硝子体内前処理された目からの網膜サンプルの酸化された(A)及びチロシン−リン酸化された(B)タンパク質の検出. (A)網膜神経においてる酸化されたタンパク質についての代表的ウェスタンブロットが示される。光照射前(第1レーン)及びビヒクル, rTRX及びミュータントrTRX処理された目(各々第2レーン、第3レーン及び第4レーン)である。(B) 網膜神経においてチロシンリン酸化タンパク質についての代表的なウェスタンブロットが示される。光照射前(第1レーン)及びビヒクル, rTRX及びミュータントrTRX処理された目(各々第2レーン、第3レーン及び第4レーン)である。強い強度の2つのバンド及び弱い強度の3つのバンド(矢印)が光照射前に検出された。光照射直後、強い強度を有する2つのバンドの1つ(上部矢印)が増強され、弱い強度を有する1つの追加的バンド(下部矢印)がビヒクル又はミュータントrTRX-処理マウスで検出された。
【図10】組換えTRXの細胞保護効果。ビヒクル、rTRX (5 μg)またはミュータント rTRX (5 μg)で硝子体内前処理された目からの網膜サンプルの代表的H-E染色(A)及び光受容体核の数(B)が示される。光照射の96時間後 rTRX 処理された目の光受容体核の数(平均±SE, 101.3±5.1 細胞/ 100μm; n=6)はビヒクル- (63.3 ± 2.7 細胞/100μm; n=6)及びミュータント rTRX-処理された(51.4 ± 3.3 細胞/100μm; n=4) 目におけるよりも有意に大きい。P値はワン−ウェイANOVA 及びその後のBonferroni /Dunn post hocテストにより計算した。網膜サンプルにおける代表的なDNAラダー検出が(C)に示される。DNAラダー形成の分析は、ビヒクル、rTRXまたはミュータント rTRX処理された目での光曝露96時間後で検出した。ONLは核外層であり; n.s.,は統計的に有意差はないことである。
【図11】MPP+は、PC12細胞中でのTRXを減少する。35mmディッシュで終夜プレ培養されたPC12細胞(2×105/ml)は、0,0.3及び1mM MPP+を含む培地中で3時間培養し、次いで細胞ライゼートを集めた。TRXはウェスタンブロッティングにより12kDaのバンドとして認識される。
【図12】MPP+は、PC12細胞の生存度を減少する。PC12細胞(2×104/ml)は、0,0.3及び1mM MPP+とともに24時間培養された。細胞溶解パーセントはLDH放出アッセイにより測定した。
【図13】TRX過剰発現及び組換えTRXの投与はMPP+誘発損傷を抑制する。TRX過剰発現の24時間後、1mM MPP+を培地中に加え24時間インキュベートした。細胞溶解パーセントはLDH放出アッセイにより測定した。
TRX過剰発現PC12細胞はLDH放出アッセイにより測定されるようにMPP+誘発損傷に抵抗性であった(図13A)。さらに、100μg/mlのrTRXの投与はまた、PC12細胞がMPP+と24時間インキュベートされたとき0.3及び1mM MPP+誘発損傷を抑制した。2つのアスタリスク(*)は統計的に有意であることを示す(**P<0.001)
【図14】代表的免疫組織化学(A);及び、野生型及びtrx-tgマウスの眼の網膜サンプルにおけるヒトTRX発現についてのウェスタンブロット(B)。GLCはガングリオン細胞層;INLは内顆粒層;ONLは外顆粒層;及びRPEは網膜色素上皮層であり、スケールバーは100μmである。
【図15】野生型及びtrx-tgマウスの網膜神経における酸化された(A)及びチロシンリン酸化された(B)タンパク質の代表的ウェスタンブロット。野生型及びtrx-tgマウスの光曝露前(−2h)(各々レーン1及び3)、並びに野生型及びtrx-tgマウスの光曝露直後(0h)(各々レーン2及び4)。
【図16】視細胞顆粒層中の8OhdGの定量的免疫組織化学分析。
(A)野生型マウス(左パネル)及びtrx-tgマウス(右パネル)の光曝露24時間後の標本における8OhdGの代表的免疫組織化学分析を示す。ONLは外顆粒層;スケールバーは20μmである。
(B)8OhdG指数が要約される。各カラムは平均±SEとして表される(各群でn=5)。P値はMann-Whitney U-testにより計算した。
【図17】ERG。平均a−及びb−波振幅が要約される。各カラムは平均±SEとして表される(各群でn=5)。P値はMann-Whitney U-testにより計算した。
[0001]
BACKGROUND OF THE INVENTION
  The present inventionRetinal nerve cell function recovery agentAbout.
[0002]
[Prior art]
Nerve survival and differentiation are affected by cellular redox conditions. TRX is a small 12 kDa multifunctional protein with a redox-active disulfide / dithiol in -Cys-Gly-Pro-Cys- and also acts as a protein disulfide reduction system for NADPH and thioredoxin reductase (Holmgren , 1985). Several reports have shown that TRX-dependent redox regulation is closely involved in signaling mediated by AP-1, NF-kB, p53, ASK1, and p38 MAP kinases (Hirota et al., 1997 Saitoh et al., 1998; Hashimoto et al., 1999; Ueno et al., 1999). TRX is widely distributed and induced by various stresses (Nakamura et al., 1997; Masutani, 1999). TRX Expression is also increased by hemin (Kim et al., 2001), which is a differentiation-inducing agent for K562 erythroleukemia cells, or cyclic AMP analogs of retinal pigment epithelial cells (Yamamoto et al., 1997). Within the regulatory region of the TRX gene are several SP-1 binding motifs, antioxidant response elements (ARE), and cyclic AMP response elements (CRE). In neural tissue, TRX is induced in astrocytes after ischemia (Tomimoto et al., 1993) and motor neurons after nerve injury (Mansur et al., 1998). TRX is known to have cytoprotective action (Nakamura et al., 1994) and neuroprotective activity (Hori et al., 1994) against oxidative stress. Furthermore, overexpression of TRX in transgenic mice reduces focal ischemic brain injury (Takagi et al., 1999). TRX has also been reported as a neurotrophic factor in central cholinergic neurons and has neurotrophic activity (Endoh et al., 1993), but the molecular basis of its effects has not been elucidated.
[0003]
Other members of the neurotrophin family, such as nerve growth factor (NGF) and brain-derived neurotrophic factor, have profound effects on neurons, including promoting survival and differentiation (Lo, 1992). NGF has been reported as a potential therapeutic agent in age-related neurodegenerative diseases such as Alzheimer's disease (Connor and Dragunow, 1998). A current understanding of these mechanisms relies heavily on studies of NGF action on the pheochromocytoma cell line PC12 (Greene and Tischler, 1976). When exposed to NGF, PC12 cells differentiate into sympathetic neuron-like cells. The signal is initiated by NGF binding to its highly active receptor, TrkA, on the cell membrane (Kaplan et al., 1991), ras and mitogen-activated protein kinase (MAPK) cascade (Thomas et al., 1992). ). NGF treatment of PC12 cells results in the activation of genes such as c-fos that are thought to be important for NGF action (Milbrandt, 1986). NGF activates the c-fos gene by several elements including serum response elements (Treisman, 1986) and CRE (Ginty et al., 1994; Ahn et al., 1998).
[0004]
[Problems to be solved by the invention]
  The purpose of the present invention is toretinaNeuronalFunctional recoveryIt relates to technology that promotes.
[0005]
[Means for Solving the Problems]
  The present inventor said that TRXretinaNeuronalFunctional recoveryPromote,It was found useful for the treatment of diseases in the ophthalmic field.
[0006]
  The present invention includes the following:Retinal nerve cell function recovery agentConcerning
Item 1.An agent for restoring retinal nerve cell function, which contains NGF and restores the function of photodamaged retinal neurons by inducing endogenous thioredoxin expression.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
  Functional recoveryAs a nerve to be doneSightGodSutraAnd theseEachFor seed stem cellsNerve growth factor (NGF)By actingInduces the expression of TRX and thereby the retinaNerveRestore cell functionIn addition, various nervous system diseases caused by nerve degeneration or neuronal cell death can be treated.
[0016]
Examples of various stem cells that can differentiate into nerves include neural stem cells, retinal stem cells, mesenchymal stem cells, and embryonic stem cells.
[0017]
  The present inventors have found that a large amount of TRX is expressed in neural stem cells. From the following examples, TRX is also expressed.Functional recovery of retinal neuronsIt is clear to promote.
[0019]
  The present inventionRetinal neuronal function recoveryThe agentRetinal neuronsBy applying toInduces TRX expression,as a resultRetinal neuronsofFunctional recoveryCan be promoted.
[0021]
As an administration route, any of oral (tablet, capsule, granule, powder, liquid, syrup, etc.) and parenteral (injection, inhalation, nasal drop, suppository, etc.) can be administered.
[0022]
【Example】
Hereinafter, the present invention will be described in more detail with reference to examples.
Example 1
(1) Cell lines and culture
NGF, polyethyleneimine (PEI), PD98059 and NAC were purchased from Sigma. Rat pheochromocytoma tumor cell line PC12 has 10% heat-inactivated horse serum and 5% heat-inactivated fetal calf serum (FCS) at 37 ° C in a humid atmosphere containing 5% CO2, Substances were maintained in RPMI 1640 (Life Technologies, Grand Island, NY) supplemented with 100 IU / ml penicillin and 100 mg / ml streptomycin.
Plasmid: pTrxCAT plasmid was constructed according to a known method (Taniguchi et al., 1996). The HindIII-BamH I insert from the pTrxCAT vector was subcloned into pBluescriptII KS (+) (pTRXblue vector. pTRX (-1148) -Luc, pTRX (-1062) -Luc, pTRX (-352) -Luc and pTRX ( The -263) -Luc vector was constructed by ligating the KpnI / BamHI fragment of the pTRXblue vector to the KpnI / BglII site of the pGL3 basic vector (Promega, Wis.) The ApaI / PvuII insert of the pTRX (-263) -Luc vector was PTRX (-217) -Luc vector obtained by cutting, filling and self-ligation, pGL3-c-fos (-40, +42) and pGL3-c-fos (-99, +42) luc vectors Was constructed by subcloning the MluI / HindIII fragment of Fos-40 luc (Masutani et al., 1997) and the pFDE-luc vector into the MluI / HindIII site of the pGL3 basic vector (Promega). The BamHI / HindIII fragment of FDE-CAT (Trouche et al., 1993) was replaced with BglII-H of pGL2 basic vector (Promega). The pCDSR a (alpha) -TRX and pCDSRa -TRX (C32S / C35S) vectors were constructed by the method described previously (Hirota et al., 1997) The pcDNA3TRX (32S / 35S) ) Vectors were constructed by the previously described method (Nishiyama et al., 1999) BamHI inserts from pCDSRa-TRX and pCDSRa-TRXm (Tagaya et al., 1989; Hirota et al., 1997) were each pBluescript. II Subcloned into the BamHI site of KS (pBS-wtTRX, pBS-dmTRX), pBI-EGFP-wtTRX and pBI-EGFP-dmTRX (32S / 35S) are EcoRV / XbaI fragments of pBS-wtTRX and pBS-dmTRX vectors, respectively. Was constructed by ligating to the PvuII / NheI site of the pBI-EGFP vector (Clontech). All constructs were controlled by direct nucleotide sequencing using a Thermo Sequenase II dye terminator cycles equencing kit (Amersham Pharmacia). pRL-TK vector was purchased from Promega. pcDNA3 was purchased from Invitrogen.
・ Western blot analysis
Cells were collected and washed twice with ice-cold phosphate buffered saline (PBS) and then lysed solution (10 mM Tris-HCI (pH 7.4), 150 mM NaCI, 1% NP-40, 1 mM EDTA). , 0.1 mM PMSF, 8 mg / ml aprotinin and 2 mg / ml leupeptin) for 30 minutes on ice. The extract was clarified by centrifugation. Cell lysates were maintained at 95 ° C. for 5 minutes and then separated by 15% SDS-polyacrylamide gel electrophoresis. The separated protein was transferred to a polyvinylidene difluoride membrane (Millipore Co., Bedford, Mass.). The membrane was treated overnight with 10% (w / v) skim milk in T-PBS (PBS containing 0.05% Tween20), incubated with anti-mouse TRX rabbit polyclonal antibody (Takagi et al., 1998c) for 1 hour, then peroxidase Incubated with conjugated anti-rabbit IgG (Amershan Pharmacia Biotech) for 1 hour. Epitopes were visualized with ECL Western blot detection kit (Amershan Pharmacia Biotech). The inventor has previously reported that this anti-mouse antibody cross-reacts with rat TRX (Takagi et al., 1998b).
・ Northern blot analysis
Total RNA was extracted using TRIzol reagent according to the manufacturer's specifications (Maruyama et al., 1997). 20 mg of total RNA was electrophoresed and transferred to Maximum strength Nytran nylon (Schleicher and Schrul, Knee, NH) using a Turbo-Blotter system (Schleicher and Schrul). Filters were hybridized with mouse TRX probes that cross-react with rat TRX mRNA as previously described (Takagi et al., 1998b).
・ Transfection and luciferase assays
PC12 cells were seeded at 70% confluence in 35-mm dishes before transfection. Cells in serum-free medium were transfected with PEI reagent as described by Boussif et al. (Boussif et al., 1995). After 24 hours, the transfected cells were treated with 50 ng / ml NGF (Sigma). Luciferase gene expression normalized by Renilla luciferase activity was analyzed 24 hours later using an assay kit (Promega, Madison, Wis.). The relative fold activation of luciferase was calculated. The same experiment was performed three times. PC12 cells were transfected with bidirectional expression vectors pBI-EGFP, pBI-EGFP-wtTRX or pBI-EGFP-dmTRX in which the active site of TRX was inactivated (Ueno et al., 1999). After transfection, NGF was added to the medium. After 24 hours, cell-expressed EGFP was examined with a laser confocal microscope.
・ Immunofluorescent cell staining
PC12 cells were seeded before staining with 70% confluence in culture slides coated with poly-L-lysine. Cells were then fixed with 3.7% paraformaldehyde in PBS containing 10% FCS for 20 minutes at room temperature. This was then membrane permeabilized with 0.2% (W / V) Triton X-100 in PBS for 10 minutes and blocked with PBS containing 5% bovine serum albumin and 10% FCS for 20 minutes. Slides were incubated with 2 mg / ml mouse TRX antibody (provided by Fujirebio) for 60 minutes and then washed with PBS. The slides were then incubated with 1 mg / ml fluorescein isothiocyanate labeled secondary antibody for 60 minutes and washed again with PBS. Stained cells were examined with a laser confocal microscope (Bio-Rad).
·result
NGF-induced TRX expression in PC12 cells
The inventor examined the effect of NGF on TRX expression in PC12 cells. The protein expression was increased in PC12 cells by NGF (FIG. 1A). TRX mRNA also increased 2 hours after NGF treatment (FIG. 1B). To further analyze the induction mechanism by NGF treatment, we transfected PC12 cells with TRX promoter luciferase reporter construct (TRX-Luc). Treatment with NGF significantly enhanced TRX promoter activity (FIG. 1C).
Identification of NGF-responsive region in TRX promoter
In order to understand the mechanism of TRX gene activation by NGF, a luciferase reporter construct containing various deletion mutants of the TRX promoter region was used. The gene region from −263 to −217 with respect to the translation initiation site was required for NGF response. This region contains a sequence resembling consensus CRE, indicating the involvement of CRE in activation (Figure 2). TRX expression was suppressed by PD98059 or NAC.
[0023]
ERK inhibitors PD98059 and NAC (Kamata et al., 1996) are known to suppress ERK-CRE-mediated activation by NGF. Treatment with NGF for 2 days induced neuronal differentiation of PC12 cells with the appearance of neurite outgrowth. As previously reported, PD98059 (50 mM) or NAC (20 mM) suppressed NGF-induced morphological changes in PC12 cells (FIG. 3A). The inventor then tested the effect of PD98059 or NAC on NGF-mediated TRX gene activation. PD98059 or NAC blocked NGF-induced activation of the TRX gene (FIG. 3B). PD98059 or NAC also caused a decrease in TRX protein expression (FIG. 3C).
NGF-induced nuclear transport of TRX is blocked by PD98059 or NAC.
[0024]
ERK is transported from the cytoplasm to the nucleus during NGF treatment (Chen et al., 1992) .TRX is also transported from the cytoplasm to the nucleus when exposed to H2O2 or UV radiation (Hirota et al. , 1997). In order to analyze the involvement of TRX in NGF-induced signaling, the present inventors studied the subcellular localization of TRX during NGF treatment. After treatment with NGF for 16 hours, TRX migrated to the nucleus. The migration was blocked by PD98059 or NAC (Figure 4). Overexpression of dominant TRX blocked NGF-induced differentiation of PC12.
[0025]
The inventor then examined whether TRX is required for NGF-dependent differentiation of PC12 cells. We have transiently transfected PC12 cells with pBI-EGFP, pBI-EGFP-wtTRX or pBI-EGFP-dmTRX (32S / 35S), where the redox active site of TRX is inactivated. It was done. Mutant TRX inhibited TRX-dependent activation of transcription factors (Ueno et al., 1999). After transfection, NGF was added to the medium. Cells were examined with a laser confocal microscope 24 hours after NGF treatment. Cells transfected with mutant TRX vector showed suppression of differentiation, whereas cells transfected with wild type TRX vector or control vector showed NGF-induced differentiation (FIG. 5).
[0026]
Overexpression of dominant negative mutant TRX blocked CRE-mediated c-fos induction by NGF. TRX has been reported to regulate various transcription factors by promoting DNA binding (Hirota et al., 1997) (Ueno et al., 1999) or co-activator interactions (Ema et al., 1999). It was done. Therefore, we analyzed whether TRX is involved in the regulation of CGF-mediated NGF-mediated activation. After 4 hours of treatment, NGF caused a 40-fold increase in luciferase activity in pGL3-c-fos (-99, +42), but increased pGL3-c-fos (-40, +42). There was no (FIG. 6A). The response of the reporter gene pGL3-c-fos (-99, +42) to NGF was remarkably suppressed by transfection of the dominant negative mutant of TRX. Transactivation was suppressed by 75% by mutant TRX (FIG. 6B).
・ Consideration
In this study, the inventor found that NGF induces TRX expression at the protein and mRNA levels in PC12 cells. The present inventor has identified an NGF response region located at −263 to −217 bp of the TRX gene by luciferase assay. This region contained a CGTCA sequence carrying analogs that consensus CRE (Montminy et al., 1986). In addition, the present inventors have shown that PD98059, an ERK inhibitor, suppresses NGF-induced TRX expression. NGF-induced CRE activation is mediated by extracellular signaling-regulated protein kinase (ERK) (Impey et al., 1998). These results indicate that the TRX gene is induced by NGF through the ERK and CRE cascades. Further research is ongoing on the analysis of the TRX gene induction mechanism by NGF.
[0027]
The inventor has also shown that NGF induces nuclear translocation of TRX as well as PMA (Hirota et al., 1997), UV (Ueno et al., 1999) and Hemin (Kim et al., 2001). Demonstrated. The inventor has shown that the ERK inhibitor PD98059 blocks this effect of NGF, and this result suggests that ERK is involved in the regulation of NGF-induced nuclear migration of TRX. The mechanism and physiological significance of the nuclear migration should be studied in more detail. NGF-induced expression and nuclear translocation of TRX appear to be related to NGF-induced differentiation of PC12 cells, because PD98059 and NAC repress nuclear translocation as well as NGF-induced differentiation and TRX expression, respectively (Fig. 3 and 4). More importantly, overexpression of the dominant negative mutant TRX almost completely inhibited differentiation (FIG. 5). These results indicate that TRX is required for PC12 differentiation induced by NGF.
[0028]
Genes such as c-fos were thought to be required for NGF action. In the upstream regulatory region of the c-fos gene, CRE is critical for the regulation of c-fos transcription in response to various extracellular stimuli that induce neural differentiation (Ahn et al., 1998) (Sheng et al ., 1988). The present inventors have shown that overexpression of the dominant negative mutant form of TRX blocks NGF-induced activation of the pGL3-c-fos (-99, +42) reporter gene containing CRE, but pGL3-c-fos (- 40, +42) showed no block. These results demonstrate that TRX is required for CGF-mediated NGF signaling leading to c-fos expression. TRX regulates the activity of DNA-binding proteins including Jun / Fos (AP-1) and interacts with redox factor 1 (Ref-1), a nuclear reducing molecule (Hirota et al., 1997). AP-1 and Ref-1 have been reported to be involved in differentiation (Sheng and Greenberg, 1990) (Chiarini et al., 2000). Recently, the inventor has reported that TRX and Ref-1 regulate the interaction between transcription factors and coactivators (Ema et al., 1999), and that CREB activation is regulated by TRX. (Hirota et al., 2000). Thus, TRX may increase the interaction of CREB with DNA or coactivators and promote NGF signaling. Further research is needed for the relevant mechanisms of TRX in the NGF signaling pathway.
[0029]
NGF has been shown to promote axonal regeneration (Hollowell et al., 1990). Endoh et al. Reported the neurotrophic activity of TRX on cholinergic neurons (Endoh et al., 1993). The results confirm and develop this finding and suggest that TRX is a neurotrophic cofactor that enhances the effects of NGF on neuronal differentiation and regeneration
NGF also acts as a neuronal survival factor. NGF has been shown to prevent the death of axotomized septal neurons (Pallage et al., 1986). Loss of NGF results in apoptosis of PC12 cells, which is mediated by p38 MAPK and apoptosis signaling kinase 1 (ASK1) (Xia et al., 1995; Kummer et al., 1997; Kanamoto et al., 2000). TRX has been reported to act as an endogenous inhibitor of ASK1 and p38 MAPK (Saitoh et al., 1998; Hashimoto et al., 1999), and loss of NGF also results in downregulation of TRX expression in PC 12 cells ( Bai, et al. Unpublished observations). These results demonstrate that maintaining TRX levels by NGF plays a role in preventing neuronal death. The protective role of TRX against nerve injury was shown. TRX is induced in astrocytes after ischemia (Tomimoto et al., 1993). Overexpression of TRX in transgenic mice reduces focal cerebral ischemic injury (Takagi et al., 1999) and excitotoxic hippocampal injury (Takagi et al., 2000). Decreased expression of TRX in the brains of Alzheimer's disease patients has been reported (Lovell et al., 2000). NGF administration has been proposed to maintain cholinergic neurons in Alzheimer's patients (Serrano Sanchez et al., 2001). Taken together, these results and the results of the present invention show that administration of TRX can enhance the effects of NGF in neurological diseases such as neurodegenerative diseases. Further research is underway to clarify the therapeutic potential of TRX for neurodegenerative diseases.
Example 2 (data on retinal photoreceptor cells)
animal
Four-week-old male BALB / c mice (albino) were obtained from Japan SLC (Shizuoka, Japan) and bred in the inventor's colony room for 2-5 days prior to the experiment. The light intensity in the Japanese SLC and the inventors' laboratory was 300 lux, and the light intensity in the laboratory cage was 20-40 lux. All mice were maintained in Japan SLC and the inventor's colony room in a light / dark cycle of 12 hours (8:00 A.M. to 8:00 P.M.).
Light irradiation
Four week old mice were placed in the dark for 24 hours before the experiment. The pupil was dilated with 1% cyclopentrate hydrochloride eye drops (Santen Pharmaceutical). Unanesthetized mice were exposed to 8,000 lux of divergent cold white fluorescent light (Matsushita Electric Industrial) for 2 hours in a cage equipped with a reflective interior. All light irradiation started at 10 am. The temperature during light irradiation was maintained at 25 ± 1.5 ° C. Special care was taken to ensure that both eyes received the same degree of irradiation during irradiation.
Preparation of retinal tissue sections
After induction of deep anesthesia by intraperitoneal injection with pentobarbital, mice were perfused with phosphate buffered saline (PBS) (pH, 7.4) to perfuse the left ventricle to wash out blood before fixation. It was then perfused with freshly prepared 4% paraformaldehyde containing 0.25% glutaraldehyde in PBS. The eyes were then removed. All tissues were fixed in paraffin for 12 hours at 4 ° C. with the same fixative as described above and cut into 1 μm sagittal sections with whole retina including the optic disc. A 7-0 silk suture was placed as a landmark on the temporal side of the eye. Tissue sections were collected on glass slides and treated with xylene and a series of varying amounts of alcohol for 30 minutes to remove paraffin from the sections.
Morphological measurement
Retinal paraffin sections (1 μm) containing the optic disc were stained with hematoxylin-eosin (H-E), and digitized color images of four positions of each section were obtained using the PDMC le digital imaging system (Olympus). Two images were obtained from the upper retina of the upper optic disc 100-800 μm and two from the lower retina of the lower optic disc 100-800 μm. The number of hematoxylin positive photoreceptor cell nuclei in each image was counted and compared by the one-way ANOVA followed by the Bonfferoni / Dunn post hoc test.
[0030]
TdT-mediated dUTP nick end labeling (TUNEL)
TUNEL was performed on 1-μm paraffin sections using an in situ apoptosis detection kit (Takara Shuzo). 3 ', 3'-diaminobenzene (Dako, Carpinteria, CA) was used as a color former. The number of TUNEL-positive nuclei was counted by the same method used for the hematoxylin positive cell count described above.
antibody
Rabbit anti-mouse TRX antibody (polyclonal) was prepared as previously reported19.
Immunohistochemistry of mouse and human TRX
For immunohistochemical analysis of mouse TRX, the inventor19It was used. Briefly, endogenous peroxidase activity was inactivated with 0.6% H2O2. Primary antibody or control normal rabbit serum was added and incubated overnight at 4 ° C. Biotinylated goat anti-rabbit immunoglobulin (Biomeda, Foster
City, CA) was used as the secondary antibody. Avidin-biotin amplification (Biomeda) was performed and then incubated with the substrate 0.1% 3 ′, 3′-diaminobenzidine (Dako).
Western blot of mouse TRX
Retina sample preparation and Western blotting were performed as previously reported.15. Briefly, after induction of deep anesthesia by intraperitoneal injection of pentobarbital, the mouse's left ventricle was perfused with ice-cold phosphate buffered saline (PBS) (pH, 7.4) before blood fixation. Was washed off and then the eyes were removed. The cornea and lens were removed from the eye and the inner layer of the retina (neural retina) was separated from the eyecup under the microscope. In the eyes after perfusion with ice-cold PBS, the adhesion between the photoreceptor cell layer and the retinal pigment epithelial cell layer was weakened and they were easily separated. The eyecup after removal of the retinal nerve was analyzed as a retinal pigment epithelial cell fraction. This fraction therefore contained the choroid and sclera. Equal amounts of retinal protein (5 μg protein / lane) were electrophoresed on a 12% sodium dodecyl sulfate (SDS) -polyacrylamide gel and then electrophoretically polyvinylidene difluoride (PVDF) membrane (Millipore, Bedford, MA). After blocking, the membrane was incubated with the first antibody and then with the peroxidase-linked second antibody. Chemiluminescence was detected with an ECL Western blot detection kit (Amersham Pharmacia Biotech, Buckinghamshire, UK).
Intravitreal injection of recombinant thioredoxin (rTRX)
5 μg of rTRX or mutant rTRX (TRXC32S / C35S) 20 or 3 μl of 0.9% NaCl was injected intravitreally 2 hours before light irradiation. rTRX was injected intravitreally from the temporal margin of the right eye using a 30-G fine disposable needle (Hamilton, Reno, NV) equipped with a 10-μl microinjection syringe.
Detection of tyrosine phosphorylated protein
Tyrosine phosphorylated protein was detected using an ECL tyrosine phosphorylation detection system (RPN 2220/1, Amersham Pharmacia Biotech). Following the manufacturer's recommendations, protein samples of neural retina were prepared and electrophoresed on a 12% SDS-polyacrylamide gel (10 μg protein / lane) and then electrophoretically transferred to a PVDF membrane. After blocking, the membrane was incubated with a peroxidase-conjugated anti-phosphotyrosine antibody (PY-20, Amersham Pharmacia Biotech) and then chemiluminescence was detected with an ECL Western blot detection kit.
Detection of oxidized protein
Oxidized protein was detected as previously reported using an oxidized protein detection kit (OxyBlot, Intergen, Purchase, NY)17. OxyBlot provides a sensitive immunodetection reagent for carbonyl groups. Prepare a 2,4-dinitrophenyl (DNP) -hydrazone derivatized protein sample of the retinal nerve according to the manufacturer's protocol, separate by 12% SDS-polyacrylamide gel electrophoresis (5 μg protein / lane), and then PVDF Transferred to the membrane. After blocking, the membrane was incubated with a primary antibody specific for the DNP portion of the protein. The protein band was detected in the same way as the Western blot for mouse TRX.
DNA ladder
Internucleosomal DNA breakage was detected using the Quick Apoptotic DNA ladder Detection Kit (MBL, Nagoya, Japan). Retinal DNA was extracted, loaded onto a 1% agarose gel and electrophoresed according to the manufacturer's protocol. The gel was stained with ethidium bromide and the DNA band was visualized with an ultraviolet transluminator.
Statistical analysis
All statistical analyzes were performed on a Macintosh personal computer using StatView software, version 5.0 (SAS, Cary, NC).
result
Expression of endogenous TRX in the retina
To determine the severity of retinal damage, total and TUNEL-positive photoreceptor nuclei (Fig. 7) in retinal sections were counted before, immediately after, 12, 24, 48 and 96 hours after light irradiation. did. Compared to the number of photoreceptor cells in mice not irradiated (mean ± SD; 248.5 ± 11.4 cells / 100 μm), the number is 24 hours after light irradiation (182.0 ± 10.7, P <0.05) and thereafter ( 178.3 ± 18.3 cells / 100 μm, P <0.01 and 50.0 ± 9.8 cells / 100 μm, P <0.01, 48 hours and 96 hours, respectively). TUNEL-positive nuclei were observed 12 hours after light irradiation (mean ± SD; 8.7 ± 2.2%) and maintained until 96 hours after light irradiation (44.2 ± 6.9%, 34.5 ± 2.4%, and 38.0 ± 11.7). % At 24, 48, and 96 hours respectively). .
Since TRX is up-regulated in response to various oxidative stresses, the present inventors have shown TRX expression during the retina response to photooxidative stress by immunohistochemistry (FIG. 8A) and Western blot (FIG. 8B, C). analyzed. Immediately after light irradiation, TRX nuclear labeling was observed in the inner and outer nuclear layers of the posterior pole of the retina; the labeling was not significant around the retina immediately after the iris. The TRX label in the nuclear inner layer disappeared 24 hours after light irradiation and thereafter. On the other hand, labeling of the outer nuclear layer was maintained up to 96 hours. Twenty-four hours after light irradiation, strong TRX labeling was observed in the posterior polar retinal pigment epithelium (RPE), which was maintained up to 96 hours after light irradiation. The labeling was not significant in the peripheral retina RPE throughout the analyzed time course. TRX Western blot results showed that TRX up-regulation was observed in the retinal nerve and RPE fractions at 12 and 24 hours after light irradiation (FIGS. 8B and C). There were no significant band changes in the Coomassie blue stained gel in both preretinal retinal nerve and RPE fractions at 12 and 24 hours after light irradiation (data not shown).
Detection of oxidized and tyrosine phosphorylated proteins in retinal samples of rTRX injected mice
The present inventor analyzed protein oxidation and tyrosine phosphorylation to evaluate oxidative stress after light irradiation in mice injected with rTRX, vehicle or mutant rTRX into the intravitreal cavity before light irradiation.
[0031]
In vehicle or mutant rTRX mice, the amount of oxidized protein in the retinal nerve increased immediately after light irradiation (FIG. 9A). Compared to vehicle or mutant rTRX treated mice, the amount of oxidized protein was reduced in rTRX-treated mice. In a retinal specimen derived from a mouse not irradiated with light, two strong bands and three weak bands phosphorylated at tyrosine were detected (FIG. 9B). Immediately after light irradiation, one of the two bands of strong intensity was enhanced and an additional band of weak intensity was detected in vehicle or mutant rTRX treated mice. These band enhancements were less pronounced in rTRX-treated mice compared to vehicle or mutant rTRX-treated mice.
Cytoprotective effect of rTRX against photooxidative stress
The inventor then examined the effect of rTRX administration on retinal damage. Either rTRX, vehicle or mutant rTRX was injected into the intravitreal cavity prior to light irradiation, and surviving photoreceptor cell nuclei were compared between these eyes (FIGS. 10A, B). After 96 hours of light irradiation, the number of photoreceptor cell nuclei was significantly higher in rTRX-treated eyes than in vehicle (P <0.001) or mutant rTRX-treated eyes (P <0.001). Internucleosomal DNA ladders were evaluated in retinal samples from rTRX-, vehicle- or mutant rTRX-treated eyes. After 36 hours of light irradiation, DNA ladders were detected in retinal nerve samples from vehicle- and mutant rTRX-treated mice but not in retinal nerve samples from rTRX-treated mice (data not shown).
[0032]
After 96 hours of light irradiation, DNA ladders were detected in retinal nerve samples from vehicle and mutant rTRX-treated mice. In contrast, it decreased in retinal nerve samples from rTRX-treated mice (FIG. 10C).
Consideration
Light irradiation causes significant loss of photoreceptor nuclei (FIG. 7). Since TUNEL-positive photoreceptor cell nuclei (FIG. 7) and DNA ladder formation (FIG. 10C) are observed in the retina after light irradiation, the present data of the present inventor are that apoptosis is the main cell death of photoreceptor cells. This is a difficult route and this is the previous literatureTenMatches. According to immunohistochemistry, TRX was upregulated after light irradiation in both retinal nerves and RPE, and was not upregulated in the peripheral retina in the immediate vicinity of the iris (FIG. 8A). In Western blotting, TRX was upregulated in both retinal nerve and RPE fractions (FIGS. 8B and 8C). Taken together, the results of the present invention indicate that TRX is a light-induced endogenous molecule and that TRX plays an important role in the regeneration of retinal nerves by light. Protein oxidation occurs by free radical production and tyrosine kinases, including src family kinases, phosphatidylinositol 3-kinases, and mitogen-activated protein kinases, are activated by oxidative stress12,22,23. This study shows that the enhancement in retinal nerve after light irradiation of both oxidized and tyrosine phosphorylated proteins is decreased in rTRX-treated mice but not in mutant rTRX-treated mice (FIGS. 9A, B), This suggests that intravitreal administration of rTRX reduces retinal nerve damage due to photooxidative stress in the retina, and that cysteine residues in its conserved active site play an important role in reducing photooxidative stress.
[0033]
Compared to vehicle-treated mice, the decrease in photoreceptor cell nuclei and DNA ladder formation was significantly excluded in rTRX-treated mice, while the effect disappeared in mutant TRX-treated mice (FIG. 10). This result suggests that TRX has an anti-apoptotic effect in retinal photopathy and that cysteine residues in its conserved active site play an important role in this cytoprotection. Previous studies have shown that exogenous rTRX ischemia / reperfusion injury lungs16,retina18And vascular endothelial disorderstwenty fourSuggests cytoprotective effect against The mechanism by which exogenous rTRX ameliorates retinal photoreceptor damage is unknown. Reactive oxygen species induced by photooxidation in extracellular space and plasma membrane are TRX-dependent peroxidasetwenty fiveOr direct scavenging action of TRX on singlet oxygen or hydroxy radicals26May be reduced. Another possibility is that exogenous TRX binds to the cell membrane and is taken up into the intracellular space.
[0034]
Previously, ascorbic acid27, Dimethylthiourea28,29And WR-779138Cytoprotective effects against antioxidants such as The results of the present invention further emphasize the role of antioxidants against retinal photopathy. In addition, thioredoxin may act as a redox regulator, transcription factor regulatory function and stress signaling kinase.12,13These mechanisms of action may be important for the cytoprotective effect of thioredoxin against retinal light stress.
[0035]
Excessive light is related to human age-related macular degeneration and possibly some forms of retinitis pigmentosa1,2Progression and severity. Broad spectrum light hazards resulting from manipulation of microscopes used in ophthalmic practices can cause photomacular disease3,4. The present invention has demonstrated the possibility of protecting retinal photodamage by exogenous TRX administration. The present invention further suggests that the induction of endogenous TRX is associated with increased resistance to retinal photopathy. The inventor is prostaglandin E130,31And geranylgeranylacetone32Have been shown to effectively induce endogenous TRX in cells or tissues. TRX augmentation with these TRX inducers can be a useful therapeutic strategy for the protection of human photooxidative stress-related retinal diseases
References for Example 2
1. Cruickshanks KJ, Klein R, Klein BE. Sunlight and age-related macular degeneration. The Beaver Dam Eye Study. Arch Ophthalmol. 1993; 111 (4): 514-518.
2. Cideciyan AV, Hood DC, Huang Y, et al. Disease sequence from mutant rhodopsin allele to rod and cone replica degeneration in man.Proc Natl Acad Sci U S A. 1998; 95 (12): 7103-7108.
3. Byrnes GA, Chang B, Loose I, Miller SA, Benson WE. Prospective incidence of photic maculopathy after cataract surgery. Am J Ophthalmol. 1995; 119 (2): 231-232.
4. Minckler D. Retinal light damage and eye surgery. Ophthalmology. 1995; 102 (12): 1741-2.
5. Wiegand RD, Giusto NM, Rapp LM, Anderson RE.Evidence for rod outer segment lipid peroxidation following constant illumination of the rat retina.Invest Ophthalmol Vis Sci. 1983; 24 (10): 1433-1435.
6. Penn JS, Naash MI, Anderson RE.Effect of light history on retinal antioxidants and light damage susceptibility in the rat.Exp Eye Res. 1987; 44 (6): 779-788.
7. Organisciak DT, Wang HM, Xie A, Reeves DS, Donoso LA.Intense-light mediated changes in rat rod outer segment lipids and proteins.Prog Clin Biol Res. 1989; 314: 493-512.
8. Reme CE, Braschler UF, Roberts J, Dillon J. Light damage in the rat retina: effect of a radioprotective agent (WR-77913) on acute rod outer segment disk disruptions. Photochem Photobiol. 1991; 54 (1): 137 -142.
9. De La Paz MA, Zhang J, Fridovich I. Antioxidant enzymes of the human retina: effect of age on enzyme activity of macula and periphery.Curr Eye Res. 1996; 15 (3): 273-278.
10. Hafezi F, Steinbach JP, Marti A, et al. The absence of c-fos prevents light-induced apoptotic cell death of inhibitors in retinal degeneration in vivo. Nat Med. 1997; 3 (3): 346-349.
11. Holmgren A. Thioredoxin. Annu Rev Biochem. 1985; 54: 237-271.
12. Saitoh M, Nishitoh H, Fujii M, et al. Mammalian thioredoxin is a direct inhibitor of apoptosis signal- regulating kinase (ASK) 1. Embo J. 1998; 17 (9): 2596-2606.
13. Hirota K, Murata M, Sachi Y, et al. Distinct roles of thioredoxin in the cytoplasm and in the nucleus.A two-step mechanism of redox regulation of transcription factor NF- kappaB.J Biol Chem. 1999; 274 (39 ): 27891-27897.
14. Nakamura H, Nakamura K, Yodoi J. Redox regulation of cellular activation. Annu Rev Immunol. 1997; 15: 351-369.
15. Ohira A, Honda O, Gauntt CD, et al. Oxidative stress induces adult T cell leukemia derived factor / thioredoxin in the rat retina.Lab Invest. 1994; 70 (2): 279-285.
16. Okubo K, Kosaka S, Isowa N, et al. Amelioration of ischemia-reperfusion injury by human thioredoxin in rabbit lung. J Thorac Cardiovasc Surg. 1997; 113 (1): 1-9.
17. Takagi Y, Mitsui A, Nishiyama A, et al. Overexpression of thioredoxin in transgenic mice attenuates focal ischemic brain damage.Proc Natl Acad Sci U S A. 1999; 96 (7): 4131-4136.
18. Shibuki H, Katai N, Kuroiwa S, Kurokawa T, Yodoi J, Yoshimura N. Protective effect of adult T-cell leukemia-derived factor on retinal ischemia-reperfusion injury in the rat.Invest Ophthalmol Vis Sci. 1998; 39 ( 8): 1470-1477.
19. Takagi Y, Gon Y, Todaka T, et al. Expression of thioredoxin is enhanced in atherosclerotic plaques and during neointima formation in rat arteries.Lab Invest. 1998; 78 (8): 957-966.
20. Hirota K, Matsui M, Iwata S, Nishiyama A, Mori K, Yodoi J. AP-1 transcriptional activity is regulated by a direct association between thioredoxin and Ref-1. Proc Natl Acad Sci US A. 1997; 94 (8 ): 3633-3638.
21. Oliver CN, Starke-Reed PE, Stadtman ER, Liu GJ, Carney JM, Floyd RA.Oxidative damage to brain proteins, loss of glutamine synthetase activity, and production of free radicals during ischemia / reperfusion- induced injury to gerbil brain. Proc Natl Acad Sci US A. 1990; 87 (13): 5144-5147.
22. Nakamura K, Hori T, Sato N, Sugie K, Kawakami T, Yodoi J. Redox regulation of a src family protein tyrosine kinase p56lck in T cells. Oncogene. 1993; 8 (11): 3133-3139.
23. Nakamura K, Hori T, Yodoi J. Alternative binding of p56lck and phosphatidylinositol 3-kinase in T cells by sulfhydryl oxidation: implication of aberrant signaling due to oxidative stress in T lymphocytes. Mol Immunol. 1996; 33 (10): 855 -865.
24. Nakamura H, Matsuda M, Furuke K, et al. Adult T cell leukemia-derived factor / human thioredoxin protects endothelial F-2 cell injury caused by activated neutrophils or hydrogen peroxide [published erratum appears in Immunol Lett 1994 Oct; 42 ( 3): 213]. Immunol Lett. 1994; 42 (1-2): 75-80.
25. Chae HZ, Chung SJ, Rhee SG. Thioredoxin-dependent peroxide reductase from yeast. J Biol Chem. 1994; 269 (44): 27670-27678.
26. Das KC, Das CK. Thioredoxin, a singlet oxygenquencher and hydroxyl redical scavenger: redox independent functions. Biochem Biophys Res Commun. 2000; 277 (2): 443-447.
27. Organisciak DT, Wang HM, Li ZY, et al. The protective effect of ascorbate in retinal light damage of rats.Invest Ophthalmol Vis Sci 1985; 26 (11): 1580-1588.
28. Lam S, Tso MO, Gurne DH. Amelioration of retinal photic injury in albino rats by dimethylthiourea. Arch Ophthalmol 1990; 108 (12): 1751-1757.
29. Organisciak DT, Darrow RM, Jiang YI, et al. Protection by dimethylthiourea against retinal light damage in rats.Invest Ophthalmol Vis Sci 1992; 33 (5): 1599-1609.
30. Yamamoto M, Ohira A, Honda O, et al. Analysis of localization of adult T-cell leukemia-derived factor in the transient ischemic rat retina after treatment with OP-1206 alpha-CD, a prostaglandin E1 analogue. J Histochem Cytochem 1997; 45 (1): 63-70.
31. Yamamoto M, Sato N, Tajima H, et al. Induction of human thioredoxin in cultured human retinal pigment epithelial cells through cyclic AMP-dependent pathway; involvement in the cytoprotective activity of prostaglandin E1. Exp Eye Res. 1997; 65 (5 ): 645-652.
32. Hirota K, Nakamura H, Arai T, et al. Geranylgeranylacetone enhances expression of thioredoxin and suppresses ethanol-induced cytotoxicity in cultured hepatocytes. Biochem Biophys Res Commun. 2000; 275 (3): 825-830.
Example 3
PC12 cells were incubated in RPMI 1640 medium containing 10% bovine serum (HS) and 5% fetal calf serum (FCS), 100 μg / ml streptomycin and 100 U / ml penicillin. Cells are 5% CO2Incubate at 37 ° C. in the lower humid atmosphere. 0, 0.3, 1 mM MPP+After incubation with (1-methyl-4-phenylpyridinium ion) for 3 hours, PC12 cells were recovered and a cell lysate was prepared. TRX expression was detected by Western blot in PC12 cells. Briefly, cell lysates are maintained at 95 ° C. for 5 minutes, then applied to a 12% dodecyl sulfate acrylamide gel, electrophoresed (5 μg / lane), and then transferred to a transfer membrane (Millipore, Bedford, Mass.). did. After blocking with 5% skim milk in phosphate buffered saline (PBS) containing 0.5% Tween 20, the membrane was cross-reacted with rat TRX for 1 hour (Y. Takagi et al. J. Cereb Incubation with Blood Flow Metab. 18 (1998) pp. 206-214). The membrane was then incubated with peroxidase-conjugated anti-rabbit immunoglobulin antibody. The conjugated peroxidase is chemiluminescent (ECL) according to the manufacturer's specifications.TM(RPN2106, Amersham Pharmacia Biotech) Western blot detection kit). The amount of TRX in each sample was evaluated by analyzing the density of each band using a computerized densitometer, NIH image. MPP+Under treatment conditions, TRX expression was reduced in PC12 cells (FIG. 11). Similar experiments were performed three times.
[0036]
Next, the inventor confirmed that MPP for PC12 cell viability by lactate dehydrogenase (LDH) release assay.+The effect of was examined in detail. LDH released from damaged cells was measured in aliquots of cell culture. The remaining cellular LDH was obtained by lysing the cells with 0.2% Tween 20 in PBS. LDH in a 50 μl sample of cell culture or cell lysate was measured using an LDH assay kit (kyokuto, Tokyo) according to the manufacturer's method. The percent cell lysis was measured as the LDH ratio (LDH in medium / total LDH per well). Here, total LDH refers to LDH of medium + cell lysate. MPP+When cultured with, cell viability decreased in a dose-dependent manner (FIG. 12). Similar experiments were repeated three times.
[0037]
Overexpression of TRX is MPP+To determine whether to protect PC12 cells from induced damage, PC12 cells (1 × 107/ Ml) Incubated overnight in RPMI 1640 medium supplemented with 10% HS and 5% FCS. Cells were mechanically detached from the tissue dish, washed 3 times with serum-free RPMI 1640 medium, and then the cells were mixed with 10 μg pBI-EGFP-wtTRX. pBI-EGFP-wtTRX was constructed by ligating a TRX cDNA fragment (Y. Tagaya et al. EMBO J. 8 (1989), pp. 757-764) to a pBI-EGFP control vector (Clontech). Cells were then incubated on ice for 5 minutes and exposed to the appropriate single electrical pulse. Transient TRX overexpression and administration of recombinant human TRX causes PC12 cells to MPP+And MPP when incubated for 24 hours+Induced damage was suppressed (FIGS. 13A, B).
[0038]
The above results show that TRX has a neuronal protective effect, thereby MPP+It shows that the damage-inducing action was suppressed.
Example 4
Thioredoxin transgenic (trx-tg) mice are C57BL / 6 mice (wild type) that carry human TRX transgene under the control of β-actin promoter and express human TRX throughout the body including the brain (Takagi Y et al., Proc. Natl. Acad. Sci. USA, 96 (1999) 4131-4136). The present inventor confirmed that human TRX is expressed throughout the trx-tg retina (FIGS. 14A and B). Retinal sample preparation, immunohistochemistry, and Western blotting were performed as previously described (Takagi Y. et al., Proc. Natl. Acad. Sci. USA, 96 (1999) 4131-4136; Ohira A et al., Lab. Invest., 70 (1994) 279-285). Therefore, the present inventor evaluated whether trx-tg mice are resistant to retinal damage induced by intense light. All methods in this study followed the ARVO statement on Use of Animals in Ophthalmic and Vision Research.
[0039]
First, we analyzed endogenous mouse TRX before and after light exposure to the retina of trx-tg and wild type mice by Western blotting with anti-mouse TRX antibody (Takagi Y. et al., Proc. Natl. Acad. Sci. USA, 96 (1999) 4131-4136; Ohira A. et al., Lab. Invest., 70 (1994) 279-285). Prior to light exposure, 3-4 week old male mice were acclimated for 48 hours in the dark and their pupils were dilated using 0.5% tropicamide and 0.5% phenylephrine hydrochloride eye drops (Santen Pharmaceutical). Unanesthetized mice were exposed to 8000 lux diffusive daylight white fluorescent light (Matsushita Electric Industrial) in a cage with a reflective interior for 2 hours (Wenzel A. et al., J. Neurosci., 20 (2000) 81-88). Care was taken to ensure that the eyes received the same level of light during illumination. Prior to light exposure, the expression of endogenous mouse TRX in the retina of trx-tg mice could be compared with that of wild type mice. After a total of 24 hours of light exposure, a two-fold upregulation of endogenous mouse TRX was observed in both trx-tg and wild type mice, where there was no significant difference in both mice (data not shown) . The amount of human TRX protein in each tissue of trx-tg mice has been reported to be 3-6 times greater than endogenous mouse TRX protein (Takagi Y. et al., Proc. Natl. Acad. Sci. USA, 96 (1999) 4131-4136). Furthermore, the activity of the β-actin promoter is considered to be sufficiently higher than that of the endogenous mouse TRX promoter. As a result, the amount of total TRX protein in the retina is believed to be considerably higher in trx-tg mice than in wild-type mice before and after light exposure.
[0040]
Next, we analyzed protein oxidation and tyrosine phosphorylation to assess oxidative stress after light exposure in trx-tg and wild type mice. Oxidized protein was analyzed as described above (Takagi Y. et al., Proc. Natl. Acad. Sci. USA, 96 (1999) 4131-4136) Oxidized protein detection kit (OxyBlot, Intergen, Purchase, NY) It detected using. The kit provides reagents for sensitive immunodetection of carbonyl groups. Prepare 2,4-dinitrophenyl (DNP) hydrazone derivatized retinal protein samples according to the manufacturer's protocol, separate by 12% sodium dodecyl sulfate (SDS) polyacrylamide gel electrophoresis (10 μg protein / lane), and polyvinylidene Transferred to fluoride (PVDF) membrane. After blocking, the membrane was incubated with a primary antibody specific for the DNP portion of the protein. The protein band was then detected by the same Western blotting method as human TRX. Tyrosine phosphorylated protein was detected using the ECL tyrosine phosphorylation detection system (RPN 2220 / l, Amersham Biosciences). Retinal protein samples were prepared and electrophoresed on a 12% SDS polyacrylamide gel (10 μg protein / lane) and then electrophoretically transferred to a PVDF membrane according to the manufacturer's recommendations. After blocking, the membrane was incubated with a peroxidase-conjugated anti-phosphotyrosine antibody (PY-20, Amersham Biosciences) and chemiluminescence was detected with an ECL Western blot detection kit. In wild-type mice, the amount of oxidized protein in the retinal nerve increased immediately after light exposure compared to before light exposure (FIG. 15A, lane 2). Compared to wild-type mice, the amount of oxidized protein decreased in trx-tg mice (FIG. 15A, lane 4). In wild type mouse retinal specimens, three strong bands (arrows) of tyrosine phosphorylated protein were detected before light exposure (FIG. 15B, lane 1). Immediately after light exposure, these bands were enhanced and at least two additional bands (arrowheads) were detected (FIG. 15B, lane 2). Compared to wild type mice, the increase in these bands was less pronounced in trx-tg mice (FIG. 15B, lane 4). Protein oxidation is the result of free radical production (Oliver CN et al., Proc. Natl. Acad. Sci. USA, 87 (1990) 5144-5147), src family kinase, phosphatidylinositol 3-kinase and mitogen-activated protein Tyrosine kinases including kinases are activated by oxidative stress (Nakamura K. et al., Mol. Immunol., 33 (1996) 855-865; Saitoh, M. et al., EMBO J., 17 (1998) 2596-2606). Thus, this result indicates that TRX overexpression reduces photooxidative stress in the retina.
[0041]
Intense light causes photoreceptor DNA damage (Organisciak D.T. et al., Photochem Photobiol., 70 (1999) 261-268). In order to evaluate the cytoprotective effect of overexpressed TRX against light-induced DNA damage, the inventors used quantitative immunohistochemistry (8OhdG index) for 8-hydroxy-2-deoxyguanosine. Methods for preparing paraffin-treated retinal samples, immunohistochemistry for 8OhdG using the alkaline phosphatase method and quantification of 8OhdG immunostaining are known (Ohira A., et al., Lab. Invest., 70 (1994 279-285; Toyokuni S. et al., Lab. Invest., 76 (1997) 365-374). Anti-8OhdG monoclonal antibody was purchased from NOF Corporation. In order to calculate the 8OhdG index, digitized color images at two positions (upper and lower retina, approximately 100 μm from the optic disc) of each mouse were used in a PICT file using a digital imaging system (PDMC le, Olympus). And analyzed using the National Institutes of Health image version 1.61 software on a Macintosh personal computer. There was no significant difference in 8OhdG index in photoreceptor nuclei (outer granule layer) between mouse strains prior to light exposure (FIG. 16B, -2h). At 12 and 24 hours after light exposure, the 8OhdG index was significantly higher in wild-type mice than in trx-tg mice (P <0.01 and P <0.01, respectively) (FIGS. 16B, 12h and 24h). ). In wild type mice, strong staining was maintained 24 hours after light exposure (FIG. 16A, left panel). On the other hand, the staining of the outer granule layer of trx-tg mice decreased after 24 hours of light exposure (FIG. 16A, right panel). The major DNA base modification product, 8OhdG, is induced by either hydroxy radicals, singlet oxygen, or photodynamic action and is an established marker of oxidative stress-induced DNA damage (Toyokuni S. et al., Lab. Invest., 76 (1997) 365-374). Therefore, this result indicates that overexpressed TRX prevents photoreceptor DNA damage caused by photooxidative stress.
[0042]
Electroretinography (ERG) is a recording of action potentials (a-waves) generated by photoreceptor cells and action potentials (b-waves) generated by secondary neurons in the inner granule layer that interact with Muller glial cells. Thus, the amplitudes of the a- and b-waves reflect the functional state of these first two retinal neurons. To test the effect of overexpressed TRX on retinal function, we compared a-wave and b-wave between both mouse strains. Flash ERG was recorded using PE-3000 (Tomey, Nagoya). A gold contact lens electrode (3 mm diameter, 1.5-mm base curve, Kyoto contact lens) was placed on the left eye, the same reference electrode was placed in the mouth, and the outer electrode was placed on the left leg pad. Prior to light exposure, the amplitudes of a-wave and b-wave were not different between these lines (FIGS. 17, -2h). After light exposure, the amplitudes of a-wave and b-wave are 6 hours (P <0.01 and P <0.05, respectively) and 12 hours (P <0.01 and P <0.05, respectively). And significantly higher in trx-tg mice compared to wild type mice (FIGS. 17, 6h and 12h). Thus, this result indicates that overexpressed TRX regenerates photodamaged retinal nerves.
References
Ahn S, Olive M, Aggarwal S, Krylov D, Ginty DD, Vinson C (1998) A dominant-negative inhibitor of CREB reveals that it is a general mediator of stimulus-dependent transcription of c-fos. Mol Cell Biol 18: 967 -977.
Boussif O, Lezoualc'h F, Zanta MA, Mergny MD, Scherman D, Demeneix B, Behr JP (1995) A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine.Proc Natl Acad Sci USA 92: 7297-7301.
Chen RH, Sarnecki C, Blenis J (1992) Nuclear localization and regulation of erk- and rsk-encoded protein kinases. Mol Cell Biol 12: 915-927.
Chiarini LB, Freitas FG, Petrs-Silva H, Linden R (2000) Evidence that the bifunctional redox factor / AP endonuclease Ref-1 is an anti-apoptotic protein associated with differentiation in the developing retina.Cell Death Differ 7: 272-281 .
Connor B, Dragunow M (1998) The role of neuronal growth factors in neurodegenerative disorders of the human brain.Brain Res Rev 27: 1-39.
Ema M, Hirota K, Mimura J, Abe H, Yodoi J, Sogawa K, Poellinger L, Fujii-Kuriyama Y (1999) Molecular mechanisms of transcription activation by HLF and HIF1alpha in response to hypoxia: their stabilization and redox signal-induced interaction with CBP / p300. EMBO J 18: 1905-1914.
Endoh M, Kunishita T, Tabira T (1993) Thioredoxin from activated macrophages as a trophic factor for central cholinergic neurons in vitro.Biochem Biophys Res Commun 192: 760-765.
Ginty DD, Bonni A, Greenberg ME (1994) Nerve growth factor activates a Ras-dependent protein kinase that stimulates c-fos transcription viaphosphorylation of CREB.Cell 77: 713-725.
Greene LA, Tischler AS (1976) Establishment of a noradrenerergic clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor.Proc Natl Acad Sci U S A 73: 2424-2428.
Hashimoto S, Matsumoto K, Gon Y, Furuichi S, Maruoka S, Takeshita I, Hirota K, Yodoi J, Horie T (1999) Thioredoxin negatively regulates p38 MAP kinase activation and IL-6 production by tumor necrosis factor-alpha.Biochem Biophys Res Commun 258: 443-447.
Hirota K, Matsui M, Iwata S, Nishiyama A, Mori K, Yodoi J (1997) AP-1 transcriptional activity is regulated by a direct association between thioredoxin and Ref-1. Proc Natl Acad Sci U S A 94: 3633-3638.
Hirota K, Matsui M, Murata M, Takashima Y, Cheng FS, Itoh T, Fukuda K, Yodoi J (2000) Nucleoredoxin, glutaredoxin, and thioredoxin differentially regulate NF-kappaB, AP-1, and CREB activation in HEK293 cells.
Biophys Res Commun 274: 177-182.
Hollowell JP, Villadiego A, Rich KM (1990) Sciatic nerve regeneration across gaps within silicone chambers: long-term effects of NGF and consideration of
Axonal branching.Exp Neurol 110: 45-51.Holmgren A (1985) Thioredoxin.Annu Rev Biochem 54: 237-271.Hori K, Katayama M, Sato N, Ishii K, Waga S, Yodoi J (1994) Neuroprotection by glial cells through adult T cell leukemia-derived factor / human thioredoxin (ADF / TRX). Brain Res 652: 304-310.
Impey S, Obrietan K, Wong ST, Poser S, Yano S, Wayman G, Deloulme JC, Chan G, Storm DR (1998) Cross talk between ERK and PKA is required for Ca2 + stimulation of CREB-dependent transcription and ERK nuclear translocation. Neuron 21: 869-883.
Kamata H, Tanaka C, Yagisawa H, Matsuda S, Gotoh Y, Nishida E, Hirata H (1996) Suppression of nerve growth factor-induced neuronal differentiation of PC12 cells.N-acetylcysteine uncouples the signal transduction from ras to the mitogen-activated protein kinase cascade. J Biol Chem 271: 33018-33025.
Kanamoto T, Mota M, Takeda K, Rubin LL, Miyazono K, Ichijo H, Bazenet CE (2000) Role of apoptosis signal-regulating kinase in regulation of the c-Jun N-terminal kinase pathway and apoptosis in sympathetic neurons. Biol 20: 196-204.
Kane DJ, Sarafian TA, Anton R, Hahn H, Gralla EB, Valentine JS, Ord T, Bredesen DE (1993) Bcl-2 inhibition of neural death: decreased generation of reactive oxygen species.Science 262: 1274-1277..Kaplan DR, Martin-Zanca D, Parada LF (1991) Tyrosine phosphorylation and tyrosine kinase activity of the trk proto-oncogene product induced by NGF.Nature 350: 158-160.
Kim YC, Masutani H, Yamaguchi Y, Itoh K, Yamamoto M, Yodoi J (2001) Hemin-induced activation of the thioredoxin gene by Nrf2. A differential regulation of the antioxidant responsive element by a switch of its binding factors.J Biol Chem 276: 18399-18406.
Kummer JL, Rao PK, Heidenreich KA (1997) Apoptosis induced by withdrawal of trophic factors is mediated by p38 mitogen-activated protein kinase.
J Biol
Chem 272: 20490-20494.
Lo DC (1992) Signal transduction and regulation of neurotrophins. Curr Opin Neurobiol 2: 336-340.
Lovell MA, Xie C, Gabbita SP, Markesbery WR (2000) Decreased thioredoxin and increased thioredoxin reductase levels in Alzheimer's disease brain.Free Radic Biol Med 28: 418-427.
Mansur K, Iwahashi Y, Kiryu-Seo S, Su Q, Namikawa K, Yodoi J, Kiyama H (1998) Up-regulation of thioredoxin expression in motor neurons after nerve injury.Brain Res Mol Brain Res 62: 86-91.
Maruyama T, Kitaoka Y, Sachi Y, Nakanoin K, Hirota K, Shiozawa T, Yoshimura Y, Fujii S, Yodoi J (1997) Thioredoxin expression in the human endometrium during the menstrual cycle.Mol Hum Reprod 3: 989-993.
Masutani H, Magnaghi-Jaulin L, Ait-Si-Ali S, Groisman R, Robin P, Harel-Bellan A. (1997) Activation of the c-fos SRE through SAP-1a.Oncogene 15: 1661-1669.
Masutani H, Ueno M, Ueda S and Yodoi J (1999) in Antioxidant and redox regulation of genes (Sen, C.K., Sies, H., Baeuerle, P.A., eds), pp.297-311, Academic Press, San Diego
Milbrandt J (1986) Nerve growth factor rapidly induces c-fos mRNA in PC12 Rat pheochromocytoma cells. Proc Natl Acad Sci U S A 83: 4789-4793.
Montminy MR, Sevarino KA, Wagner JA, Mandel G, Goodman RH (1986) Identification of a cyclic-AMP-responsive element within the rat somatostatin gene.Proc Natl Acad Sci U S 83: 6682-6686.
Nakamura H, Matsuda M, Furuke K, Kitaoka Y, Iwata S, Toda K, Inamoto T, Yamaoka Y, Ozawa K, Yodoi J (1994) Adult T cell leukemia-derived factor / human thioredoxin protects endothelial F-2 cell injury caused by activated neutrophils or hydrogen peroxide. Immunol Lett 42: 75-80.
Nakamura H, Nakamura K, Yodoi J (1997) Redox regulation of cellular activation. Annu Rev Immunol 15: 351-369.
Nishiyama A, Matsui M, Iwata S, Hirota K, Masutani H, Nakamura H, Takagi Y, Sono H, Gon Y, Yodoi J (1999) Identification of thioredoxin-binding protein-2 / vitamin D (3) up-regulated protein 1 as a negative regulator of thioredoxin function and expression.J Biol Chem 274: 21645-21650.
Pallage V, Toniolo G, Will B, Hefti F (1986) Long-term effects of nerve growth factor and neural transplants on behavior of rats with medial septal lesions.Brain Res 386: 197-208.
Saitoh M, Nishitoh H, Fujii M, Takeda K, Tobiume K, Sawada Y, Kawabata M, Miyazono K, Ichijo H (1998) Mammalian thioredoxin is a direct inhibitor of apoptosis signal-regulating kinase (ASK) 1.EMBO J 17: 2596-2606.
Serrano Sanchez T, Robinson Agramonte Md M, Lorigados Pedre L, Diaz Armesto I, Gonzalez Fraguela ME, Dorta-Contreras AJ (2001) Endogenous nerve growth factor in patients with Alzheimer s disease.Rev Neurol 32: 825-828.
Sheng M, Dougan ST, McFadden G, Greenberg ME (1988) Calcium and growth factor pathways of c-fos transcriptional activation require distinct upstream regulatory sequences. Mol Cell Biol 8: 2787-2796.
Sheng M, Greenberg ME (1990) The regulation and function of c-fos and other immediate early genes in the nervous system.Neuron 4: 477-485.
Tagaya Y, Maeda Y, Mitsui A, Kondo N, Matsui H, Hamuro J, Brown N, Arai K, Yokota T, Wakasugi H, Yodoi J. (1989) ATL-derived factor (ADF), an IL-2 receptor / Tac inducer homologous to thioredoxin; possible involvement of dithiol-reduction in the IL-2 receptor induction. EMBO J 8: 757-764.
Takagi Y, Horikawa F, Nozaki K, Sugino T, Hashimoto N, Yodoi J (1998a) Expression and distribution of redox regulatory protein, thioredoxin during transient focal brain ischemia in the rat.Neurosci Lett 251: 25-28..Takagi Y, Tokime T, Nozaki K, Gon Y, Kikuchi H, Yodoi J (1998b) Redox control of neuronal damage during brain ischemia after middle cerebral artery occlusion in the rat: immunohistochemical and hybridization studies of thioredoxin.J Cereb Blood Flow Metab 18: 206- 214.
Takagi Y, Gon Y, Todaka T, Nozaki K, Nishiyama A, Sono H, Hashimoto N, Kikuchi H, Yodoi J (1998c) Expression of thioredoxin is enhanced in atherosclerotic plaques and during neointima formation in rat arteries.Lab Invest 78: 957 -966.
Takagi Y, Mitsui A, Nishiyama A, Nozaki K, Sono H, Gon Y, Hashimoto N, Yodoi J (1999) Overexpression of thioredoxin in transgenic mice attenuates focal ischemic brain damage.Proc Natl Acad Sci USA 96: 4131-4136 Takagi Y, Hattori I, Nozaki K, Mitsui A, Ishikawa M, Hashimoto N, Yodoi J (2000) Excitotoxic hippocampal injury is attenuated in thioredoxin transgenic mice.J Cereb Blood Flow Metab 20: 829-833.
Taniguchi Y, Taniguchi-Ueda Y, Mori K, Yodoi J (1996) A novel promoter sequence is involved in the oxidative stress-induced expression of the adult T-cell leukemia-derived factor (ADF) / human thioredoxin (Trx) gene. Nucleic Acids Res 24: 2746-2752.
Thomas SM, DeMarco M, D'Arcangelo G, Halegoua S, Brugge JS (1992) Ras is essential for nerve growth factor- and phorbol ester-induced tyrosine phosphorylation of MAP kinases.Cell 68: 1031-1040..Tomimoto H, Akiguchi I, Wakita H, Kimura J, Hori K, Yodoi J (1993) Astroglial expression of ATL-derived factor, a human thioredoxin homologue, in the gerbil brain after transient global ischemia.Brain Res 625: 1-8.
Treisman R (1986) Identification of a protein-binding site that mediates transcriptional response of the c-fos gene to serum factors.Cell 46: 567-574.
Trouche D, Grigoriev M, Lenormand JL, Robin P, Leibovitch SA, Sassone-Corsi P, Harel-Bellan A (1993) Repression of c-fos promoter by MyoD on muscle cell differentiation.Nature 363: 79-82.
Ueno M, Masutani H, Arai RJ, Yamauchi A, Hirota K, Sakai T, Inamoto T, Yamaoka Y, Yodoi J, Nikaido T (1999) Thioredoxin-dependent redox regulation of p53-mediated p21 activation.J Biol Chem 274: 35809 -35815.
Xia Z, Dickens M, Raingeaud J, Davis RJ, Greenberg ME (1995) Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis. Science 270: 1326-1331.
Yamamoto M, Sato N, Tajima H, Furuke K, Ohira A, Honda Y, Yodoi J (1997) Induction of human thioredoxin in cultured human retinal pigment.Exp Eye Res 65: 645-652.
[Brief description of the drawings]
FIG. 1A NGF-induced TRX expression.
FIG. 1A shows the increase in TRX protein caused by NGF. PC12 cells treated with NGF (50 ng / ml) for 24 and 48 hours were harvested and detected by Western blotting.
FIG. 1B NGF-induced TRX expression.
FIG. 1B shows increased expression of TRX mRNA induced by NGF. NGF-treated PC12 cells were harvested at each indicated time and then analyzed by Northern blotting.
FIG. 1C NGF-induced TRX expression.
FIG. 1C shows activation of the TRX gene by NGF. PC12 cells were transfected with the pTRX-Luc vector pTRX (-1148) and pRL-TK and then treated in the presence or absence of NGF.
[Figure 2] Identification of the region that responds to NGF in the TRX promoter
PC12 cells were transfected with pTRX-Luc vector and pRL-TK as shown in the left panel, and the values shown represent the ratio of luciferase activity of NGF (50 ng / ml) -treated cells to untreated cells . This result is representative of three independent experiments.
FIG. 3A. Repression of TRX expression by PD98059 or NAC.
FIG. 3A shows blockade of PC12 differentiation by PD98059 or NAC. PC12 cells were cultured for 2 days in the presence or absence of NGF (50 ng / ml) and then with NGF (50 ng / ml) in the presence of PD98059 (50 mM) or NAC (20 mM).
FIG. 3B. Repression of TRX expression by PD98059 or NAC.
FIG. 3B is inhibition of NGF-induced transactivation by addition of PD98059 or NAC. PC12 cells were transfected with pTRX (−263) -Luc vector and pRL-TK and then treated with NGF (50 ng / ml) and PD98059 (50 mM) or NAC (20 mM). The values shown are the ratio of luciferase activity to untreated cells in cells treated with NGF 50 (ng / ml) and PD98059 or NAC. The results are representative of three independent experiments.
FIG. 3C. Repression of TRX expression by PD98059 or NAC.
FIG. 3C shows suppression of TRX protein expression by PD98059 or NAC. PC12 cells were treated as in FIG. 3A and protein samples were fractionated and screened with anti-TRX antibodies.
Fig. 4 Suppression of NGF-induced TRX nuclear migration
FIG. 4 (A) shows PC12 cells cultured without NGF, FIG. 4 (B) shows PC12 cells treated with NGF, and FIGS. 4 (C) and 4 (D) show NGF and PD98059 (FIG. 4). 4C) or PC12 cells treated with NAC (FIG. 4D).
These cells were stained with anti-TRX mAb.
FIG. 5. Inhibition of NGF-induced differentiation by mutant TRX overexpression.
PC12 cells were transfected with pBI-EGFP, pBI-EGFP-wtTRX or pBI-EGFP-dmTRX (32S / 35S) vectors and then treated with NGF 50 (ng / ml). After 24 hours, these cells were examined with a laser confocal microscope.
FIG. 6A shows suppression of CRE-mediated c-fos induction by dominant negative mutant TRX.
FIG. 6A shows that NGF induces c-fos through CRE. PC12 cells were transfected with pGL3-c-fos (-40, +42) or pGL3-c-fos (-99, +42) as shown in the upper panel with pRL-TK and then 4 with NGF. Time processed. The value shown is the ratio of luciferase activity of NGF treated cells to untreated cells.
FIG. 6B shows suppression of CRE-mediated c-fos induction by dominant negative mutant type TRX.
FIG. 6B shows inhibition of c-fos activation by NGF by mutant TRX. PC12 cells were cotransfected with pGL-TK, pGL3-c-fos (-99, +42) and pcDNA3 (1g) or pcDNA3-TRX (32S / 35S) (1g) vector as shown in the upper panel. It was effected. Transfected PC12 cells were treated with NGF for 4 hours. The value shown is the ratio of luciferase activity of NGF treated cells to untreated cells.
FIG. 7 shows H-E and TUNEL staining of the irradiated retina. Representative H-E and TUNEL staining in retinal specimens is shown. A significant decrease in photoreceptor cell nuclei was observed after 24 hours and thereafter. TUNEL-positive cells were observed after 12 hours and thereafter (arrows). INL is the inner nuclear layer and ONL is the outer nuclear layer.
FIG. 8. Immunohistochemistry and Western blot for TRX expression in retinal samples. Representative immunohistochemistry for TRX is shown in (A). TRX nuclear labeling was observed in the inner nuclear layer (INL) immediately after light irradiation (short arrow), but disappeared after 24 hours. Nuclear labeling of the outer nuclear layer (ONL) was observed immediately after light irradiation (long arrow) and was maintained until 96 hours later. Immunity labeling is not prominent in the peripheral retina near the ciliary body immediately after light irradiation (0 hour). TRX labeling is observed with RPE after 24 hours or later (arrows) but not prominent around the retina (white arrows, 12 hours and 24 hours later). Shown is a representative Western blot (B) for TRX in the retinal nerve and RPE fractions, and semi-quantitative analysis of band intensity (C). The band intensity at 12 hours and 24 hours after light irradiation is represented by the induction ratio compared to that of mice not irradiated with light.
FIG. 9. Detection of oxidized (A) and tyrosine-phosphorylated (B) proteins in retinal samples from eyes pre-intravitreally treated with vehicle, rTRX (5 μg) or mutant rTRX (5 μg). (A) A representative Western blot for oxidized protein in the retinal nerve is shown. Eyes before light irradiation (first lane) and after vehicle, rTRX and mutant rTRX treatment (second lane, third lane and fourth lane, respectively). (B) A representative Western blot for tyrosine phosphorylated proteins in retinal nerves is shown. Eyes before light irradiation (first lane) and after vehicle, rTRX and mutant rTRX treatment (second lane, third lane and fourth lane, respectively). Two strong bands and three weak bands (arrows) were detected before light irradiation. Immediately after light irradiation, one of the two bands with strong intensity (upper arrow) was enhanced, and one additional band with lower intensity (lower arrow) was detected in vehicle or mutant rTRX-treated mice.
FIG. 10 shows cytoprotective effect of recombinant TRX. Shown are representative HE-E staining (A) and number of photoreceptor nuclei (B) from retinal samples from eyes pre-intravitreally treated with vehicle, rTRX (5 μg) or mutant rTRX (5 μg). 96 hours after light irradiation The number of photoreceptor nuclei in the eyes treated with rTRX (mean ± SE, 101.3 ± 5.1 cells / 100 μm; n = 6) is the vehicle (63.3 ± 2.7 cells / 100 μm; n = 6) and Mutant rTRX-treated (51.4 ± 3.3 cells / 100 μm; n = 4) significantly greater than in eyes. P values were calculated by one-way ANOVA followed by Bonferroni / Dunn post hoc test. Representative DNA ladder detection in retinal samples is shown in (C). Analysis of DNA ladder formation was detected 96 hours after light exposure in vehicle, rTRX or mutant rTRX treated eyes. ONL is the outer nuclear layer; n.s. is not statistically significant.
FIG. 11 MPP+Reduces TRX in PC12 cells. PC12 cells pre-cultured overnight in 35 mm dishes (2 × 10Five/ Ml) is 0, 0.3 and 1 mM MPP+The cells were cultured for 3 hours in a medium containing and then cell lysates were collected. TRX is recognized as a 12 kDa band by Western blotting.
FIG. 12 MPP+Reduces the viability of PC12 cells. PC12 cells (2 × 10Four/ Ml) is 0, 0.3 and 1 mM MPP+And incubated for 24 hours. The percent cell lysis was measured by LDH release assay.
FIG. 13: TRP overexpression and recombinant TRX administration is MPP+Suppresses induced damage. 1 mM MPP 24 hours after TRX overexpression+Was added to the medium and incubated for 24 hours. The percent cell lysis was measured by LDH release assay.
TRX overexpressing PC12 cells are treated with MPP as measured by LDH release assay.+Resistant to induced damage (FIG. 13A). Furthermore, administration of 100 μg / ml rTRX also allowed PC12 cells to MPP+0.3 and 1 mM MPP when incubated for 24 hours with+Induced damage was suppressed. Two asterisks (*) indicate statistical significance (**P <0.001)
FIG. 14. Representative immunohistochemistry (A); and Western blot (B) for human TRX expression in retinal samples of wild type and trx-tg mouse eyes. GLC is the ganglion cell layer; INL is the inner granular layer; ONL is the outer granular layer; and RPE is the retinal pigment epithelial layer and the scale bar is 100 μm.
FIG. 15 Representative Western blots of oxidized (A) and tyrosine phosphorylated (B) proteins in retinal nerves of wild type and trx-tg mice. Before light exposure of wild type and trx-tg mice (-2h) (lanes 1 and 3, respectively) and immediately after light exposure of wild type and trx-tg mice (0h) (lanes 2 and 4 respectively).
FIG. 16 Quantitative immunohistochemical analysis of 8OhdG in photoreceptor granule layer.
(A) Representative immunohistochemical analysis of 8OhdG in specimens 24 hours after light exposure of wild type mice (left panel) and trx-tg mice (right panel). ONL is outer granule layer; scale bar is 20 μm.
(B) The 8OhdG index is summarized. Each column is expressed as mean ± SE (n = 5 for each group). P value was calculated by Mann-Whitney U-test.
FIG. 17 ERG. Average a- and b-wave amplitudes are summarized. Each column is expressed as mean ± SE (n = 5 for each group). P value was calculated by Mann-Whitney U-test.

Claims (1)

NGFを含有する、内因性チオレドキシン発現を誘導することにより光損傷を受けた網膜神経細胞の機能を回復させる、網膜神経細胞機能回復剤。An agent for restoring retinal nerve cell function, which contains NGF and restores the function of photodamaged retinal neurons by inducing endogenous thioredoxin expression.
JP2002169204A 2002-06-10 2002-06-10 Retinal nerve cell function recovery agent Expired - Lifetime JP4925155B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002169204A JP4925155B2 (en) 2002-06-10 2002-06-10 Retinal nerve cell function recovery agent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002169204A JP4925155B2 (en) 2002-06-10 2002-06-10 Retinal nerve cell function recovery agent

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2011229233A Division JP5010045B2 (en) 2011-10-18 2011-10-18 Functional recovery agent for photodamaged retinal neurons

Publications (2)

Publication Number Publication Date
JP2004010574A JP2004010574A (en) 2004-01-15
JP4925155B2 true JP4925155B2 (en) 2012-04-25

Family

ID=30435877

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002169204A Expired - Lifetime JP4925155B2 (en) 2002-06-10 2002-06-10 Retinal nerve cell function recovery agent

Country Status (1)

Country Link
JP (1) JP4925155B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090280100A1 (en) * 2005-02-25 2009-11-12 Redox Bioscience Inc. Preventive or Therapeutic Agent for Inflammatory Ocular-Surface Diseases
JP2013163669A (en) * 2012-01-12 2013-08-22 Oriza Yuka Kk Visible light-induced retinopathy inhibitor, and eye disease preventing and therapeutic agent using the same
US20150025077A1 (en) 2012-02-29 2015-01-22 Coyote Pharmaceuticals, Inc. Gga and gga derivatives compositions thereof and methods for treating neurodegenerative diseases including paralysis including them
US9119808B1 (en) 2012-10-08 2015-09-01 Coyote Pharmaceuticals, Inc. Treating neurodegenerative diseases with GGA or a derivative thereof
CU24626B1 (en) * 2019-12-26 2022-11-07 Centro Nac De Biopreparados PHARMACEUTICAL COMPOSITION BASED ON PROTEINS WITH NEUROPROTECTIVE, IMMUNOMODULATORY, ANTI-INFLAMMATORY AND ANTIMICROBIAL ACTIVITIES

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9701710D0 (en) * 1997-01-28 1997-03-19 Karobio Ab Mammalian protein
WO2002038179A1 (en) * 2000-11-10 2002-05-16 Kissei Pharmaceutical Co., Ltd. Preventives or remedies for endoplasmic reticulum stress-associated diseases

Also Published As

Publication number Publication date
JP2004010574A (en) 2004-01-15

Similar Documents

Publication Publication Date Title
Narayan et al. A review of the mechanisms of cone degeneration in retinitis pigmentosa
Bai et al. Critical roles of thioredoxin in nerve growth factor-mediated signal transduction and neurite outgrowth in PC12 cells
Kwidzinski et al. Indolamine 2, 3‐dioxygenase is expressed in the CNS and down‐regulates autoimmune inflammation
Martinez et al. The lens epithelium in ocular health and disease
DeBusk et al. Tie2 receptor tyrosine kinase, a major mediator of tumor necrosis factor α–induced angiogenesis in rheumatoid arthritis
Tanito et al. Cytoprotective effect of thioredoxin against retinal photic injury in mice
US8614192B2 (en) Method for treating ocular cancer
Kong et al. Delay of photoreceptor degeneration in tubby mouse by sulforaphane
Imai et al. Intraocular gene transfer of pigment epithelium‐derived factor rescues photoreceptors from light‐induced cell death
Goldshmit et al. Upregulation of EphA4 on astrocytes potentially mediates astrocytic gliosis after cortical lesion in the marmoset monkey
RU2157223C2 (en) Trophic factors for stimulating nervous system regeneration
Do Rhee et al. Molecular and cellular alterations induced by sustained expression of ciliary neurotrophic factor in a mouse model of retinitis pigmentosa
TW200410672A (en) NMDA receptor antagonists and their use in inhibiting abnormal hyperphosphorylation of microtubule associated protein tau
Koch et al. Viral vector-mediated downregulation of RhoA increases survival and axonal regeneration of retinal ganglion cells
Barben et al. Hif1a inactivation rescues photoreceptor degeneration induced by a chronic hypoxia-like stress
Li et al. Tollip is a critical mediator of cerebral ischaemia–reperfusion injury
Deng et al. A20 establishes negative feedback with TRAF6/NF-κB and attenuates early brain injury after experimental subarachnoid hemorrhage
Gruneberg et al. Neuronal prolyl-4-hydroxylase 2 deficiency improves cognitive abilities in a murine model of cerebral hypoperfusion
Okamoto et al. Dietary spirulina supplementation protects visual function from photostress by suppressing retinal neurodegeneration in mice
Zhang et al. A potential role for β‐and γ‐crystallins in the vascular remodeling of the eye
US20090215671A1 (en) Compositions And Methods For Treatment of Neural Disorders Using Transforming Growth Factor-Beta Superfamily Proteins And Their Antagonists
JP2011513290A (en) New use of VEGFxxxb
JP4925155B2 (en) Retinal nerve cell function recovery agent
US20080260644A1 (en) Chloride transport upregulation for the treatment of traumatic brain injury
Keller et al. Working your SOCS off: The role of ASB10 and protein degradation pathways in glaucoma

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050315

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050315

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080604

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080804

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080827

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080805

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081024

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20081204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081209

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20090313

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20110426

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20110506

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20110920

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20111014

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111018

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20111018

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120202

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150217

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4925155

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term