JP4924833B2 - Exhaust gas purification device for internal combustion engine - Google Patents

Exhaust gas purification device for internal combustion engine Download PDF

Info

Publication number
JP4924833B2
JP4924833B2 JP2007332382A JP2007332382A JP4924833B2 JP 4924833 B2 JP4924833 B2 JP 4924833B2 JP 2007332382 A JP2007332382 A JP 2007332382A JP 2007332382 A JP2007332382 A JP 2007332382A JP 4924833 B2 JP4924833 B2 JP 4924833B2
Authority
JP
Japan
Prior art keywords
exhaust gas
exhaust
additive
fuel
injection path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007332382A
Other languages
Japanese (ja)
Other versions
JP2009156074A (en
Inventor
洋之 木村
光高 小島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp filed Critical Mitsubishi Motors Corp
Priority to JP2007332382A priority Critical patent/JP4924833B2/en
Publication of JP2009156074A publication Critical patent/JP2009156074A/en
Application granted granted Critical
Publication of JP4924833B2 publication Critical patent/JP4924833B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Exhaust Silencers (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Description

本発明は、触媒に供給される添加剤の噴射を行う構造をもつ内燃機関の排気ガス浄化装置に関する。   The present invention relates to an exhaust gas purification apparatus for an internal combustion engine having a structure for injecting an additive supplied to a catalyst.

ディーゼルエンジン車(車両)の排気ガスの浄化には、ディーゼルエンジンの排気ガス中に含まれるNOx(窒素酸化物)やPM(パティキュレートマター)の大気への放出を防ぐために、NOxトラップ触媒や選択還元型NOx触媒やディーゼルパティキュレートフィルタなどを組み合わせた排気ガス浄化装置が用いられる。
こうした排気ガス浄化装置には、エンジンから排気された排気ガスを外部へ排気する排気管部内に、前段触媒と呼ばれる、酸化触媒やNOxトラップ触媒や選択還元型NOx触媒などの触媒を設け、触媒の上流側、例えば酸化触媒の上流に、該触媒の反応に求められる燃料を噴射する燃料添加弁(還元剤を添加するもの)を設けた構造が採用される。
For purification of exhaust gas from diesel engine vehicles (vehicles), NOx trap catalyst or selection is used to prevent NOx (nitrogen oxide) and PM (particulate matter) contained in the exhaust gas of diesel engine from being released into the atmosphere. An exhaust gas purification device combined with a reduced NOx catalyst, a diesel particulate filter, or the like is used.
In such an exhaust gas purification device, a catalyst such as an oxidation catalyst, a NOx trap catalyst or a selective reduction type NOx catalyst, called a pre-stage catalyst, is provided in an exhaust pipe portion for exhausting exhaust gas exhausted from the engine to the outside. A structure in which a fuel addition valve (which adds a reducing agent) for injecting fuel required for the reaction of the catalyst is provided upstream, for example, upstream of the oxidation catalyst.

ところで、常に燃料添加弁を正常に機能させるためには、燃料添加弁の耐熱温度を超える使用を避けることが求められる。
このためには、燃料添加弁を排気ガス流から遠ざけて、高温の排気ガスに、燃料が噴射する先端部が晒されないようにすることが有効である。そのため、排気ガス浄化装置では、特許文献1のように排気管部に、同排気管部から分かれて延びる燃料噴射路を設け、この燃料噴射路の先端部に燃料添加弁を設置して、燃料添加弁の燃料を、排気ガスから離れた地点から、燃料噴射路を通じて、排気管部内へ噴射させる技術が採用されつつある。
特開2004− 44483号公報
By the way, in order to always function the fuel addition valve normally, it is required to avoid the use exceeding the heat resistance temperature of the fuel addition valve.
For this purpose, it is effective to keep the fuel addition valve away from the exhaust gas flow so that the tip portion where the fuel is injected is not exposed to the high-temperature exhaust gas. Therefore, in the exhaust gas purification device, as in Patent Document 1, a fuel injection path that extends separately from the exhaust pipe section is provided in the exhaust pipe section, and a fuel addition valve is installed at the tip of the fuel injection path, A technique for injecting the fuel of the addition valve into the exhaust pipe part through a fuel injection path from a point away from the exhaust gas is being adopted.
JP 2004-44483 A

ところが、同構造は、燃料噴射路が排気管部から分かれて外気に晒されるために、燃料噴射路の温度は、排気管部の温度より低くなる。このため、燃料添加弁から噴射された燃料は、霧化しにくく、排気ガスと混合しにくい問題がある。これは、燃料噴射路の全長が長くなる程、顕著に表れる。
しかも、燃料噴射路は、排気管部から退避するために、排気管部内を流れる排気ガスの主流が、燃料噴射路の内部までは波及しにくく、燃料噴射路内は澱んだ部分が生じやすい。このため、燃料噴射路内に留まった蒸発燃料が、バインダーとなって、排気ガスに含まれる煤を燃料噴射路の壁面に付着させて、デジポットを生成させる難点もある。
However, in this structure, since the fuel injection path is separated from the exhaust pipe part and exposed to the outside air, the temperature of the fuel injection path becomes lower than the temperature of the exhaust pipe part. For this reason, the fuel injected from the fuel addition valve is difficult to atomize and is difficult to mix with the exhaust gas. This becomes more prominent as the total length of the fuel injection path becomes longer.
Moreover, since the fuel injection path is retracted from the exhaust pipe part, the main flow of the exhaust gas flowing through the exhaust pipe part does not easily reach the inside of the fuel injection path, and a stagnated portion is likely to occur in the fuel injection path. For this reason, the evaporated fuel remaining in the fuel injection path becomes a binder, and the soot contained in the exhaust gas adheres to the wall surface of the fuel injection path, thereby generating a digipot.

そこで、噴射燃料の気化の促進と蒸発燃料や煤の排出が行われるよう、エキゾーストマニホールド内の高温、高圧の排気ガスの一部を燃料噴射路内へ導入させることが考えられる。
しかし、単に、高温、高圧の排気ガスを燃料噴射路内へ導入させたのでは、燃料添加弁は、常時、高温・高圧の排気ガスに晒されるので、当初の問題が再び露呈してしまう。つまり、燃料添加弁が熱的影響により正常に機能しなくなるおそれがある。このため、燃料添加弁を考慮した排気ガスの導入が求められている。
Therefore, it is conceivable to introduce a part of the high-temperature and high-pressure exhaust gas in the exhaust manifold into the fuel injection path so as to promote the vaporization of the injected fuel and discharge the evaporated fuel and soot.
However, if the high-temperature and high-pressure exhaust gas is simply introduced into the fuel injection path, the fuel addition valve is always exposed to the high-temperature and high-pressure exhaust gas, so that the original problem is exposed again. That is, the fuel addition valve may not function normally due to thermal influence. For this reason, introduction of exhaust gas considering the fuel addition valve is required.

そこで、本発明の目的は、添加剤噴射弁の熱的負担を抑えながら、添加剤噴射路へ高温・高圧の排気ガスを導入させる内燃機関の排気ガス浄化装置を提供することにある。   SUMMARY OF THE INVENTION An object of the present invention is to provide an exhaust gas purification device for an internal combustion engine that introduces high-temperature and high-pressure exhaust gas into an additive injection path while suppressing the thermal burden on the additive injection valve.

請求項1に記載の発明は、上記目的を達成するために、エンジンのエキゾーストマニホールドから排気ガスを外部へ導く排気管部と、排気管部に設けられる触媒と、触媒の上流側に設けられ、基端が排気管部と連通し、先端が排気管部から離れた方向に延びる添加剤噴射路と、添加剤が噴射する添加剤噴射部を添加剤噴射路の先端部に配置させて設置され、添加剤噴射部から噴射された添加剤を添加剤噴射路内を通して触媒へ供給する添加剤噴射弁と、一端部からエンジンのエキゾーストマニホールドからの排気ガスの一部を流入し、他端部を添加剤噴射路の内周面上の接線方向の地点に開口させ、エキゾーストマニホールドからの排気ガスで、添加剤噴射路内に、添加剤噴射剤から噴射された燃料の周りを旋回する旋回流を形成する排気ガス路と、排気ガス路に設けられ、添加剤噴射弁の噴射時にエキゾーストマニホールドからの排気ガスを排気ガス路に導入させるガス導入制御弁とを具備した。
同構成により、高温、高圧の排気ガスが、必要に応じ添加剤噴射路内へ導入され、添加剤噴射路内で、排気ガスの旋回流が形成される
In order to achieve the above-mentioned object, the invention according to claim 1 is provided on the upstream side of the catalyst, an exhaust pipe part that guides exhaust gas from the exhaust manifold of the engine to the outside, a catalyst provided in the exhaust pipe part, The additive injection path that communicates with the exhaust pipe portion at the base end and extends in the direction away from the exhaust pipe portion, and the additive injection portion that the additive injects are disposed at the distal end portion of the additive injection path. An additive injection valve that supplies the additive injected from the additive injection section to the catalyst through the additive injection path, and a part of the exhaust gas from the exhaust manifold of the engine flows in from one end and the other end A swirl flow that opens at a point in the tangential direction on the inner peripheral surface of the additive injection path and swirls around the fuel injected from the additive propellant in the additive injection path by exhaust gas from the exhaust manifold. Exhaust gas forming And road, disposed in an exhaust gas passage, equipped with a gas introduction control valve for introducing the exhaust gas from the exhaust manifold to the exhaust gas passage when the additive injection valve injection.
With this configuration, high-temperature and high-pressure exhaust gas is introduced into the additive injection path as necessary, and a swirling flow of the exhaust gas is formed in the additive injection path .

求項2に記載の発明は、できるだけ高温・高圧の排気ガスの熱が添加剤噴射弁へ伝わるのを避けるよう、排気ガス路は、添加剤噴射路の下流側へ向かって排気ガスが導出される構成を採用した。 The invention described in Motomeko 2, as much as possible so that the heat of the high temperature and high pressure of the exhaust gas is avoided from being transferred to the additive injection valve, the exhaust gas passage, the exhaust gas is led toward the downstream side of the additive injection passage Adopted configuration.

請求項1の発明によれば、エキゾーストマニホールドからの高温、高圧の排気ガスが、必要に応じて排気ガス路を通じて、添加剤噴射路内へ導入されるから、添加剤噴射弁が、高温・高圧の排気ガスに晒されるのが最小限に抑えられる。
したがって、添加剤噴射弁に加わる熱的負担を抑えながら、高温、高圧の排気ガスを十分に活用して、効果的に添加剤噴射路内における添加剤の気化または撹拌、さらには添加剤噴射路内で滞留する添加剤や煤が排出できる。この結果、たとえエンジン排出直後の高温、高圧の排気ガスを用いても、添加剤噴射弁が正常に機能しなくなるおそれは回避され、常に良好な排気な排気ガス浄化性能が維持でき、高い信頼性が得られる。
しかも、添加剤噴射路内で生成される排気ガスの旋回流により、限られた添加剤噴射時といった時間内で、添加剤の気化または撹拌が促進できるうえ、旋回流の中心部に発生する負圧を活用して、効果的に添加剤や煤を吸い出すことができる。
According to the first aspect of the present invention, the high-temperature and high-pressure exhaust gas from the exhaust manifold is introduced into the additive injection path through the exhaust gas path as necessary. Exposure to the exhaust gas is minimized.
Therefore, while suppressing the thermal burden applied to the additive injection valve, the exhaust gas of high temperature and high pressure is fully utilized to effectively vaporize or stir the additive in the additive injection path, and further to the additive injection path. Additives and soot that stays inside can be discharged. As a result, even if high-temperature and high-pressure exhaust gas immediately after engine exhaust is used, the possibility that the additive injection valve will not function properly is avoided, and good exhaust gas purification performance can always be maintained, with high reliability. Is obtained.
In addition, the swirling flow of the exhaust gas generated in the additive injection path can promote the vaporization or stirring of the additive within a limited time such as when the additive is injected, and the negative flow generated at the center of the swirling flow. By using pressure, additives and soot can be effectively sucked out.

請求項2の発明によれば、できるだけ高温・高圧の排気ガスの熱が添加剤噴射弁へ伝わるのを避けることができ、効果的に添加剤噴射弁を排気ガスの熱から保護できる According to the invention of claim 2, it is possible to avoid the heat of the exhaust gas having a high temperature and high pressure as much as possible from being transmitted to the additive injection valve, and to effectively protect the additive injection valve from the heat of the exhaust gas .

以下、本発明を図1〜図3に示す一実施形態にもとづいて説明する。
図1は内燃機関、例えばディーゼルエンジンの排気系を示している。同図中1は、多気筒ディーゼルエンジンのエンジン本体、1aは同エンジン本体1のエキゾーストマニホールド、2はそのエキゾーストマニホールド1aの出口に接続されたターボチャージャを示している。
Hereinafter, the present invention will be described based on an embodiment shown in FIGS.
FIG. 1 shows an exhaust system of an internal combustion engine, for example, a diesel engine. In the figure, reference numeral 1 denotes an engine body of a multi-cylinder diesel engine, 1a denotes an exhaust manifold of the engine body 1, and 2 denotes a turbocharger connected to an outlet of the exhaust manifold 1a.

ターボチャージャ2の排気出口には、排気ガス浄化装置3が設けられている。この排気ガス浄化装置3には、例えば、排気ガス中のNOx(窒素酸化物)を吸蔵し、定期的に吸蔵したNOxを還元除去するNOx除去系3aと、PM(パティキュレートマター)を捕集するPM捕集系3bとを組み合わせた構造が用いられている。
例えば、NOx除去系3aには、ターボチャージャ1aの排気出口から、下方へ向うように連結された、前段触媒となる酸化触媒5(本願の触媒に相当)が内蔵された触媒コンバータ6と、同触媒コンバータ6の後に横方向に連結された、NOxトラップ触媒8が内蔵された触媒コンバータ9と、後述する添加剤である触媒反応用の燃料を供給する燃料添加弁(本願の添加剤噴射弁に相当)23とを組み合わせた構成が用いられている。また捕集系3bには、触媒コンバータ9に、パティキュレートフィルタ11が内蔵された触媒コンバータ12を連結した構成が用いられている。これらの触媒コンバータ6,9,12や同コンバータ間をつなぐ接続部13などから、ディーゼルエンジン(エンジン本体1)から排気された排気ガスを外部へ導く排気管部15を構成している。
An exhaust gas purification device 3 is provided at the exhaust outlet of the turbocharger 2. In this exhaust gas purification device 3, for example, NOx (nitrogen oxide) in exhaust gas is occluded, and NOx removal system 3a for reducing and removing NOx occluded regularly and PM (particulate matter) are collected. The structure which combined PM collection system 3b to be used is used.
For example, the NOx removal system 3a includes a catalytic converter 6 in which an oxidation catalyst 5 (corresponding to the catalyst of the present application), which is connected in a downward direction from an exhaust outlet of the turbocharger 1a, is incorporated. A catalytic converter 9 having a built-in NOx trap catalyst 8 connected laterally after the catalytic converter 6 and a fuel addition valve for supplying fuel for catalytic reaction as an additive described later (to the additive injection valve of the present application). Equivalent) 23 is used in combination. The collection system 3b employs a configuration in which a catalytic converter 12 having a particulate filter 11 incorporated therein is connected to the catalytic converter 9. An exhaust pipe portion 15 that guides the exhaust gas exhausted from the diesel engine (engine body 1) to the outside is constituted by the catalytic converters 6, 9, 12 and the connection portion 13 connecting the converters.

このうち触媒コンバータ6の酸化触媒5を収容している縦筒形のハウジング17は、例えば上部側がL形に成形されていて、ターボチャージャ2と接続される入口部17aを横向きに配置させている。なお、触媒コンバータ9と連通する出口部17bは、下向きの配置となっている。このハウジング17により、排気管部15のうち、ディーゼルエンジンの排気側の直後の地点に、L形に屈曲した屈曲部15aを形成している。酸化触媒5は、この屈曲部15aの直下に地点に収めてある。   Among these, the vertical cylindrical housing 17 accommodating the oxidation catalyst 5 of the catalytic converter 6 is formed, for example, in an L shape on the upper side, and an inlet portion 17a connected to the turbocharger 2 is disposed sideways. . The outlet portion 17b communicating with the catalytic converter 9 is disposed downward. The housing 17 forms a bent portion 15a bent in an L shape at a point immediately after the exhaust side of the diesel engine in the exhaust pipe portion 15. The oxidation catalyst 5 is housed at a point directly below the bent portion 15a.

燃料添加弁23は、この酸化触媒5への燃料の噴射を果たすために、酸化触媒5の直上の地点、例えば屈曲部15aの外周側に設けられている。燃料添加弁23は、燃料を噴射する燃料噴射部を先端部にもつ。屈曲部15aの出口側の外周部分からは、図2にも示されるように屈曲部15aから離れる方向、すなわち外側へ延びる筒形部24が分岐されている。燃料添加弁23は、この屈曲部15aから分かれた筒形部24の先端部に、取付フランジ24aおよび台座25を用いて設置してある。これにより、燃料添加弁23の先端部の燃料噴射部を、筒形部24の内部空間で形成される燃料噴射路(本願の添加剤噴射路に相当)24b(図2に図示)に臨ませている。燃料噴射路24bは傾いていて、燃料噴射路全体を酸化触媒5の入口端面へ向けている。これにより、排気ガス流から遠ざけた地点から、触媒反応に求められる燃料が酸化触媒5へ噴射されるようにしている。これで、燃料添加弁23の先端の燃料噴射部が、高温の排気ガス流に晒されずにすむようにしている。台座24の内部には、さらに燃料添加弁23を熱から保護するために、冷却水路26が形成してある(水冷)。   The fuel addition valve 23 is provided at a point immediately above the oxidation catalyst 5, for example, on the outer peripheral side of the bent portion 15 a in order to inject fuel into the oxidation catalyst 5. The fuel addition valve 23 has a fuel injection part for injecting fuel at the tip part. As shown in FIG. 2, a cylindrical portion 24 that extends away from the bent portion 15a, that is, outward is branched from the outer peripheral portion of the bent portion 15a on the outlet side. The fuel addition valve 23 is installed at the distal end portion of the cylindrical portion 24 separated from the bent portion 15a using the mounting flange 24a and the pedestal 25. As a result, the fuel injection part at the tip of the fuel addition valve 23 faces the fuel injection path (corresponding to the additive injection path of the present application) 24b (shown in FIG. 2) formed in the internal space of the cylindrical part 24. ing. The fuel injection path 24 b is inclined so that the entire fuel injection path faces the inlet end face of the oxidation catalyst 5. Thereby, the fuel required for the catalytic reaction is injected into the oxidation catalyst 5 from a point away from the exhaust gas flow. Thus, the fuel injection portion at the tip of the fuel addition valve 23 is not exposed to the high-temperature exhaust gas flow. A cooling water passage 26 is formed in the pedestal 24 to protect the fuel addition valve 23 from heat (water cooling).

なお、燃料添加弁23から噴射される燃料は、酸化触媒5の反応により還元剤を生成し、この還元剤でNOxトラップ触媒8に吸蔵されたNOxやSOxを還元除去したり、同じく酸化触媒5の反応で得た熱により、パティキュレートフィルタ11で捕集したPMを燃焼除去したりするのに用いるものである。そのため、燃料添加弁23は、ディーゼルエンジンを制御する制御部、例えばECU20によって、ディーゼルエンジンの運転中、NOxやSOxの還元除去、PMの燃焼除去といった、触媒反応が求められるときに燃料が噴射されるようにしてある。   The fuel injected from the fuel addition valve 23 generates a reducing agent by the reaction of the oxidation catalyst 5, and the reducing agent removes NOx and SOx stored in the NOx trap catalyst 8. This is used to burn and remove the PM collected by the particulate filter 11 by the heat obtained by the above reaction. For this reason, the fuel addition valve 23 is injected with fuel by a control unit that controls the diesel engine, for example, the ECU 20, when a catalytic reaction such as NOx or SOx reduction removal or PM combustion removal is required during operation of the diesel engine. It is made to do.

筒形部24には、排気ガスの一部を燃料噴射路24へ導入させる排気ガス導入部29が設けられている。この排気ガス導入部29の詳細な構造が図2および図3に示されている。この排気ガス導入部29には、細長の排気ガス導入管30と排気ガス導入制御弁35(本願のガス導入制御弁に相当)とを組み合わせた構造が用いられている。
このうち排気ガス導入管30は、一端部に入口31a(図1に図示)をもち、他端部に出口31b(図1および図2に図示)をもつ。この排気ガス導入管30の一端部は、エンジン本体1の排気口の直後の地点、具体的にはエキゾーストマニホールド1aに連結され、入口31aをエキゾーストマニホールド1内に連通させている。また排気ガス導入管30の他端部は、筒形部24の壁部、例えば中段の壁部に連結され、入口31aを燃料噴射路24と連通させている。このエキゾーストマニホールド1aと筒形部24間をバイパスする排気ガス導入管30にて、エキゾーストマニホールド1a内の高温、高圧の排気ガスの一部を燃料噴射路24へ導く排気ガス路32を構成している。
The cylindrical part 24 is provided with an exhaust gas introduction part 29 for introducing a part of the exhaust gas into the fuel injection path 24. The detailed structure of the exhaust gas introducing portion 29 is shown in FIGS. The exhaust gas introduction portion 29 has a structure in which a long and narrow exhaust gas introduction pipe 30 and an exhaust gas introduction control valve 35 (corresponding to the gas introduction control valve of the present application) are combined.
Of these, the exhaust gas introduction pipe 30 has an inlet 31a (shown in FIG. 1) at one end and an outlet 31b (shown in FIGS. 1 and 2) at the other end. One end of the exhaust gas introduction pipe 30 is connected to a point immediately after the exhaust port of the engine body 1, specifically, to the exhaust manifold 1 a, and the inlet 31 a is communicated with the exhaust manifold 1. The other end portion of the exhaust gas introduction pipe 30 is connected to a wall portion of the cylindrical portion 24, for example, a middle wall portion, and the inlet 31 a communicates with the fuel injection path 24. An exhaust gas passage 32 that guides a part of the high-temperature and high-pressure exhaust gas in the exhaust manifold 1 a to the fuel injection passage 24 is configured by the exhaust gas introduction pipe 30 that bypasses between the exhaust manifold 1 a and the cylindrical portion 24. Yes.

また排気ガス導入管30の他端部は、図2に示されるように端が燃料噴射路24の下流側へ近づく向きで傾いて筒形部24と連結されていて、高温、高圧の排気ガスが燃料噴射路24の下流側へ向かって導出される構造にしてある。排気ガス導入管30の出口31aは、図3に示されるように燃料噴射路24bの径方向中央から側方へオフセットした地点、具体的には燃料噴射路24bの内周面上の接線方向の地点で開口していて、出口31aから導出した排気ガスが、内周面沿いに旋回しながら燃料噴射路24bへ導入される構造にしている。こうした各部の構造により、高温、高圧の排気ガスが、燃料添加弁23の噴射燃料と混ざり合いながら、燃料噴射路24bの下流側へ向かって流れ出るようにしている。   Further, as shown in FIG. 2, the other end portion of the exhaust gas introduction pipe 30 is inclined and connected to the cylindrical portion 24 so that the end approaches the downstream side of the fuel injection path 24, and the exhaust gas of high temperature and high pressure is connected. Is led out toward the downstream side of the fuel injection path 24. As shown in FIG. 3, the outlet 31a of the exhaust gas introduction pipe 30 is offset from the radial center of the fuel injection path 24b to the side, specifically, a tangential direction on the inner peripheral surface of the fuel injection path 24b. The exhaust gas is opened at a point, and exhaust gas derived from the outlet 31a is introduced into the fuel injection path 24b while turning along the inner peripheral surface. Due to the structure of each part, high-temperature and high-pressure exhaust gas flows out toward the downstream side of the fuel injection path 24b while being mixed with the fuel injected from the fuel addition valve 23.

排気ガス導入制御弁35は、排気ガス導入管30の途中、例えば排気ガス導入管30の他端部に介装されている。排気ガス導入制御弁35は、例えば排気ガス導入路32を「開」と「閉」に切換え可能な開閉弁から構成されている。図1中の符号35は、その開閉する弁体を示している。この開閉弁が、同弁を駆動するドライバー部(図示しない)を介して、制御部、例えばECU20に接続され、必要に応じ、燃料噴射路24b内へ高温、高圧の排気ガスが導入されるようにしている。具体的には、ECU20には、常態時では、排気ガス制御弁35を「閉」にし、燃料添加弁23が燃料の噴射を行うとき、すなわち開弁のときだけ、排気ガス制御弁35を「開」に制御する設定がなされている。この開弁制御により、燃料添加弁35の燃料噴射時だけ、エキゾーストマニホールド1a内の高温、高圧の排気ガスが燃料噴射路24bへ導入されるようにしている。この排気ガスの導入により、燃料添加弁35の熱的影響を抑えながら、噴射燃料の気化・混合の促進と、デジポットの生成防止とを成立させるようにしている。   The exhaust gas introduction control valve 35 is interposed in the middle of the exhaust gas introduction pipe 30, for example, at the other end of the exhaust gas introduction pipe 30. The exhaust gas introduction control valve 35 is constituted by, for example, an on-off valve that can switch the exhaust gas introduction path 32 between “open” and “closed”. The code | symbol 35 in FIG. 1 has shown the valve body which opens and closes. This on-off valve is connected to a control unit, for example, an ECU 20 via a driver unit (not shown) for driving the valve so that high-temperature and high-pressure exhaust gas is introduced into the fuel injection path 24b as necessary. I have to. Specifically, the ECU 20 normally closes the exhaust gas control valve 35 when the fuel addition valve 23 injects fuel, that is, only when the fuel addition valve 23 is open. Settings to control “open” are made. With this valve opening control, the high-temperature and high-pressure exhaust gas in the exhaust manifold 1a is introduced into the fuel injection path 24b only when the fuel addition valve 35 is injecting fuel. By introducing the exhaust gas, the vaporization / mixing of the injected fuel and the prevention of the generation of the digipot are established while suppressing the thermal influence of the fuel addition valve 35.

すなわち、同作用を説明すると、今、ディーゼルエンジンが運転中であるとする。
このとき、ディーゼルエンジンから排気された排気ガスは、図1および図2中の矢印aに示されるようにエキゾーストマニホールド1a、ターボチャージャ2、屈曲部15a、酸化触媒5、NOxトラップ触媒8およびパティキュレートフィルタ11を通じて、外気へ排気される。
That is, to explain the action, it is assumed that the diesel engine is now in operation.
At this time, the exhaust gas exhausted from the diesel engine is exhausted from the exhaust manifold 1a, the turbocharger 2, the bent portion 15a, the oxidation catalyst 5, the NOx trap catalyst 8, and the particulates as indicated by the arrow a in FIGS. The air is exhausted through the filter 11 to the outside air.

この通過の際、排気ガス中に含まれるNOxは、NOxトラップ触媒8に吸蔵され、同じくPMは、パティキュレートフィルタ11により捕集される。
このとき、燃料添加弁23は、排気ガスの主流とは遠ざけた地点に配置され、排気ガスの主流に晒されないから、燃料添加弁23が温度上昇しても、耐熱温度を越えない。
吸蔵されたNOxや捕集されたPMを除去する時期となり、燃料添加弁23の先端の燃料噴射部から、これらの除去のために燃料が噴射されたとする。
During this passage, NOx contained in the exhaust gas is occluded in the NOx trap catalyst 8, and PM is also collected by the particulate filter 11.
At this time, the fuel addition valve 23 is disposed at a point away from the main flow of the exhaust gas and is not exposed to the main flow of the exhaust gas. Therefore, even if the temperature of the fuel addition valve 23 rises, the heat resistance temperature is not exceeded.
It is time to remove the stored NOx and the collected PM, and fuel is injected from the fuel injection portion at the tip of the fuel addition valve 23 to remove them.

すると、燃料は、図1および図2に示されるように燃料噴射路24bを通じて、酸化触媒5の入口端面へ噴射される。図1および図2中のαは、その燃料の噴射流を示す。
一方、排気ガス導入制御弁35は、燃料添加弁23の燃料噴射動に合わせて、開作動している。
これにより、エキゾーストマニホールド1a内の高温、高圧の排気ガスが、排気ガス路32を通じて、強制的に燃料噴射路24bへ導入される。
Then, the fuel is injected to the inlet end face of the oxidation catalyst 5 through the fuel injection path 24b as shown in FIGS. 1 and 2 indicates the fuel injection flow.
On the other hand, the exhaust gas introduction control valve 35 is opened in accordance with the fuel injection operation of the fuel addition valve 23.
As a result, the high-temperature and high-pressure exhaust gas in the exhaust manifold 1 a is forcibly introduced into the fuel injection path 24 b through the exhaust gas path 32.

このとき、排気ガス路32の出口32bは、オフセットしてあるうえ、下流側へ傾いているから、燃料噴射路24b内には、図2および図3中の矢印bに示されるように下流へ向かう排気ガスの旋回流bが形成される。
これで、高温、高圧の排気ガスは、噴射流αの燃料と混ざり合いながら下流へ向かい、燃料の気化と混合がなされる。特に旋回流bだと、排気ガスの熱や流動を活用して、効果的に燃料の気化と混合が促進される。と同時に蒸発燃料や煤が、旋回流bの中心部で発生する負圧により吸い出されて、燃料噴射路24b外へ流出し、デジポットの生成を回避する。
At this time, the outlet 32b of the exhaust gas passage 32 is offset and tilted downstream, so that the fuel injection passage 24b moves downstream as indicated by the arrow b in FIGS. A swirling flow b of the exhaust gas is formed.
Thus, the high-temperature, high-pressure exhaust gas is mixed with the fuel of the injection flow α and goes downstream, and the fuel is vaporized and mixed. In particular, in the case of the swirl flow b, the vaporization and mixing of the fuel are effectively promoted by utilizing the heat and flow of the exhaust gas. At the same time, the evaporated fuel and soot are sucked out by the negative pressure generated at the center of the swirling flow b, and flow out of the fuel injection path 24b, thereby avoiding the generation of a digipot.

燃料添加弁23からの燃料噴射を終えると、排気ガス導入制御弁35も「閉」に切り換わり、排気ガスの導入を停止し、再び排気ガスに晒されない状況に戻る。
このように必要に応じ、高温、高圧の排気ガスを燃料噴射路24b内へ導入すると、燃料添加弁23が、高温、高圧の排気ガスに晒されるのを最小限に抑えることができる。特に、燃料噴射の都度、燃料噴射路24bに高温、高圧の排気ガスを導入すると、燃料添加弁23が排気ガスに晒される時間は、ごく短い噴射時間といった最小限に抑えられる。
When the fuel injection from the fuel addition valve 23 is finished, the exhaust gas introduction control valve 35 is also switched to “closed”, the introduction of the exhaust gas is stopped, and the state where the exhaust gas is not exposed again is returned.
As described above, when the high-temperature and high-pressure exhaust gas is introduced into the fuel injection path 24b as necessary, the fuel addition valve 23 can be minimized from being exposed to the high-temperature and high-pressure exhaust gas. In particular, when high-temperature and high-pressure exhaust gas is introduced into the fuel injection path 24b each time fuel is injected, the time during which the fuel addition valve 23 is exposed to the exhaust gas can be kept to a minimum, such as a very short injection time.

したがって、燃料添加弁23の熱的負担を抑えながら、高温、高圧の排気ガスを十分に活用した噴射燃料の気化・混合の促進ができるうえ、蒸発燃料や煤の滞留を要因としたデジポット生成を防ぐことができる。これにより、たとえエンジン排出直後の高温、高圧な排気ガスを用いても、燃料添加弁23が正常に機能しなくなるおそれは回避されるから、常に良好に排気ガス浄化性能が維持でき、高い信頼性が確保できる。   Therefore, while suppressing the thermal burden on the fuel addition valve 23, it is possible to promote the vaporization and mixing of the injected fuel by making full use of the high-temperature and high-pressure exhaust gas, and to generate a digipot due to evaporative fuel and soot retention. Can be prevented. As a result, even if high-temperature and high-pressure exhaust gas immediately after engine exhaust is used, the possibility that the fuel addition valve 23 will not function normally is avoided, so that exhaust gas purification performance can always be maintained satisfactorily and high reliability can be achieved. Can be secured.

特に燃料噴射路24bの下流側へ向かって排気ガスが導出されるようにすると、できるだけ高温・高圧の排気ガスの熱が燃料添加弁23へ伝わるのを避けられるから、燃料添加弁23を熱から保護するのには有効である。しかも、旋回流bを生成すると、噴射燃料との混合が促進されるので、噴射燃料が均一に気化できる。そのうえ、旋回流bの中心部に生ずる負圧がもたらす蒸発燃料や煤の吸い出しにより、デジポットの生成を抑えることができ、限られた時間(燃料噴射時)に導入される排気ガスを有効に活用して、噴射燃料の気化および混合の促進と、デジポット生成の回避とを実現させることができる。   In particular, if the exhaust gas is led out toward the downstream side of the fuel injection path 24b, the heat of the exhaust gas having a high temperature and high pressure can be prevented from being transmitted to the fuel addition valve 23 as much as possible. It is effective to protect. In addition, when the swirl flow b is generated, mixing with the injected fuel is promoted, so that the injected fuel can be uniformly vaporized. In addition, the generation of a digipot can be suppressed by sucking out evaporative fuel and soot brought about by the negative pressure generated at the center of the swirling flow b, and the exhaust gas introduced for a limited time (fuel injection) can be effectively used. Thus, vaporization and mixing of the injected fuel can be promoted, and generation of a digipot can be avoided.

なお、本発明は上述したいずれの実施形態に限定されるものではなく、本発明の主旨を逸脱しない範囲内で種々変更して実施しても構わない。例えば上述した実施形態では、前段触媒として酸化触媒を用い、その下流にNOxトラップ触媒、パティキュレートフィルタを設けた排ガス浄化装置に本発明を適用した例を挙げたが、これに限らず、他の浄化方式の排気ガス浄化装置、例えば前段触媒としてNOxトラップ触媒を用い、その下流にパティキュレートフィルタを設け、NOxトラップ触媒の上流に添加弁を設けた排気ガス浄化装置でも、前段触媒としてNOxトラップ触媒を用い、その下流にNOxトラップ触媒、酸化触媒、パティキュレートフィルタを設け、NOxトラップ触媒の上流に添加弁を設けた排気ガス浄化装置や、または添加剤噴射弁の直下流に選択還元型触媒やパティキュレートフィルタを設けた排気ガス浄化装置などに本発明を適用しても構わない。   In addition, this invention is not limited to any embodiment mentioned above, You may implement in various changes within the range which does not deviate from the main point of this invention. For example, in the above-described embodiment, an example in which the present invention is applied to an exhaust gas purification apparatus in which an oxidation catalyst is used as a pre-stage catalyst and a NOx trap catalyst and a particulate filter are provided downstream thereof is described. A purification-type exhaust gas purification device, for example, an exhaust gas purification device in which a NOx trap catalyst is used as a pre-stage catalyst, a particulate filter is provided downstream thereof, and an addition valve is provided upstream of the NOx trap catalyst, is also used as a pre-stage catalyst. NOx trap catalyst, oxidation catalyst, and particulate filter downstream of the exhaust gas purification device provided with an addition valve upstream of the NOx trap catalyst, or a selective reduction catalyst directly downstream of the additive injection valve, The present invention may be applied to an exhaust gas purification device provided with a particulate filter.

さらに、上述した実施形態では、添加剤として燃料を用いて説明したが、触媒に供給するものであれば何でもよく、例えば還元剤としての軽油,ガソリン,エタノール,ジメチルエーテル,天然ガス,プロパンガス,尿素,アンモニア,水素,一酸化炭素などでもよい。また、還元剤以外の物質でもよく、例えば触媒冷却のための空気,窒素,二酸化炭素などや,パティキュレートフィルタに捕集した煤の燃焼除去を促進させるための空気やセリアなどでもよい。   Further, in the above-described embodiment, the fuel is used as the additive. However, any material may be used as long as it is supplied to the catalyst. For example, light oil, gasoline, ethanol, dimethyl ether, natural gas, propane gas, urea as a reducing agent. , Ammonia, hydrogen, carbon monoxide, etc. Further, a substance other than the reducing agent may be used. For example, air for cooling the catalyst, nitrogen, carbon dioxide, etc., air or ceria for promoting combustion removal of soot collected in the particulate filter, and the like may be used.

本発明の一実施形態に係る排気ガス浄化装置を示す斜視図。The perspective view which shows the exhaust-gas purification apparatus which concerns on one Embodiment of this invention. 排気ガスが添加剤噴射路へ導入されたときの状態を示す断面図。Sectional drawing which shows a state when exhaust gas is introduce | transduced into the additive injection path. 図2中のA−A線に沿う断面図。Sectional drawing in alignment with the AA in FIG.

符号の説明Explanation of symbols

1 エンジン本体
1a エキゾーストマニホールド
15 排気管部
23 燃料添加弁
24b 燃料噴射路(添加剤噴射路)
32 排気ガス路
35 排気ガス導入制御弁(ガス導入制御弁)
DESCRIPTION OF SYMBOLS 1 Engine body 1a Exhaust manifold 15 Exhaust pipe part 23 Fuel addition valve 24b Fuel injection path (additive injection path)
32 Exhaust gas passage 35 Exhaust gas introduction control valve (gas introduction control valve)

Claims (2)

エンジンのエキゾーストマニホールドから排気ガスを外部へ導く排気管部と、
前記排気管部に設けられる触媒と、
前記触媒の上流側に設けられ、基端が前記排気管部と連通し、先端が排気管部から離れた方向に延びる添加剤噴射路と、
添加剤が噴射する添加剤噴射部を前記添加剤噴射路の先端部に配置させて設置され、前記添加剤噴射部から噴射された添加剤を前記添加剤噴射路内を通して前記触媒へ供給する添加剤噴射弁と、
一端部からエンジンのエキゾーストマニホールドからの排気ガスの一部を流入し、他端部を前記添加剤噴射路の内周面上の接線方向の地点に開口させ、前記エキゾーストマニホールドからの排気ガスで、前記添加剤噴射路内に、前記添加剤噴射剤から噴射された燃料の周りを旋回する旋回流を形成する排気ガス路と、
前記排気ガス路に設けられ、前記添加剤噴射弁の噴射時に前記エキゾーストマニホールドからの排気ガスを前記排気ガス路に導入させるガス導入制御弁と
を具備したことを特徴とする内燃機関の排気ガス浄化装置。
An exhaust pipe section that guides exhaust gas from the exhaust manifold of the engine to the outside;
A catalyst provided in the exhaust pipe part;
An additive injection path provided on the upstream side of the catalyst, a base end communicating with the exhaust pipe portion, and a tip extending in a direction away from the exhaust pipe portion;
Addition in which an additive injection part for injecting an additive is disposed at the tip of the additive injection path and the additive injected from the additive injection path is supplied to the catalyst through the additive injection path An agent injection valve;
A part of the exhaust gas from the exhaust manifold of the engine flows in from one end, the other end is opened at a tangential point on the inner peripheral surface of the additive injection path, and the exhaust gas from the exhaust manifold An exhaust gas path that forms a swirl flow swirling around the fuel injected from the additive propellant in the additive injection path;
An exhaust gas purification system for an internal combustion engine, comprising: a gas introduction control valve that is provided in the exhaust gas passage and introduces exhaust gas from the exhaust manifold into the exhaust gas passage when the additive injection valve injects. apparatus.
前記排気ガス路は、前記添加剤噴射路の下流側へ向って排気ガスが導出される構成としてあることを特徴とする請求項1に記載の内燃機関の排気ガス浄化装置。 2. The exhaust gas purification apparatus for an internal combustion engine according to claim 1, wherein the exhaust gas passage is configured such that exhaust gas is led out toward a downstream side of the additive injection passage.
JP2007332382A 2007-12-25 2007-12-25 Exhaust gas purification device for internal combustion engine Expired - Fee Related JP4924833B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007332382A JP4924833B2 (en) 2007-12-25 2007-12-25 Exhaust gas purification device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007332382A JP4924833B2 (en) 2007-12-25 2007-12-25 Exhaust gas purification device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2009156074A JP2009156074A (en) 2009-07-16
JP4924833B2 true JP4924833B2 (en) 2012-04-25

Family

ID=40960358

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007332382A Expired - Fee Related JP4924833B2 (en) 2007-12-25 2007-12-25 Exhaust gas purification device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP4924833B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5561486B2 (en) * 2011-06-16 2014-07-30 三菱自動車工業株式会社 Exhaust purification device
JP6281159B2 (en) * 2014-02-17 2018-02-21 三菱自動車工業株式会社 Exhaust gas purification device for internal combustion engine

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19855384A1 (en) * 1998-12-01 2000-06-08 Bosch Gmbh Robert Device for the aftertreatment of exhaust gases from an internal combustion engine
JP2006283604A (en) * 2005-03-31 2006-10-19 Daihatsu Motor Co Ltd Internal combustion engine
JP2007327377A (en) * 2006-06-07 2007-12-20 Hitachi Ltd Exhaust emission control device
JP2009036150A (en) * 2007-08-03 2009-02-19 Toyota Motor Corp Reducer-adding device of internal combustion engine

Also Published As

Publication number Publication date
JP2009156074A (en) 2009-07-16

Similar Documents

Publication Publication Date Title
RU2410550C2 (en) Device for purification of exhaust gases of internal combustion engine (versions)
US9689290B2 (en) Reductant mixing system for an exhaust gas after-treatment device
JP4816967B2 (en) Exhaust gas purification device for internal combustion engine
EP2075428B1 (en) Emission control system
JP4985976B2 (en) Exhaust gas purification device for internal combustion engine
JP4659097B2 (en) Plasma reactor and system for reducing particulate matter in exhaust gas using the same
EP2278132A1 (en) Exhaust gas purification system
US20110225969A1 (en) Compressor bypass to exhaust for particulate trap regeneration
KR20140050092A (en) Exhaust treatment system with hydrocarbon lean nox catalyst
JP2009156071A (en) Exhaust emission control device for internal combustion engine
JP4600457B2 (en) Additive dispersion plate structure in exhaust passage
JP2009156077A (en) Exhaust emission control device for internal combustion engine
KR100932351B1 (en) Exhaust Gas Purification System for Internal Combustion Engines
JP2009156076A (en) Exhaust emission control device for internal combustion engine
JP2006077691A (en) Exhaust emission control system for diesel engine
JP4807524B2 (en) Exhaust gas purification device for internal combustion engine
JP4327445B2 (en) Exhaust purification equipment
JP4216673B2 (en) Exhaust purification equipment
JP3545712B2 (en) Exhaust gas purification device
JP2004044483A (en) Exhaust emission control device
JP4924833B2 (en) Exhaust gas purification device for internal combustion engine
JP5566283B2 (en) Joint of turbocharger to oxidation catalyst of exhaust line of internal combustion engine
JP4924834B2 (en) Exhaust gas purification device for internal combustion engine
JP5112986B2 (en) Exhaust purification device
JP2006090259A (en) Exhaust emission control system of diesel engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110427

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110627

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120111

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120124

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150217

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4924833

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150217

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees