JP4924250B2 - 断層面画像生成装置、プログラム、および断層面画像生成方法 - Google Patents

断層面画像生成装置、プログラム、および断層面画像生成方法 Download PDF

Info

Publication number
JP4924250B2
JP4924250B2 JP2007178457A JP2007178457A JP4924250B2 JP 4924250 B2 JP4924250 B2 JP 4924250B2 JP 2007178457 A JP2007178457 A JP 2007178457A JP 2007178457 A JP2007178457 A JP 2007178457A JP 4924250 B2 JP4924250 B2 JP 4924250B2
Authority
JP
Japan
Prior art keywords
image
tomographic plane
tomographic
images
imaging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007178457A
Other languages
English (en)
Other versions
JP2009011646A (ja
Inventor
浩一 藤原
修 遠山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP2007178457A priority Critical patent/JP4924250B2/ja
Publication of JP2009011646A publication Critical patent/JP2009011646A/ja
Application granted granted Critical
Publication of JP4924250B2 publication Critical patent/JP4924250B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Apparatus For Radiation Diagnosis (AREA)

Description

本発明は、断層面画像を生成する装置に関する。
医療現場では、X線などを用いて人体の透過像を撮影し、その透過像を読影することで診断が行われている。
そして、このX線を用いた撮影(X線撮影)により、検体に対して異なる方向からX線を照射して得られる複数の画像データを合成(再構成)することで、検体の断層面画像を得る技術が提案されている。
この従来のX線撮影を用いて断層面画像を生成する方法では、X線を検出する検出器の検出面と平行な断層面を設定し、その断層面について画像データの再構成を行うことで、断層面画像を生成する(例えば、特許文献1)。
特開2002−267622号公報
しかしながら、特許文献1の技術を前提とすると、所望の断層面が検出面に対して平行でない場合には、検出面と平行な断層面に係る断層面画像から、補間計算を用いて所望の断層面画像を生成しなければならない。このため、断層面画像の画質の低下を招いてしまう。
また、症状の経時変化を観察するために、同じ患部を時間を違えて捉えた断層面画像を比較して差分(経時差分)を診ようすれば、撮影条件(撮影位置や患者の姿勢など)の違いから、所望の角度に係る断層面画像が得られないことも考えられる。
本発明は、上記課題に鑑みてなされたものであり、所望の断層面に係る高品質の断層面画像が得られる技術を提供することを目的とする。
上記の課題を解決するために、請求項1の発明は、断層面画像生成装置であって、照射角度を順次変更しつつ検体に対して放射線を照射する一連の撮影によって得られた複数の画像と、基準画像との照合を行う照合手段と、前記照合手段による照合結果に基づき、前記基準画像に対応する断層面の角度を設定する設定手段と、前記設定手段によって設定された断層面の角度に従って、前記一連の撮影によって得られた複数の透過像に基づき、前記検体に係る断層面画像を生成する生成手段とを備えることを特徴とする。
また、請求項2の発明は、請求項1に記載の断層面画像生成装置であって、前記基準画像が、前記一連の撮影以前に前記検体に対して放射線を照射する撮影によって得られた画像を含むことを特徴とする。
また、請求項3の発明は、請求項2に記載の断層面画像生成装置であって、前記基準画像が、前記一連の撮影以前に前記検体に対して放射線を照射する撮影によって得られた透過像を含み、前記複数の画像が、前記一連の撮影によって得られた複数の透過像を含むことを特徴とする。
また、請求項4の発明は、請求項3に記載の断層面画像生成装置であって、ユーザーによる入力に応答して、前記一連の撮影以前に前記検体に係る複数の透過像に基づいて生成された複数の断層面画像から、1つの断層面画像を指定する指定手段を更に備え、前記基準画像が、前記指定手段によって指定された1つの断層面画像に係る断層面に対して正対する位置から放射線を前記検体に対して照射することで得られた透過像を含むことを特徴とする。
また、請求項5の発明は、請求項2に記載の断層面画像生成装置であって、前記基準画像が、前記一連の撮影以前に前記検体に係る複数の透過像に基づいて生成された断層面画像を含み、前記複数の画像が、前記一連の撮影によって得られた複数の透過像から生成された複数の角度の断層面に係る断層面画像であることを特徴とする。
また、請求項6の発明は、請求項5に記載の断層面画像生成装置であって、ユーザーによる入力に応答して、前記一連の撮影以前に前記検体に係る複数の透過像に基づいて生成された複数の断層面画像から、1つの断層面画像を前記基準画像として決定する決定手段を更に備えることを特徴とする。
また、請求項7の発明は、請求項1から請求項6のいずれかに記載の断層面画像生成装置であって、前記設定手段が、前記照合手段により、前記複数の画像の中で前記基準画像に対するマッチング度が最も高いものと認識された画像に係る照射角度に基づき、前記断層面の角度を設定することを特徴とする。
また、請求項8の発明は、請求項1から請求項6のいずれかに記載の断層面画像生成装置であって、前記設定手段が、前記照合手段により、前記複数の画像の中で前記基準画像に対するマッチング度が最も高い方から2つのものと認識された2つの画像に係る第1および第2マッチング度と第1および第2照射角度とに基づき、前記第1照射角度と前記第2照射角度との間の角度に対応する前記断層面の角度を算出して設定することを特徴とする。
また、請求項9の発明は、断層面画像生成装置に含まれるコンピュータによって実行されることにより、前記断層面画像生成装置を、請求項1から請求項8のいずれかに記載の断層面画像生成装置として機能させるプログラムである。
また、請求項10の発明は、断層面画像生成方法であって、(a)照射角度を順次変更しつつ検体に対して放射線を照射する一連の撮影によって得られた複数の画像と、基準画像との照合を行う照合ステップと、(b)前記照合ステップにおける照合結果に基づき、前記基準画像に対応する断層面の角度を設定する設定ステップと、(c)前記設定ステップにおいて設定された断層面の角度に従って、前記一連の撮影によって得られた複数の透過像に基づき、前記検体に係る断層面画像を生成する生成ステップとを備えることを特徴とする。
請求項1から請求項8のいずれに記載の発明によっても、基準画像に対応し、かつ断層面画像を生成するための複数の透過像を得た際の撮影条件に適合する断層面の角度が設定されるため、所望の断層面に係る高品質の断層面画像が得られる。
また、請求項2から請求項6のいずれに記載の発明によっても、同じ検体についての過去の画像が基準画像とされるため、経時差分を診るのに適した断層面画像が得られる。
また、請求項3および請求項4のいずれに記載の発明によっても、時間を違えて、同じ検体を撮影して得られた透過像の照合により、断層面の角度が設定されるため、多大な演算が行われることなく、所望の断層面が設定される。
また、請求項4に記載の発明によれば、ユーザーの入力に応答して、複数の断層面画像から指定された1つの断層面画像に対応する透過像が基準画像として決定されるため、ユーザーの意図に沿った所望の断層面が設定される。
また、請求項5および請求項6のいずれに記載の発明によっても、時間を違えて、同じ検体を撮影して得られた複数の透過像からそれぞれ生成された断層面画像の照合により、断層面の角度が設定されるため、より精度良く所望の断層面が設定される。
また、請求項6に記載の発明によれば、ユーザーの入力に応答して、複数の断層面画像から、1つの断層面画像が基準画像として決定されるため、ユーザーの意図に沿った所望の断層面が設定される。
また、請求項7に記載の発明によれば、多大な演算が行われることなく、所望の断層面が設定される。
また、請求項8に記載の発明によれば、離散的な照射角度に対応した複数の画像を用いた照合によっても、よりユーザーの意図に沿った所望の断層面が設定される。
また、請求項9に記載の発明によれば、請求項1から請求項8のいずれかに記載の発明と同様な効果が得られる。
また、請求項10に記載の発明によれば、請求項1に記載の発明と同様な効果が得られる。
以下、本発明の実施形態を図面に基づいて説明する。
<撮影システムの概要>
図1は、本発明の実施形態に係る撮影システム1の概略構成を示す図である。この撮影システム1では、放射線(典型的には、X線)を用いて、検体120を透過する放射線の分布を検出し、画素値の分布(透過像)を得て、この透過像を用いた各種情報処理が可能となっている。この各種情報処理には、検体120の断層面の画像(以下「断層面画像」とも称する)の生成が含まれる。
撮影システム1は、撮影装置100と撮影制御処理装置200とを備えて構成されている。なお、ここでは、撮影対象である検体120が、検査を受ける者(被検査者)の身体であるものとし、図中の楕円はこの被検査者の身体を模式的に示している。
撮影装置100は、主に発生部101、ガイド部102、載置部104、連結部105、および検出部108を備えている。
発生部101は、電磁波の一種である放射線を発生させ、検体120に向けて放射する。ここでは、発生部101が、X線を発生させて放射するものとする。なお、図1では、放射線が放射される経路の外縁に一点鎖線が付されている。
ガイド部102は、略弧状に延設され、発生部101の位置および姿勢を変更可能とする。具体的には、発生部101は、ガイド部102に対して延設方向に沿って移動自在に結合されており、撮影制御処理装置200からの制御に応じて、ガイド部102上を延設方向に沿って移動する。
載置部104は、検体120が静置される部分である。この載置部104は、連結部105によってガイド部102に接続された発生部101に対して予め定められた相対的配置条件を満足するように配置されており、発生部101から照射されるX線の照射範囲内で検体120が載置される。より詳細には、載置部104は、連結部105によって、ガイド部102が規定する円弧の焦点が位置する側で予め定められた位置に固定されている。
なお、載置部104は、X線の吸収が少ないことによってX線を実質的に透過する材質で形成されており、X線に対する減弱係数(吸収係数)は既知である。そして、この載置部104上に検体120が静置された状態で、発生部101がガイド部102に沿って適宜移動されつつ、X線が放射されることで、検体120に対して所望の方向からX線が照射される。
検出部108は、発生部101から照射され、載置部104に載置された検体120および載置部104を透過した放射線(ここではX線)を検出する。この検出部108では、例えば、検体120を透過したX線、および検体120の周辺の空間を通過したX線の双方を検出する。
また、検出部108のうち、発生部101側の面、すなわちX線を検出する面(検出面)108sは、例えば、矩形状の外形を有し、X線を検出する多数のセンサが2次元的(例えば格子状)に配列された略平面状の面を形成している。よって、検出部108により、発生部101から放射された放射線のうち、検体120と載置部104とを透過した放射線が検出され、放射線の検出値の分布(ここでは、格子状の2次元分布)が得られる。
ここで、発生部101、ガイド部102、載置部104、および検出部108は以下のような位置関係を満足している。すなわち、ガイド部102上のいずれの位置に発生部101が移動しても、発生部101から照射されるX線の照射範囲は載置部104を広範囲にわたってカバーしており、かつガイド部102上のいずれの位置から照射されるX線であっても検出部108によって検出される。
一方、撮影制御処理装置200は、一般的なパーソナルコンピュータ(パソコン)と同様な構成を有し、主に、制御部210、表示部230、操作部240、および記憶部250を備えている。
制御部210は、CPU210a、RAM210b、およびROM210cを有し、撮影システム1の動作を統括制御する。この制御部210は、記憶部250に格納されるプログラムPGを読み込んで実行することで、各種機能や動作を実現する。
表示部230は、例えば、液晶ディスプレイなどを備えて構成され、制御部210の制御下で、各種画像が可視的に出力される。例えば、撮影装置100による撮影で得られた透過像などが可視的に出力される。
より詳細には、平面的な画像(平面画像)や特定の方向から見た立体的な画像(立体画像)が可視的に出力される。具体的には、RAM210bなどに記憶された透過像のデータ(透過像データ)によって表現される平面画像の他、画像生成部222(後述)によって生成された断層面画像データ(以下「断層面画像」と略称する)、およびその他の各種画像情報や数値情報や文字情報が可視的に出力される。
操作部240は、キーボードやマウスなどを備えて構成され、ユーザによる各種入力を受け付けて、制御部210に入力に応じた信号を送出する。
記憶部250は、ハードディスクなどを備えて構成され、例えば、プログラムPG、断層面画像群のデータSgs、基準画像候補のデータGos、透過画像群のデータGt、および各種データなどを格納する。
ここで、プログラムPGは、撮影システム1の各種動作を制御するためのプログラムであり、断層面画像群のデータ(以下、単に「断層面画像群」と略称する)Sgsは、以前に生成された断層面画像が蓄積されて構成されている。また、基準画像候補のデータ(以下、単に「基準画像候補」と略称する)Gosは、後述する照合の基準となる画像(基準画像)が蓄積されて構成され、透過画像群のデータ(以下、単に「透過画像群」と略称する)Gtは、撮影装置100における放射線を用いた撮影によって得られる透過像が蓄積されて構成されている。
<制御部における機能構成>
図2は、制御部210でプログラムPGが実行されることで実現される機能構成を例示する図である。
図2で示すように、制御部210は、撮影制御部211、検出値取得部212、透過像取得部213、姿勢情報認識部214、記憶制御部215、透過像群設定部216、画像読込部217、画像出力制御部218、基準画像決定部219、画像照合部220、断層面設定部221、および画像生成部222を機能として備える。
撮影制御部211は、撮影装置100の動作を制御する。例えば、撮影制御部211は、発生部101のガイド部102上での位置を制御することで、発生部101およびガイド部102に対する載置部104、すなわち検体120の位置関係を制御し、これによって発生部101と載置部104との空間的な関係が相対的に変化する。このとき、発生部101と検出部108との位置関係および角度関係が適宜変更される。
なお、ここで言う「角度関係」は、発生部101から放射される放射線の中心線、すなわち放射線の進行方向と、検出部108のうち多数のセンサが配列された面(検出面)108sとの成す角度の関係を含む意味で使用されている。
検出値取得部212は、検出部108で検出された放射線の検出値の分布を受け付けて取得する。ここでは、検出面108sに2次元的に配置されるセンサで検出された検出値の分布、すなわち2次元的な検出値の分布(検出値の2次元分布)が取得される。例えば、検出値取得部212で取得された検出値の分布は、RAM210bまたは記憶部250に一時的に記憶される。なお、制御部210における情報処理により一時的に生成される各種データは、RAM210bまたは記憶部250に一時的に記憶される。
透過像取得部213は、検出値取得部212で取得された検出値の分布を、可視的な画像に対応する画素値の分布(以下「画素値分布」とも称する)、すなわち画像データ(透過像データ、「透過像」とも略称する)に変換する。ここでは、例えば、相対的に大きなX線の検出値が、低輝度(低い階調)の画素値に変換され、相対的に小さなX線の検出値が、高輝度(高い階調)の画素値に変換される。
ここで得られた透過像は、画素値の2次元的な分布であり、例えば記憶部250に記憶される。このとき、記憶制御部215の制御により、例えば、検査IDや患者IDや撮影部位などといった識別情報とともに、透過像が記憶部250に記憶される。なお、この識別情報は、断層面画像群Sgsに蓄積されている各断層面画像や、基準画像候補Gosに蓄積されている各基準画像にも関連付けられて記憶部250に記憶されているものとする。
ここで、例えば、撮影制御部211により、検出部108に対する発生部101の相対的な位置関係および角度関係を多段的に順次変更させつつ、検出部108で放射線を複数回検出することにより、透過像取得部213では検体120に係る複数の透過像が取得される。
つまり、発生部101から検体120に対して照射される放射線の角度(以下「照射角度」とも称する)が順次変更されつつ、検体120に対して照射された放射線を検出部108で複数回検出することで、検体120に係る複数の透過像が得られる一連の撮影動作(以下「一連撮影動作」とも称する)が行われる。そして、一連撮影動作によって得られた複数の透過像(以下「一連の透過像群」とも称する)が識別情報が付された状態で記憶部250に記憶される。詳細には、透過画像群Gtに蓄積される。
姿勢情報認識部214は、各透過像に対応する放射線の照射時における発生部101と検出部108との位置関係および角度関係を示す情報(以下「姿勢情報」とも称する)を認識する。ここでは、例えば、発生部101から放射される放射線の中心線、すなわち放射線の進行方向(以下「照射方向」とも称する)と、検出面108sの法線との成す角度を照射角度として認識する。各透過像に対応する放射線の照射時における姿勢情報は、該各透過像に対応付けられて記憶部250に記憶される。つまり、透過画像群Gtに蓄積される。
記憶制御部215は、一連の透過像群と姿勢情報と識別情報とを関連付けて、記憶部250に記憶する。
透過像群設定部216は、ユーザーによる入力(例えば、操作部240からの入力)に応答して、断層面画像を生成するための一連の透過像群を設定する。
画像読込部217は、後述する断層面画像の生成において断層面を設定する際に、ユーザーによる入力(例えば、操作部240からの入力)に応答して、記憶部250から複数フレームの画像を読み込む。
例えば、ユーザーによる操作部240の操作に応答して、透過像群設定部216により、透過画像群Gtから1つの一連の透過像群が設定されると、関連付けられた識別情報に基づき、同じ患者・患部に係る複数フレームの断層面画像が断層面画像群Sgsから読み込まれる。ここで、読み込まれる複数フレームの断層面画像は、一連の透過像群と同じ患者・患部について以前にとらえられた複数の透過像から生成されたものである。
画像出力制御部218は、表示部230に各種画像データを可視的に出力させる。例えば、画像読込部217で読み込まれた複数フレームの断層面画像を選択肢として表示部230において可視的に出力させる。
基準画像決定部219は、ユーザーによる入力(例えば、操作部240からの入力)に応答して、複数フレームの画像の選択肢から、1フレームの画像が選択されると、その画像に対応する画像を基準画像候補Gosから抽出して、基準画像として決定する。
例えば、1フレームの断層面画像が選択されると、その断層面画像に対応する透過像、詳細には、その断層面画像の断層面の法線と放射線の中心線、すなわち放射線の進行方向(照射方向)とが一致する透過像が、基準画像候補Gosから抽出されて、基準画像として決定される。
画像照合部220は、一連の透過像群を構成する各透過像について、基準画像との照合を行う。例えば、基準画像がテンプレートマッチングの基準となる画像(テンプレート画像)とされ、基準画像と各透過像との間で公知のテンプレートマッチングが行われて、各透過像について、基準画像と各透過像との間の相関(相関値)の最大値が代表値として求められる。ここでは、各透過像に対して、相関値の代表値(以下「代表相関値」とも称する)が照合結果としてRAM210bなどに記憶される。
断層面設定部221は、画像照合部220による照合結果に基づき、基準画像に対応する断層面の角度を設定する。断層面の角度の設定方法については更に後述する。
画像生成部222は、透過像群設定部216によって設定された一連の透過像群を用いて、各種画像を生成する。例えば、断層面設定部221によって設定された断層面の角度に従って、一連の透過像群に基づき、検体120に係る断層面画像が生成される。
ここでは、例えば、一連の透過像群を、CT(computed tomography)の撮影技術で得られる一部の透過像とみなして、CTに係る技術として公知のフィルタ補正逆投影法(Filtered Back Projection Method;FBPM)などを用いて断層面画像の生成が行われる。なお、断層面画像の生成時には、一連の透過像群と、各透過像を撮影した撮影条件(例えば、照射角度など)とが用いられる。
このように、画像生成部222において断層面画像が生成されるため、撮影制御処理装置200は、断層面画像生成装置として機能する。
<断層面の設定方法>
○断層面の設定例:
図3は、断層面画像を生成する際の断層面の設定例を示す模式図である。図3では、断層面が設定される位置(図3中太線部)が、側方より描かれている。なお、図3および図3以降では、方位関係の明確化のために、相互に直交するXYZの3軸が適宜付されている。
図3(a)では、検体120に対し、XY平面、すなわち検出面108sに略平行な複数の断層面Scfが、相互に所定距離だけ離隔されるように設定されている状態(以下「断層面平行配置状態」とも称する)が示されている。なお、この検出面108sに対して平行な複数の断層面Scfからなる断層面の一群を、以下「断層面群」Sc1とも称する。
一方、図3(b)では、検体120に対し、XY平面、すなわち検出面108sに対して同じ方向に所定角度θだけ傾けられた複数の断層面Scsが、相互に所定距離だけ離隔されるように設定されている状態(以下「断層面傾斜配置状態」とも称する)が示されている。なお、この検出面108sに対して所定角度θだけ傾けられた複数の断層面Scsからなる断層面の一群を、以下「断層面群」Sc2とも称する。
図4は、断層面画像を構成する各画素に対応する位置を側方より例示する模式図である。
図4(a)では、断層面平行配置状態(図3(a))において、断層面群Sc1に対して生成される複数の断層面画像を構成する多数の画素に対応する位置(対応位置)Gpが示されている。例えば、各断層面Scf上における多数の画素に対応する位置の配列が格子状とされると、図4(a)で示すように、側方から見ても、複数の断層面画像を構成する多数の画素の対応位置Gpが、X方向の画素列と、Z方向の画素列とを構成し、XZ平面上で格子状に配列される。
一方、図4(b)では、断層面傾斜配置状態(図3(b))において、断層面群Sc2に対して生成される複数の断層面画像を構成する多数の画素に対応する位置(対応位置)Gpが示されている。例えば、各断層面Scs上における多数の画素に対応する位置が格子状とされると、図4(b)で示すように、側方から見ても、複数の断層面画像を構成する多数の画素の対応位置Gpが、X方向に対して所定角度θだけ傾けられた画素列と、Z方向に対して所定角度θだけ傾けられた画素列とを構成し、XZ平面上で格子状に配列される。
○従来技術の問題点:
上述した特許文献1で提案されているような従来技術では、図3(a)および図4(a)で示すように、断層面を検出面108sに対して平行に設定し、その断層面について画像データの再構成を行うことで、断層面画像が生成される。
このように、従来技術では、検出面108sに対して平行な複数の断層面Scfに係る複数の断層面画像が得られる。しかしながら、所望の断層面が検出面108sに対して平行でない場合には、所望の断層面画像を得るためには、一旦得られた複数の断層面画像から補間計算などを用いて所望の断層面画像を生成しなければならない。このため、断層面画像の画質の低下、ならびに演算処理時間の長期化も招いてしまう。
更に、例えば、症状の経時変化を観察するために、同じ患部を時間を違えて捉えた断層面画像どうしを比較して差分(経時差分)を診ようしても、撮影条件(撮影位置や患者の姿勢など)の違いから、所望の角度に係る断層面画像が得られないことも考えられる。
このような問題を解決するために、本願の発明者らは、所望の断層面に係る高品質の断層面画像が得られる断層面の設定方法を創出した。以下、本実施形態に係る所望の断層面の設定方法について説明する。
○本実施形態に係る断層面の設定方法:
撮影システム1では、一連撮影動作により複数の透過像を得る一方で、ユーザーの入力に応じて、基準の画像が決定され、その基準の画像と一連撮影動作によって得られた複数の透過像との照合により、断層面の角度が設定される。
ここで、断層面の角度の設定について、具体例を挙げつつ説明する。
図5は、透過画像群Gtから断層面画像を生成するための1つの一連の透過像群(以下「処理対象透過像群」とも称する)を設定する画面(透過像群設定画面)Gtsを例示する図である。
図5で示すように、透過像群設定画面Gtsでは、記憶部250内に格納された透過画像群Gtにおいて一連の透過像群に対して関連付けられた識別情報の一覧表が提示される。この一覧表には、各一連の透過像群に係る識別情報が各行に列記されている。そして、ユーザーが操作部240を種々操作することで、カーソルCS1(図5中の太線)を所望の行に合わせて、所定の操作(例えば、リターンキーの押下)を加えることで、カーソルCS1が合わされた行に記述された識別情報に対応する一連の透過像群が、処理対象透過像群として設定される。
図6は、照合の基準となる画像を選択する画面(画像選択画面)Gsを例示する図である。透過像群設定画面Gts(図5)において処理対象透過像群が設定されると、画像選択画面Gs(図6)が表示部230に表示される。
図6で示すように、画像選択画面Gsには、複数の断層面画像Sg1〜Sg4が表示される。この複数の断層面画像は、例えば、処理対象透過像群と同一の患者・部位について以前に撮影された透過像から生成されたものである。そして、画像選択画面Gsで表示される複数の断層面画像は、断層面画像群Sgsの中から、処理対象透過像群に係る識別情報(例えば、患者IDと検査部位など)に基づき特定される。画像選択画面Gsでは、実際には、複数の断層面画像が表示されるが、図6では、便宜的に透過像が示されている。
なお、図6では、4フレームの断層面画像が表示されている画像選択画面Gsが例示されているが、これに限られず、画像選択画面Gsには、少なくとも1以上の断層面画像が表示されれば良い。
この画像選択画面Gsでは、ユーザーの入力(操作部240の操作に応じた入力)により、カーソル(図6中の太い破線)Scを所望の断層面画像(例えば、断層面画像Sg2)に合わせて、指定ボタンDBをマウスポインタMpで押下すると、所望の1つの断層面画像が指定される。
ここでは、患部の経時差分を行うものとし、患部の経時差分を行う場合には、指定される断層面画像(以下「被指定断層面画像」とも称する)は、比較対象となる以前の患部の様子をとらえた画像に相当する。つまり、被指定断層面画像は、断層面画像を生成するための1つの一連の透過像群に係る一連撮影動作以前に同じ検体120に係る複数の透過像に基づいて生成されたものである。
また、被指定断層面画像が指定されると、基準画像決定部219により、基準画像候補Gosの中から、被指定断層面画像を生成する際に用いられた複数の透過像のうち、被指定断層面画像に係る断層面に対して正対する位置から放射線を検体に対して照射することで得られた透過像が基準画像として決定される。換言すれば、その被指定断層面画像に係る断層面の法線と、発生部101から放射される放射線の中心線、すなわち放射線の進行方向(照射方向)とが一致する撮影条件で得られた透過像が、基準画像候補Gosから抽出されて、基準画像として決定される。
すなわち、基準画像は、ユーザーによる入力に応答して、断層面画像を生成するための1つの一連の透過像群(処理対象透過像群)に係る一連撮影動作以前に同じ検体120をとらえた複数の透過像に基づいて生成された複数の断層面画像から決定される。
基準画像が決定された後、画像照合部220によって、処理対象透過像群を構成する各透過像について、基準画像との照合を行う処理(照合処理)が実行される。
図7は、照合処理の内容を説明するための図である。
図7では、基準画像G0と、処理対象透過像群を構成する複数の透過像G1〜G4が示されている。
照合処理では、画像照合部220により、処理対象透過像群を構成する各透過像G1〜G4について、基準画像G0との照合が行われる。例えば、基準画像G0をテンプレート画像としたテンプレートマッチングを行う場合には、基準画像G0との間で最も代表相関値(すなわちマッチング度)が高い1つの透過像(例えば、透過像G2)が、認識される。
なお、相関値としては、輝度のパターンや、画素値のパターンの一致度合いを示す値などが挙げられる。より詳細には、例えば、一致する輝度や画素値の総和を相関値とする手法などが挙げられる。
このように、基準画像G0とマッチング度が最も高い1つの透過像が認識されると、断層面設定部221により、照合結果に基づき、基準画像G0に対応する断層面の角度が設定される。具体的には、画像照合部220により、処理対象透過像群を構成する複数の透過像の中で基準画像G0と最もマッチング度が高いものと認識された画像に係る照射角度に基づき、断層面の角度θが設定される。
ここでは、例えば、基準画像G0とマッチング度が最も大きくなる透過像が、基準画像G0と略同一の照射角度において得られた透過像であると認識され、該透過像に係る検出値分布が得られた際の照射角度から断層面の角度θが設定される。
詳細には、該透過像に係る検出値分布が得られた際の発生部101から放射される放射線の中心線、すなわち放射線の進行方向と直交する面と、検出面108sとの成す角度が、断層面の角度θとして設定される。
断層面の角度θが設定されると、図3(b)で示したように、検体120に対し、検出面108sに対して同じ方向に所定角度θだけ傾けられ、相互に所定距離だけ離隔されるように複数の断層面Scs、すなわち断層面群Sc2が設定される。
なお、ここでは、基準画像G0とマッチング度が最も大きくなる透過像に係る放射線の放射時における発生部101から放射される放射線の中心線が、断層面の法線となる。そして、各断層面Scsについて、処理対象透過像群に基づき断層面画像が生成される。
<撮影動作に係る動作フロー>
図8は、撮影システム1において、発生部101から検体120に対するX線の照射角度を多段的に変更しつつ、複数フレームの透過像を連続的に撮影する一連撮影動作の動作フローを示すフローチャートである。本動作フローは、制御部210がプログラムPGを実行することで、主に撮影制御部211の制御下で実現される。なお、本動作フローは、載置部104上に検体120が載置されて、操作部240から所定の入力が行われると、開始する。
まず、ステップS1では、撮影制御部211の制御により、発生部101が初期位置に設定される。
ガイド部102上における発生部101の初期位置は、予め設定されており、ここでは、発生部101から検体120に対するX線の照射角度が最も寝るような位置に設定されるものとする。具体的には、例えば、ガイド部102の延設方向の一端(図1中の右方の端部)に発生部101が配置される。
ステップS2では、撮影制御部211の制御により、撮影処理が行われる。ここでは、発生部101から検体120に対して放射線が照射され、検出部108によって放射線が検出される撮影処理が行われる。
ステップS3では、検出値取得部212により、ステップS2で検出部108の各センサによって検出された放射線量の検出値に基づき、検出値の2次元分布が取得される。
ステップS4では、透過像取得部213により、ステップS3で得られた検出値の2次元分布が、画素値の2次元分布に変換されることで、透過像が生成される。
ステップS5では、姿勢情報認識部214により、発生部101と検出部108との位置関係および角度関係を示す姿勢情報が認識される。
ステップS6では、記憶制御部215により、ステップS4で生成された透過像と、ステップS5で認識された姿勢情報とが関連付けられて記憶される記憶処理が行われる。この記憶処理では、例えば、検査IDや患者IDや撮影部位などといった識別情報も、透過像に関連付けられて記憶される。
ステップS7では、撮影を終了するか否か判定される。ここでは、所定のパラメータが所定値に達していなければ、ステップS8で発生部101がガイド部102上で移動され、ステップS2に戻る。一方、所定のパラメータが所定値に達すれば、撮影が終了されるものとして判定され、本動作フローが終了される。
ここで、所定のパラメータとしては、撮影回数、発生部101の移動距離、発生部101の移動角度などが挙げられ、例えば、撮影回数が所定数(例えば、19)に達するまでは、ステップS2〜S8の処理が繰り返され、撮影回数が所定数(例えば、19)に達すれば、本動作フローが終了される。
このとき、予め設定された所定数の透過像が順次得られ、一連の撮影動作に係る複数の透過像と、各透過像に対応する姿勢情報と、識別情報とが関連付けられ、記憶部250の透過画像群Gtに蓄積される。
なお、ステップS8では、撮影制御部211の制御により、発生部101がガイド部102上で移動される。ここでは、ガイド部102上における発生部101の位置が、前回の撮影処理時における位置から次の位置へと変更される。例えば、発生部101が、ガイド部102の延設方向に沿った移動範囲を18分割して、多段的に移動する場合には、このステップS8では、発生部101は、移動範囲の1/18の距離を移動する。
<断層面画像の生成動作フロー>
図9は、断層面画像の生成動作フローを示すフローチャートである。本動作フローは、制御部210がプログラムPGを実行することで、実現される。なお、本動作フローは、ユーザーによって操作部240が種々操作されることで、断層面画像の生成を行う旨が指定されると、開始される。
まず、ステップS11では、制御部210において、識別情報(検査IDなど)が指定されたか否か判定される。ここでは、識別情報が指定されるまでステップS11の処理が繰り返され、識別情報が指定されるとステップS12に進む。なお、ここでは、例えば、透過像群設定画面Gts(図5)において1つの一連の透過像群に係る識別情報の指定が行われる。
ステップS12では、透過像群設定部216により、指定された識別情報に関連づけられて透過画像群Gtに格納されている一連の透過像群が、断層面画像を生成するための透過像群、すなわち処理対象透過像群として設定される。
ステップS13では、表示部230に、経時差分の比較対象の候補である複数の断層面画像が表示される。ここでは、例えば、画像読込部217により、ステップS12において設定された処理対象透過像群に係る識別情報に基づき、処理対象透過像群と同じ患者・部位について以前にとらえられた複数の透過像から生成された複数の断層面画像が検出されて読み込まれ、画像出力制御部218により表示部230に表示される。このとき、例えば、画像選択画面Gs(図6)が表示される。
ステップS14では、基準画像決定部219により、断層面画像が指定されたか否か判定される。ここでは、断層面画像が指定されるまでステップS14の判定が繰り返され、断層面画像が指定されるとステップS15に進む。ここでは、例えば、画像選択画面Gs(図6)で、所望の断層面画像にカーソルScが合わせれた状態で、指定ボタンDBが押下されると、所望の断層面画像が指定される。
ステップS15では、基準画像決定部219により、指定された断層面画像に対応する基準画像が決定される。ここでは、例えば、画像選択画面Gs(図6)で指定された所望の断層面画像に係る断層面に正対する位置から放射線が照射されて得られた透過像が基準画像として決定される。
ステップS16では、画像照合部220により、ステップS15で決定された基準画像とステップS12で設定された処理対象透過像群、すなわち一連の透過像群を構成する各透過像との照合が行われる。ここでは、基準画像と各透過像とのマッチング度が算出される。
ステップS17では、断層面設定部221により、ステップS16の照合結果、すなわち算出されたマッチング度に基づき、断層面の角度条件(例えば、角度θ)が設定され、図3(b)で示したように、所定距離ずつ離隔配置される複数の断層面Scsが設定される。
ステップS18では、画像生成部222により、ステップS17で設定された各断層面Scsについて、ステップS12で設定された処理対象透過像群に基づき、断層面画像が生成されて、本動作フローが終了される。
以上のように、本発明の実施形態に係る撮影システム1では、基準画像(ここでは、透過像)に対応し、かつ断層面画像を生成するための複数の透過像を得た際の撮影条件に適合する断層面の角度が設定される。このため、所望の断層面に係る高品質の断層面画像が得られる。そして、例えば、ユーザーの入力に応じて基準画像が決定されれば、その基準画像に応じて、撮影条件に適合する断層面の角度が設定される。すなわち、ユーザーの意図に沿った所望の断層面が設定される。
また、同じ検体についての過去の画像(ここでは、透過像)が基準画像とされるため、経時差分を診る対象となる検体の過去の画像に対応する断層面の角度が設定される。したがって、経時差分を診るのに適した断層面画像が得られる。
<変形例>
以上、この発明の実施形態について説明したが、この発明は上記説明した内容のものに限定されるものではない。
◎例えば、上記実施形態では、処理対象透過像群を構成する各透過像と基準画像との間で照合を行うことで、断層面が設定されたが、これに限られない。例えば、処理対象透過像群を構成する複数の透過像のうち、基準画像に係る照射角度に近い照射角度で撮影された一部の透過像と基準画像との間で照合を行うことで、断層面が設定されても良い。また、例えば、マッチング度が一旦上昇した後に下降すると、マッチング度の高い透過像との照合が終了していると判断できるため、照合を停止させることで、一部の透過像と照合を行うようにしても良い。すなわち、処理対象透過像群の一部を構成する透過像と基準画像との間で照合を行うことで、断層面が設定されても良い。このような構成を採用すると、照合に要する演算量および時間が低減され、短時間で効率良く断層面の設定が行われる。
◎また、上記実施形態では、基準画像が、処理対象透過像群に係る一連撮影動作以前に同じ検体120に対して放射線を照射する撮影によって得られた透過像であったが、これに限られない。例えば、基準画像が、処理対象透過像群に係る一連撮影動作以前に同じ検体120に対して放射線を照射する撮影によって得られた複数の透過像から生成された断層面画像であっても良い。すなわち、基準画像は、断層面画像を生成するための1つの一連の透過像群に係る一連撮影動作以前に同じ検体120に対して放射線を照射する撮影によって得られた画像であれば良い。
具体的には、例えば、次のような構成が採用されても良い。
ユーザーによる入力に応答して、処理対象透過像群が設定されると、処理対象透過像群から断層面の角度が多段的に変更された複数の角度の断層面に係る複数の断層面画像が低精度で一旦生成される。その一方で、例えば、ユーザーにより画像選択画面Gs(図6)で所望の断層面画像が指定されると、その断層面画像が基準画像とされ、基準画像と、低精度で一旦生成された各断層面画像との間で照合が行われて、マッチング度が最も高い低精度の断層面画像に係る断層面の角度から、これから生成される断層面画像に係る断層面(例えば、断層面の角度)の設定が行われる。なお、低精度で断層面画像を生成する態様としては、例えば、所定の間引き度合いで画素を間引いて、断層面画像を生成する態様などが挙げられる。
図10は、変形例に係る断層面画像の生成動作フローを示すフローチャートである。本動作フローは、制御部210がプログラムPGを実行することで、実現される。なお、本動作フローは、ユーザーによって操作部240が種々操作されることで、断層面画像の生成を行う旨が指定されると、開始される。
まず、ステップST11,ST12では、図9のステップS11,S12と同様な処理が行われる。
ステップST13では、ステップST12で設定された処理対象透過像群から複数の角度の断層面に係る複数の断層面画像が低精度で生成される。
ステップST14,ST15では、図9のステップS13,S14と同様な処理が行われる。
ステップST16では、基準画像決定部219により、指定された断層面画像が基準画像として決定される。例えば、画像選択画面Gs(図6)で指定された所望の断層面画像が基準画像として決定される。
ステップST17では、画像照合部220により、ステップST16で決定された基準画像とステップST13で生成された複数の断層面画像との間で照合が行われる。ここでは、基準画像と各断層面画像とのマッチング度が算出される。
ステップST18,ST19では、図9のステップS17,S18と同様な処理が行われ、本動作フローが終了される。
以上のような構成によれば、時間を違えて、同じ検体を撮影して得られた複数の透過像からそれぞれ生成された断層面画像の間における照合により、断層面の角度が設定される。このため、より精度良く所望の断層面が設定される。また、ユーザーの入力に応答して、複数の断層面画像から1つの断層面画像が基準画像として決定されるため、結果的に、ユーザーの意図に沿った所望の断層面が設定される。
但し、このような構成では、処理対象透過像群から複数の角度の断層面に係る複数の断層面画像を低精度で一旦生成するために、ある程度の演算が必要となり、演算量および演算時間のある程度の増大を招いてしまう。これに対して、上記実施形態のように、時間を違えて、同じ検体を撮影して得られた透過像の照合により、断層面の角度が設定されれば、多大な演算が行われることなく、所望の断層面が設定される。
したがって、演算量および演算時間を低減する観点から言えば、断層面画像の間で照合を行う構成よりも、上記実施形態のように、透過像の間で照合を行う構成を採用した方が好ましい。
◎また、上記実施形態では、照合の結果、マッチング度が最も高い画像(透過像や低精度の断層面画像)に対応させて断層面の角度θが設定されたが、これに限られない。例えば、マッチング度が高い方から複数(例えば2フレーム)の画像に対応させて断層面の角度θが設定されても良い。
以下、具体例を挙げて説明する。
ここでは、例えば、処理対象透過像群を構成する複数の透過像と、以前に得られた透過像である基準画像との間で照合を行う具体例を挙げて説明する。
画像照合部220により、処理対象透過像群を構成する複数の透過像の中で基準画像に対するマッチング度が最も高い方から2つの透過像が認識されるとともに、認識された2つの透過像についての照合結果(例えば、第1および第2マッチング度)および照射角度(例えば、第1および第2照射角度)が認識される。そして、断層面設定部221により、2つの照合結果および2つの照射角度に基づき、断層面の角度θが設定される。
例えば、検出面108sの法線を基準として、この法線に対して、発生部101から放射される放射線の中心線、すなわち放射線の進行方向が成す角度を照射角度とし、第1照射角度をφ1、第2照射角度をφ2、第1マッチング度をM1、第2マッチング度をM2とすると、第1および第2マッチング度の比を用いて、下式(1)によって、断層面の角度θが設定される。但し、φ1<φ2とする。
θ=φ1+(φ2−φ1)・{M2/(M1+M2)}・・・(1)
このようにして、断層面設定部221により、第1および第2マッチング度M1,M2と、第1および第2照射角度φ1,φ2とに基づき、第1照射角度φ1と第2照射角度φ2との間に位置する角度に対応する断層面の角度θが算出されて設定される。
このような構成を採用すると、離散的な照射角度に対応した複数の画像(例えば、複数の透過像や、当該複数の透過像から生成された複数の断層面画像)を用いた照合によっても、離散的な照射角度の間の角度に対応する角度を断層面の角度θとして設定することが可能となる。このため、よりユーザーの意図に沿った所望の断層面が設定される。
但し、このような構成では、上式(1)を用いたような演算が加わるため、演算量および演算時間の低減といった観点から言えば、上記実施形態のように、マッチング度が最も高い画像(透過像や低精度の断層面画像)に対応させて断層面の角度θが設定される方が好ましく、多大な演算が行われることなく、所望の断層面が設定される。
一方、経時差分などをより高精度で診るために、よりユーザーの意図に沿った所望の断層面を設定する観点から言えば、上記実施形態のように、マッチング度が最も高い画像(透過像や低精度の断層面画像)に対応させて断層面の角度θが設定されるよりも、マッチング度が高い方から複数(例えば2フレーム)の画像に対応させて断層面の角度θが設定される方が好ましい。
本発明の実施形態に係る撮影システム1の概略構成を示す図である。 制御部で実現される機能構成を例示する図である。 断層面の設定例を示す図である。 断層面画像を構成する各画素の位置を例示する図である。 断層面画像を生成するための透過像群を設定する画面を例示する図である。 照合の基準となる画像を選択する画面を例示する図である。 照合の内容を説明するための図である。 一連撮影動作の動作フローを示すフローチャートである。 断層面画像の生成動作フローを示すフローチャートである。 変形例に係る断層面画像の生成動作フローを示すフローチャートである。
符号の説明
1 撮影システム
100 撮影装置
101 発生部
102 ガイド部
108 検出部
108s 検出面
200 撮影制御処理装置
210 制御部
211 撮影制御部
213 透過像取得部
214 姿勢情報認識部
215 記憶制御部
216 透過像群設定部
217 画像読込部
218 画像出力制御部
219 基準画像決定部
220 画像照合部
221 断層面設定部
222 画像生成部
240 操作部
250 記憶部
Gos 基準画像候補
Gt 透過画像群
PG プログラム
Sgs 断層面画像群

Claims (10)

  1. 断層面画像生成装置であって、
    照射角度を順次変更しつつ検体に対して放射線を照射する一連の撮影によって得られた複数の画像と、基準画像との照合を行う照合手段と、
    前記照合手段による照合結果に基づき、前記基準画像に対応する断層面の角度を設定する設定手段と、
    前記設定手段によって設定された断層面の角度に従って、前記一連の撮影によって得られた複数の透過像に基づき、前記検体に係る断層面画像を生成する生成手段と、
    を備えることを特徴とする断層面画像生成装置。
  2. 請求項1に記載の断層面画像生成装置であって、
    前記基準画像が、
    前記一連の撮影以前に前記検体に対して放射線を照射する撮影によって得られた画像を含むことを特徴とする断層面画像生成装置。
  3. 請求項2に記載の断層面画像生成装置であって、
    前記基準画像が、
    前記一連の撮影以前に前記検体に対して放射線を照射する撮影によって得られた透過像を含み、
    前記複数の画像が、
    前記一連の撮影によって得られた複数の透過像を含むことを特徴とする断層面画像生成装置。
  4. 請求項3に記載の断層面画像生成装置であって、
    ユーザーによる入力に応答して、前記一連の撮影以前に前記検体に係る複数の透過像に基づいて生成された複数の断層面画像から、1つの断層面画像を指定する指定手段、
    を更に備え、
    前記基準画像が、
    前記指定手段によって指定された1つの断層面画像に係る断層面に対して正対する位置から放射線を前記検体に対して照射することで得られた透過像を含むことを特徴とする断層面画像生成装置。
  5. 請求項2に記載の断層面画像生成装置であって、
    前記基準画像が、
    前記一連の撮影以前に前記検体に係る複数の透過像に基づいて生成された断層面画像を含み、
    前記複数の画像が、
    前記一連の撮影によって得られた複数の透過像から生成された複数の角度の断層面に係る断層面画像であることを特徴とする断層面画像生成装置。
  6. 請求項5に記載の断層面画像生成装置であって、
    ユーザーによる入力に応答して、前記一連の撮影以前に前記検体に係る複数の透過像に基づいて生成された複数の断層面画像から、1つの断層面画像を前記基準画像として決定する決定手段、
    を更に備えることを特徴とする断層面画像生成装置。
  7. 請求項1から請求項6のいずれかに記載の断層面画像生成装置であって、
    前記設定手段が、
    前記照合手段により、前記複数の画像の中で前記基準画像に対するマッチング度が最も高いものと認識された画像に係る照射角度に基づき、前記断層面の角度を設定することを特徴とする断層面画像生成装置。
  8. 請求項1から請求項6のいずれかに記載の断層面画像生成装置であって、
    前記設定手段が、
    前記照合手段により、前記複数の画像の中で前記基準画像に対するマッチング度が最も高い方から2つのものと認識された2つの画像に係る第1および第2マッチング度と第1および第2照射角度とに基づき、前記第1照射角度と前記第2照射角度との間の角度に対応する前記断層面の角度を算出して設定することを特徴とする断層面画像生成装置。
  9. 断層面画像生成装置に含まれるコンピュータによって実行されることにより、前記断層面画像生成装置を、請求項1から請求項8のいずれかに記載の断層面画像生成装置として機能させるプログラム。
  10. 断層面画像生成方法であって、
    (a)照射角度を順次変更しつつ検体に対して放射線を照射する一連の撮影によって得られた複数の画像と、基準画像との照合を行う照合ステップと、
    (b)前記照合ステップにおける照合結果に基づき、前記基準画像に対応する断層面の角度を設定する設定ステップと、
    (c)前記設定ステップにおいて設定された断層面の角度に従って、前記一連の撮影によって得られた複数の透過像に基づき、前記検体に係る断層面画像を生成する生成ステップと、
    を備えることを特徴とする断層面画像生成方法。
JP2007178457A 2007-07-06 2007-07-06 断層面画像生成装置、プログラム、および断層面画像生成方法 Expired - Fee Related JP4924250B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007178457A JP4924250B2 (ja) 2007-07-06 2007-07-06 断層面画像生成装置、プログラム、および断層面画像生成方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007178457A JP4924250B2 (ja) 2007-07-06 2007-07-06 断層面画像生成装置、プログラム、および断層面画像生成方法

Publications (2)

Publication Number Publication Date
JP2009011646A JP2009011646A (ja) 2009-01-22
JP4924250B2 true JP4924250B2 (ja) 2012-04-25

Family

ID=40353269

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007178457A Expired - Fee Related JP4924250B2 (ja) 2007-07-06 2007-07-06 断層面画像生成装置、プログラム、および断層面画像生成方法

Country Status (1)

Country Link
JP (1) JP4924250B2 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5415245B2 (ja) * 2009-12-14 2014-02-12 富士フイルム株式会社 医用画像表示装置および方法並びにプログラム
KR101784436B1 (ko) 2011-04-18 2017-10-11 삼성전자주식회사 터치 패널 및 이를 위한 구동 장치
WO2014203933A1 (ja) * 2013-06-18 2014-12-24 キヤノン株式会社 トモシンセシス撮影の制御装置、撮影装置、撮影システム、制御方法および当該制御方法をコンピュータに実行させるためのプログラム
US9795347B2 (en) * 2013-10-24 2017-10-24 Institute Of Nuclear Energy Research Atomic Energy Council, Executive Yuan Scanning system for three-dimensional imaging

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3639030B2 (ja) * 1995-02-28 2005-04-13 株式会社東芝 画像表示システム及びそのシステムを用いた画像表示方法
JP4647360B2 (ja) * 2004-04-05 2011-03-09 富士フイルム株式会社 差分画像作成装置、差分画像作成方法、及び、そのプログラム

Also Published As

Publication number Publication date
JP2009011646A (ja) 2009-01-22

Similar Documents

Publication Publication Date Title
JP4946677B2 (ja) 透過像撮影システム、および透過像撮影方法
JP5986994B2 (ja) 医療用トモシンセシスシステム
US11653897B2 (en) Ultrasonic diagnostic apparatus, scan support method, and medical image processing apparatus
US11995818B2 (en) Synchronized surface and internal tumor detection
WO2014200099A1 (ja) 超音波診断装置
JP2012213558A (ja) 画像処理装置、画像処理方法およびプログラム
WO2007043310A1 (ja) 画像表示方法及び医用画像診断システム
JP2020068797A (ja) 医用撮像装置、画像処理装置、および、画像処理方法
CN112040877B (zh) 医用信息处理系统以及计算机可读存储介质
JP6670509B2 (ja) コンピュータ断層撮像システムの造影方法
US7164746B2 (en) X-ray CT apparatus and imaging method
JP4924250B2 (ja) 断層面画像生成装置、プログラム、および断層面画像生成方法
US6341152B1 (en) X-ray computerized tomography apparatus
JP5843570B2 (ja) 被検体情報取得装置、該装置の制御方法、及びプログラム
JP2008154647A (ja) 任意断層面画像生成装置及び方法、並びにそのためのデータ処理装置
JP2017006655A (ja) 超音波診断装置及び画像処理装置
JP2012075862A (ja) 体動検出装置、方法およびプログラム
JP2003260046A (ja) マンモグラフィの方法及び装置
JP6841346B2 (ja) 放射線断層画像処理装置および放射線断層撮影装置
US20050245804A1 (en) Medical image diagnosis apparatus
JP6334013B2 (ja) 超音波診断装置
JP2011125569A (ja) 画像処理装置、画像処理方法、画像処理システム及びプログラム
JP2009011639A (ja) 情報処理装置、およびプログラム
WO2019208804A1 (ja) 医用情報処理システム及び医用情報処理プログラム
JP5082458B2 (ja) 断層面画像撮影のための装置及び方法、並びにそれらのための合成装置及び指標部材

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100518

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111228

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120110

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120123

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150217

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4924250

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees