JP4923254B2 - Exposure method - Google Patents

Exposure method Download PDF

Info

Publication number
JP4923254B2
JP4923254B2 JP2006250761A JP2006250761A JP4923254B2 JP 4923254 B2 JP4923254 B2 JP 4923254B2 JP 2006250761 A JP2006250761 A JP 2006250761A JP 2006250761 A JP2006250761 A JP 2006250761A JP 4923254 B2 JP4923254 B2 JP 4923254B2
Authority
JP
Japan
Prior art keywords
exposure
resist
substrate
exposure method
dimensional
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006250761A
Other languages
Japanese (ja)
Other versions
JP2007114758A (en
Inventor
洋一 芳賀
忠雄 松永
正喜 江刺
健太郎 戸津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Original Assignee
Tohoku University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC filed Critical Tohoku University NUC
Priority to JP2006250761A priority Critical patent/JP4923254B2/en
Publication of JP2007114758A publication Critical patent/JP2007114758A/en
Application granted granted Critical
Publication of JP4923254B2 publication Critical patent/JP4923254B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Description

本発明は、カテーテル・内視鏡等の立体形状へのフォトリソグラフィにおける露光方法に関する。   The present invention relates to an exposure method in photolithography of a three-dimensional shape such as a catheter / endoscope.

人体に大きな切開を加えることなく、細く小さな医療ツールを挿入し、手術に匹敵する効果を挙げる低侵襲治療が広く行われている。これらの手技にはカテーテル、内視鏡などの医療ツールが用いられる。また、患者の負担を少なくしながら体内に入れて検査を行うカプセル内視鏡、状況に合わせた最適な投薬を実現する体内埋め込み型ドラッグデリバリーシステムが注目されている。これらのツールはなるべく細く、小さく、かつ高機能であることが望ましい。   Minimally invasive treatment has been widely performed in which a thin and small medical tool is inserted without making a large incision in the human body, and an effect comparable to that of surgery. Medical tools such as catheters and endoscopes are used for these procedures. In addition, capsule endoscopes that are placed in the body for examination while reducing the burden on the patient, and implantable drug delivery systems that realize optimal medication according to the situation are attracting attention. These tools should be as thin, small and highly functional as possible.

カテーテルや内視鏡の形状及びそれらの内腔は円形であり、一部のツールを体内に入れる際に体に刺す針の内腔も円形であることから、これらのツールは円筒・チューブ形状が望ましい。また、内腔を確保することによりカテーテルや内視鏡においては別ツールの挿入や薬液の注入に、カプセル内視鏡やドラッグデリバリーシステムでは薬液タンクやバッテリーの置き場所として利用することができ、内腔を確保することが望ましい(図1参照)。   The shape of catheters and endoscopes and their lumens are circular, and the lumen of the needle that pierces the body when some tools are inserted into the body is also circular. desirable. In addition, by securing the lumen, it can be used for insertion of another tool and injection of drug solution in catheters and endoscopes, and as a storage place for drug solution tanks and batteries in capsule endoscopes and drug delivery systems. It is desirable to secure a cavity (see FIG. 1).

これらの要求を満たすひとつの方法として、円筒面上への微細加工と組み立てによる機能の搭載が挙げられる。しかし、従来の平面上で行う微細加工や組み立てには限界があり、チューブ外周曲面への微細加工が難しい。現在までに、高機能化を実現するためレーザー加工技術を用いたカテーテルへのデバイス搭載(非特許文献1)やフレキシブルマスクなどによる円筒面パターニング(非特許文献2)などチューブ外周曲面への微細加工や組み立てが試みられている。   One way to satisfy these requirements is to mount the functions by microfabrication and assembly on a cylindrical surface. However, there is a limit to the microfabrication and assembly performed on the conventional flat surface, and it is difficult to perform microfabrication on the tube outer peripheral curved surface. To date, micro-fabrication on the outer peripheral curved surface of a tube such as device mounting on a catheter using laser processing technology (Non-Patent Document 1) and cylindrical surface patterning using a flexible mask (Non-Patent Document 2) to achieve high functionality And assembly is being attempted.

円筒面上へのパターン形成には、金属薄膜パターンを設けたフレキシブルマスクを円筒面に巻き付けるフレキシブルマスク法(非特許文献2)、パターンを形成したシリコーンゴム製の型の上で平面に円筒を転がしパターンを形成するマイクロコンタクトプリンティング法(非特許文献3)、円筒の回転とフォトマスクの平行移動を同期させて行う転動露光法(非特許文献4、5)、マスクを用いず、ビームを制御して直接描画を行うマスクレス露光法などがある。
三澤裕, 中川哲, 小笹均, 板花紀子, 田辺進:マイクロカテーテル微細加工技術, The FirstInternational Micromachine Symposium, 123-126(1995) W. J. Li , John D. Mai , Chih-Ming Ho, Sensors and actuators on non-planar substrates, Sensors andActuators 73, 80-88 (1999) R. J. Jackman, J. L. Wilbur, and G. M. Whitesides, Fabrication of Submicrometer Features on CurvedSubstrates by Microcontact Printing, Science, 269, No.4, 664 (1995) 羽根一博, 佐々木実, 萩原隆志, 能川真一郎:円柱面転動リソグラフィ装置の開発, 電気学会センサ・マイクロマシン部門研究会PS-98-10, 47-51 (1998) 峯田貴, 芳賀洋一, 江刺 正喜:非平面フォトファブリケーションによる形状記憶合金パイプからのアクチュエータ作成, 電気学会論文誌E, 123, No.5, 2003
For pattern formation on a cylindrical surface, a flexible mask method (Non-Patent Document 2) in which a flexible mask provided with a metal thin film pattern is wound around the cylindrical surface, and the cylinder is rolled onto a flat surface on a silicone rubber mold on which the pattern is formed. Micro contact printing method to form a pattern (Non-patent Document 3), Rolling exposure method to synchronize the rotation of a cylinder and the parallel movement of a photomask (Non-Patent Documents 4 and 5), Control the beam without using a mask Then, there is a maskless exposure method that performs direct drawing.
Hiroshi Misawa, Satoshi Nakagawa, Hitoshi Komine, Noriko Itana, Susumu Tanabe: Microcatheter Microfabrication Technology, The FirstInternational Micromachine Symposium, 123-126 (1995) WJ Li, John D. Mai, Chih-Ming Ho, Sensors and actuators on non-planar substrates, Sensors and Actuators 73, 80-88 (1999) RJ Jackman, JL Wilbur, and GM Whitesides, Fabrication of Submicrometer Features on CurvedSubstrates by Microcontact Printing, Science, 269, No. 4, 664 (1995) Hane Kazuhiro, Sasaki Minoru, Sugawara Takashi, Nogawa Shinichiro: Development of Cylindrical Rolling Lithography Equipment, IEEJ Sensor Micromachine Division PS-98-10, 47-51 (1998) Takashi Hamada, Yoichi Haga, Masayoshi Esashi: Actuator creation from shape memory alloy pipe by non-planar photofabrication, IEEJ Transactions E, 123, No.5, 2003

従来の立体形状へのフォトリソグラフィにおける露光方法では、以下のような問題点があり十分満足する露光が達成できなかった。
(a)立体形状にレジストを均一な膜厚で成膜することが難しい。
(b)レジストを塗布したサンプルとフォトマスクの位置合わせが難しい。
(c)レジスト厚及びレジスト膜への露光入射角度が大きく変化することにより露光ドーズ量が変化し、正確なフォトリソグラフィが行えない。
したがって本発明は、上記従来の問題点を解消し、立体形状へのフォトリソグラフィにおいて、最適な露光分布条件を実現することを課題とするものである。
The conventional exposure method for photolithography to a three-dimensional shape has the following problems, and a sufficiently satisfactory exposure cannot be achieved.
(A) It is difficult to form a resist with a uniform film thickness in a three-dimensional shape.
(B) It is difficult to align the resist-coated sample and the photomask.
(C) The exposure dose changes due to a large change in the resist thickness and the exposure incident angle on the resist film, and accurate photolithography cannot be performed.
Accordingly, an object of the present invention is to solve the above-described conventional problems and realize an optimum exposure distribution condition in photolithography to a three-dimensional shape.

課題を解決するための手段は、次のとおりである。
(1)曲面を有する立体形状へのフォトリソグラフィにおいて、レジストの高さ位置及び膜厚分布を2次元のマトリックスに分割し、フォトマスクを用いずにマトリックスごとに露光高さに合わせた焦点高さと、レジスト厚さに合わせた露光ドーズ量を用いて露光を行うことを特徴とする露光方法。
(2)レジスト内部の光の乱反射、レジストとその下層の界面における反射などを考慮し、レジストの高さ位置と膜厚分布に基づいて、隣り合った2次元マトリックス間の相互作用を予め見積もることでレジスト膜内における潜像を反映した最適な露光を行うことを特徴とする(1)に記載の露光方法。
(3)レジストの高さ位置及び膜厚分布を測定し、測定結果を2次元のマトリックスに分割し、露光に反映させることを特徴とする(1)又は(2)に記載の露光方法。
(4)レジストの高さ位置及び膜厚分布の測定は、レーザー変位計、光コヒーレンストモグラフィー、ガウスのレンズ法則、 フィゾー干渉計のうちの少なくとも一つを用いて測定することを特徴とする(3)に記載の露光方法。
(5)露光ドーズ量を変化させることで、現像されるレジストの高さを変えるグレースケール露光を用い、曲面を有する立体形状の上にレジストの3次元構造を作製することを特徴とする(1)又は(2)に記載の露光方法。
(6)露光高さは、光学系による焦点の上下移動、基板の上下移動、基板形状に合わせた上下以外の移動のうちの少なくとも一つを用いることにより最適化することを特徴とする(1)〜(4)のいずれかに記載の露光方法。
(7)スロープ形状を有する基板に対し、スロープの傾きに対応する基板の斜め移動又は基板の傾けのいずれかを行うことを特徴とする(5)に記載の露光方法。
(8)点照射を行う単一の露光ビームを用いることを特徴とする(1)〜(7)のいずれかに記載の露光方法。
(9)光スキャナーやDMDなどの光偏向装置を用いた1次元あるいは2次元のいずれかの一括照射を行うことを特徴とする(1)〜(8)のいずれかに記載の露光方法。
(10)円柱又は円筒のような曲面の外形を有する基板、基板上の円柱形状凸部又は凹部のいずれかに対し、円形状の中心軸を中心とする回転と、回転に同期した長軸方向の線状パターン露光を行うことを特徴とする(8)に記載の露光方法。
(11)円柱又は円筒のような曲面の外径を有する基板、基板上の円柱形状凸部又は凹部のいずれかに対し、長軸方向の直線移動と円形状の中心軸を中心とする回転と、それぞれの動きに同期した点照射を行うことを特徴とする(9)に記載の露光方法。
(12)前記曲面を有する立体形状は、基板チューブとその周囲を被覆する支持層であり、露光後に基板チューブを除去することを特徴とする(1)〜(11)のいずれかに記載の露光方法。
Means for solving the problems are as follows.
(1) In photolithography to a three-dimensional shape having a curved surface , the resist height position and film thickness distribution are divided into a two-dimensional matrix, and the focus height is adjusted to the exposure height for each matrix without using a photomask. An exposure method characterized by performing exposure using an exposure dose that matches the resist thickness.
(2) Estimating in advance the interaction between adjacent two-dimensional matrices based on the height position of the resist and the film thickness distribution, taking into account irregular reflection of light inside the resist and reflection at the interface between the resist and its lower layer. (1) The exposure method according to (1), wherein optimal exposure reflecting a latent image in the resist film is performed.
(3) The exposure method according to (1) or (2), wherein the resist height position and film thickness distribution are measured, and the measurement result is divided into a two-dimensional matrix and reflected in exposure.
(4) The resist height position and film thickness distribution are measured using at least one of a laser displacement meter, optical coherence tomography, Gaussian lens law, and Fizeau interferometer (3 ) Exposure method.
(5) A three-dimensional structure of a resist is produced on a three-dimensional shape having a curved surface by using gray scale exposure that changes the height of the developed resist by changing the exposure dose (1) Or the exposure method according to (2).
(6) The exposure height is optimized by using at least one of vertical movement of the focus by the optical system, vertical movement of the substrate, and movement other than vertical movement according to the substrate shape (1). The exposure method according to any one of (4) to (4).
(7) The exposure method according to (5), wherein the substrate having a slope shape is subjected to either an oblique movement of the substrate corresponding to the inclination of the slope or an inclination of the substrate.
(8) The exposure method according to any one of (1) to (7), wherein a single exposure beam that performs point irradiation is used.
(9) The exposure method according to any one of (1) to (8), wherein one-dimensional or two-dimensional collective irradiation is performed using an optical deflection device such as an optical scanner or DMD.
(10) For a substrate having a curved outer shape such as a column or cylinder, a columnar convex portion or a concave portion on the substrate, rotation about a circular central axis, and a long axis direction synchronized with the rotation The exposure method according to (8), wherein the linear pattern exposure is performed.
(11) For a substrate having a curved outer diameter such as a column or cylinder, a columnar convex portion or a concave portion on the substrate, linear movement in the major axis direction and rotation about a circular central axis; The exposure method according to (9), wherein point irradiation is performed in synchronization with each movement.
(12) The exposure according to any one of (1) to (11), wherein the three-dimensional shape having the curved surface is a support layer covering the substrate tube and the periphery thereof, and the substrate tube is removed after the exposure. Method.

本発明の露光方法によれば、立体形状へのフォトリソグラフィにおいて、最適な露光分布条件を実現しているため、円筒面等の立体形状に正確なパターンを形成することができる。   According to the exposure method of the present invention, since an optimal exposure distribution condition is realized in photolithography to a three-dimensional shape, an accurate pattern can be formed on a three-dimensional shape such as a cylindrical surface.

本発明露光方法に係るマトリックス分割露光の概念図を図2に示す。
図2からわかるように、立体形状(基板の凸面及び凹面)へのフォトリソグラフィにおいて、レジストの高さ位置(A、B、C)及び膜厚分布を2次元のマトリックスに分割し、フォトマスクを用いずにマトリックスごとに露光高さ(A’、B’、C’)に合わせた焦点高さと、レジスト厚さに合わせた露光ドーズ量を用いて露光を行うものである。
さらにレジスト内部の光の乱反射、レジストとその下層の界面における反射などを考慮し、レジストの高さ位置と膜厚分布に基づいて、隣り合った2次元マトリックス間の相互作用を予め見積もることでレジスト膜内における潜像を反映した最適な露光を行い、より正確でファインなリソグラフィが実現できる。
FIG. 2 shows a conceptual diagram of matrix division exposure according to the exposure method of the present invention.
As can be seen from FIG. 2, in photolithography to a three-dimensional shape (convex surface and concave surface of the substrate), the resist height position (A, B, C) and film thickness distribution are divided into a two-dimensional matrix, and a photomask is formed. The exposure is performed using the focus height matched to the exposure height (A ′, B ′, C ′) for each matrix and the exposure dose matched to the resist thickness.
Furthermore, taking into account irregular reflection of light inside the resist and reflection at the interface between the resist and its lower layer, the resist is estimated by estimating the interaction between adjacent two-dimensional matrices in advance based on the height position of the resist and the film thickness distribution. Optimal exposure reflecting the latent image in the film can be performed to realize more accurate and fine lithography.

次に本発明の露光方法について、図3に示す多層ソレノイドコイルの作製プロセスを例示して詳細に説明する。
(a):ガラス円筒の外面にCu/Tiのシード層をスパッタリングで形成する。
(b):ネガレジスト(東京応化工業, OMR83)をディップコート又はスプレーコートした後、露光を次のような手順で行う。
必要に応じてレジストの高さ位置と膜厚分布を測定し、レジストの高さ位置及び膜厚分布を2次元のマトリックスに分割し、マトリックスごとに露光高さに合わせた焦点高さと、レジスト厚さに合わせた露光ドーズ量を用いてレジストの露光を行う。
Next, the exposure method of the present invention will be described in detail by exemplifying the production process of the multilayer solenoid coil shown in FIG.
(A): A Cu / Ti seed layer is formed on the outer surface of a glass cylinder by sputtering.
(B): A negative resist (Tokyo Ohka Kogyo Co., Ltd., OMR83) is dip coated or spray coated, and then exposed in the following procedure.
Measure the resist height position and film thickness distribution as necessary, divide the resist height position and film thickness distribution into a two-dimensional matrix, and adjust the focus height and resist thickness according to the exposure height for each matrix. The resist is exposed by using an exposure dose that matches the thickness.

ここでレジストの高さ位置及び膜厚分布の測定は、レーザー変位計、光コヒーレンストモグラフィー、ガウスのレンズ法則、 フィゾー干渉計のうちの少なくとも一つを用いて測定する。
また露光高さは、光学系による焦点の上下移動、基板の上下移動、基板形状に合わせた上下以外の移動のうちの少なくとも一つを用いることにより最適化する。
次に現像を行い、レジストパターンを形成する。
Here, the height position and film thickness distribution of the resist are measured using at least one of a laser displacement meter, optical coherence tomography, Gauss's lens law, and Fizeau interferometer.
The exposure height is optimized by using at least one of vertical movement of the focal point by the optical system, vertical movement of the substrate, and movement other than vertical movement according to the substrate shape.
Next, development is performed to form a resist pattern.

(c):Cu層を電気めっきを用いて成長させる。
(d):レジストを除去し、不要なシード層をエッチングする。
(e):SiO絶縁層をPECVD(プラズマ支援化学気相成長)で形成する。
(f):ポジレジスト(東京応化工業、OFPR800)をディップコート又はスプレーコートし、同様に露光・現像を行い、レジストパターンを形成する。
(g):SiOをエッチングし、レジストを除去する。
(h):上記(a)〜(g)のプロセスを再び繰り返す。
(C): A Cu layer is grown using electroplating.
(D): The resist is removed and an unnecessary seed layer is etched.
(E): A SiO 2 insulating layer is formed by PECVD (plasma assisted chemical vapor deposition).
(F): A positive resist (Tokyo Ohka Kogyo Co., Ltd., OFPR800) is dip coated or spray coated, and similarly exposed and developed to form a resist pattern.
(G): The SiO 2 is etched and the resist is removed.
(H): The above processes (a) to (g) are repeated again.

上記のプロセスを基本とし、ステージ制御型点照射装置(図4(a)、図5参照)及びDMDを用いた露光装置(図4(b)、図6参照)において単層のパターンを作製した。
ステージ制御型点照射装置では、YAGレーザーの第3高調波(355nm)を用いて直径2mmのガラス円筒に銅でテストパターン、電極配線パターン及びソレノイドコイルを作製した。DMD(デジタルマイクロミラーデバイス)を利用した露光装置では、直径3mmのガラス円筒にクロムでテストパターン、ソレノイドコイルを作製した。
また、DMDを用いた露光装置では、厚膜レジスト(PMER P-LA900, 東京応化工業)を用いて、グレースケール露光を利用して直径3mmのガラス円筒の軸方向・円周方向にレジストのスロープ構造(幅500μm、長さ500, 1000, 1500μm)を作製した。
Based on the above process, a single-layer pattern was prepared using a stage-controlled point irradiation apparatus (see FIGS. 4A and 5) and an exposure apparatus using DMD (see FIGS. 4B and 6). .
In the stage control type point irradiation apparatus, a test pattern, an electrode wiring pattern, and a solenoid coil were made of copper on a glass cylinder having a diameter of 2 mm using a third harmonic (355 nm) of a YAG laser. In an exposure apparatus using a DMD (digital micromirror device), a test pattern and a solenoid coil were made of chromium on a glass cylinder having a diameter of 3 mm.
In addition, in the exposure apparatus using DMD, a thick film resist (PMER P-LA900, Tokyo Ohka Kogyo Co., Ltd.) is used, and the slope of the resist is applied in the axial direction and circumferential direction of a glass cylinder having a diameter of 3 mm using gray scale exposure. A structure (width 500 μm, length 500, 1000, 1500 μm) was prepared.

図7は、ステージ制御型点照射装置を用いて作製されたガラスチューブ(直径2mm)上への銅パターンである。
また図8は、DMDを利用したライン照射露光装置を用いて作製されたガラスチューブ(直径3mm)上へのクロムパターン露光装置で作製したパターンである。
ソレノイドコイルにおいては、プローバーとインピーダンスアナライザを用いて抵抗とインダクタンスをそれぞれ測定し、理論値に近い測定結果が得られた。
FIG. 7 shows a copper pattern on a glass tube (diameter 2 mm) produced using a stage-controlled point irradiation apparatus.
FIG. 8 shows a pattern produced by a chromium pattern exposure apparatus on a glass tube (diameter 3 mm) produced using a line irradiation exposure apparatus utilizing DMD.
For the solenoid coil, the prober and impedance analyzer were used to measure resistance and inductance, respectively, and the measurement results close to the theoretical values were obtained.

図9は、ガラスチューブ(直径3mm)上にグレースケール露光により作製したスロープ構造である。グレースケール露光は、露光ドーズ量を変化させることで、現像されるレジストの高さを変えて、円筒面のような立体形状の上にレジストの3次元構造パターンを作製するものである。
グレースケール露光によるスロープ構造作製では、図9に示すように最大高さ約20μmの滑らかなスロープが得られた。
FIG. 9 shows a slope structure produced by gray scale exposure on a glass tube (diameter 3 mm). In gray scale exposure, by changing the exposure dose, the height of the resist to be developed is changed, and a three-dimensional structure pattern of the resist is formed on a three-dimensional shape such as a cylindrical surface.
In the production of the slope structure by gray scale exposure, a smooth slope having a maximum height of about 20 μm was obtained as shown in FIG.

チューブ形状のデバイスの場合、薄肉化することはカテーテルや細径内視鏡ツールなどの細さを維持しながら広い内腔(薬剤や造影剤、マイクロツールを通すためのワーキングチャネル)を確保するために有効である(図10参照)。作製は、ガラスや金属基板上にまず絶縁性の膜を形成し薄肉化したデバイスの支持層とし、最外層に同様な膜を保護層として設けサンドイッチ構造とする。材料として具体的にはパリレンやポリイミドなどが適しているが、薄膜形成が可能で耐薬品性の高い(エッチング液に耐えられる)材料であればよい。チューブの場合、細径化に伴いエッチング液が内腔に行き渡らず効率的なエッチングができなくなるが、やや圧力をかけてチューブ内にエッチング液を流す(循環させる)ことで効率的かつ容易に基板のエッチングが可能である。   In the case of a tube-shaped device, thinning is to secure a wide lumen (working channel for passing drugs, contrast agents, and micro tools) while maintaining the thinness of catheters and small diameter endoscopic tools. (See FIG. 10). Fabrication is performed by first forming an insulating film on a glass or metal substrate to form a thinned support layer for the device, and forming a sandwich structure by providing a similar film as a protective layer on the outermost layer. Specifically, parylene, polyimide, or the like is suitable as the material, but any material that can form a thin film and has high chemical resistance (can withstand an etching solution) may be used. In the case of a tube, the etching solution does not reach the lumen as the diameter is reduced, making it impossible to perform etching efficiently. However, the substrate can be efficiently and easily flowed (circulated) through the tube by applying a little pressure. Etching is possible.

本発明の露光方法では、さらにレジスト内部の光の乱反射などを考慮し、レジストの高さ位置と膜厚分布の計測結果に基づいて、隣り合った2次元マトリックス間の相互作用を予め見積もることでレジスト膜内における潜像を反映した最適な露光を行うことができる。   In the exposure method of the present invention, the interaction between adjacent two-dimensional matrices is estimated in advance based on the measurement result of the height position of the resist and the film thickness distribution, taking into account irregular reflection of light inside the resist. Optimal exposure reflecting the latent image in the resist film can be performed.

本手法は従来にない高集積化、高機能化を医療ツールのために実現できる手法であり、血管内MRIプローブや集積化超音波内視鏡などの次世代医療機器開発の重要な技術になり得ると期待される。   This method can realize unprecedented high integration and high functionality for medical tools, and is an important technology for the development of next-generation medical devices such as intravascular MRI probes and integrated ultrasound endoscopes. Expected to get.

すなわち前者では、従来のMRI(核磁気共鳴イメージング)は、励起コイルと検出コイルの双方とも体の外に位置したが、本発明による露光方法により励起コイルと検出コイルの両方、又は検出コイルのみを微小化し、カテーテル先端などに搭載して体内に持ち込むことで、血管内病変部(狭窄やプラーク)の高解像度イメージング、さらには診断に役立つ物質の検出が可能になる。また、今回の露光方法を利用することでマッチング回路などを作成することも可能となる。   That is, in the former, both conventional excitation magnetic resonance imaging (MRI) and excitation coil are located outside the body, but both the excitation coil and the detection coil, or only the detection coil, are exposed by the exposure method according to the present invention. By miniaturizing it and mounting it at the tip of a catheter and bringing it into the body, high resolution imaging of intravascular lesions (stenosis and plaque) and detection of substances useful for diagnosis become possible. It is also possible to create a matching circuit by using the present exposure method.

また後者では、超音波内視鏡において信号増幅回路や電気インピーダンスマッチング回路を超音波トランスデューサ近くに集積化することで、ガイドワイヤーや血管造影剤を通すための貫通穴を中心に確保しながら細径かつ高性能な血管内イメージングプローブを実現することができる(図11参照)。   In the latter case, a signal amplification circuit and an electrical impedance matching circuit are integrated in the vicinity of the ultrasonic transducer in the ultrasonic endoscope, so that a small diameter is ensured while securing a through hole for passing a guide wire or angiographic contrast agent at the center. In addition, a high-performance intravascular imaging probe can be realized (see FIG. 11).

円筒面微細加工の概念図。The conceptual diagram of cylindrical surface microfabrication. マトリックス分割露光の概念図。The conceptual diagram of matrix division | segmentation exposure. 多層ソレノイドコイル作製プロセス。Multi-layer solenoid coil manufacturing process. マスクレス露光法の概念図。The conceptual diagram of the maskless exposure method. レーザービームを用いたステージ制御型点照射装置。Stage control type point irradiation device using laser beam. DMDを用いたライン照射装置。Line irradiation device using DMD. ステージ制御型点照射装置を用いて作製されたガラスチューブ(直径2mm)上への銅パターン。A copper pattern on a glass tube (diameter 2 mm) produced using a stage-controlled point irradiation device. DMDを利用したライン照射露光装置を用いて作製されたガラスチューブ(直径3mm)上へのクロムパターン。A chromium pattern on a glass tube (3 mm in diameter) produced using a line irradiation exposure apparatus using DMD. DMDを利用した露光装置を用いて作製されたガラスチューブ(直径3mm)上へのレジストのスロープ構造。A slope structure of a resist on a glass tube (diameter 3 mm) produced using an exposure apparatus utilizing DMD. 基板チューブのエッチング除去による多層薄膜チューブの作製。Fabrication of multilayer thin film tubes by etching away substrate tubes. 集積化超音波内視鏡の概念図。The conceptual diagram of an integrated ultrasonic endoscope.

Claims (12)

曲面を有する立体形状へのフォトリソグラフィにおいて、レジストの高さ位置及び膜厚分布を2次元のマトリックスに分割し、フォトマスクを用いずにマトリックスごとに露光高さに合わせた焦点高さと、レジスト厚さに合わせた露光ドーズ量を用いて露光を行うことを特徴とする露光方法。 In photolithography to a three-dimensional shape with a curved surface , the resist height position and film thickness distribution are divided into a two-dimensional matrix, and the focus height and resist thickness are adjusted to the exposure height for each matrix without using a photomask. An exposure method characterized by performing exposure using an exposure dose in accordance with the thickness. レジスト内部の光の乱反射、レジストとその下層の界面における反射などを考慮し、レジストの高さ位置と膜厚分布に基づいて、隣り合った2次元マトリックス間の相互作用を予め見積もることでレジスト膜内における潜像を反映した最適な露光を行うことを特徴とする請求項1に記載の露光方法。   By taking into account irregular reflection of light inside the resist and reflection at the interface between the resist and its lower layer, the resist film can be estimated in advance by estimating the interaction between adjacent two-dimensional matrices based on the height position of the resist and the film thickness distribution. 2. The exposure method according to claim 1, wherein optimum exposure reflecting a latent image is performed. レジストの高さ位置及び膜厚分布を測定し、測定結果を2次元のマトリックスに分割し、露光に反映させることを特徴とする請求項1又は2に記載の露光方法。   3. The exposure method according to claim 1, wherein the height position and film thickness distribution of the resist are measured, and the measurement result is divided into a two-dimensional matrix and reflected in exposure. レジストの高さ位置及び膜厚分布の測定は、レーザー変位計、光コヒーレンストモグラフィー、ガウスのレンズ法則、 フィゾー干渉計のうちの少なくとも一つを用いて測定することを特徴とする請求項3に記載の露光方法。   4. The resist height position and film thickness distribution are measured using at least one of a laser displacement meter, optical coherence tomography, Gaussian lens law, and Fizeau interferometer. Exposure method. 露光ドーズ量を変化させることで、現像されるレジストの高さを変えるグレースケール露光を用い、曲面を有する立体形状の上にレジストの3次元構造を作製することを特徴とする請求項1又は2に記載の露光方法。 3. The three-dimensional structure of the resist is formed on a three-dimensional shape having a curved surface by using gray scale exposure that changes the height of the resist to be developed by changing the exposure dose. An exposure method according to 1. 露光高さは、光学系による焦点の上下移動、基板の上下移動、基板形状に合わせた上下以外の移動のうちの少なくとも一つを用いることにより最適化することを特徴とする請求項1〜4のいずれか1項に記載の露光方法。   5. The exposure height is optimized by using at least one of vertical movement of the focal point by the optical system, vertical movement of the substrate, and movement other than vertical movement according to the substrate shape. The exposure method according to any one of the above. スロープ形状を有する基板に対し、スロープの傾きに対応する基板の斜め移動又は基板の傾けのいずれかを行うことを特徴とする請求項5に記載の露光方法。   6. The exposure method according to claim 5, wherein either an oblique movement of the substrate or an inclination of the substrate corresponding to the inclination of the slope is performed on the substrate having a slope shape. 点照射を行う単一の露光ビームを用いることを特徴とする請求項1〜7のいずれか1項に記載の露光方法。   The exposure method according to claim 1, wherein a single exposure beam that performs point irradiation is used. 光スキャナーやDMDなどの光偏向装置を用いた1次元あるいは2次元のいずれかの一括照射を行うことを特徴とする請求項1〜8のいずれか1項に記載の露光方法。   9. The exposure method according to claim 1, wherein one-dimensional or two-dimensional collective irradiation is performed using an optical deflecting device such as an optical scanner or DMD. 円柱又は円筒のような曲面の外形を有する基板、基板上の円柱形状凸部又は凹部のいずれかに対し、円形状の中心軸を中心とする回転と、回転に同期した長軸方向の線状パターン露光を行うことを特徴とする請求項8に記載の露光方法。   For a substrate having a curved outer shape such as a cylinder or a cylinder, a columnar convex portion or a concave portion on the substrate, rotation about a circular central axis, and a long axis direction line synchronized with the rotation The exposure method according to claim 8, wherein pattern exposure is performed. 円柱又は円筒のような曲面の外径を有する基板、基板上の円柱形状凸部又は凹部のいずれかに対し、長軸方向の直線移動と円形状の中心軸を中心とする回転と、それぞれの動きに同期した点照射を行うことを特徴とする請求項9に記載の露光方法。   For a substrate having a curved outer diameter such as a cylinder or a cylinder, a columnar convex portion or a concave portion on the substrate, a linear movement in the major axis direction and a rotation around a circular central axis, The exposure method according to claim 9, wherein point irradiation is performed in synchronization with movement. 前記曲面を有する立体形状は、基板チューブとその周囲を被覆する支持層であり、露光後に基板チューブを除去することを特徴とする請求項1〜11のいずれか1項に記載の露光方法。 The exposure method according to any one of claims 1 to 11, wherein the three-dimensional shape having the curved surface is a support layer covering the substrate tube and the periphery thereof, and the substrate tube is removed after the exposure.
JP2006250761A 2005-09-21 2006-09-15 Exposure method Active JP4923254B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006250761A JP4923254B2 (en) 2005-09-21 2006-09-15 Exposure method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005273209 2005-09-21
JP2005273209 2005-09-21
JP2006250761A JP4923254B2 (en) 2005-09-21 2006-09-15 Exposure method

Publications (2)

Publication Number Publication Date
JP2007114758A JP2007114758A (en) 2007-05-10
JP4923254B2 true JP4923254B2 (en) 2012-04-25

Family

ID=38096938

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006250761A Active JP4923254B2 (en) 2005-09-21 2006-09-15 Exposure method

Country Status (1)

Country Link
JP (1) JP4923254B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009212498A (en) * 2008-02-04 2009-09-17 Nsk Ltd Exposure device and exposure method
CN101952109B (en) * 2008-02-14 2014-03-12 荷兰应用科学研究会(Tno) Method and system for layerwise production of tangible object
JP5835367B2 (en) * 2014-01-27 2015-12-24 株式会社カネカ Manufacturing method of MRI receiver coil
JP5741721B2 (en) * 2014-01-27 2015-07-01 株式会社カネカ MRI receiver coil
JP6427452B2 (en) * 2015-03-30 2018-11-21 株式会社Screenホールディングス Exposure data generation method, manufacturing method, exposure data generation device, exposure data generation program, and manufacturing system
JP6633925B2 (en) * 2016-01-29 2020-01-22 株式会社オーク製作所 Exposure apparatus and exposure method

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3256571B2 (en) * 1992-04-28 2002-02-12 株式会社東芝 Method of forming three-dimensional structure
US6133986A (en) * 1996-02-28 2000-10-17 Johnson; Kenneth C. Microlens scanner for microlithography and wide-field confocal microscopy
JPH104045A (en) * 1996-06-14 1998-01-06 Hitachi Ltd Semiconductor integrated circuit device and method and apparatus for manufacturing the same
JP2000237674A (en) * 1998-12-25 2000-09-05 Nippon Paint Co Ltd Method for coating wall surface of building, coating roller and production thereof
JP3358605B2 (en) * 1999-12-03 2002-12-24 日本電気株式会社 Exposure apparatus for spherical device and its exposure method
JP2001311811A (en) * 2000-04-27 2001-11-09 Japan Science & Technology Corp Creation system three-dimensional optical device
JP2003107721A (en) * 2001-09-28 2003-04-09 Nikon Corp Manufacturing method for microlens, manufacturing method for article, working method for resist layer and microlens
JP2003287900A (en) * 2002-03-28 2003-10-10 Fuji Photo Film Co Ltd Image exposure device
JP4183119B2 (en) * 2003-02-19 2008-11-19 大日本スクリーン製造株式会社 Stereolithography equipment
JP2004334184A (en) * 2003-04-16 2004-11-25 Sharp Corp Method of forming three-dimensional structure, and exposure device
JP2005116929A (en) * 2003-10-10 2005-04-28 Fuji Photo Film Co Ltd System for manufacturing pattern

Also Published As

Publication number Publication date
JP2007114758A (en) 2007-05-10

Similar Documents

Publication Publication Date Title
JP4923254B2 (en) Exposure method
Haga et al. Development of minimally invasive medical tools using laser processing on cylindrical substrates
CN107613836B (en) The medical instrument with sensor used in the system and method for electromagnetic navigation
CN107106078B (en) Medical instrument with sensor for use in systems and methods for electromagnetic navigation
US9808200B2 (en) Medical imaging apparatus and method
JP5596027B2 (en) catheter
JP4632853B2 (en) Capacitive ultrasonic transducer and manufacturing method thereof
JP4271253B2 (en) Ultrasonic transducer, method for manufacturing ultrasonic transducer, and ultrasonic endoscope
US20120172697A1 (en) Catheter with sheet array of electrodes
JP2013533006A (en) Method for apparatus and device for imaging structures in or in one or more luminal organs
CN108778145B (en) Surgical tool with flexible circuit ultrasonic sensor
JP4663742B2 (en) Manufacturing method of diffraction grating
JP2009279251A (en) Medical apparatus
JP2006150082A (en) Guidewire for catheter
JP2010185728A (en) Method for manufacturing x-ray talbot diffraction grating, x-ray talbot diffraction grating, x-ray talbot interferometers and x-ray phase imaging apparatus
Rivkin et al. Electronically integrated microcatheters based on self-assembling polymer films
Dangi et al. Evaluation of high frequency piezoelectric micromachined ultrasound transducers for photoacoustic imaging
JP7237954B2 (en) Mass production of catheters containing electrodes with low impedance at low frequencies
US20230408606A1 (en) Omnidirectional MRI Catheter Resonator and Related Systems, Methods and Devices
JP7426985B2 (en) Intraluminal device with capacitive pressure sensor
WO2023240686A1 (en) Flexible electrode apparatus for bonding with seeg electrode, and manufacturing method therefor
JP2019097906A (en) Ultrasonic imaging probe, manufacturing method therefor, and ultrasonic imaging device
Haga et al. Minimally invasive diagnostics and treatment using micro/nano machining
Goto et al. Fabrication techniques for multilayer metalization and patterning, and surface mounting of components on cylindrical substrates for tube-shaped micro-tools
JP6989093B2 (en) Endoscope

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090827

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110805

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110809

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111006

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120110

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150